code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
def __UpperCAmelCase ( __a : float ,__a : float ) -> float:
"""simple docstring"""
if mass < 0:
raise ValueError('''The mass of a body cannot be negative''' )
return 0.5 * mass * abs(__a ) * abs(__a )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 354 |
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from transformers import TvltFeatureExtractor, is_datasets_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
if is_datasets_available():
from datasets import load_dataset
a__ = random.Random()
def __UpperCAmelCase ( __a : Tuple ,__a : str=1.0 ,__a : Optional[int]=None ,__a : List[Any]=None ) -> Any:
"""simple docstring"""
if rng is None:
_a : Dict = global_rng
_a : Optional[Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , _a , _a=7 , _a=4_0_0 , _a=2_0_0_0 , _a=2_0_4_8 , _a=1_2_8 , _a=1 , _a=5_1_2 , _a=3_0 , _a=4_4_1_0_0 , ) -> List[Any]:
_a : Optional[Any] = parent
_a : str = batch_size
_a : List[str] = min_seq_length
_a : str = max_seq_length
_a : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
_a : List[Any] = spectrogram_length
_a : List[str] = feature_size
_a : List[Any] = num_audio_channels
_a : Tuple = hop_length
_a : Optional[int] = chunk_length
_a : int = sampling_rate
def __lowercase ( self ) -> Union[str, Any]:
return {
"spectrogram_length": self.spectrogram_length,
"feature_size": self.feature_size,
"num_audio_channels": self.num_audio_channels,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"sampling_rate": self.sampling_rate,
}
def __lowercase ( self , _a=False , _a=False ) -> List[Any]:
def _flatten(_a ):
return list(itertools.chain(*_a ) )
if equal_length:
_a : List[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
_a : List[Any] = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
_a : str = [np.asarray(_a ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class UpperCAmelCase_ ( __lowercase , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : List[Any] = TvltFeatureExtractor
def __lowercase ( self ) -> Dict:
_a : List[str] = TvltFeatureExtractionTester(self )
def __lowercase ( self ) -> Any:
_a : List[Any] = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(_a , '''spectrogram_length''' ) )
self.assertTrue(hasattr(_a , '''feature_size''' ) )
self.assertTrue(hasattr(_a , '''num_audio_channels''' ) )
self.assertTrue(hasattr(_a , '''hop_length''' ) )
self.assertTrue(hasattr(_a , '''chunk_length''' ) )
self.assertTrue(hasattr(_a , '''sampling_rate''' ) )
def __lowercase ( self ) -> Optional[int]:
_a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a : int = feat_extract_first.save_pretrained(_a )[0]
check_json_file_has_correct_format(_a )
_a : Dict = self.feature_extraction_class.from_pretrained(_a )
_a : List[Any] = feat_extract_first.to_dict()
_a : Union[str, Any] = feat_extract_second.to_dict()
_a : Any = dict_first.pop('''mel_filters''' )
_a : int = dict_second.pop('''mel_filters''' )
self.assertTrue(np.allclose(_a , _a ) )
self.assertEqual(_a , _a )
def __lowercase ( self ) -> Optional[int]:
_a : Any = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a : Optional[int] = os.path.join(_a , '''feat_extract.json''' )
feat_extract_first.to_json_file(_a )
_a : List[str] = self.feature_extraction_class.from_json_file(_a )
_a : List[Any] = feat_extract_first.to_dict()
_a : Dict = feat_extract_second.to_dict()
_a : str = dict_first.pop('''mel_filters''' )
_a : str = dict_second.pop('''mel_filters''' )
self.assertTrue(np.allclose(_a , _a ) )
self.assertEqual(_a , _a )
def __lowercase ( self ) -> Union[str, Any]:
# Initialize feature_extractor
_a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict )
# create three inputs of length 800, 1000, and 1200
_a : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )]
_a : List[str] = [np.asarray(_a ) for speech_input in speech_inputs]
# Test not batched input
_a : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test batched
_a : Dict = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test audio masking
_a : Union[str, Any] = feature_extractor(
_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=_a ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test 2-D numpy arrays are batched.
_a : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)]
_a : int = np.asarray(_a )
_a : Tuple = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
def __lowercase ( self , _a ) -> Optional[Any]:
_a : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' )
# automatic decoding with librispeech
_a : Optional[int] = ds.sort('''id''' ).select(range(_a ) )[:num_samples]['''audio''']
return [x["array"] for x in speech_samples]
def __lowercase ( self ) -> int:
_a : Union[str, Any] = self._load_datasamples(1 )
_a : int = TvltFeatureExtractor()
_a : Union[str, Any] = feature_extractor(_a , return_tensors='''pt''' ).audio_values
self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) )
_a : Union[str, Any] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] )
self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
| 15 | 0 |
import warnings
from ...utils import logging
from .image_processing_deformable_detr import DeformableDetrImageProcessor
a__ = logging.get_logger(__name__)
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
def __init__( self , *_a , **_a ) -> None:
warnings.warn(
'''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use DeformableDetrImageProcessor instead.''' , _a , )
super().__init__(*_a , **_a )
| 355 |
from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
a__ = logging.get_logger(__name__)
@add_end_docstrings(
__lowercase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , )
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
def __lowercase ( self , _a ) -> np.ndarray:
if self.framework == "tf":
_a : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()
elif self.framework == "pt":
_a : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a )
else:
raise ValueError('''Unsupported framework''' )
return masked_index
def __lowercase ( self , _a ) -> np.ndarray:
_a : int = self.get_masked_index(_a )
_a : Tuple = np.prod(masked_index.shape )
if numel < 1:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , )
def __lowercase ( self , _a ) -> Optional[int]:
if isinstance(_a , _a ):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] )
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(_a )
def __lowercase ( self , _a , _a=None , **_a ) -> Dict[str, GenericTensor]:
if return_tensors is None:
_a : Union[str, Any] = self.framework
_a : str = self.tokenizer(_a , return_tensors=_a )
self.ensure_exactly_one_mask_token(_a )
return model_inputs
def __lowercase ( self , _a ) -> Optional[Any]:
_a : List[str] = self.model(**_a )
_a : Any = model_inputs['''input_ids''']
return model_outputs
def __lowercase ( self , _a , _a=5 , _a=None ) -> str:
# Cap top_k if there are targets
if target_ids is not None and target_ids.shape[0] < top_k:
_a : List[Any] = target_ids.shape[0]
_a : Any = model_outputs['''input_ids'''][0]
_a : List[str] = model_outputs['''logits''']
if self.framework == "tf":
_a : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0]
_a : List[str] = outputs.numpy()
_a : Dict = outputs[0, masked_index, :]
_a : str = stable_softmax(_a , axis=-1 )
if target_ids is not None:
_a : Any = tf.gather_nd(tf.squeeze(_a , 0 ) , target_ids.reshape(-1 , 1 ) )
_a : Union[str, Any] = tf.expand_dims(_a , 0 )
_a : Optional[int] = tf.math.top_k(_a , k=_a )
_a , _a : Optional[Any] = topk.values.numpy(), topk.indices.numpy()
else:
_a : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ).squeeze(-1 )
# Fill mask pipeline supports only one ${mask_token} per sample
_a : List[str] = outputs[0, masked_index, :]
_a : List[Any] = logits.softmax(dim=-1 )
if target_ids is not None:
_a : List[Any] = probs[..., target_ids]
_a , _a : Optional[Any] = probs.topk(_a )
_a : Dict = []
_a : List[Any] = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ):
_a : Optional[Any] = []
for v, p in zip(_values , _predictions ):
# Copy is important since we're going to modify this array in place
_a : Optional[int] = input_ids.numpy().copy()
if target_ids is not None:
_a : Tuple = target_ids[p].tolist()
_a : List[str] = p
# Filter padding out:
_a : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
_a : List[str] = self.tokenizer.decode(_a , skip_special_tokens=_a )
_a : List[Any] = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence}
row.append(_a )
result.append(_a )
if single_mask:
return result[0]
return result
def __lowercase ( self , _a , _a=None ) -> Dict:
if isinstance(_a , _a ):
_a : Tuple = [targets]
try:
_a : int = self.tokenizer.get_vocab()
except Exception:
_a : Any = {}
_a : List[Any] = []
for target in targets:
_a : List[Any] = vocab.get(_a , _a )
if id_ is None:
_a : Tuple = self.tokenizer(
_a , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , max_length=1 , truncation=_a , )['''input_ids''']
if len(_a ) == 0:
logger.warning(
F"""The specified target token `{target}` does not exist in the model vocabulary. """
'''We cannot replace it with anything meaningful, ignoring it''' )
continue
_a : Tuple = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
F"""The specified target token `{target}` does not exist in the model vocabulary. """
F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" )
target_ids.append(id_ )
_a : List[str] = list(set(_a ) )
if len(_a ) == 0:
raise ValueError('''At least one target must be provided when passed.''' )
_a : int = np.array(_a )
return target_ids
def __lowercase ( self , _a=None , _a=None ) -> Tuple:
_a : str = {}
if targets is not None:
_a : List[Any] = self.get_target_ids(_a , _a )
_a : Optional[Any] = target_ids
if top_k is not None:
_a : Union[str, Any] = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' )
return {}, {}, postprocess_params
def __call__( self , _a , *_a , **_a ) -> int:
_a : Optional[Any] = super().__call__(_a , **_a )
if isinstance(_a , _a ) and len(_a ) == 1:
return outputs[0]
return outputs
| 15 | 0 |
def __UpperCAmelCase ( __a : int = 1_000 ) -> int:
"""simple docstring"""
_a : Union[str, Any] = 2**power
_a : Union[str, Any] = 0
while n:
_a : Dict = r + n % 10, n // 10
return r
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 356 |
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
a__ = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'''text-classification''',
'''language-modeling''',
'''summarization''',
'''token-classification''',
'''question-answering''',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
a__ = logging.getLogger()
def __UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
_a : Any = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_a : Dict = parser.parse_args()
return args.f
def __UpperCAmelCase ( __a : Optional[int] ,__a : List[str]="eval" ) -> Any:
"""simple docstring"""
_a : Any = os.path.join(__a ,F"""{split}_results.json""" )
if os.path.exists(__a ):
with open(__a ,'''r''' ) as f:
return json.load(__a )
raise ValueError(F"""can't find {path}""" )
a__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
def __lowercase ( self ) -> str:
_a : Any = self.get_auto_remove_tmp_dir()
_a : Optional[Any] = F"""
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--eval_steps=2
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
with patch.object(_a , '''argv''' , _a ):
run_flax_glue.main()
_a : Any = get_results(_a )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
@slow
def __lowercase ( self ) -> Dict:
_a : Tuple = self.get_auto_remove_tmp_dir()
_a : Tuple = F"""
run_clm_flax.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(_a , '''argv''' , _a ):
run_clm_flax.main()
_a : List[str] = get_results(_a )
self.assertLess(result['''eval_perplexity'''] , 1_0_0 )
@slow
def __lowercase ( self ) -> Optional[int]:
_a : str = self.get_auto_remove_tmp_dir()
_a : Optional[int] = F"""
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--test_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=8
--do_train
--do_eval
--do_predict
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(_a , '''argv''' , _a ):
run_summarization_flax.main()
_a : Optional[int] = get_results(_a , split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 )
self.assertGreaterEqual(result['''test_rouge2'''] , 2 )
self.assertGreaterEqual(result['''test_rougeL'''] , 7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 )
@slow
def __lowercase ( self ) -> Tuple:
_a : List[str] = self.get_auto_remove_tmp_dir()
_a : List[Any] = F"""
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--logging_steps 2 --eval_steps 2
--do_train
--do_eval
--num_train_epochs=1
""".split()
with patch.object(_a , '''argv''' , _a ):
run_mlm_flax.main()
_a : List[Any] = get_results(_a )
self.assertLess(result['''eval_perplexity'''] , 4_2 )
@slow
def __lowercase ( self ) -> Dict:
_a : Optional[Any] = self.get_auto_remove_tmp_dir()
_a : int = F"""
run_t5_mlm_flax.py
--model_name_or_path t5-small
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(_a , '''argv''' , _a ):
run_ta_mlm_flax.main()
_a : List[Any] = get_results(_a )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 )
@slow
def __lowercase ( self ) -> Optional[Any]:
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
_a : Any = 7 if get_gpu_count() > 1 else 2
_a : List[Any] = self.get_auto_remove_tmp_dir()
_a : List[Any] = F"""
run_flax_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--logging_steps 2 --eval_steps 2
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
with patch.object(_a , '''argv''' , _a ):
run_flax_ner.main()
_a : Dict = get_results(_a )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertGreaterEqual(result['''eval_f1'''] , 0.3 )
@slow
def __lowercase ( self ) -> Any:
_a : Optional[int] = self.get_auto_remove_tmp_dir()
_a : Union[str, Any] = F"""
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=2
--do_train
--do_eval
--logging_steps 2 --eval_steps 2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(_a , '''argv''' , _a ):
run_qa.main()
_a : Any = get_results(_a )
self.assertGreaterEqual(result['''eval_f1'''] , 3_0 )
self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
| 15 | 0 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
a__ = get_tests_dir('''fixtures''')
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __lowercase ( self ) -> List[Any]:
# A mock response for an HTTP head request to emulate server down
_a : Dict = mock.Mock()
_a : List[Any] = 5_0_0
_a : Optional[Any] = {}
_a : Any = HTTPError
_a : Union[str, Any] = {}
# Download this model to make sure it's in the cache.
_a : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('''requests.Session.request''' , return_value=_a ) as mock_head:
_a : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' )
# This check we did call the fake head request
mock_head.assert_called()
def __lowercase ( self ) -> Any:
# This test is for deprecated behavior and can be removed in v5
_a : List[str] = WavaVecaFeatureExtractor.from_pretrained(
'''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' )
@is_staging_test
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def __lowercase ( cls ) -> Tuple:
_a : Optional[int] = TOKEN
HfFolder.save_token(_a )
@classmethod
def __lowercase ( cls ) -> int:
try:
delete_repo(token=cls._token , repo_id='''test-feature-extractor''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' )
except HTTPError:
pass
def __lowercase ( self ) -> str:
_a : int = WavaVecaFeatureExtractor.from_pretrained(_a )
feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token )
_a : List[Any] = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(_a , getattr(_a , _a ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-feature-extractor''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
_a , repo_id='''test-feature-extractor''' , push_to_hub=_a , use_auth_token=self._token )
_a : Dict = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(_a , getattr(_a , _a ) )
def __lowercase ( self ) -> List[Any]:
_a : int = WavaVecaFeatureExtractor.from_pretrained(_a )
feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token )
_a : List[str] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(_a , getattr(_a , _a ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
_a , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=_a , use_auth_token=self._token )
_a : str = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(_a , getattr(_a , _a ) )
def __lowercase ( self ) -> Union[str, Any]:
CustomFeatureExtractor.register_for_auto_class()
_a : Union[str, Any] = CustomFeatureExtractor.from_pretrained(_a )
feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , )
_a : str = AutoFeatureExtractor.from_pretrained(
F"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=_a )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
| 357 |
import argparse
import os
import re
import packaging.version
a__ = '''examples/'''
a__ = {
'''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''),
'''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
a__ = {
'''init''': '''src/transformers/__init__.py''',
'''setup''': '''setup.py''',
}
a__ = '''README.md'''
def __UpperCAmelCase ( __a : List[str] ,__a : int ,__a : Optional[Any] ) -> int:
"""simple docstring"""
with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f:
_a : Tuple = f.read()
_a , _a : str = REPLACE_PATTERNS[pattern]
_a : List[str] = replace.replace('''VERSION''' ,__a )
_a : List[Any] = re_pattern.sub(__a ,__a )
with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f:
f.write(__a )
def __UpperCAmelCase ( __a : Any ) -> List[Any]:
"""simple docstring"""
for folder, directories, fnames in os.walk(__a ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(__a ,__a ) ,__a ,pattern='''examples''' )
def __UpperCAmelCase ( __a : List[Any] ,__a : List[str]=False ) -> int:
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(__a ,__a ,__a )
if not patch:
update_version_in_examples(__a )
def __UpperCAmelCase ( ) -> List[str]:
"""simple docstring"""
_a : Optional[Any] = '''🤗 Transformers currently provides the following architectures'''
_a : str = '''1. Want to contribute a new model?'''
with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f:
_a : Optional[int] = f.readlines()
# Find the start of the list.
_a : Optional[int] = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
_a : List[Any] = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
_a : Tuple = lines[index].replace(
'''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,)
index += 1
with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f:
f.writelines(__a )
def __UpperCAmelCase ( ) -> List[str]:
"""simple docstring"""
with open(REPLACE_FILES['''init'''] ,'''r''' ) as f:
_a : Optional[Any] = f.read()
_a : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0]
return packaging.version.parse(__a )
def __UpperCAmelCase ( __a : Dict=False ) -> str:
"""simple docstring"""
_a : Optional[Any] = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
_a : List[Any] = default_version.base_version
elif patch:
_a : str = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
_a : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
_a : Dict = input(F"""Which version are you releasing? [{default_version}]""" )
if len(__a ) == 0:
_a : int = default_version
print(F"""Updating version to {version}.""" )
global_version_update(__a ,patch=__a )
if not patch:
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
def __UpperCAmelCase ( ) -> Tuple:
"""simple docstring"""
_a : str = get_version()
_a : int = F"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
_a : List[Any] = current_version.base_version
# Check with the user we got that right.
_a : Union[str, Any] = input(F"""Which version are we developing now? [{dev_version}]""" )
if len(__a ) == 0:
_a : List[str] = dev_version
print(F"""Updating version to {version}.""" )
global_version_update(__a )
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
a__ = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work()
| 15 | 0 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__ = {
'''configuration_xmod''': [
'''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''XmodConfig''',
'''XmodOnnxConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
'''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XmodForCausalLM''',
'''XmodForMaskedLM''',
'''XmodForMultipleChoice''',
'''XmodForQuestionAnswering''',
'''XmodForSequenceClassification''',
'''XmodForTokenClassification''',
'''XmodModel''',
'''XmodPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 358 |
def __UpperCAmelCase ( __a : int ) -> int:
"""simple docstring"""
if n == 1 or not isinstance(__a ,__a ):
return 0
elif n == 2:
return 1
else:
_a : Any = [0, 1]
for i in range(2 ,n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def __UpperCAmelCase ( __a : int ) -> int:
"""simple docstring"""
_a : Any = 0
_a : Dict = 2
while digits < n:
index += 1
_a : Dict = len(str(fibonacci(__a ) ) )
return index
def __UpperCAmelCase ( __a : int = 1_000 ) -> int:
"""simple docstring"""
return fibonacci_digits_index(__a )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 15 | 0 |
import datasets
from .evaluate import evaluate
a__ = '''\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
'''
a__ = '''
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
'''
a__ = '''
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair as given in the references (see below)
- \'prediction_text\': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair (see above),
- \'answers\': a Dict in the CUAD dataset format
{
\'text\': list of possible texts for the answer, as a list of strings
\'answer_start\': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
\'exact_match\': Exact match (the normalized answer exactly match the gold answer)
\'f1\': The F-score of predicted tokens versus the gold answer
\'aupr\': Area Under the Precision-Recall curve
\'prec_at_80_recall\': Precision at 80% recall
\'prec_at_90_recall\': Precision at 90% recall
Examples:
>>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]
>>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]
>>> cuad_metric = datasets.load_metric("cuad")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
"""simple docstring"""
def __lowercase ( self ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': {
'''id''': datasets.Value('''string''' ),
'''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ),
},
'''references''': {
'''id''': datasets.Value('''string''' ),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
},
} ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , )
def __lowercase ( self , _a , _a ) -> Optional[int]:
_a : Optional[int] = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
_a : Dict = [
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
_a : Union[str, Any] = evaluate(dataset=_a , predictions=_a )
return score
| 359 |
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
from .record_evaluation import evaluate as evaluate_record
a__ = '''\
@article{wang2019superglue,
title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},
author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},
journal={arXiv preprint arXiv:1905.00537},
year={2019}
}
'''
a__ = '''\
SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after
GLUE with a new set of more difficult language understanding tasks, improved
resources, and a new public leaderboard.
'''
a__ = '''
Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset.
Args:
predictions: list of predictions to score. Depending on the SuperGlUE subset:
- for \'record\': list of question-answer dictionaries with the following keys:
- \'idx\': index of the question as specified by the dataset
- \'prediction_text\': the predicted answer text
- for \'multirc\': list of question-answer dictionaries with the following keys:
- \'idx\': index of the question-answer pair as specified by the dataset
- \'prediction\': the predicted answer label
- otherwise: list of predicted labels
references: list of reference labels. Depending on the SuperGLUE subset:
- for \'record\': list of question-answers dictionaries with the following keys:
- \'idx\': index of the question as specified by the dataset
- \'answers\': list of possible answers
- otherwise: list of reference labels
Returns: depending on the SuperGLUE subset:
- for \'record\':
- \'exact_match\': Exact match between answer and gold answer
- \'f1\': F1 score
- for \'multirc\':
- \'exact_match\': Exact match between answer and gold answer
- \'f1_m\': Per-question macro-F1 score
- \'f1_a\': Average F1 score over all answers
- for \'axb\':
\'matthews_correlation\': Matthew Correlation
- for \'cb\':
- \'accuracy\': Accuracy
- \'f1\': F1 score
- for all others:
- \'accuracy\': Accuracy
Examples:
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0, \'f1\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')
>>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]
>>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 1.0, \'f1\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')
>>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'matthews_correlation\': 1.0}
'''
def __UpperCAmelCase ( __a : int ,__a : List[str] ) -> Optional[Any]:
"""simple docstring"""
return float((preds == labels).mean() )
def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ,__a : List[str]="binary" ) -> Optional[int]:
"""simple docstring"""
_a : List[str] = simple_accuracy(__a ,__a )
_a : Any = float(fa_score(y_true=__a ,y_pred=__a ,average=__a ) )
return {
"accuracy": acc,
"f1": fa,
}
def __UpperCAmelCase ( __a : Optional[Any] ,__a : str ) -> List[Any]:
"""simple docstring"""
_a : Union[str, Any] = {}
for id_pred, label in zip(__a ,__a ):
_a : Optional[int] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}"""
_a : Optional[Any] = id_pred['''prediction''']
if question_id in question_map:
question_map[question_id].append((pred, label) )
else:
_a : str = [(pred, label)]
_a , _a : Any = [], []
for question, preds_labels in question_map.items():
_a , _a : Any = zip(*__a )
_a : List[Any] = fa_score(y_true=__a ,y_pred=__a ,average='''macro''' )
fas.append(__a )
_a : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__a ) )
ems.append(__a )
_a : List[str] = float(sum(__a ) / len(__a ) )
_a : str = sum(__a ) / len(__a )
_a : Optional[int] = float(fa_score(y_true=__a ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) )
return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
"""simple docstring"""
def __lowercase ( self ) -> List[Any]:
if self.config_name not in [
"boolq",
"cb",
"copa",
"multirc",
"record",
"rte",
"wic",
"wsc",
"wsc.fixed",
"axb",
"axg",
]:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , )
def __lowercase ( self ) -> Any:
if self.config_name == "record":
return {
"predictions": {
"idx": {
"passage": datasets.Value('''int64''' ),
"query": datasets.Value('''int64''' ),
},
"prediction_text": datasets.Value('''string''' ),
},
"references": {
"idx": {
"passage": datasets.Value('''int64''' ),
"query": datasets.Value('''int64''' ),
},
"answers": datasets.Sequence(datasets.Value('''string''' ) ),
},
}
elif self.config_name == "multirc":
return {
"predictions": {
"idx": {
"answer": datasets.Value('''int64''' ),
"paragraph": datasets.Value('''int64''' ),
"question": datasets.Value('''int64''' ),
},
"prediction": datasets.Value('''int64''' ),
},
"references": datasets.Value('''int64''' ),
}
else:
return {
"predictions": datasets.Value('''int64''' ),
"references": datasets.Value('''int64''' ),
}
def __lowercase ( self , _a , _a ) -> Optional[Any]:
if self.config_name == "axb":
return {"matthews_correlation": matthews_corrcoef(_a , _a )}
elif self.config_name == "cb":
return acc_and_fa(_a , _a , fa_avg='''macro''' )
elif self.config_name == "record":
_a : Any = [
{
'''qas''': [
{'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]}
for ref in references
]
}
]
_a : Any = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions}
return evaluate_record(_a , _a )[0]
elif self.config_name == "multirc":
return evaluate_multirc(_a , _a )
elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]:
return {"accuracy": simple_accuracy(_a , _a )}
else:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
| 15 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
a__ = logging.get_logger(__name__)
a__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
# See all BART models at https://huggingface.co/models?filter=bart
a__ = {
'''vocab_file''': {
'''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''',
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''',
'''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''',
'''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''',
'''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''',
'''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''',
},
'''merges_file''': {
'''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''',
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''',
'''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''',
'''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''',
'''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''',
'''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''',
},
'''tokenizer_file''': {
'''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''',
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''',
'''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''',
'''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''',
'''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''',
'''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''',
},
}
a__ = {
'''facebook/bart-base''': 1024,
'''facebook/bart-large''': 1024,
'''facebook/bart-large-mnli''': 1024,
'''facebook/bart-large-cnn''': 1024,
'''facebook/bart-large-xsum''': 1024,
'''yjernite/bart_eli5''': 1024,
}
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
UpperCAmelCase__ : int = VOCAB_FILES_NAMES
UpperCAmelCase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : str = ["input_ids", "attention_mask"]
UpperCAmelCase__ : Union[str, Any] = BartTokenizer
def __init__( self , _a=None , _a=None , _a=None , _a="replace" , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=False , _a=True , **_a , ) -> List[str]:
"""simple docstring"""
super().__init__(
_a , _a , tokenizer_file=_a , errors=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , trim_offsets=_a , **_a , )
_a : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , _a ) != add_prefix_space:
_a : Tuple = getattr(_a , pre_tok_state.pop('''type''' ) )
_a : int = add_prefix_space
_a : Optional[Any] = pre_tok_class(**_a )
_a : Dict = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
_a : Optional[int] = '''post_processor'''
_a : Optional[int] = getattr(self.backend_tokenizer , _a , _a )
if tokenizer_component_instance:
_a : List[Any] = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
_a : List[str] = tuple(state['''sep'''] )
if "cls" in state:
_a : Tuple = tuple(state['''cls'''] )
_a : int = False
if state.get('''add_prefix_space''' , _a ) != add_prefix_space:
_a : Any = add_prefix_space
_a : Optional[Any] = True
if state.get('''trim_offsets''' , _a ) != trim_offsets:
_a : Tuple = trim_offsets
_a : str = True
if changes_to_apply:
_a : Dict = getattr(_a , state.pop('''type''' ) )
_a : Tuple = component_class(**_a )
setattr(self.backend_tokenizer , _a , _a )
@property
def __lowercase ( self ) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error('''Using mask_token, but it is not set yet.''' )
return None
return str(self._mask_token )
@mask_token.setter
def __lowercase ( self , _a ) -> str:
"""simple docstring"""
_a : List[str] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else value
_a : List[Any] = value
def __lowercase ( self , *_a , **_a ) -> BatchEncoding:
"""simple docstring"""
_a : Optional[Any] = kwargs.get('''is_split_into_words''' , _a )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
'''to use it with pretokenized inputs.''' )
return super()._batch_encode_plus(*_a , **_a )
def __lowercase ( self , *_a , **_a ) -> BatchEncoding:
"""simple docstring"""
_a : List[Any] = kwargs.get('''is_split_into_words''' , _a )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
'''to use it with pretokenized inputs.''' )
return super()._encode_plus(*_a , **_a )
def __lowercase ( self , _a , _a = None ) -> Tuple[str]:
"""simple docstring"""
_a : Optional[int] = self._tokenizer.model.save(_a , name=_a )
return tuple(_a )
def __lowercase ( self , _a , _a=None ) -> Any:
"""simple docstring"""
_a : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def __lowercase ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
_a : Tuple = [self.sep_token_id]
_a : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 360 |
import numpy as np
def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : float = 1E-12 ,__a : int = 100 ,) -> tuple[float, np.ndarray]:
"""simple docstring"""
assert np.shape(__a )[0] == np.shape(__a )[1]
# Ensure proper dimensionality.
assert np.shape(__a )[0] == np.shape(__a )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(__a ) == np.iscomplexobj(__a )
_a : List[str] = np.iscomplexobj(__a )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(__a ,input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
_a : List[str] = False
_a : List[str] = 0
_a : Tuple = 0
_a : str = 1E12
while not convergence:
# Multiple matrix by the vector.
_a : str = np.dot(__a ,__a )
# Normalize the resulting output vector.
_a : List[Any] = w / np.linalg.norm(__a )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
_a : Dict = vector.conj().T if is_complex else vector.T
_a : Tuple = np.dot(__a ,np.dot(__a ,__a ) )
# Check convergence.
_a : List[str] = np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
_a : Dict = True
_a : str = lambda_
if is_complex:
_a : Tuple = np.real(lambda_ )
return lambda_, vector
def __UpperCAmelCase ( ) -> None:
"""simple docstring"""
_a : List[str] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] )
_a : int = np.array([41, 4, 20] )
_a : Optional[Any] = real_input_matrix.astype(np.complexaaa )
_a : int = np.triu(1j * complex_input_matrix ,1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
_a : Union[str, Any] = np.array([41, 4, 20] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
_a : Optional[int] = real_input_matrix
_a : Union[str, Any] = real_vector
elif problem_type == "complex":
_a : str = complex_input_matrix
_a : str = complex_vector
# Our implementation.
_a , _a : Optional[Any] = power_iteration(__a ,__a )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
_a , _a : List[str] = np.linalg.eigh(__a )
# Last eigenvalue is the maximum one.
_a : Tuple = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
_a : List[Any] = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(__a ) - np.abs(__a ) ) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 15 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
a__ = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = ['''SpeechEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = ['''FlaxSpeechEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 361 |
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class UpperCAmelCase_ ( datasets.BuilderConfig ):
"""simple docstring"""
UpperCAmelCase__ : Optional[datasets.Features] = None
class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
UpperCAmelCase__ : Any = PandasConfig
def __lowercase ( self ) -> Any:
return datasets.DatasetInfo(features=self.config.features )
def __lowercase ( self , _a ) -> List[Any]:
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_a : str = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_a , (str, list, tuple) ):
_a : Dict = data_files
if isinstance(_a , _a ):
_a : Dict = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_a : int = [dl_manager.iter_files(_a ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
_a : Optional[Any] = []
for split_name, files in data_files.items():
if isinstance(_a , _a ):
_a : List[str] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_a : Any = [dl_manager.iter_files(_a ) for file in files]
splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) )
return splits
def __lowercase ( self , _a ) -> pa.Table:
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
_a : Optional[Any] = table_cast(_a , self.config.features.arrow_schema )
return pa_table
def __lowercase ( self , _a ) -> List[str]:
for i, file in enumerate(itertools.chain.from_iterable(_a ) ):
with open(_a , '''rb''' ) as f:
_a : str = pa.Table.from_pandas(pd.read_pickle(_a ) )
yield i, self._cast_table(_a )
| 15 | 0 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
a__ = '''platform'''
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def __UpperCAmelCase ( __a : str ,__a : Dict ,__a : Optional[Any]=None ,__a : Optional[Any]=None ,__a : str=None ,__a : int=None ,__a : Optional[Any]=None ,__a : Union[str, Any]=None ,) -> Optional[Any]:
"""simple docstring"""
if attention_mask is None:
_a : Union[str, Any] = np.where(input_ids != config.pad_token_id ,1 ,0 )
if decoder_attention_mask is None:
_a : str = np.where(decoder_input_ids != config.pad_token_id ,1 ,0 )
if head_mask is None:
_a : Optional[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_a : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_a : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , _a , _a=1_3 , _a=7 , _a=True , _a=False , _a=9_9 , _a=1_6 , _a=2 , _a=4 , _a=4 , _a="gelu" , _a=0.1 , _a=0.1 , _a=3_2 , _a=2 , _a=1 , _a=0 , _a=0.02 , ) -> List[str]:
_a : List[Any] = parent
_a : List[Any] = batch_size
_a : List[str] = seq_length
_a : Any = is_training
_a : Tuple = use_labels
_a : List[Any] = vocab_size
_a : Union[str, Any] = hidden_size
_a : Optional[Any] = num_hidden_layers
_a : Tuple = num_attention_heads
_a : Union[str, Any] = intermediate_size
_a : Dict = hidden_act
_a : Any = hidden_dropout_prob
_a : Optional[Any] = attention_probs_dropout_prob
_a : List[Any] = max_position_embeddings
_a : List[Any] = eos_token_id
_a : Optional[Any] = pad_token_id
_a : Any = bos_token_id
_a : Any = initializer_range
def __lowercase ( self ) -> Dict:
_a : int = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
_a : Optional[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
_a : Tuple = shift_tokens_right(_a , 1 , 2 )
_a : Optional[int] = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_a , )
_a : Tuple = prepare_blenderbot_inputs_dict(_a , _a , _a )
return config, inputs_dict
def __lowercase ( self ) -> List[str]:
_a : Dict = self.prepare_config_and_inputs()
return config, inputs_dict
def __lowercase ( self , _a , _a , _a ) -> str:
_a : Optional[int] = 2_0
_a : Union[str, Any] = model_class_name(_a )
_a : Optional[Any] = model.encode(inputs_dict['''input_ids'''] )
_a : str = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
_a : Any = model.init_cache(decoder_input_ids.shape[0] , _a , _a )
_a : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
_a : str = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_a : Union[str, Any] = model.decode(
decoder_input_ids[:, :-1] , _a , decoder_attention_mask=_a , past_key_values=_a , decoder_position_ids=_a , )
_a : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
_a : Any = model.decode(
decoder_input_ids[:, -1:] , _a , decoder_attention_mask=_a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_a , )
_a : Union[str, Any] = model.decode(_a , _a )
_a : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" )
def __lowercase ( self , _a , _a , _a ) -> str:
_a : Union[str, Any] = 2_0
_a : str = model_class_name(_a )
_a : Optional[int] = model.encode(inputs_dict['''input_ids'''] )
_a : str = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
_a : str = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_a : Tuple = model.init_cache(decoder_input_ids.shape[0] , _a , _a )
_a : List[Any] = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_a : List[str] = model.decode(
decoder_input_ids[:, :-1] , _a , decoder_attention_mask=_a , past_key_values=_a , decoder_position_ids=_a , )
_a : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
_a : List[str] = model.decode(
decoder_input_ids[:, -1:] , _a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_a , decoder_position_ids=_a , )
_a : Dict = model.decode(_a , _a , decoder_attention_mask=_a )
_a : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" )
@require_flax
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : Optional[int] = 99
def __lowercase ( self ) -> List[str]:
_a : List[Any] = np.array(
[
[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2],
[6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2],
[5, 9_7, 1_7, 3_9, 9_4, 4_0, 2],
[7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2],
[8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2],
[5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding
[6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2],
[5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2],
[4_8, 6_1, 9, 2_4, 7_1, 8_2, 2],
[2_6, 1, 6_0, 4_8, 2_2, 1_3, 2],
[2_1, 5, 6_2, 2_8, 1_4, 7_6, 2],
[4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2],
[7_0, 7_0, 5_0, 9, 2_8, 0, 2],
] , dtype=np.intaa , )
_a : List[str] = input_ids.shape[0]
_a : Dict = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def __lowercase ( self ) -> int:
_a : List[Any] = self._get_config_and_data()
_a : Optional[Any] = FlaxBlenderbotForConditionalGeneration(_a )
_a : Dict = lm_model(input_ids=_a )
_a : Optional[int] = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs['''logits'''].shape , _a )
def __lowercase ( self ) -> Dict:
_a : str = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , )
_a : Optional[Any] = FlaxBlenderbotForConditionalGeneration(_a )
_a : List[str] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa )
_a : Optional[Any] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa )
_a : Tuple = lm_model(input_ids=_a , decoder_input_ids=_a )
_a : Optional[Any] = (*summary.shape, config.vocab_size)
self.assertEqual(outputs['''logits'''].shape , _a )
def __lowercase ( self ) -> Union[str, Any]:
_a : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa )
_a : List[str] = shift_tokens_right(_a , 1 , 2 )
_a : Union[str, Any] = np.equal(_a , 1 ).astype(np.floataa ).sum()
_a : int = np.equal(_a , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(_a , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class UpperCAmelCase_ ( __lowercase , unittest.TestCase , __lowercase ):
"""simple docstring"""
UpperCAmelCase__ : Optional[int] = True
UpperCAmelCase__ : List[Any] = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
UpperCAmelCase__ : Tuple = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def __lowercase ( self ) -> Union[str, Any]:
_a : Optional[int] = FlaxBlenderbotModelTester(self )
def __lowercase ( self ) -> int:
_a : List[Any] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(_a , _a , _a )
def __lowercase ( self ) -> Tuple:
_a : int = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(_a , _a , _a )
def __lowercase ( self ) -> str:
_a : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_a : List[Any] = self._prepare_for_class(_a , _a )
_a : Optional[Any] = model_class(_a )
@jax.jit
def encode_jitted(_a , _a=None , **_a ):
return model.encode(input_ids=_a , attention_mask=_a )
with self.subTest('''JIT Enabled''' ):
_a : Optional[Any] = encode_jitted(**_a ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
_a : Tuple = encode_jitted(**_a ).to_tuple()
self.assertEqual(len(_a ) , len(_a ) )
for jitted_output, output in zip(_a , _a ):
self.assertEqual(jitted_output.shape , output.shape )
def __lowercase ( self ) -> Dict:
_a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_a : List[str] = model_class(_a )
_a : List[Any] = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] )
_a : Union[str, Any] = {
'''decoder_input_ids''': inputs_dict['''decoder_input_ids'''],
'''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''],
'''encoder_outputs''': encoder_outputs,
}
@jax.jit
def decode_jitted(_a , _a , _a ):
return model.decode(
decoder_input_ids=_a , decoder_attention_mask=_a , encoder_outputs=_a , )
with self.subTest('''JIT Enabled''' ):
_a : Optional[int] = decode_jitted(**_a ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
_a : Dict = decode_jitted(**_a ).to_tuple()
self.assertEqual(len(_a ) , len(_a ) )
for jitted_output, output in zip(_a , _a ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __lowercase ( self ) -> Tuple:
for model_class_name in self.all_model_classes:
_a : str = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
_a : Union[str, Any] = np.ones((1, 1) ) * model.config.eos_token_id
_a : str = model(_a )
self.assertIsNotNone(_a )
@unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' )
@slow
def __lowercase ( self ) -> Any:
_a : Tuple = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 1_5, '''max_length''': 2_5}
_a : Union[str, Any] = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True}
_a : Tuple = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=_a )
_a : str = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' )
_a : List[Any] = ['''Sam''']
_a : str = tokenizer(_a , return_tensors='''jax''' )
_a : List[Any] = model.generate(**_a , **_a )
_a : Optional[Any] = '''Sam is a great name. It means "sun" in Gaelic.'''
_a : Dict = tokenizer.batch_decode(_a , **_a )
assert generated_txt[0].strip() == tgt_text
| 362 |
def __UpperCAmelCase ( __a : int ,__a : int ,__a : int ) -> int:
"""simple docstring"""
if exponent == 1:
return base
if exponent % 2 == 0:
_a : List[Any] = _modexpt(__a ,exponent // 2 ,__a ) % modulo_value
return (x * x) % modulo_value
else:
return (base * _modexpt(__a ,exponent - 1 ,__a )) % modulo_value
def __UpperCAmelCase ( __a : int = 1_777 ,__a : int = 1_855 ,__a : int = 8 ) -> int:
"""simple docstring"""
_a : List[Any] = base
for _ in range(1 ,__a ):
_a : Any = _modexpt(__a ,__a ,10**digits )
return result
if __name__ == "__main__":
print(f'''{solution() = }''')
| 15 | 0 |
from maths.prime_check import is_prime
def __UpperCAmelCase ( __a : int ) -> int:
"""simple docstring"""
if not isinstance(__a ,__a ):
_a : str = F"""Input value of [number={number}] must be an integer"""
raise TypeError(__a )
if is_prime(__a ) and is_prime(number + 2 ):
return number + 2
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 363 |
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
a__ = '''\
'''
a__ = '''
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
'''
a__ = '''
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to \'cuda\' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric("perplexity")
>>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
>>> results = perplexity.compute(model_id=\'gpt2\',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
[\'perplexities\', \'mean_perplexity\']
>>> print(round(results["mean_perplexity"], 2))
78.22
>>> print(round(results["perplexities"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric("perplexity")
>>> input_texts = datasets.load_dataset("wikitext",
... "wikitext-2-raw-v1",
... split="test")["text"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!=\'\']
>>> results = perplexity.compute(model_id=\'gpt2\',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
[\'perplexities\', \'mean_perplexity\']
>>> print(round(results["mean_perplexity"], 2))
60.35
>>> print(round(results["perplexities"][0], 2))
81.12
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
"""simple docstring"""
def __lowercase ( self ) -> Any:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''input_texts''': datasets.Value('''string''' ),
} ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , )
def __lowercase ( self , _a , _a , _a = 1_6 , _a = True , _a=None ) -> List[Any]:
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
_a : List[str] = '''cuda'''
else:
_a : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu'''
_a : Dict = AutoModelForCausalLM.from_pretrained(_a )
_a : List[Any] = model.to(_a )
_a : List[str] = AutoTokenizer.from_pretrained(_a )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
_a : str = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(_a ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
_a : List[Any] = model.config.max_length - 1
else:
_a : List[str] = model.config.max_length
_a : Union[str, Any] = tokenizer(
_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a )
_a : List[Any] = encodings['''input_ids''']
_a : int = encodings['''attention_mask''']
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
_a : Optional[int] = []
_a : Dict = CrossEntropyLoss(reduction='''none''' )
for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ):
_a : Dict = min(start_index + batch_size , len(_a ) )
_a : Union[str, Any] = encoded_texts[start_index:end_index]
_a : int = attn_masks[start_index:end_index]
if add_start_token:
_a : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a )
_a : List[str] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
_a : Dict = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 )
_a : Dict = encoded_batch
with torch.no_grad():
_a : Any = model(_a , attention_mask=_a ).logits
_a : List[str] = out_logits[..., :-1, :].contiguous()
_a : Union[str, Any] = labels[..., 1:].contiguous()
_a : Optional[int] = attn_mask[..., 1:].contiguous()
_a : Union[str, Any] = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
| 15 | 0 |
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
a__ = '''Create a default config file for Accelerate with only a few flags set.'''
def __UpperCAmelCase ( __a : Optional[int]="no" ,__a : str = default_json_config_file ,__a : bool = False ) -> Any:
"""simple docstring"""
_a : List[Any] = Path(__a )
path.parent.mkdir(parents=__a ,exist_ok=__a )
if path.exists():
print(
F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" )
return False
_a : List[Any] = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" )
_a : Optional[int] = {
'''compute_environment''': '''LOCAL_MACHINE''',
'''mixed_precision''': mixed_precision,
}
if torch.cuda.is_available():
_a : Any = torch.cuda.device_count()
_a : List[Any] = num_gpus
_a : Dict = False
if num_gpus > 1:
_a : str = '''MULTI_GPU'''
else:
_a : Union[str, Any] = '''NO'''
elif is_xpu_available() and use_xpu:
_a : str = torch.xpu.device_count()
_a : List[str] = num_xpus
_a : Union[str, Any] = False
if num_xpus > 1:
_a : Tuple = '''MULTI_XPU'''
else:
_a : Tuple = '''NO'''
elif is_npu_available():
_a : Dict = torch.npu.device_count()
_a : Dict = num_npus
_a : Optional[int] = False
if num_npus > 1:
_a : List[str] = '''MULTI_NPU'''
else:
_a : int = '''NO'''
else:
_a : str = 0
_a : Optional[Any] = True
_a : int = 1
_a : int = '''NO'''
_a : Tuple = ClusterConfig(**__a )
config.to_json_file(__a )
return path
def __UpperCAmelCase ( __a : Tuple ,__a : Any ) -> List[Any]:
"""simple docstring"""
_a : List[str] = parser.add_parser('''default''' ,parents=__a ,help=__a ,formatter_class=__a )
parser.add_argument(
'''--config_file''' ,default=__a ,help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) ,dest='''save_location''' ,)
parser.add_argument(
'''--mixed_precision''' ,choices=['''no''', '''fp16''', '''bf16'''] ,type=__a ,help='''Whether or not to use mixed precision training. '''
'''Choose between FP16 and BF16 (bfloat16) training. '''
'''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' ,default='''no''' ,)
parser.set_defaults(func=__a )
return parser
def __UpperCAmelCase ( __a : Dict ) -> List[Any]:
"""simple docstring"""
_a : List[Any] = write_basic_config(args.mixed_precision ,args.save_location )
if config_file:
print(F"""accelerate configuration saved at {config_file}""" )
| 364 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__ = {
'''configuration_xmod''': [
'''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''XmodConfig''',
'''XmodOnnxConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
'''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XmodForCausalLM''',
'''XmodForMaskedLM''',
'''XmodForMultipleChoice''',
'''XmodForQuestionAnswering''',
'''XmodForSequenceClassification''',
'''XmodForTokenClassification''',
'''XmodModel''',
'''XmodPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 15 | 0 |
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , _a , _a=3 , _a=3_2 , _a=3 , _a=1_0 , _a=[8, 1_6, 3_2, 6_4] , _a=[1, 1, 2, 1] , _a=True , _a=True , _a="relu" , _a=3 , _a=None , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=1 , ) -> List[Any]:
_a : Optional[Any] = parent
_a : List[Any] = batch_size
_a : str = image_size
_a : Any = num_channels
_a : Any = embeddings_size
_a : Optional[Any] = hidden_sizes
_a : Dict = depths
_a : List[Any] = is_training
_a : List[Any] = use_labels
_a : Dict = hidden_act
_a : str = num_labels
_a : Optional[Any] = scope
_a : List[Any] = len(_a )
_a : Optional[Any] = out_features
_a : Dict = out_indices
_a : Optional[Any] = num_groups
def __lowercase ( self ) -> Union[str, Any]:
_a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_a : int = None
if self.use_labels:
_a : Optional[int] = ids_tensor([self.batch_size] , self.num_labels )
_a : Optional[Any] = self.get_config()
return config, pixel_values, labels
def __lowercase ( self ) -> Tuple:
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def __lowercase ( self , _a , _a , _a ) -> Dict:
_a : Optional[int] = BitModel(config=_a )
model.to(_a )
model.eval()
_a : int = model(_a )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def __lowercase ( self , _a , _a , _a ) -> List[Any]:
_a : List[str] = self.num_labels
_a : str = BitForImageClassification(_a )
model.to(_a )
model.eval()
_a : List[str] = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowercase ( self , _a , _a , _a ) -> str:
_a : str = BitBackbone(config=_a )
model.to(_a )
model.eval()
_a : Optional[Any] = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_a : List[Any] = None
_a : Tuple = BitBackbone(config=_a )
model.to(_a )
model.eval()
_a : Dict = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def __lowercase ( self ) -> Dict:
_a : Optional[Any] = self.prepare_config_and_inputs()
_a : Dict = config_and_inputs
_a : Any = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : List[str] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
UpperCAmelCase__ : Optional[Any] = (
{"feature-extraction": BitModel, "image-classification": BitForImageClassification}
if is_torch_available()
else {}
)
UpperCAmelCase__ : Any = False
UpperCAmelCase__ : Any = False
UpperCAmelCase__ : Any = False
UpperCAmelCase__ : List[Any] = False
UpperCAmelCase__ : str = False
def __lowercase ( self ) -> str:
_a : Optional[int] = BitModelTester(self )
_a : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a )
def __lowercase ( self ) -> Optional[int]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __lowercase ( self ) -> str:
return
@unittest.skip(reason='''Bit does not output attentions''' )
def __lowercase ( self ) -> Union[str, Any]:
pass
@unittest.skip(reason='''Bit does not use inputs_embeds''' )
def __lowercase ( self ) -> List[str]:
pass
@unittest.skip(reason='''Bit does not support input and output embeddings''' )
def __lowercase ( self ) -> Tuple:
pass
def __lowercase ( self ) -> Tuple:
_a : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a : List[Any] = model_class(_a )
_a : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_a : Any = [*signature.parameters.keys()]
_a : Union[str, Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _a )
def __lowercase ( self ) -> Optional[int]:
_a : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def __lowercase ( self ) -> Union[str, Any]:
_a : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_a )
def __lowercase ( self ) -> List[Any]:
_a : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a : Tuple = model_class(config=_a )
for name, module in model.named_modules():
if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
def __lowercase ( self ) -> List[Any]:
def check_hidden_states_output(_a , _a , _a ):
_a : Optional[Any] = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_a : Union[str, Any] = model(**self._prepare_for_class(_a , _a ) )
_a : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_a : Dict = self.model_tester.num_stages
self.assertEqual(len(_a ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_a : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_a : str = ['''preactivation''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
_a : Tuple = layer_type
_a : Union[str, Any] = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_a : int = True
check_hidden_states_output(_a , _a , _a )
@unittest.skip(reason='''Bit does not use feedforward chunking''' )
def __lowercase ( self ) -> List[Any]:
pass
def __lowercase ( self ) -> str:
_a : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def __lowercase ( self ) -> List[str]:
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a : List[str] = BitModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def __UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
_a : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __lowercase ( self ) -> str:
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def __lowercase ( self ) -> str:
_a : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a )
_a : Union[str, Any] = self.default_image_processor
_a : str = prepare_img()
_a : List[str] = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
_a : Tuple = model(**_a )
# verify the logits
_a : int = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , _a )
_a : Optional[int] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
@require_torch
class UpperCAmelCase_ ( __lowercase , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : str = (BitBackbone,) if is_torch_available() else ()
UpperCAmelCase__ : Union[str, Any] = BitConfig
UpperCAmelCase__ : List[Any] = False
def __lowercase ( self ) -> Any:
_a : Optional[Any] = BitModelTester(self )
| 365 |
import re
import tempfile
from pathlib import Path
import pytest
import yaml
from datasets.utils.readme import ReadMe
# @pytest.fixture
# def example_yaml_structure():
a__ = yaml.safe_load(
'''\
name: ""
allow_empty: false
allow_empty_text: true
subsections:
- name: "Dataset Card for X" # First-level markdown heading
allow_empty: false
allow_empty_text: true
subsections:
- name: "Table of Contents"
allow_empty: false
allow_empty_text: false
subsections: null
- name: "Dataset Description"
allow_empty: false
allow_empty_text: false
subsections:
- name: "Dataset Summary"
allow_empty: false
allow_empty_text: false
subsections: null
- name: "Supported Tasks and Leaderboards"
allow_empty: true
allow_empty_text: true
subsections: null
- name: Languages
allow_empty: false
allow_empty_text: true
subsections: null
'''
)
a__ = {
'''name''': '''root''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{
'''name''': '''Dataset Card for My Dataset''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []},
{
'''name''': '''Dataset Description''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Dataset Summary''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [],
},
{
'''name''': '''Supported Tasks and Leaderboards''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
},
{'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []},
],
},
],
}
],
}
a__ = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
a__ = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
#### Extra Ignored Subsection
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
a__ = {
'''name''': '''root''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{
'''name''': '''Dataset Card for My Dataset''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []},
{
'''name''': '''Dataset Description''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Dataset Summary''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Extra Ignored Subsection''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
}
],
},
{
'''name''': '''Supported Tasks and Leaderboards''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
},
{'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []},
],
},
],
}
],
}
a__ = '''\
---
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
a__ = (
'''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.'''
)
a__ = '''\
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
a__ = (
'''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.'''
)
a__ = '''\
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
a__ = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.'''
a__ = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).'''
a__ = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
'''
a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.'''
a__ = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Languages
Language Text
'''
a__ = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.'''
a__ = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
'''
a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.'''
a__ = '''\
---
language:
- zh
- en
---
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.'''
a__ = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
# Dataset Card My Dataset
'''
a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.'''
a__ = '''\
---
language:
- zh
- en
---
# Dataset Card My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
a__ = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.'''
a__ = ''''''
a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.'''
a__ = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
a__ = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.'''
@pytest.mark.parametrize(
'''readme_md, expected_dict''' ,[
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] ,)
def __UpperCAmelCase ( __a : Union[str, Any] ,__a : List[str] ) -> Optional[int]:
"""simple docstring"""
assert ReadMe.from_string(__a ,__a ).to_dict() == expected_dict
@pytest.mark.parametrize(
'''readme_md, expected_error''' ,[
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] ,)
def __UpperCAmelCase ( __a : List[str] ,__a : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ):
_a : List[Any] = ReadMe.from_string(__a ,__a )
readme.validate()
@pytest.mark.parametrize(
'''readme_md, expected_error''' ,[
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] ,)
def __UpperCAmelCase ( __a : Dict ,__a : Dict ) -> Tuple:
"""simple docstring"""
with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ):
ReadMe.from_string(__a ,__a )
@pytest.mark.parametrize(
'''readme_md,''' ,[
(README_MULTIPLE_SAME_HEADING_1),
] ,)
def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple:
"""simple docstring"""
ReadMe.from_string(__a ,__a ,suppress_parsing_errors=__a )
@pytest.mark.parametrize(
'''readme_md, expected_dict''' ,[
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] ,)
def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Any ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
_a : Tuple = Path(__a ) / '''README.md'''
with open(__a ,'''w+''' ) as readme_file:
readme_file.write(__a )
_a : Optional[Any] = ReadMe.from_readme(__a ,__a ).to_dict()
assert out["name"] == path
assert out["text"] == ""
assert out["is_empty_text"]
assert out["subsections"] == expected_dict["subsections"]
@pytest.mark.parametrize(
'''readme_md, expected_error''' ,[
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] ,)
def __UpperCAmelCase ( __a : List[Any] ,__a : List[Any] ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
_a : int = Path(__a ) / '''README.md'''
with open(__a ,'''w+''' ) as readme_file:
readme_file.write(__a )
_a : Optional[int] = expected_error.format(path=__a )
with pytest.raises(__a ,match=re.escape(__a ) ):
_a : Any = ReadMe.from_readme(__a ,__a )
readme.validate()
@pytest.mark.parametrize(
'''readme_md, expected_error''' ,[
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] ,)
def __UpperCAmelCase ( __a : str ,__a : Union[str, Any] ) -> Dict:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
_a : Optional[Any] = Path(__a ) / '''README.md'''
with open(__a ,'''w+''' ) as readme_file:
readme_file.write(__a )
_a : str = expected_error.format(path=__a )
with pytest.raises(__a ,match=re.escape(__a ) ):
ReadMe.from_readme(__a ,__a )
@pytest.mark.parametrize(
'''readme_md,''' ,[
(README_MULTIPLE_SAME_HEADING_1),
] ,)
def __UpperCAmelCase ( __a : Optional[Any] ) -> str:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
_a : int = Path(__a ) / '''README.md'''
with open(__a ,'''w+''' ) as readme_file:
readme_file.write(__a )
ReadMe.from_readme(__a ,__a ,suppress_parsing_errors=__a )
| 15 | 0 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
a__ = get_logger()
a__ = None
class UpperCAmelCase_ ( TensorFormatter[Mapping, "jax.Array", Mapping] ):
"""simple docstring"""
def __init__( self , _a=None , _a=None , **_a ) -> str:
super().__init__(features=_a )
import jax
from jaxlib.xla_client import Device
if isinstance(_a , _a ):
raise ValueError(
F"""Expected {device} to be a `str` not {type(_a )}, as `jaxlib.xla_extension.Device` """
'''is not serializable neither with `pickle` nor with `dill`. Instead you can surround '''
'''the device with `str()` to get its string identifier that will be internally mapped '''
'''to the actual `jaxlib.xla_extension.Device`.''' )
_a : List[str] = device if isinstance(_a , _a ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_a : Dict = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
F"""Device with string identifier {self.device} not listed among the available """
F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """
F"""device: {str(jax.devices()[0] )}.""" )
_a : Any = str(jax.devices()[0] )
_a : Optional[Any] = jnp_array_kwargs
@staticmethod
def __lowercase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]:
import jax
return {str(_a ): device for device in jax.devices()}
def __lowercase ( self , _a ) -> str:
import jax
import jax.numpy as jnp
if isinstance(_a , _a ) and column:
if all(
isinstance(_a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(_a , axis=0 )
return column
def __lowercase ( self , _a ) -> Optional[Any]:
import jax
import jax.numpy as jnp
if isinstance(_a , (str, bytes, type(_a )) ):
return value
elif isinstance(_a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
_a : str = {}
if isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
_a : Dict = {'''dtype''': jnp.intaa}
else:
_a : Optional[int] = {'''dtype''': jnp.intaa}
elif isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
_a : Optional[Any] = {'''dtype''': jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(_a , PIL.Image.Image ):
_a : int = np.asarray(_a )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_a : str = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(_a , **{**default_dtype, **self.jnp_array_kwargs} )
def __lowercase ( self , _a ) -> int:
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(_a , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(_a , '''__array__''' ) and not isinstance(_a , jax.Array ):
_a : List[Any] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(_a , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] )
elif isinstance(_a , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] )
return self._tensorize(_a )
def __lowercase ( self , _a ) -> List[Any]:
return map_nested(self._recursive_tensorize , _a , map_list=_a )
def __lowercase ( self , _a ) -> Mapping:
_a : Any = self.numpy_arrow_extractor().extract_row(_a )
_a : int = self.python_features_decoder.decode_row(_a )
return self.recursive_tensorize(_a )
def __lowercase ( self , _a ) -> "jax.Array":
_a : int = self.numpy_arrow_extractor().extract_column(_a )
_a : Dict = self.python_features_decoder.decode_column(_a , pa_table.column_names[0] )
_a : Optional[Any] = self.recursive_tensorize(_a )
_a : Dict = self._consolidate(_a )
return column
def __lowercase ( self , _a ) -> Mapping:
_a : Union[str, Any] = self.numpy_arrow_extractor().extract_batch(_a )
_a : Optional[Any] = self.python_features_decoder.decode_batch(_a )
_a : Any = self.recursive_tensorize(_a )
for column_name in batch:
_a : int = self._consolidate(batch[column_name] )
return batch
| 366 |
from __future__ import annotations
def __UpperCAmelCase ( __a : list ) -> float:
"""simple docstring"""
if not nums:
raise ValueError('''List is empty''' )
return sum(__a ) / len(__a )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 0 |
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
a__ = logging.get_logger(__name__)
def __UpperCAmelCase ( __a : str ) -> Optional[int]:
"""simple docstring"""
_a : str = SwinConfig.from_pretrained(
'''microsoft/swin-tiny-patch4-window7-224''' ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] )
_a : int = MaskFormerConfig(backbone_config=__a )
_a : Union[str, Any] = '''huggingface/label-files'''
if "ade20k-full" in model_name:
# this should be ok
_a : Union[str, Any] = 847
_a : str = '''maskformer-ade20k-full-id2label.json'''
elif "ade" in model_name:
# this should be ok
_a : int = 150
_a : Optional[int] = '''ade20k-id2label.json'''
elif "coco-stuff" in model_name:
# this should be ok
_a : Optional[int] = 171
_a : Optional[Any] = '''maskformer-coco-stuff-id2label.json'''
elif "coco" in model_name:
# TODO
_a : Dict = 133
_a : str = '''coco-panoptic-id2label.json'''
elif "cityscapes" in model_name:
# this should be ok
_a : Optional[Any] = 19
_a : Optional[int] = '''cityscapes-id2label.json'''
elif "vistas" in model_name:
# this should be ok
_a : List[str] = 65
_a : List[str] = '''mapillary-vistas-id2label.json'''
_a : List[Any] = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) )
_a : List[str] = {int(__a ): v for k, v in idalabel.items()}
return config
def __UpperCAmelCase ( __a : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
_a : Tuple = []
# stem
# fmt: off
rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') )
rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') )
rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') )
rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") )
rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") )
if i < 3:
rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") )
rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") )
rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") )
rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") )
rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") )
# FPN
rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') )
rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') )
rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') )
for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ):
rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") )
rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") )
rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") )
rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") )
rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") )
rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") )
rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') )
rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") )
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") )
# cross-attention out projection
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") )
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") )
# MLP 1
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") )
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") )
# MLP 2
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") )
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") )
# layernorm 1 (self-attention layernorm)
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") )
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") )
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") )
# layernorm 3 (final layernorm)
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") )
rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") )
rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') )
rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') )
# heads on top
rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') )
rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') )
rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') )
rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') )
rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') )
for i in range(3 ):
rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") )
rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") )
# fmt: on
return rename_keys
def __UpperCAmelCase ( __a : Any ,__a : Tuple ,__a : str ) -> List[Any]:
"""simple docstring"""
_a : Any = dct.pop(__a )
_a : int = val
def __UpperCAmelCase ( __a : Optional[int] ,__a : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
_a : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
_a : Union[str, Any] = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
_a : Any = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" )
_a : List[str] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
_a : int = in_proj_weight[:dim, :]
_a : int = in_proj_bias[: dim]
_a : Tuple = in_proj_weight[
dim : dim * 2, :
]
_a : Optional[Any] = in_proj_bias[
dim : dim * 2
]
_a : List[str] = in_proj_weight[
-dim :, :
]
_a : Dict = in_proj_bias[-dim :]
# fmt: on
def __UpperCAmelCase ( __a : Tuple ,__a : Tuple ) -> Dict:
"""simple docstring"""
_a : Union[str, Any] = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
_a : Optional[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" )
_a : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
_a : str = in_proj_weight[: hidden_size, :]
_a : Dict = in_proj_bias[:config.hidden_size]
_a : Optional[int] = in_proj_weight[hidden_size : hidden_size * 2, :]
_a : List[str] = in_proj_bias[hidden_size : hidden_size * 2]
_a : Dict = in_proj_weight[-hidden_size :, :]
_a : List[str] = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
_a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" )
_a : str = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
_a : List[Any] = in_proj_weight[: hidden_size, :]
_a : Any = in_proj_bias[:config.hidden_size]
_a : Any = in_proj_weight[hidden_size : hidden_size * 2, :]
_a : List[str] = in_proj_bias[hidden_size : hidden_size * 2]
_a : int = in_proj_weight[-hidden_size :, :]
_a : List[Any] = in_proj_bias[-hidden_size :]
# fmt: on
def __UpperCAmelCase ( ) -> torch.Tensor:
"""simple docstring"""
_a : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
_a : Optional[int] = Image.open(requests.get(__a ,stream=__a ).raw )
return im
@torch.no_grad()
def __UpperCAmelCase ( __a : str ,__a : str ,__a : str ,__a : bool = False ) -> Optional[Any]:
"""simple docstring"""
_a : Union[str, Any] = get_maskformer_config(__a )
# load original state_dict
with open(__a ,'''rb''' ) as f:
_a : int = pickle.load(__a )
_a : Union[str, Any] = data['''model''']
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
_a : Tuple = create_rename_keys(__a )
for src, dest in rename_keys:
rename_key(__a ,__a ,__a )
read_in_swin_q_k_v(__a ,config.backbone_config )
read_in_decoder_q_k_v(__a ,__a )
# update to torch tensors
for key, value in state_dict.items():
_a : Optional[Any] = torch.from_numpy(__a )
# load 🤗 model
_a : Union[str, Any] = MaskFormerForInstanceSegmentation(__a )
model.eval()
for name, param in model.named_parameters():
print(__a ,param.shape )
_a : List[Any] = model.load_state_dict(__a ,strict=__a )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(__a ) == 0, F"""Unexpected keys: {unexpected_keys}"""
# verify results
_a : int = prepare_img()
if "vistas" in model_name:
_a : Optional[Any] = 65
elif "cityscapes" in model_name:
_a : List[str] = 65_535
else:
_a : Tuple = 255
_a : int = True if '''ade''' in model_name else False
_a : Optional[int] = MaskFormerImageProcessor(ignore_index=__a ,reduce_labels=__a )
_a : List[str] = image_processor(__a ,return_tensors='''pt''' )
_a : Dict = model(**__a )
print('''Logits:''' ,outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
_a : Dict = torch.tensor(
[[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__a ,atol=1E-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" )
Path(__a ).mkdir(exist_ok=__a )
model.save_pretrained(__a )
image_processor.save_pretrained(__a )
if push_to_hub:
print('''Pushing model and image processor to the hub...''' )
model.push_to_hub(F"""nielsr/{model_name}""" )
image_processor.push_to_hub(F"""nielsr/{model_name}""" )
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''maskformer-swin-tiny-ade''',
type=str,
help=('''Name of the MaskFormer model you\'d like to convert''',),
)
parser.add_argument(
'''--checkpoint_path''',
default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''',
type=str,
help='''Path to the original state dict (.pth file).''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
a__ = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 367 |
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
a__ = ['''small''', '''medium''', '''large''']
a__ = '''lm_head.decoder.weight'''
a__ = '''lm_head.weight'''
def __UpperCAmelCase ( __a : str ,__a : str ) -> List[str]:
"""simple docstring"""
_a : Any = torch.load(__a )
_a : List[str] = d.pop(__a )
os.makedirs(__a ,exist_ok=__a )
torch.save(__a ,os.path.join(__a ,__a ) )
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
parser.add_argument('''--dialogpt_path''', default='''.''', type=str)
a__ = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
a__ = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''')
a__ = f'''./DialoGPT-{MODEL}'''
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 15 | 0 |
from math import ceil
def __UpperCAmelCase ( __a : int = 1_001 ) -> int:
"""simple docstring"""
_a : Dict = 1
for i in range(1 ,int(ceil(n / 2.0 ) ) ):
_a : int = 2 * i + 1
_a : str = 2 * i
_a : Any = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
a__ = int(sys.argv[1])
print(solution(n))
except ValueError:
print('''Invalid entry - please enter a number''')
| 368 |
import enum
import warnings
from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING
from ..utils import add_end_docstrings, is_tf_available
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
class UpperCAmelCase_ ( enum.Enum ):
"""simple docstring"""
UpperCAmelCase__ : int = 0
UpperCAmelCase__ : Union[str, Any] = 1
UpperCAmelCase__ : Optional[Any] = 2
@add_end_docstrings(__lowercase )
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
UpperCAmelCase__ : Optional[Any] = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n "
def __init__( self , *_a , **_a ) -> List[str]:
super().__init__(*_a , **_a )
self.check_model_type(
TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING )
if "prefix" not in self._preprocess_params:
# This is very specific. The logic is quite complex and needs to be done
# as a "default".
# It also defines both some preprocess_kwargs and generate_kwargs
# which is why we cannot put them in their respective methods.
_a : Dict = None
if self.model.config.prefix is not None:
_a : List[Any] = self.model.config.prefix
if prefix is None and self.model.__class__.__name__ in [
"XLNetLMHeadModel",
"TransfoXLLMHeadModel",
"TFXLNetLMHeadModel",
"TFTransfoXLLMHeadModel",
]:
# For XLNet and TransformerXL we add an article to the prompt to give more state to the model.
_a : Optional[Any] = self.XL_PREFIX
if prefix is not None:
# Recalculate some generate_kwargs linked to prefix.
_a , _a , _a : str = self._sanitize_parameters(prefix=_a , **self._forward_params )
_a : Optional[Any] = {**self._preprocess_params, **preprocess_params}
_a : List[Any] = {**self._forward_params, **forward_params}
def __lowercase ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , **_a , ) -> Optional[int]:
_a : List[Any] = {}
if prefix is not None:
_a : Optional[Any] = prefix
if prefix:
_a : Dict = self.tokenizer(
_a , padding=_a , add_special_tokens=_a , return_tensors=self.framework )
_a : Tuple = prefix_inputs['''input_ids'''].shape[-1]
if handle_long_generation is not None:
if handle_long_generation not in {"hole"}:
raise ValueError(
F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected"""
''' [None, \'hole\']''' )
_a : Dict = handle_long_generation
preprocess_params.update(_a )
_a : Tuple = generate_kwargs
_a : Any = {}
if return_full_text is not None and return_type is None:
if return_text is not None:
raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' )
if return_tensors is not None:
raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' )
_a : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT
if return_tensors is not None and return_type is None:
if return_text is not None:
raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' )
_a : Any = ReturnType.TENSORS
if return_type is not None:
_a : Any = return_type
if clean_up_tokenization_spaces is not None:
_a : List[Any] = clean_up_tokenization_spaces
if stop_sequence is not None:
_a : Tuple = self.tokenizer.encode(_a , add_special_tokens=_a )
if len(_a ) > 1:
warnings.warn(
'''Stopping on a multiple token sequence is not yet supported on transformers. The first token of'''
''' the stop sequence will be used as the stop sequence string in the interim.''' )
_a : List[Any] = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def __lowercase ( self , *_a , **_a ) -> Union[str, Any]:
# Parse arguments
if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]:
kwargs.update({'''add_space_before_punct_symbol''': True} )
return super()._parse_and_tokenize(*_a , **_a )
def __call__( self , _a , **_a ) -> List[str]:
return super().__call__(_a , **_a )
def __lowercase ( self , _a , _a="" , _a=None , **_a ) -> List[Any]:
_a : Optional[int] = self.tokenizer(
prefix + prompt_text , padding=_a , add_special_tokens=_a , return_tensors=self.framework )
_a : Union[str, Any] = prompt_text
if handle_long_generation == "hole":
_a : List[str] = inputs['''input_ids'''].shape[-1]
if "max_new_tokens" in generate_kwargs:
_a : int = generate_kwargs['''max_new_tokens''']
else:
_a : List[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len
if new_tokens < 0:
raise ValueError('''We cannot infer how many new tokens are expected''' )
if cur_len + new_tokens > self.tokenizer.model_max_length:
_a : List[str] = self.tokenizer.model_max_length - new_tokens
if keep_length <= 0:
raise ValueError(
'''We cannot use `hole` to handle this generation the number of desired tokens exceeds the'''
''' models max length''' )
_a : List[Any] = inputs['''input_ids'''][:, -keep_length:]
if "attention_mask" in inputs:
_a : List[str] = inputs['''attention_mask'''][:, -keep_length:]
return inputs
def __lowercase ( self , _a , **_a ) -> Optional[int]:
_a : Any = model_inputs['''input_ids''']
_a : Optional[Any] = model_inputs.get('''attention_mask''' , _a )
# Allow empty prompts
if input_ids.shape[1] == 0:
_a : int = None
_a : int = None
_a : List[str] = 1
else:
_a : List[Any] = input_ids.shape[0]
_a : Union[str, Any] = model_inputs.pop('''prompt_text''' )
# If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
# generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
_a : int = generate_kwargs.pop('''prefix_length''' , 0 )
if prefix_length > 0:
_a : Tuple = '''max_new_tokens''' in generate_kwargs or (
'''generation_config''' in generate_kwargs
and generate_kwargs['''generation_config'''].max_new_tokens is not None
)
if not has_max_new_tokens:
_a : int = generate_kwargs.get('''max_length''' ) or self.model.config.max_length
generate_kwargs["max_length"] += prefix_length
_a : Dict = '''min_new_tokens''' in generate_kwargs or (
'''generation_config''' in generate_kwargs
and generate_kwargs['''generation_config'''].min_new_tokens is not None
)
if not has_min_new_tokens and "min_length" in generate_kwargs:
generate_kwargs["min_length"] += prefix_length
# BS x SL
_a : Optional[Any] = self.model.generate(input_ids=_a , attention_mask=_a , **_a )
_a : int = generated_sequence.shape[0]
if self.framework == "pt":
_a : Tuple = generated_sequence.reshape(_a , out_b // in_b , *generated_sequence.shape[1:] )
elif self.framework == "tf":
_a : List[Any] = tf.reshape(_a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) )
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text}
def __lowercase ( self , _a , _a=ReturnType.FULL_TEXT , _a=True ) -> int:
_a : Tuple = model_outputs['''generated_sequence'''][0]
_a : int = model_outputs['''input_ids''']
_a : Any = model_outputs['''prompt_text''']
_a : Any = generated_sequence.numpy().tolist()
_a : Any = []
for sequence in generated_sequence:
if return_type == ReturnType.TENSORS:
_a : Optional[int] = {'''generated_token_ids''': sequence}
elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}:
# Decode text
_a : str = self.tokenizer.decode(
_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , )
# Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used
if input_ids is None:
_a : Union[str, Any] = 0
else:
_a : str = len(
self.tokenizer.decode(
input_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) )
if return_type == ReturnType.FULL_TEXT:
_a : str = prompt_text + text[prompt_length:]
else:
_a : List[str] = text[prompt_length:]
_a : Union[str, Any] = {'''generated_text''': all_text}
records.append(_a )
return records
| 15 | 0 |
def __UpperCAmelCase ( __a : int ,__a : int ) -> int:
"""simple docstring"""
return 1 if input_a == input_a else 0
def __UpperCAmelCase ( ) -> None:
"""simple docstring"""
assert xnor_gate(0 ,0 ) == 1
assert xnor_gate(0 ,1 ) == 0
assert xnor_gate(1 ,0 ) == 0
assert xnor_gate(1 ,1 ) == 1
if __name__ == "__main__":
print(xnor_gate(0, 0))
print(xnor_gate(0, 1))
print(xnor_gate(1, 0))
print(xnor_gate(1, 1))
| 369 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __UpperCAmelCase ( __a : Dict=None ) -> str:
"""simple docstring"""
if subparsers is not None:
_a : Union[str, Any] = subparsers.add_parser('''test''' )
else:
_a : List[str] = argparse.ArgumentParser('''Accelerate test command''' )
parser.add_argument(
'''--config_file''' ,default=__a ,help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) ,)
if subparsers is not None:
parser.set_defaults(func=__a )
return parser
def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] )
if args.config_file is None:
_a : List[Any] = script_name
else:
_a : Union[str, Any] = F"""--config_file={args.config_file} {script_name}"""
_a : str = ['''accelerate-launch'''] + test_args.split()
_a : str = execute_subprocess_async(__a ,env=os.environ.copy() )
if result.returncode == 0:
print('''Test is a success! You are ready for your distributed training!''' )
def __UpperCAmelCase ( ) -> List[Any]:
"""simple docstring"""
_a : Optional[int] = test_command_parser()
_a : List[Any] = parser.parse_args()
test_command(__a )
if __name__ == "__main__":
main()
| 15 | 0 |
import numpy as np
import pandas as pd
from sklearn.preprocessing import Normalizer
from sklearn.svm import SVR
from statsmodels.tsa.statespace.sarimax import SARIMAX
def __UpperCAmelCase ( __a : list ,__a : list ,__a : list ,__a : list ,__a : list ) -> float:
"""simple docstring"""
_a : Optional[Any] = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__a )] )
_a : List[str] = np.array(__a )
_a : List[Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() ,__a ) ) ,x.transpose() ) ,__a )
return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] )
def __UpperCAmelCase ( __a : list ,__a : list ,__a : list ) -> float:
"""simple docstring"""
_a : int = (1, 2, 1)
_a : List[str] = (1, 1, 0, 7)
_a : Tuple = SARIMAX(
__a ,exog=__a ,order=__a ,seasonal_order=__a )
_a : int = model.fit(disp=__a ,maxiter=600 ,method='''nm''' )
_a : Optional[int] = model_fit.predict(1 ,len(__a ) ,exog=[test_match] )
return result[0]
def __UpperCAmelCase ( __a : list ,__a : list ,__a : list ) -> float:
"""simple docstring"""
_a : int = SVR(kernel='''rbf''' ,C=1 ,gamma=0.1 ,epsilon=0.1 )
regressor.fit(__a ,__a )
_a : Union[str, Any] = regressor.predict(__a )
return y_pred[0]
def __UpperCAmelCase ( __a : list ) -> float:
"""simple docstring"""
train_user.sort()
_a : Tuple = np.percentile(__a ,25 )
_a : List[Any] = np.percentile(__a ,75 )
_a : Optional[Any] = qa - qa
_a : str = qa - (iqr * 0.1)
return low_lim
def __UpperCAmelCase ( __a : list ,__a : float ) -> bool:
"""simple docstring"""
_a : Any = 0
_a : str = 0
for i in list_vote:
if i > actual_result:
_a : Optional[Any] = not_safe + 1
else:
if abs(abs(__a ) - abs(__a ) ) <= 0.1:
safe += 1
else:
not_safe += 1
return safe > not_safe
if __name__ == "__main__":
# data_input_df = pd.read_csv("ex_data.csv", header=None)
a__ = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]]
a__ = pd.DataFrame(
data_input, columns=['''total_user''', '''total_even''', '''days''']
)
a__ = Normalizer().fit_transform(data_input_df.values)
# split data
a__ = normalize_df[:, 2].tolist()
a__ = normalize_df[:, 0].tolist()
a__ = normalize_df[:, 1].tolist()
# for svr (input variable = total date and total match)
a__ = normalize_df[:, [1, 2]].tolist()
a__ = x[: len(x) - 1]
a__ = x[len(x) - 1 :]
# for linear regression & sarimax
a__ = total_date[: len(total_date) - 1]
a__ = total_user[: len(total_user) - 1]
a__ = total_match[: len(total_match) - 1]
a__ = total_date[len(total_date) - 1 :]
a__ = total_user[len(total_user) - 1 :]
a__ = total_match[len(total_match) - 1 :]
# voting system with forecasting
a__ = [
linear_regression_prediction(
trn_date, trn_user, trn_match, tst_date, tst_match
),
sarimax_predictor(trn_user, trn_match, tst_match),
support_vector_regressor(x_train, x_test, trn_user),
]
# check the safety of today's data
a__ = '''''' if data_safety_checker(res_vote, tst_user) else '''not '''
print('''Today\'s data is {not_str}safe.''')
| 370 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __lowercase ( self ) -> Union[str, Any]:
_a : Optional[Any] = tempfile.mkdtemp()
# fmt: off
_a : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
_a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
_a : Any = {
'''do_resize''': True,
'''size''': {'''height''': 1_8, '''width''': 1_8},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
_a : str = os.path.join(self.tmpdirname , _a )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(_a , _a )
def __lowercase ( self , **_a ) -> Any:
return BertTokenizer.from_pretrained(self.tmpdirname , **_a )
def __lowercase ( self , **_a ) -> str:
return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a )
def __lowercase ( self ) -> List[Any]:
shutil.rmtree(self.tmpdirname )
def __lowercase ( self ) -> Any:
_a : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
_a : Tuple = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __lowercase ( self ) -> str:
_a : List[str] = self.get_tokenizer()
_a : Tuple = self.get_image_processor()
_a : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a )
processor.save_pretrained(self.tmpdirname )
_a : Dict = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , _a )
def __lowercase ( self ) -> Dict:
_a : List[str] = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_a : Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
_a : List[Any] = self.get_image_processor(do_normalize=_a , padding_value=1.0 )
_a : Dict = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _a )
def __lowercase ( self ) -> Any:
_a : Dict = self.get_image_processor()
_a : str = self.get_tokenizer()
_a : int = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a )
_a : List[str] = self.prepare_image_inputs()
_a : List[Any] = image_processor(_a , return_tensors='''np''' )
_a : Dict = processor(images=_a , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowercase ( self ) -> List[str]:
_a : Union[str, Any] = self.get_image_processor()
_a : Dict = self.get_tokenizer()
_a : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a )
_a : Tuple = '''lower newer'''
_a : int = processor(text=_a )
_a : str = tokenizer(_a )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __lowercase ( self ) -> List[Any]:
_a : Any = self.get_image_processor()
_a : str = self.get_tokenizer()
_a : Tuple = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a )
_a : List[Any] = '''lower newer'''
_a : Union[str, Any] = self.prepare_image_inputs()
_a : Any = processor(text=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(_a ):
processor()
def __lowercase ( self ) -> Optional[int]:
_a : Union[str, Any] = self.get_image_processor()
_a : List[str] = self.get_tokenizer()
_a : Any = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a )
_a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_a : int = processor.batch_decode(_a )
_a : int = tokenizer.batch_decode(_a )
self.assertListEqual(_a , _a )
def __lowercase ( self ) -> List[Any]:
_a : Tuple = self.get_image_processor()
_a : List[str] = self.get_tokenizer()
_a : str = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a )
_a : Optional[int] = '''lower newer'''
_a : Dict = self.prepare_image_inputs()
_a : Any = processor(text=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 15 | 0 |
def __UpperCAmelCase ( __a : list ) -> float:
"""simple docstring"""
_a : List[Any] = 0
while len(__a ) > 1:
_a : Optional[int] = 0
# Consider two files with minimum cost to be merged
for _ in range(2 ):
_a : Dict = files.index(min(__a ) )
temp += files[min_index]
files.pop(__a )
files.append(__a )
optimal_merge_cost += temp
return optimal_merge_cost
if __name__ == "__main__":
import doctest
doctest.testmod()
| 371 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
a__ = logging.get_logger(__name__)
a__ = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''w2v_encoder.proj''': '''lm_head''',
'''mask_emb''': '''masked_spec_embed''',
}
def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : Optional[int] ,__a : List[str] ,__a : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
for attribute in key.split('''.''' ):
_a : Optional[Any] = getattr(__a ,__a )
if weight_type is not None:
_a : Dict = getattr(__a ,__a ).shape
else:
_a : Optional[int] = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
_a : List[Any] = value
elif weight_type == "weight_g":
_a : Any = value
elif weight_type == "weight_v":
_a : Union[str, Any] = value
elif weight_type == "bias":
_a : Optional[int] = value
else:
_a : List[Any] = value
logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def __UpperCAmelCase ( __a : Any ,__a : Union[str, Any] ,__a : Union[str, Any] ) -> int:
"""simple docstring"""
_a : Union[str, Any] = []
_a : Union[str, Any] = fairseq_model.state_dict()
_a : Union[str, Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
_a : int = False
if "conv_layers" in name:
load_conv_layer(
__a ,__a ,__a ,__a ,hf_model.config.feat_extract_norm == '''group''' ,)
_a : Optional[Any] = True
else:
for key, mapped_key in MAPPING.items():
_a : Union[str, Any] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key
if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned):
_a : Any = True
if "*" in mapped_key:
_a : Optional[int] = name.split(__a )[0].split('''.''' )[-2]
_a : Any = mapped_key.replace('''*''' ,__a )
if "weight_g" in name:
_a : List[Any] = '''weight_g'''
elif "weight_v" in name:
_a : List[str] = '''weight_v'''
elif "weight" in name:
_a : Any = '''weight'''
elif "bias" in name:
_a : str = '''bias'''
else:
_a : Any = None
set_recursively(__a ,__a ,__a ,__a ,__a )
continue
if not is_used:
unused_weights.append(__a )
logger.warning(F"""Unused weights: {unused_weights}""" )
def __UpperCAmelCase ( __a : int ,__a : Optional[Any] ,__a : Dict ,__a : List[str] ,__a : Any ) -> Tuple:
"""simple docstring"""
_a : int = full_name.split('''conv_layers.''' )[-1]
_a : Any = name.split('''.''' )
_a : List[Any] = int(items[0] )
_a : Optional[int] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
_a : Optional[int] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
_a : Optional[Any] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
_a : int = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
_a : Any = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(__a )
@torch.no_grad()
def __UpperCAmelCase ( __a : Dict ,__a : List[Any] ,__a : List[str]=None ,__a : Optional[int]=None ,__a : int=True ) -> List[Any]:
"""simple docstring"""
if config_path is not None:
_a : Tuple = HubertConfig.from_pretrained(__a )
else:
_a : Any = HubertConfig()
if is_finetuned:
if dict_path:
_a : Tuple = Dictionary.load(__a )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_a : Any = target_dict.pad_index
_a : Tuple = target_dict.bos_index
_a : Optional[int] = target_dict.eos_index
_a : Optional[Any] = len(target_dict.symbols )
_a : Tuple = os.path.join(__a ,'''vocab.json''' )
if not os.path.isdir(__a ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__a ) )
return
os.makedirs(__a ,exist_ok=__a )
with open(__a ,'''w''' ,encoding='''utf-8''' ) as vocab_handle:
json.dump(target_dict.indices ,__a )
_a : Tuple = WavaVecaCTCTokenizer(
__a ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='''|''' ,do_lower_case=__a ,)
_a : Tuple = True if config.feat_extract_norm == '''layer''' else False
_a : List[Any] = WavaVecaFeatureExtractor(
feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__a ,return_attention_mask=__a ,)
_a : List[Any] = WavaVecaProcessor(feature_extractor=__a ,tokenizer=__a )
processor.save_pretrained(__a )
_a : Tuple = HubertForCTC(__a )
else:
_a : Tuple = HubertModel(__a )
if is_finetuned:
_a , _a , _a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
_a , _a , _a : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
_a : Any = model[0].eval()
recursively_load_weights(__a ,__a ,__a )
hf_wavavec.save_pretrained(__a )
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
a__ = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 15 | 0 |
def __UpperCAmelCase ( __a : int = 1_000_000 ) -> int:
"""simple docstring"""
_a : List[str] = [i - 1 for i in range(limit + 1 )]
for i in range(2 ,limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i ,limit + 1 ,__a ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 350 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
UpperCAmelCase__ : List[str] = ["image_processor", "tokenizer"]
UpperCAmelCase__ : str = "ViltImageProcessor"
UpperCAmelCase__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast")
def __init__( self , _a=None , _a=None , **_a ) -> Any:
_a : Union[str, Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _a , )
_a : Dict = kwargs.pop('''feature_extractor''' )
_a : Optional[int] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_a , _a )
_a : int = self.image_processor
def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding:
_a : Tuple = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
# add pixel_values + pixel_mask
_a : str = self.image_processor(_a , return_tensors=_a )
encoding.update(_a )
return encoding
def __lowercase ( self , *_a , **_a ) -> Optional[Any]:
return self.tokenizer.batch_decode(*_a , **_a )
def __lowercase ( self , *_a , **_a ) -> str:
return self.tokenizer.decode(*_a , **_a )
@property
def __lowercase ( self ) -> Optional[int]:
_a : str = self.tokenizer.model_input_names
_a : Optional[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __lowercase ( self ) -> Optional[Any]:
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , )
return self.image_processor_class
@property
def __lowercase ( self ) -> Any:
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , )
return self.image_processor
| 15 | 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class UpperCAmelCase_ ( __lowercase , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : Dict = LDMTextToImagePipeline
UpperCAmelCase__ : List[Any] = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
UpperCAmelCase__ : int = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
UpperCAmelCase__ : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCAmelCase__ : str = False
def __lowercase ( self ) -> Optional[Any]:
torch.manual_seed(0 )
_a : List[str] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
_a : Tuple = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_a , set_alpha_to_one=_a , )
torch.manual_seed(0 )
_a : Tuple = AutoencoderKL(
block_out_channels=(3_2, 6_4) , in_channels=3 , out_channels=3 , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , latent_channels=4 , )
torch.manual_seed(0 )
_a : List[str] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
_a : int = CLIPTextModel(_a )
_a : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
_a : List[Any] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vqvae''': vae,
'''bert''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def __lowercase ( self , _a , _a=0 ) -> List[Any]:
if str(_a ).startswith('''mps''' ):
_a : Any = torch.manual_seed(_a )
else:
_a : Tuple = torch.Generator(device=_a ).manual_seed(_a )
_a : List[str] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def __lowercase ( self ) -> int:
_a : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator
_a : Tuple = self.get_dummy_components()
_a : str = LDMTextToImagePipeline(**_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
_a : Optional[Any] = self.get_dummy_inputs(_a )
_a : Optional[Any] = pipe(**_a ).images
_a : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_6, 1_6, 3)
_a : List[Any] = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __lowercase ( self ) -> int:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowercase ( self , _a , _a=torch.floataa , _a=0 ) -> List[Any]:
_a : List[str] = torch.manual_seed(_a )
_a : Dict = np.random.RandomState(_a ).standard_normal((1, 4, 3_2, 3_2) )
_a : List[Any] = torch.from_numpy(_a ).to(device=_a , dtype=_a )
_a : Optional[Any] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def __lowercase ( self ) -> Optional[Any]:
_a : Any = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(_a )
pipe.set_progress_bar_config(disable=_a )
_a : List[str] = self.get_inputs(_a )
_a : Optional[Any] = pipe(**_a ).images
_a : Optional[Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 2_5_6, 2_5_6, 3)
_a : Union[str, Any] = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] )
_a : int = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1e-3
@nightly
@require_torch_gpu
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __lowercase ( self ) -> List[Any]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowercase ( self , _a , _a=torch.floataa , _a=0 ) -> Dict:
_a : Optional[int] = torch.manual_seed(_a )
_a : List[str] = np.random.RandomState(_a ).standard_normal((1, 4, 3_2, 3_2) )
_a : List[Any] = torch.from_numpy(_a ).to(device=_a , dtype=_a )
_a : List[str] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 5_0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def __lowercase ( self ) -> List[str]:
_a : str = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(_a )
pipe.set_progress_bar_config(disable=_a )
_a : int = self.get_inputs(_a )
_a : Tuple = pipe(**_a ).images[0]
_a : List[str] = load_numpy(
'''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy''' )
_a : Optional[int] = np.abs(expected_image - image ).max()
assert max_diff < 1e-3
| 351 |
from math import ceil
def __UpperCAmelCase ( __a : int = 1_001 ) -> int:
"""simple docstring"""
_a : Dict = 1
for i in range(1 ,int(ceil(n / 2.0 ) ) ):
_a : int = 2 * i + 1
_a : str = 2 * i
_a : Any = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
a__ = int(sys.argv[1])
print(solution(n))
except ValueError:
print('''Invalid entry - please enter a number''')
| 15 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {'''vocab_file''': '''sentencepiece.bpe.model'''}
a__ = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
}
}
a__ = {
'''camembert-base''': 512,
}
a__ = '''▁'''
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
UpperCAmelCase__ : str = VOCAB_FILES_NAMES
UpperCAmelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : str = ["input_ids", "attention_mask"]
def __init__( self , _a , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=["<s>NOTUSED", "</s>NOTUSED"] , _a = None , **_a , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_a : str = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
_a : Dict = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , )
_a : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_a ) )
_a : str = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
_a : Tuple = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3}
_a : Union[str, Any] = len(self.fairseq_tokens_to_ids )
_a : str = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
_a : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __lowercase ( self , _a , _a = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_a : Dict = [self.cls_token_id]
_a : Optional[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __lowercase ( self , _a , _a = None , _a = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a )
if token_ids_a is None:
return [1] + ([0] * len(_a )) + [1]
return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1]
def __lowercase ( self , _a , _a = None ) -> List[int]:
_a : Any = [self.sep_token_id]
_a : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def __lowercase ( self ) -> Dict:
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def __lowercase ( self ) -> List[Any]:
_a : List[Any] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __lowercase ( self , _a ) -> List[str]:
return self.sp_model.encode(_a , out_type=_a )
def __lowercase ( self , _a ) -> List[Any]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(_a ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(_a )
def __lowercase ( self , _a ) -> Optional[Any]:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __lowercase ( self , _a ) -> Tuple:
_a : Dict = []
_a : int = ''''''
_a : int = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_a ) + token
_a : Optional[int] = True
_a : Any = []
else:
current_sub_tokens.append(_a )
_a : str = False
out_string += self.sp_model.decode(_a )
return out_string.strip()
def __getstate__( self ) -> Union[str, Any]:
_a : Optional[Any] = self.__dict__.copy()
_a : int = None
return state
def __setstate__( self , _a ) -> Optional[int]:
_a : List[str] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_a : List[str] = {}
_a : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowercase ( self , _a , _a = None ) -> Tuple[str]:
if not os.path.isdir(_a ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_a : int = os.path.join(
_a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _a )
elif not os.path.isfile(self.vocab_file ):
with open(_a , '''wb''' ) as fi:
_a : Tuple = self.sp_model.serialized_model_proto()
fi.write(_a )
return (out_vocab_file,)
| 352 |
from typing import Dict, Iterable, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
a__ = logging.get_logger(__name__)
def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> List[str]:
"""simple docstring"""
return [
int(1_000 * (box[0] / width) ),
int(1_000 * (box[1] / height) ),
int(1_000 * (box[2] / width) ),
int(1_000 * (box[3] / height) ),
]
def __UpperCAmelCase ( __a : np.ndarray ,__a : Optional[str] ,__a : Optional[str] ) -> List[Any]:
"""simple docstring"""
_a : str = to_pil_image(__a )
_a , _a : Optional[Any] = pil_image.size
_a : Tuple = pytesseract.image_to_data(__a ,lang=__a ,output_type='''dict''' ,config=__a )
_a , _a , _a , _a , _a : List[str] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height''']
# filter empty words and corresponding coordinates
_a : Dict = [idx for idx, word in enumerate(__a ) if not word.strip()]
_a : str = [word for idx, word in enumerate(__a ) if idx not in irrelevant_indices]
_a : List[str] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices]
_a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices]
_a : str = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices]
_a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
_a : int = []
for x, y, w, h in zip(__a ,__a ,__a ,__a ):
_a : List[str] = [x, y, x + w, y + h]
actual_boxes.append(__a )
# finally, normalize the bounding boxes
_a : Dict = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(__a ,__a ,__a ) )
assert len(__a ) == len(__a ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
UpperCAmelCase__ : Optional[int] = ["pixel_values"]
def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ) -> None:
super().__init__(**_a )
_a : List[str] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4}
_a : Union[str, Any] = get_size_dict(_a )
_a : int = do_resize
_a : Optional[int] = size
_a : str = resample
_a : str = do_rescale
_a : Any = rescale_value
_a : Optional[Any] = do_normalize
_a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD
_a : List[Any] = apply_ocr
_a : Optional[int] = ocr_lang
_a : Tuple = tesseract_config
def __lowercase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ) -> np.ndarray:
_a : Any = get_size_dict(_a )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" )
_a : Optional[int] = (size['''height'''], size['''width'''])
return resize(_a , size=_a , resample=_a , data_format=_a , **_a )
def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray:
return rescale(_a , scale=_a , data_format=_a , **_a )
def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray:
return normalize(_a , mean=_a , std=_a , data_format=_a , **_a )
def __lowercase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image:
_a : Optional[int] = do_resize if do_resize is not None else self.do_resize
_a : Union[str, Any] = size if size is not None else self.size
_a : Any = get_size_dict(_a )
_a : List[str] = resample if resample is not None else self.resample
_a : int = do_rescale if do_rescale is not None else self.do_rescale
_a : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
_a : int = do_normalize if do_normalize is not None else self.do_normalize
_a : str = image_mean if image_mean is not None else self.image_mean
_a : Tuple = image_std if image_std is not None else self.image_std
_a : Any = apply_ocr if apply_ocr is not None else self.apply_ocr
_a : int = ocr_lang if ocr_lang is not None else self.ocr_lang
_a : Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config
_a : List[Any] = make_list_of_images(_a )
if not valid_images(_a ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' )
# All transformations expect numpy arrays.
_a : Any = [to_numpy_array(_a ) for image in images]
# Tesseract OCR to get words + normalized bounding boxes
if apply_ocr:
requires_backends(self , '''pytesseract''' )
_a : str = []
_a : str = []
for image in images:
_a , _a : Union[str, Any] = apply_tesseract(_a , _a , _a )
words_batch.append(_a )
boxes_batch.append(_a )
if do_resize:
_a : List[str] = [self.resize(image=_a , size=_a , resample=_a ) for image in images]
if do_rescale:
_a : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images]
if do_normalize:
_a : List[Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images]
_a : List[str] = [to_channel_dimension_format(_a , _a ) for image in images]
_a : List[str] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a )
if apply_ocr:
_a : Optional[int] = words_batch
_a : List[Any] = boxes_batch
return data
| 15 | 0 |
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
from accelerate.commands.config import get_config_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.test import test_command_parser
from accelerate.commands.tpu import tpu_command_parser
def __UpperCAmelCase ( ) -> Optional[Any]:
"""simple docstring"""
_a : int = ArgumentParser('''Accelerate CLI tool''' ,usage='''accelerate <command> [<args>]''' ,allow_abbrev=__a )
_a : Optional[int] = parser.add_subparsers(help='''accelerate command helpers''' )
# Register commands
get_config_parser(subparsers=__a )
env_command_parser(subparsers=__a )
launch_command_parser(subparsers=__a )
tpu_command_parser(subparsers=__a )
test_command_parser(subparsers=__a )
# Let's go
_a : Dict = parser.parse_args()
if not hasattr(__a ,'''func''' ):
parser.print_help()
exit(1 )
# Run
args.func(__a )
if __name__ == "__main__":
main()
| 353 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
from accelerate.commands.config import get_config_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.test import test_command_parser
from accelerate.commands.tpu import tpu_command_parser
def __UpperCAmelCase ( ) -> Optional[Any]:
"""simple docstring"""
_a : int = ArgumentParser('''Accelerate CLI tool''' ,usage='''accelerate <command> [<args>]''' ,allow_abbrev=__a )
_a : Optional[int] = parser.add_subparsers(help='''accelerate command helpers''' )
# Register commands
get_config_parser(subparsers=__a )
env_command_parser(subparsers=__a )
launch_command_parser(subparsers=__a )
tpu_command_parser(subparsers=__a )
test_command_parser(subparsers=__a )
# Let's go
_a : Dict = parser.parse_args()
if not hasattr(__a ,'''func''' ):
parser.print_help()
exit(1 )
# Run
args.func(__a )
if __name__ == "__main__":
main()
| 15 | 0 |
"""simple docstring"""
import math
def __UpperCAmelCase ( __a : float ,__a : float ) -> float:
"""simple docstring"""
if (
not isinstance(__a ,(int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('''power_factor must be a valid float value between -1 and 1.''' )
return apparent_power * power_factor
def __UpperCAmelCase ( __a : float ,__a : float ) -> float:
"""simple docstring"""
if (
not isinstance(__a ,(int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('''power_factor must be a valid float value between -1 and 1.''' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 354 |
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from transformers import TvltFeatureExtractor, is_datasets_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
if is_datasets_available():
from datasets import load_dataset
a__ = random.Random()
def __UpperCAmelCase ( __a : Tuple ,__a : str=1.0 ,__a : Optional[int]=None ,__a : List[Any]=None ) -> Any:
"""simple docstring"""
if rng is None:
_a : Dict = global_rng
_a : Optional[Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , _a , _a=7 , _a=4_0_0 , _a=2_0_0_0 , _a=2_0_4_8 , _a=1_2_8 , _a=1 , _a=5_1_2 , _a=3_0 , _a=4_4_1_0_0 , ) -> List[Any]:
_a : Optional[Any] = parent
_a : str = batch_size
_a : List[str] = min_seq_length
_a : str = max_seq_length
_a : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
_a : List[Any] = spectrogram_length
_a : List[str] = feature_size
_a : List[Any] = num_audio_channels
_a : Tuple = hop_length
_a : Optional[int] = chunk_length
_a : int = sampling_rate
def __lowercase ( self ) -> Union[str, Any]:
return {
"spectrogram_length": self.spectrogram_length,
"feature_size": self.feature_size,
"num_audio_channels": self.num_audio_channels,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"sampling_rate": self.sampling_rate,
}
def __lowercase ( self , _a=False , _a=False ) -> List[Any]:
def _flatten(_a ):
return list(itertools.chain(*_a ) )
if equal_length:
_a : List[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
_a : List[Any] = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
_a : str = [np.asarray(_a ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class UpperCAmelCase_ ( __lowercase , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : List[Any] = TvltFeatureExtractor
def __lowercase ( self ) -> Dict:
_a : List[str] = TvltFeatureExtractionTester(self )
def __lowercase ( self ) -> Any:
_a : List[Any] = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(_a , '''spectrogram_length''' ) )
self.assertTrue(hasattr(_a , '''feature_size''' ) )
self.assertTrue(hasattr(_a , '''num_audio_channels''' ) )
self.assertTrue(hasattr(_a , '''hop_length''' ) )
self.assertTrue(hasattr(_a , '''chunk_length''' ) )
self.assertTrue(hasattr(_a , '''sampling_rate''' ) )
def __lowercase ( self ) -> Optional[int]:
_a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a : int = feat_extract_first.save_pretrained(_a )[0]
check_json_file_has_correct_format(_a )
_a : Dict = self.feature_extraction_class.from_pretrained(_a )
_a : List[Any] = feat_extract_first.to_dict()
_a : Union[str, Any] = feat_extract_second.to_dict()
_a : Any = dict_first.pop('''mel_filters''' )
_a : int = dict_second.pop('''mel_filters''' )
self.assertTrue(np.allclose(_a , _a ) )
self.assertEqual(_a , _a )
def __lowercase ( self ) -> Optional[int]:
_a : Any = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a : Optional[int] = os.path.join(_a , '''feat_extract.json''' )
feat_extract_first.to_json_file(_a )
_a : List[str] = self.feature_extraction_class.from_json_file(_a )
_a : List[Any] = feat_extract_first.to_dict()
_a : Dict = feat_extract_second.to_dict()
_a : str = dict_first.pop('''mel_filters''' )
_a : str = dict_second.pop('''mel_filters''' )
self.assertTrue(np.allclose(_a , _a ) )
self.assertEqual(_a , _a )
def __lowercase ( self ) -> Union[str, Any]:
# Initialize feature_extractor
_a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict )
# create three inputs of length 800, 1000, and 1200
_a : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )]
_a : List[str] = [np.asarray(_a ) for speech_input in speech_inputs]
# Test not batched input
_a : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test batched
_a : Dict = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test audio masking
_a : Union[str, Any] = feature_extractor(
_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=_a ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test 2-D numpy arrays are batched.
_a : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)]
_a : int = np.asarray(_a )
_a : Tuple = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
def __lowercase ( self , _a ) -> Optional[Any]:
_a : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' )
# automatic decoding with librispeech
_a : Optional[int] = ds.sort('''id''' ).select(range(_a ) )[:num_samples]['''audio''']
return [x["array"] for x in speech_samples]
def __lowercase ( self ) -> int:
_a : Union[str, Any] = self._load_datasamples(1 )
_a : int = TvltFeatureExtractor()
_a : Union[str, Any] = feature_extractor(_a , return_tensors='''pt''' ).audio_values
self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) )
_a : Union[str, Any] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] )
self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
| 15 | 0 |
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
a__ = abspath(join(dirname(dirname(__file__)), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def __UpperCAmelCase ( __a : Optional[int] ) -> str:
"""simple docstring"""
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(__a )
def __UpperCAmelCase ( __a : Optional[int] ) -> str:
"""simple docstring"""
from diffusers.utils.testing_utils import pytest_terminal_summary_main
_a : Union[str, Any] = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(__a ,id=__a )
| 355 |
from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
a__ = logging.get_logger(__name__)
@add_end_docstrings(
__lowercase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , )
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
def __lowercase ( self , _a ) -> np.ndarray:
if self.framework == "tf":
_a : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()
elif self.framework == "pt":
_a : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a )
else:
raise ValueError('''Unsupported framework''' )
return masked_index
def __lowercase ( self , _a ) -> np.ndarray:
_a : int = self.get_masked_index(_a )
_a : Tuple = np.prod(masked_index.shape )
if numel < 1:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , )
def __lowercase ( self , _a ) -> Optional[int]:
if isinstance(_a , _a ):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] )
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(_a )
def __lowercase ( self , _a , _a=None , **_a ) -> Dict[str, GenericTensor]:
if return_tensors is None:
_a : Union[str, Any] = self.framework
_a : str = self.tokenizer(_a , return_tensors=_a )
self.ensure_exactly_one_mask_token(_a )
return model_inputs
def __lowercase ( self , _a ) -> Optional[Any]:
_a : List[str] = self.model(**_a )
_a : Any = model_inputs['''input_ids''']
return model_outputs
def __lowercase ( self , _a , _a=5 , _a=None ) -> str:
# Cap top_k if there are targets
if target_ids is not None and target_ids.shape[0] < top_k:
_a : List[Any] = target_ids.shape[0]
_a : Any = model_outputs['''input_ids'''][0]
_a : List[str] = model_outputs['''logits''']
if self.framework == "tf":
_a : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0]
_a : List[str] = outputs.numpy()
_a : Dict = outputs[0, masked_index, :]
_a : str = stable_softmax(_a , axis=-1 )
if target_ids is not None:
_a : Any = tf.gather_nd(tf.squeeze(_a , 0 ) , target_ids.reshape(-1 , 1 ) )
_a : Union[str, Any] = tf.expand_dims(_a , 0 )
_a : Optional[int] = tf.math.top_k(_a , k=_a )
_a , _a : Optional[Any] = topk.values.numpy(), topk.indices.numpy()
else:
_a : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ).squeeze(-1 )
# Fill mask pipeline supports only one ${mask_token} per sample
_a : List[str] = outputs[0, masked_index, :]
_a : List[Any] = logits.softmax(dim=-1 )
if target_ids is not None:
_a : List[Any] = probs[..., target_ids]
_a , _a : Optional[Any] = probs.topk(_a )
_a : Dict = []
_a : List[Any] = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ):
_a : Optional[Any] = []
for v, p in zip(_values , _predictions ):
# Copy is important since we're going to modify this array in place
_a : Optional[int] = input_ids.numpy().copy()
if target_ids is not None:
_a : Tuple = target_ids[p].tolist()
_a : List[str] = p
# Filter padding out:
_a : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
_a : List[str] = self.tokenizer.decode(_a , skip_special_tokens=_a )
_a : List[Any] = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence}
row.append(_a )
result.append(_a )
if single_mask:
return result[0]
return result
def __lowercase ( self , _a , _a=None ) -> Dict:
if isinstance(_a , _a ):
_a : Tuple = [targets]
try:
_a : int = self.tokenizer.get_vocab()
except Exception:
_a : Any = {}
_a : List[Any] = []
for target in targets:
_a : List[Any] = vocab.get(_a , _a )
if id_ is None:
_a : Tuple = self.tokenizer(
_a , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , max_length=1 , truncation=_a , )['''input_ids''']
if len(_a ) == 0:
logger.warning(
F"""The specified target token `{target}` does not exist in the model vocabulary. """
'''We cannot replace it with anything meaningful, ignoring it''' )
continue
_a : Tuple = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
F"""The specified target token `{target}` does not exist in the model vocabulary. """
F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" )
target_ids.append(id_ )
_a : List[str] = list(set(_a ) )
if len(_a ) == 0:
raise ValueError('''At least one target must be provided when passed.''' )
_a : int = np.array(_a )
return target_ids
def __lowercase ( self , _a=None , _a=None ) -> Tuple:
_a : str = {}
if targets is not None:
_a : List[Any] = self.get_target_ids(_a , _a )
_a : Optional[Any] = target_ids
if top_k is not None:
_a : Union[str, Any] = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' )
return {}, {}, postprocess_params
def __call__( self , _a , *_a , **_a ) -> int:
_a : Optional[Any] = super().__call__(_a , **_a )
if isinstance(_a , _a ) and len(_a ) == 1:
return outputs[0]
return outputs
| 15 | 0 |
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from transformers import TvltFeatureExtractor, is_datasets_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
if is_datasets_available():
from datasets import load_dataset
a__ = random.Random()
def __UpperCAmelCase ( __a : Tuple ,__a : str=1.0 ,__a : Optional[int]=None ,__a : List[Any]=None ) -> Any:
"""simple docstring"""
if rng is None:
_a : Dict = global_rng
_a : Optional[Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , _a , _a=7 , _a=4_0_0 , _a=2_0_0_0 , _a=2_0_4_8 , _a=1_2_8 , _a=1 , _a=5_1_2 , _a=3_0 , _a=4_4_1_0_0 , ) -> List[Any]:
_a : Optional[Any] = parent
_a : str = batch_size
_a : List[str] = min_seq_length
_a : str = max_seq_length
_a : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
_a : List[Any] = spectrogram_length
_a : List[str] = feature_size
_a : List[Any] = num_audio_channels
_a : Tuple = hop_length
_a : Optional[int] = chunk_length
_a : int = sampling_rate
def __lowercase ( self ) -> Union[str, Any]:
return {
"spectrogram_length": self.spectrogram_length,
"feature_size": self.feature_size,
"num_audio_channels": self.num_audio_channels,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"sampling_rate": self.sampling_rate,
}
def __lowercase ( self , _a=False , _a=False ) -> List[Any]:
def _flatten(_a ):
return list(itertools.chain(*_a ) )
if equal_length:
_a : List[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
_a : List[Any] = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
_a : str = [np.asarray(_a ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class UpperCAmelCase_ ( __lowercase , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : List[Any] = TvltFeatureExtractor
def __lowercase ( self ) -> Dict:
_a : List[str] = TvltFeatureExtractionTester(self )
def __lowercase ( self ) -> Any:
_a : List[Any] = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(_a , '''spectrogram_length''' ) )
self.assertTrue(hasattr(_a , '''feature_size''' ) )
self.assertTrue(hasattr(_a , '''num_audio_channels''' ) )
self.assertTrue(hasattr(_a , '''hop_length''' ) )
self.assertTrue(hasattr(_a , '''chunk_length''' ) )
self.assertTrue(hasattr(_a , '''sampling_rate''' ) )
def __lowercase ( self ) -> Optional[int]:
_a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a : int = feat_extract_first.save_pretrained(_a )[0]
check_json_file_has_correct_format(_a )
_a : Dict = self.feature_extraction_class.from_pretrained(_a )
_a : List[Any] = feat_extract_first.to_dict()
_a : Union[str, Any] = feat_extract_second.to_dict()
_a : Any = dict_first.pop('''mel_filters''' )
_a : int = dict_second.pop('''mel_filters''' )
self.assertTrue(np.allclose(_a , _a ) )
self.assertEqual(_a , _a )
def __lowercase ( self ) -> Optional[int]:
_a : Any = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a : Optional[int] = os.path.join(_a , '''feat_extract.json''' )
feat_extract_first.to_json_file(_a )
_a : List[str] = self.feature_extraction_class.from_json_file(_a )
_a : List[Any] = feat_extract_first.to_dict()
_a : Dict = feat_extract_second.to_dict()
_a : str = dict_first.pop('''mel_filters''' )
_a : str = dict_second.pop('''mel_filters''' )
self.assertTrue(np.allclose(_a , _a ) )
self.assertEqual(_a , _a )
def __lowercase ( self ) -> Union[str, Any]:
# Initialize feature_extractor
_a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict )
# create three inputs of length 800, 1000, and 1200
_a : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )]
_a : List[str] = [np.asarray(_a ) for speech_input in speech_inputs]
# Test not batched input
_a : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test batched
_a : Dict = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test audio masking
_a : Union[str, Any] = feature_extractor(
_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=_a ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test 2-D numpy arrays are batched.
_a : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)]
_a : int = np.asarray(_a )
_a : Tuple = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
def __lowercase ( self , _a ) -> Optional[Any]:
_a : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' )
# automatic decoding with librispeech
_a : Optional[int] = ds.sort('''id''' ).select(range(_a ) )[:num_samples]['''audio''']
return [x["array"] for x in speech_samples]
def __lowercase ( self ) -> int:
_a : Union[str, Any] = self._load_datasamples(1 )
_a : int = TvltFeatureExtractor()
_a : Union[str, Any] = feature_extractor(_a , return_tensors='''pt''' ).audio_values
self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) )
_a : Union[str, Any] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] )
self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
| 356 |
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
a__ = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'''text-classification''',
'''language-modeling''',
'''summarization''',
'''token-classification''',
'''question-answering''',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
a__ = logging.getLogger()
def __UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
_a : Any = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_a : Dict = parser.parse_args()
return args.f
def __UpperCAmelCase ( __a : Optional[int] ,__a : List[str]="eval" ) -> Any:
"""simple docstring"""
_a : Any = os.path.join(__a ,F"""{split}_results.json""" )
if os.path.exists(__a ):
with open(__a ,'''r''' ) as f:
return json.load(__a )
raise ValueError(F"""can't find {path}""" )
a__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
def __lowercase ( self ) -> str:
_a : Any = self.get_auto_remove_tmp_dir()
_a : Optional[Any] = F"""
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--eval_steps=2
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
with patch.object(_a , '''argv''' , _a ):
run_flax_glue.main()
_a : Any = get_results(_a )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
@slow
def __lowercase ( self ) -> Dict:
_a : Tuple = self.get_auto_remove_tmp_dir()
_a : Tuple = F"""
run_clm_flax.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(_a , '''argv''' , _a ):
run_clm_flax.main()
_a : List[str] = get_results(_a )
self.assertLess(result['''eval_perplexity'''] , 1_0_0 )
@slow
def __lowercase ( self ) -> Optional[int]:
_a : str = self.get_auto_remove_tmp_dir()
_a : Optional[int] = F"""
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--test_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=8
--do_train
--do_eval
--do_predict
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(_a , '''argv''' , _a ):
run_summarization_flax.main()
_a : Optional[int] = get_results(_a , split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 )
self.assertGreaterEqual(result['''test_rouge2'''] , 2 )
self.assertGreaterEqual(result['''test_rougeL'''] , 7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 )
@slow
def __lowercase ( self ) -> Tuple:
_a : List[str] = self.get_auto_remove_tmp_dir()
_a : List[Any] = F"""
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--logging_steps 2 --eval_steps 2
--do_train
--do_eval
--num_train_epochs=1
""".split()
with patch.object(_a , '''argv''' , _a ):
run_mlm_flax.main()
_a : List[Any] = get_results(_a )
self.assertLess(result['''eval_perplexity'''] , 4_2 )
@slow
def __lowercase ( self ) -> Dict:
_a : Optional[Any] = self.get_auto_remove_tmp_dir()
_a : int = F"""
run_t5_mlm_flax.py
--model_name_or_path t5-small
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(_a , '''argv''' , _a ):
run_ta_mlm_flax.main()
_a : List[Any] = get_results(_a )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 )
@slow
def __lowercase ( self ) -> Optional[Any]:
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
_a : Any = 7 if get_gpu_count() > 1 else 2
_a : List[Any] = self.get_auto_remove_tmp_dir()
_a : List[Any] = F"""
run_flax_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--logging_steps 2 --eval_steps 2
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
with patch.object(_a , '''argv''' , _a ):
run_flax_ner.main()
_a : Dict = get_results(_a )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertGreaterEqual(result['''eval_f1'''] , 0.3 )
@slow
def __lowercase ( self ) -> Any:
_a : Optional[int] = self.get_auto_remove_tmp_dir()
_a : Union[str, Any] = F"""
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=2
--do_train
--do_eval
--logging_steps 2 --eval_steps 2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(_a , '''argv''' , _a ):
run_qa.main()
_a : Any = get_results(_a )
self.assertGreaterEqual(result['''eval_f1'''] , 3_0 )
self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
| 15 | 0 |
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def __UpperCAmelCase ( __a : str ) -> Any:
"""simple docstring"""
_a : Tuple = {}
_a : Tuple = job['''started_at''']
_a : List[str] = job['''completed_at''']
_a : int = date_parser.parse(__a )
_a : Tuple = date_parser.parse(__a )
_a : int = round((end_datetime - start_datetime).total_seconds() / 60.0 )
_a : List[str] = start
_a : Optional[int] = end
_a : Any = duration_in_min
return job_info
def __UpperCAmelCase ( __a : Tuple ,__a : List[Any]=None ) -> Any:
"""simple docstring"""
_a : List[str] = None
if token is not None:
_a : List[str] = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"""Bearer {token}"""}
_a : Tuple = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
_a : List[Any] = requests.get(__a ,headers=__a ).json()
_a : Tuple = {}
try:
job_time.update({job['''name''']: extract_time_from_single_job(__a ) for job in result['''jobs''']} )
_a : List[str] = math.ceil((result['''total_count'''] - 100) / 100 )
for i in range(__a ):
_a : Union[str, Any] = requests.get(url + F"""&page={i + 2}""" ,headers=__a ).json()
job_time.update({job['''name''']: extract_time_from_single_job(__a ) for job in result['''jobs''']} )
return job_time
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''')
a__ = parser.parse_args()
a__ = get_job_time(args.workflow_run_id)
a__ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(f'''{k}: {v["duration"]}''')
| 357 |
import argparse
import os
import re
import packaging.version
a__ = '''examples/'''
a__ = {
'''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''),
'''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
a__ = {
'''init''': '''src/transformers/__init__.py''',
'''setup''': '''setup.py''',
}
a__ = '''README.md'''
def __UpperCAmelCase ( __a : List[str] ,__a : int ,__a : Optional[Any] ) -> int:
"""simple docstring"""
with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f:
_a : Tuple = f.read()
_a , _a : str = REPLACE_PATTERNS[pattern]
_a : List[str] = replace.replace('''VERSION''' ,__a )
_a : List[Any] = re_pattern.sub(__a ,__a )
with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f:
f.write(__a )
def __UpperCAmelCase ( __a : Any ) -> List[Any]:
"""simple docstring"""
for folder, directories, fnames in os.walk(__a ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(__a ,__a ) ,__a ,pattern='''examples''' )
def __UpperCAmelCase ( __a : List[Any] ,__a : List[str]=False ) -> int:
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(__a ,__a ,__a )
if not patch:
update_version_in_examples(__a )
def __UpperCAmelCase ( ) -> List[str]:
"""simple docstring"""
_a : Optional[Any] = '''🤗 Transformers currently provides the following architectures'''
_a : str = '''1. Want to contribute a new model?'''
with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f:
_a : Optional[int] = f.readlines()
# Find the start of the list.
_a : Optional[int] = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
_a : List[Any] = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
_a : Tuple = lines[index].replace(
'''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,)
index += 1
with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f:
f.writelines(__a )
def __UpperCAmelCase ( ) -> List[str]:
"""simple docstring"""
with open(REPLACE_FILES['''init'''] ,'''r''' ) as f:
_a : Optional[Any] = f.read()
_a : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0]
return packaging.version.parse(__a )
def __UpperCAmelCase ( __a : Dict=False ) -> str:
"""simple docstring"""
_a : Optional[Any] = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
_a : List[Any] = default_version.base_version
elif patch:
_a : str = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
_a : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
_a : Dict = input(F"""Which version are you releasing? [{default_version}]""" )
if len(__a ) == 0:
_a : int = default_version
print(F"""Updating version to {version}.""" )
global_version_update(__a ,patch=__a )
if not patch:
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
def __UpperCAmelCase ( ) -> Tuple:
"""simple docstring"""
_a : str = get_version()
_a : int = F"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
_a : List[Any] = current_version.base_version
# Check with the user we got that right.
_a : Union[str, Any] = input(F"""Which version are we developing now? [{dev_version}]""" )
if len(__a ) == 0:
_a : List[str] = dev_version
print(F"""Updating version to {version}.""" )
global_version_update(__a )
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
a__ = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work()
| 15 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a__ = {
'''configuration_vision_text_dual_encoder''': ['''VisionTextDualEncoderConfig'''],
'''processing_vision_text_dual_encoder''': ['''VisionTextDualEncoderProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = ['''VisionTextDualEncoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = ['''FlaxVisionTextDualEncoderModel''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = ['''TFVisionTextDualEncoderModel''']
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 358 |
def __UpperCAmelCase ( __a : int ) -> int:
"""simple docstring"""
if n == 1 or not isinstance(__a ,__a ):
return 0
elif n == 2:
return 1
else:
_a : Any = [0, 1]
for i in range(2 ,n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def __UpperCAmelCase ( __a : int ) -> int:
"""simple docstring"""
_a : Any = 0
_a : Dict = 2
while digits < n:
index += 1
_a : Dict = len(str(fibonacci(__a ) ) )
return index
def __UpperCAmelCase ( __a : int = 1_000 ) -> int:
"""simple docstring"""
return fibonacci_digits_index(__a )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 15 | 0 |
def __UpperCAmelCase ( __a : int ,__a : float ,__a : float ) -> float:
"""simple docstring"""
return round(float(moles / volume ) * nfactor )
def __UpperCAmelCase ( __a : float ,__a : float ,__a : float ) -> float:
"""simple docstring"""
return round(float((moles * 0.08_21 * temperature) / (volume) ) )
def __UpperCAmelCase ( __a : float ,__a : float ,__a : float ) -> float:
"""simple docstring"""
return round(float((moles * 0.08_21 * temperature) / (pressure) ) )
def __UpperCAmelCase ( __a : float ,__a : float ,__a : float ) -> float:
"""simple docstring"""
return round(float((pressure * volume) / (0.08_21 * moles) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 359 |
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
from .record_evaluation import evaluate as evaluate_record
a__ = '''\
@article{wang2019superglue,
title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},
author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},
journal={arXiv preprint arXiv:1905.00537},
year={2019}
}
'''
a__ = '''\
SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after
GLUE with a new set of more difficult language understanding tasks, improved
resources, and a new public leaderboard.
'''
a__ = '''
Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset.
Args:
predictions: list of predictions to score. Depending on the SuperGlUE subset:
- for \'record\': list of question-answer dictionaries with the following keys:
- \'idx\': index of the question as specified by the dataset
- \'prediction_text\': the predicted answer text
- for \'multirc\': list of question-answer dictionaries with the following keys:
- \'idx\': index of the question-answer pair as specified by the dataset
- \'prediction\': the predicted answer label
- otherwise: list of predicted labels
references: list of reference labels. Depending on the SuperGLUE subset:
- for \'record\': list of question-answers dictionaries with the following keys:
- \'idx\': index of the question as specified by the dataset
- \'answers\': list of possible answers
- otherwise: list of reference labels
Returns: depending on the SuperGLUE subset:
- for \'record\':
- \'exact_match\': Exact match between answer and gold answer
- \'f1\': F1 score
- for \'multirc\':
- \'exact_match\': Exact match between answer and gold answer
- \'f1_m\': Per-question macro-F1 score
- \'f1_a\': Average F1 score over all answers
- for \'axb\':
\'matthews_correlation\': Matthew Correlation
- for \'cb\':
- \'accuracy\': Accuracy
- \'f1\': F1 score
- for all others:
- \'accuracy\': Accuracy
Examples:
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0, \'f1\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')
>>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]
>>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 1.0, \'f1\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')
>>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'matthews_correlation\': 1.0}
'''
def __UpperCAmelCase ( __a : int ,__a : List[str] ) -> Optional[Any]:
"""simple docstring"""
return float((preds == labels).mean() )
def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ,__a : List[str]="binary" ) -> Optional[int]:
"""simple docstring"""
_a : List[str] = simple_accuracy(__a ,__a )
_a : Any = float(fa_score(y_true=__a ,y_pred=__a ,average=__a ) )
return {
"accuracy": acc,
"f1": fa,
}
def __UpperCAmelCase ( __a : Optional[Any] ,__a : str ) -> List[Any]:
"""simple docstring"""
_a : Union[str, Any] = {}
for id_pred, label in zip(__a ,__a ):
_a : Optional[int] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}"""
_a : Optional[Any] = id_pred['''prediction''']
if question_id in question_map:
question_map[question_id].append((pred, label) )
else:
_a : str = [(pred, label)]
_a , _a : Any = [], []
for question, preds_labels in question_map.items():
_a , _a : Any = zip(*__a )
_a : List[Any] = fa_score(y_true=__a ,y_pred=__a ,average='''macro''' )
fas.append(__a )
_a : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__a ) )
ems.append(__a )
_a : List[str] = float(sum(__a ) / len(__a ) )
_a : str = sum(__a ) / len(__a )
_a : Optional[int] = float(fa_score(y_true=__a ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) )
return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
"""simple docstring"""
def __lowercase ( self ) -> List[Any]:
if self.config_name not in [
"boolq",
"cb",
"copa",
"multirc",
"record",
"rte",
"wic",
"wsc",
"wsc.fixed",
"axb",
"axg",
]:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , )
def __lowercase ( self ) -> Any:
if self.config_name == "record":
return {
"predictions": {
"idx": {
"passage": datasets.Value('''int64''' ),
"query": datasets.Value('''int64''' ),
},
"prediction_text": datasets.Value('''string''' ),
},
"references": {
"idx": {
"passage": datasets.Value('''int64''' ),
"query": datasets.Value('''int64''' ),
},
"answers": datasets.Sequence(datasets.Value('''string''' ) ),
},
}
elif self.config_name == "multirc":
return {
"predictions": {
"idx": {
"answer": datasets.Value('''int64''' ),
"paragraph": datasets.Value('''int64''' ),
"question": datasets.Value('''int64''' ),
},
"prediction": datasets.Value('''int64''' ),
},
"references": datasets.Value('''int64''' ),
}
else:
return {
"predictions": datasets.Value('''int64''' ),
"references": datasets.Value('''int64''' ),
}
def __lowercase ( self , _a , _a ) -> Optional[Any]:
if self.config_name == "axb":
return {"matthews_correlation": matthews_corrcoef(_a , _a )}
elif self.config_name == "cb":
return acc_and_fa(_a , _a , fa_avg='''macro''' )
elif self.config_name == "record":
_a : Any = [
{
'''qas''': [
{'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]}
for ref in references
]
}
]
_a : Any = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions}
return evaluate_record(_a , _a )[0]
elif self.config_name == "multirc":
return evaluate_multirc(_a , _a )
elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]:
return {"accuracy": simple_accuracy(_a , _a )}
else:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
| 15 | 0 |
import os
import unittest
from transformers import MobileBertTokenizer, MobileBertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class UpperCAmelCase_ ( __lowercase , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : List[str] = MobileBertTokenizer
UpperCAmelCase__ : List[Any] = MobileBertTokenizerFast
UpperCAmelCase__ : Optional[int] = True
UpperCAmelCase__ : List[Any] = True
UpperCAmelCase__ : Dict = filter_non_english
UpperCAmelCase__ : List[Any] = "google/mobilebert-uncased"
def __lowercase ( self ) -> Any:
"""simple docstring"""
super().setUp()
_a : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
_a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
_a : Optional[Any] = [
(tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped
for tokenizer_def in self.tokenizers_list
]
def __lowercase ( self , _a ) -> Any:
"""simple docstring"""
_a : Any = '''UNwant\u00E9d,running'''
_a : str = '''unwanted, running'''
return input_text, output_text
def __lowercase ( self ) -> Tuple:
"""simple docstring"""
_a : Union[str, Any] = self.tokenizer_class(self.vocab_file )
_a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 1_2, 1_0, 1_1] )
def __lowercase ( self ) -> str:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
_a : int = self.get_tokenizer()
_a : Optional[int] = self.get_rust_tokenizer()
_a : Any = '''UNwant\u00E9d,running'''
_a : List[str] = tokenizer.tokenize(_a )
_a : str = rust_tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
_a : Tuple = tokenizer.encode(_a , add_special_tokens=_a )
_a : Optional[int] = rust_tokenizer.encode(_a , add_special_tokens=_a )
self.assertListEqual(_a , _a )
_a : List[str] = self.get_rust_tokenizer()
_a : Optional[int] = tokenizer.encode(_a )
_a : Any = rust_tokenizer.encode(_a )
self.assertListEqual(_a , _a )
# With lower casing
_a : Dict = self.get_tokenizer(do_lower_case=_a )
_a : Tuple = self.get_rust_tokenizer(do_lower_case=_a )
_a : str = '''UNwant\u00E9d,running'''
_a : Any = tokenizer.tokenize(_a )
_a : str = rust_tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
_a : Optional[int] = tokenizer.encode(_a , add_special_tokens=_a )
_a : Tuple = rust_tokenizer.encode(_a , add_special_tokens=_a )
self.assertListEqual(_a , _a )
_a : Optional[Any] = self.get_rust_tokenizer()
_a : Optional[Any] = tokenizer.encode(_a )
_a : List[str] = rust_tokenizer.encode(_a )
self.assertListEqual(_a , _a )
def __lowercase ( self ) -> int:
"""simple docstring"""
_a : Optional[int] = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __lowercase ( self ) -> Dict:
"""simple docstring"""
_a : str = BasicTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowercase ( self ) -> Optional[Any]:
"""simple docstring"""
_a : Any = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __lowercase ( self ) -> Optional[int]:
"""simple docstring"""
_a : List[Any] = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowercase ( self ) -> str:
"""simple docstring"""
_a : str = BasicTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowercase ( self ) -> Optional[int]:
"""simple docstring"""
_a : Dict = BasicTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowercase ( self ) -> Optional[Any]:
"""simple docstring"""
_a : Optional[int] = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowercase ( self ) -> Union[str, Any]:
"""simple docstring"""
_a : int = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowercase ( self ) -> Any:
"""simple docstring"""
_a : Optional[Any] = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __lowercase ( self ) -> int:
"""simple docstring"""
_a : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
_a : List[str] = {}
for i, token in enumerate(_a ):
_a : str = i
_a : Tuple = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def __lowercase ( self ) -> Optional[Any]:
"""simple docstring"""
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __lowercase ( self ) -> Optional[Any]:
"""simple docstring"""
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __lowercase ( self ) -> int:
"""simple docstring"""
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def __lowercase ( self ) -> List[Any]:
"""simple docstring"""
_a : int = self.get_tokenizer()
_a : List[str] = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
self.assertListEqual(
[rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
@slow
def __lowercase ( self ) -> Dict:
"""simple docstring"""
_a : Optional[Any] = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' )
_a : Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=_a )
_a : str = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a )
_a : Any = tokenizer.build_inputs_with_special_tokens(_a )
_a : int = tokenizer.build_inputs_with_special_tokens(_a , _a )
assert encoded_sentence == [1_0_1] + text + [1_0_2]
assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2]
def __lowercase ( self ) -> int:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_a : int = self.rust_tokenizer_class.from_pretrained(_a , **_a )
_a : Any = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence."""
_a : Tuple = tokenizer_r.encode_plus(
_a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , )
_a : Union[str, Any] = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False
_a : Dict = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), '''Allen'''),
((2_1, 2_3), '''##NL'''),
((2_3, 2_4), '''##P'''),
((2_5, 3_3), '''sentence'''),
((3_3, 3_4), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), '''allen'''),
((2_1, 2_3), '''##nl'''),
((2_3, 2_4), '''##p'''),
((2_5, 3_3), '''sentence'''),
((3_3, 3_4), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def __lowercase ( self ) -> Optional[Any]:
"""simple docstring"""
_a : Union[str, Any] = ['''的''', '''人''', '''有''']
_a : Optional[int] = ''''''.join(_a )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_a : int = True
_a : Union[str, Any] = self.tokenizer_class.from_pretrained(_a , **_a )
_a : Dict = self.rust_tokenizer_class.from_pretrained(_a , **_a )
_a : Any = tokenizer_p.encode(_a , add_special_tokens=_a )
_a : List[str] = tokenizer_r.encode(_a , add_special_tokens=_a )
_a : Optional[Any] = tokenizer_r.convert_ids_to_tokens(_a )
_a : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(_a )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(_a , _a )
self.assertListEqual(_a , _a )
_a : int = False
_a : int = self.rust_tokenizer_class.from_pretrained(_a , **_a )
_a : Dict = self.tokenizer_class.from_pretrained(_a , **_a )
_a : Optional[int] = tokenizer_r.encode(_a , add_special_tokens=_a )
_a : Union[str, Any] = tokenizer_p.encode(_a , add_special_tokens=_a )
_a : Optional[Any] = tokenizer_r.convert_ids_to_tokens(_a )
_a : Any = tokenizer_p.convert_ids_to_tokens(_a )
# it is expected that only the first Chinese character is not preceded by "##".
_a : Optional[int] = [
F"""##{token}""" if idx != 0 else token for idx, token in enumerate(_a )
]
self.assertListEqual(_a , _a )
self.assertListEqual(_a , _a )
| 360 |
import numpy as np
def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : float = 1E-12 ,__a : int = 100 ,) -> tuple[float, np.ndarray]:
"""simple docstring"""
assert np.shape(__a )[0] == np.shape(__a )[1]
# Ensure proper dimensionality.
assert np.shape(__a )[0] == np.shape(__a )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(__a ) == np.iscomplexobj(__a )
_a : List[str] = np.iscomplexobj(__a )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(__a ,input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
_a : List[str] = False
_a : List[str] = 0
_a : Tuple = 0
_a : str = 1E12
while not convergence:
# Multiple matrix by the vector.
_a : str = np.dot(__a ,__a )
# Normalize the resulting output vector.
_a : List[Any] = w / np.linalg.norm(__a )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
_a : Dict = vector.conj().T if is_complex else vector.T
_a : Tuple = np.dot(__a ,np.dot(__a ,__a ) )
# Check convergence.
_a : List[str] = np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
_a : Dict = True
_a : str = lambda_
if is_complex:
_a : Tuple = np.real(lambda_ )
return lambda_, vector
def __UpperCAmelCase ( ) -> None:
"""simple docstring"""
_a : List[str] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] )
_a : int = np.array([41, 4, 20] )
_a : Optional[Any] = real_input_matrix.astype(np.complexaaa )
_a : int = np.triu(1j * complex_input_matrix ,1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
_a : Union[str, Any] = np.array([41, 4, 20] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
_a : Optional[int] = real_input_matrix
_a : Union[str, Any] = real_vector
elif problem_type == "complex":
_a : str = complex_input_matrix
_a : str = complex_vector
# Our implementation.
_a , _a : Optional[Any] = power_iteration(__a ,__a )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
_a , _a : List[str] = np.linalg.eigh(__a )
# Last eigenvalue is the maximum one.
_a : Tuple = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
_a : List[Any] = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(__a ) - np.abs(__a ) ) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 15 | 0 |
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class UpperCAmelCase_ ( datasets.BuilderConfig ):
"""simple docstring"""
UpperCAmelCase__ : Optional[datasets.Features] = None
class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
UpperCAmelCase__ : Any = PandasConfig
def __lowercase ( self ) -> Any:
return datasets.DatasetInfo(features=self.config.features )
def __lowercase ( self , _a ) -> List[Any]:
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_a : str = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_a , (str, list, tuple) ):
_a : Dict = data_files
if isinstance(_a , _a ):
_a : Dict = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_a : int = [dl_manager.iter_files(_a ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
_a : Optional[Any] = []
for split_name, files in data_files.items():
if isinstance(_a , _a ):
_a : List[str] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_a : Any = [dl_manager.iter_files(_a ) for file in files]
splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) )
return splits
def __lowercase ( self , _a ) -> pa.Table:
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
_a : Optional[Any] = table_cast(_a , self.config.features.arrow_schema )
return pa_table
def __lowercase ( self , _a ) -> List[str]:
for i, file in enumerate(itertools.chain.from_iterable(_a ) ):
with open(_a , '''rb''' ) as f:
_a : str = pa.Table.from_pandas(pd.read_pickle(_a ) )
yield i, self._cast_table(_a )
| 361 |
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class UpperCAmelCase_ ( datasets.BuilderConfig ):
"""simple docstring"""
UpperCAmelCase__ : Optional[datasets.Features] = None
class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
UpperCAmelCase__ : Any = PandasConfig
def __lowercase ( self ) -> Any:
return datasets.DatasetInfo(features=self.config.features )
def __lowercase ( self , _a ) -> List[Any]:
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_a : str = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_a , (str, list, tuple) ):
_a : Dict = data_files
if isinstance(_a , _a ):
_a : Dict = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_a : int = [dl_manager.iter_files(_a ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
_a : Optional[Any] = []
for split_name, files in data_files.items():
if isinstance(_a , _a ):
_a : List[str] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_a : Any = [dl_manager.iter_files(_a ) for file in files]
splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) )
return splits
def __lowercase ( self , _a ) -> pa.Table:
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
_a : Optional[Any] = table_cast(_a , self.config.features.arrow_schema )
return pa_table
def __lowercase ( self , _a ) -> List[str]:
for i, file in enumerate(itertools.chain.from_iterable(_a ) ):
with open(_a , '''rb''' ) as f:
_a : str = pa.Table.from_pandas(pd.read_pickle(_a ) )
yield i, self._cast_table(_a )
| 15 | 0 |
import json
import os
from typing import Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
}
a__ = {
'''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''},
'''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''},
}
a__ = {
'''ctrl''': 256,
}
a__ = {
'''Pregnancy''': 168629,
'''Christianity''': 7675,
'''Explain''': 106423,
'''Fitness''': 63440,
'''Saving''': 63163,
'''Ask''': 27171,
'''Ass''': 95985,
'''Joke''': 163509,
'''Questions''': 45622,
'''Thoughts''': 49605,
'''Retail''': 52342,
'''Feminism''': 164338,
'''Writing''': 11992,
'''Atheism''': 192263,
'''Netflix''': 48616,
'''Computing''': 39639,
'''Opinion''': 43213,
'''Alone''': 44967,
'''Funny''': 58917,
'''Gaming''': 40358,
'''Human''': 4088,
'''India''': 1331,
'''Joker''': 77138,
'''Diet''': 36206,
'''Legal''': 11859,
'''Norman''': 4939,
'''Tip''': 72689,
'''Weight''': 52343,
'''Movies''': 46273,
'''Running''': 23425,
'''Science''': 2090,
'''Horror''': 37793,
'''Confession''': 60572,
'''Finance''': 12250,
'''Politics''': 16360,
'''Scary''': 191985,
'''Support''': 12654,
'''Technologies''': 32516,
'''Teenage''': 66160,
'''Event''': 32769,
'''Learned''': 67460,
'''Notion''': 182770,
'''Wikipedia''': 37583,
'''Books''': 6665,
'''Extract''': 76050,
'''Confessions''': 102701,
'''Conspiracy''': 75932,
'''Links''': 63674,
'''Narcissus''': 150425,
'''Relationship''': 54766,
'''Relationships''': 134796,
'''Reviews''': 41671,
'''News''': 4256,
'''Translation''': 26820,
'''multilingual''': 128406,
}
def __UpperCAmelCase ( __a : Tuple ) -> str:
"""simple docstring"""
_a : Union[str, Any] = set()
_a : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_a : Union[str, Any] = char
_a : int = set(__a )
return pairs
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
UpperCAmelCase__ : Tuple = VOCAB_FILES_NAMES
UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : List[Any] = CONTROL_CODES
def __init__( self , _a , _a , _a="<unk>" , **_a ) -> Optional[Any]:
super().__init__(unk_token=_a , **_a )
with open(_a , encoding='''utf-8''' ) as vocab_handle:
_a : str = json.load(_a )
_a : List[Any] = {v: k for k, v in self.encoder.items()}
with open(_a , encoding='''utf-8''' ) as merges_handle:
_a : List[Any] = merges_handle.read().split('''\n''' )[1:-1]
_a : List[Any] = [tuple(merge.split() ) for merge in merges]
_a : Tuple = dict(zip(_a , range(len(_a ) ) ) )
_a : str = {}
@property
def __lowercase ( self ) -> List[str]:
return len(self.encoder )
def __lowercase ( self ) -> Any:
return dict(self.encoder , **self.added_tokens_encoder )
def __lowercase ( self , _a ) -> Optional[Any]:
if token in self.cache:
return self.cache[token]
_a : Tuple = tuple(_a )
_a : Any = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] )
_a : Dict = get_pairs(_a )
if not pairs:
return token
while True:
_a : str = min(_a , key=lambda _a : self.bpe_ranks.get(_a , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
_a : Union[str, Any] = bigram
_a : List[str] = []
_a : Dict = 0
while i < len(_a ):
try:
_a : Optional[Any] = word.index(_a , _a )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_a : str = j
if word[i] == first and i < len(_a ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_a : List[str] = tuple(_a )
_a : Optional[Any] = new_word
if len(_a ) == 1:
break
else:
_a : Union[str, Any] = get_pairs(_a )
_a : int = '''@@ '''.join(_a )
_a : Optional[Any] = word[:-4]
_a : Any = word
return word
def __lowercase ( self , _a ) -> Dict:
_a : Tuple = []
_a : Any = re.findall(R'''\S+\n?''' , _a )
for token in words:
split_tokens.extend(list(self.bpe(_a ).split(''' ''' ) ) )
return split_tokens
def __lowercase ( self , _a ) -> List[Any]:
return self.encoder.get(_a , self.encoder.get(self.unk_token ) )
def __lowercase ( self , _a ) -> List[Any]:
return self.decoder.get(_a , self.unk_token )
def __lowercase ( self , _a ) -> List[Any]:
_a : Dict = ''' '''.join(_a ).replace('''@@ ''' , '''''' ).strip()
return out_string
def __lowercase ( self , _a , _a = None ) -> Tuple[str]:
if not os.path.isdir(_a ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_a : Any = os.path.join(
_a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
_a : Union[str, Any] = os.path.join(
_a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(_a , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=_a , ensure_ascii=_a ) + '''\n''' )
_a : str = 0
with open(_a , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _a : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''' )
_a : Tuple = token_index
writer.write(''' '''.join(_a ) + '''\n''' )
index += 1
return vocab_file, merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
| 362 |
def __UpperCAmelCase ( __a : int ,__a : int ,__a : int ) -> int:
"""simple docstring"""
if exponent == 1:
return base
if exponent % 2 == 0:
_a : List[Any] = _modexpt(__a ,exponent // 2 ,__a ) % modulo_value
return (x * x) % modulo_value
else:
return (base * _modexpt(__a ,exponent - 1 ,__a )) % modulo_value
def __UpperCAmelCase ( __a : int = 1_777 ,__a : int = 1_855 ,__a : int = 8 ) -> int:
"""simple docstring"""
_a : List[Any] = base
for _ in range(1 ,__a ):
_a : Any = _modexpt(__a ,__a ,10**digits )
return result
if __name__ == "__main__":
print(f'''{solution() = }''')
| 15 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
a__ = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
'''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SwinForImageClassification''',
'''SwinForMaskedImageModeling''',
'''SwinModel''',
'''SwinPreTrainedModel''',
'''SwinBackbone''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
'''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFSwinForImageClassification''',
'''TFSwinForMaskedImageModeling''',
'''TFSwinModel''',
'''TFSwinPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swin import (
SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinBackbone,
SwinForImageClassification,
SwinForMaskedImageModeling,
SwinModel,
SwinPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_swin import (
TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSwinForImageClassification,
TFSwinForMaskedImageModeling,
TFSwinModel,
TFSwinPreTrainedModel,
)
else:
import sys
a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 363 |
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
a__ = '''\
'''
a__ = '''
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
'''
a__ = '''
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to \'cuda\' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric("perplexity")
>>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
>>> results = perplexity.compute(model_id=\'gpt2\',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
[\'perplexities\', \'mean_perplexity\']
>>> print(round(results["mean_perplexity"], 2))
78.22
>>> print(round(results["perplexities"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric("perplexity")
>>> input_texts = datasets.load_dataset("wikitext",
... "wikitext-2-raw-v1",
... split="test")["text"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!=\'\']
>>> results = perplexity.compute(model_id=\'gpt2\',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
[\'perplexities\', \'mean_perplexity\']
>>> print(round(results["mean_perplexity"], 2))
60.35
>>> print(round(results["perplexities"][0], 2))
81.12
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
"""simple docstring"""
def __lowercase ( self ) -> Any:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''input_texts''': datasets.Value('''string''' ),
} ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , )
def __lowercase ( self , _a , _a , _a = 1_6 , _a = True , _a=None ) -> List[Any]:
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
_a : List[str] = '''cuda'''
else:
_a : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu'''
_a : Dict = AutoModelForCausalLM.from_pretrained(_a )
_a : List[Any] = model.to(_a )
_a : List[str] = AutoTokenizer.from_pretrained(_a )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
_a : str = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(_a ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
_a : List[Any] = model.config.max_length - 1
else:
_a : List[str] = model.config.max_length
_a : Union[str, Any] = tokenizer(
_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a )
_a : List[Any] = encodings['''input_ids''']
_a : int = encodings['''attention_mask''']
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
_a : Optional[int] = []
_a : Dict = CrossEntropyLoss(reduction='''none''' )
for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ):
_a : Dict = min(start_index + batch_size , len(_a ) )
_a : Union[str, Any] = encoded_texts[start_index:end_index]
_a : int = attn_masks[start_index:end_index]
if add_start_token:
_a : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a )
_a : List[str] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
_a : Dict = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 )
_a : Dict = encoded_batch
with torch.no_grad():
_a : Any = model(_a , attention_mask=_a ).logits
_a : List[str] = out_logits[..., :-1, :].contiguous()
_a : Union[str, Any] = labels[..., 1:].contiguous()
_a : Optional[int] = attn_mask[..., 1:].contiguous()
_a : Union[str, Any] = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
| 15 | 0 |
"""simple docstring"""
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import BatchEncoding, MarianTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available
if is_sentencepiece_available():
from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
a__ = get_tests_dir('''fixtures/test_sentencepiece.model''')
a__ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''}
a__ = '''>>zh<<'''
a__ = '''Helsinki-NLP/'''
if is_torch_available():
a__ = '''pt'''
elif is_tf_available():
a__ = '''tf'''
else:
a__ = '''jax'''
@require_sentencepiece
class UpperCAmelCase_ ( __lowercase , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : Dict = MarianTokenizer
UpperCAmelCase__ : Optional[Any] = False
UpperCAmelCase__ : Dict = True
def __lowercase ( self ) -> List[Any]:
super().setUp()
_a : List[str] = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>''']
_a : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) )
_a : Dict = Path(self.tmpdirname )
save_json(_a , save_dir / VOCAB_FILES_NAMES['''vocab'''] )
save_json(_a , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] )
if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
copyfile(_a , save_dir / VOCAB_FILES_NAMES['''source_spm'''] )
copyfile(_a , save_dir / VOCAB_FILES_NAMES['''target_spm'''] )
_a : List[str] = MarianTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def __lowercase ( self , **_a ) -> MarianTokenizer:
return MarianTokenizer.from_pretrained(self.tmpdirname , **_a )
def __lowercase ( self , _a ) -> Optional[int]:
return (
"This is a test",
"This is a test",
)
def __lowercase ( self ) -> Dict:
_a : Tuple = '''</s>'''
_a : Union[str, Any] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a )
def __lowercase ( self ) -> Tuple:
_a : str = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''</s>''' )
self.assertEqual(vocab_keys[1] , '''<unk>''' )
self.assertEqual(vocab_keys[-1] , '''<pad>''' )
self.assertEqual(len(_a ) , 9 )
def __lowercase ( self ) -> Optional[int]:
self.assertEqual(self.get_tokenizer().vocab_size , 9 )
def __lowercase ( self ) -> List[Any]:
_a : Union[str, Any] = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" )
_a : List[str] = en_de_tokenizer(['''I am a small frog'''] , return_tensors=_a )
self.assertIsInstance(_a , _a )
_a : str = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0]
self.assertListEqual(_a , batch.input_ids[0] )
_a : Tuple = tempfile.mkdtemp()
en_de_tokenizer.save_pretrained(_a )
_a : Optional[Any] = [x.name for x in Path(_a ).glob('''*''' )]
self.assertIn('''source.spm''' , _a )
MarianTokenizer.from_pretrained(_a )
def __lowercase ( self ) -> Optional[Any]:
_a : Union[str, Any] = self.get_tokenizer()
_a : List[str] = tok(
['''I am a small frog''' * 1_0_0_0, '''I am a small frog'''] , padding=_a , truncation=_a , return_tensors=_a )
self.assertIsInstance(_a , _a )
self.assertEqual(batch.input_ids.shape , (2, 5_1_2) )
def __lowercase ( self ) -> Any:
_a : Dict = self.get_tokenizer()
_a : List[Any] = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=_a , return_tensors=_a )
self.assertIsInstance(_a , _a )
self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) )
@slow
def __lowercase ( self ) -> Dict:
# fmt: off
_a : List[str] = {'''input_ids''': [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_a , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , )
def __lowercase ( self ) -> Optional[Any]:
_a : Optional[int] = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' )
_a : Any = '''Tämä on testi'''
_a : List[Any] = '''This is a test'''
_a : Tuple = [7_6, 7, 2_0_4_7, 2]
_a : Union[str, Any] = [6_9, 1_2, 1_1, 9_4_0, 2]
_a : str = tokenizer(_a ).input_ids
self.assertListEqual(_a , _a )
_a : str = tokenizer(text_target=_a ).input_ids
self.assertListEqual(_a , _a )
_a : List[str] = tokenizer.decode(_a , skip_special_tokens=_a )
self.assertEqual(_a , _a )
| 364 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__ = {
'''configuration_xmod''': [
'''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''XmodConfig''',
'''XmodOnnxConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
'''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XmodForCausalLM''',
'''XmodForMaskedLM''',
'''XmodForMultipleChoice''',
'''XmodForQuestionAnswering''',
'''XmodForSequenceClassification''',
'''XmodForTokenClassification''',
'''XmodModel''',
'''XmodPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 15 | 0 |
import logging
import os
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
from filelock import FileLock
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available
a__ = logging.getLogger(__name__)
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
UpperCAmelCase__ : str
UpperCAmelCase__ : List[str]
UpperCAmelCase__ : Optional[List[str]]
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
UpperCAmelCase__ : List[int]
UpperCAmelCase__ : List[int]
UpperCAmelCase__ : Optional[List[int]] = None
UpperCAmelCase__ : Optional[List[int]] = None
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
UpperCAmelCase__ : Any = "train"
UpperCAmelCase__ : Dict = "dev"
UpperCAmelCase__ : Optional[int] = "test"
class UpperCAmelCase_ :
"""simple docstring"""
@staticmethod
def __lowercase ( _a , _a ) -> List[InputExample]:
raise NotImplementedError
@staticmethod
def __lowercase ( _a ) -> List[str]:
raise NotImplementedError
@staticmethod
def __lowercase ( _a , _a , _a , _a , _a=False , _a="[CLS]" , _a=1 , _a="[SEP]" , _a=False , _a=False , _a=0 , _a=0 , _a=-1_0_0 , _a=0 , _a=True , ) -> List[InputFeatures]:
_a : str = {label: i for i, label in enumerate(_a )}
_a : Any = []
for ex_index, example in enumerate(_a ):
if ex_index % 1_0_0_0_0 == 0:
logger.info('''Writing example %d of %d''' , _a , len(_a ) )
_a : Optional[int] = []
_a : List[str] = []
for word, label in zip(example.words , example.labels ):
_a : str = tokenizer.tokenize(_a )
# bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space.
if len(_a ) > 0:
tokens.extend(_a )
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_a ) - 1) )
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
_a : Any = tokenizer.num_special_tokens_to_add()
if len(_a ) > max_seq_length - special_tokens_count:
_a : Tuple = tokens[: (max_seq_length - special_tokens_count)]
_a : Optional[int] = label_ids[: (max_seq_length - special_tokens_count)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens += [sep_token]
label_ids += [pad_token_label_id]
if sep_token_extra:
# roberta uses an extra separator b/w pairs of sentences
tokens += [sep_token]
label_ids += [pad_token_label_id]
_a : List[str] = [sequence_a_segment_id] * len(_a )
if cls_token_at_end:
tokens += [cls_token]
label_ids += [pad_token_label_id]
segment_ids += [cls_token_segment_id]
else:
_a : Tuple = [cls_token] + tokens
_a : Optional[Any] = [pad_token_label_id] + label_ids
_a : Dict = [cls_token_segment_id] + segment_ids
_a : Union[str, Any] = tokenizer.convert_tokens_to_ids(_a )
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
_a : Tuple = [1 if mask_padding_with_zero else 0] * len(_a )
# Zero-pad up to the sequence length.
_a : Dict = max_seq_length - len(_a )
if pad_on_left:
_a : Dict = ([pad_token] * padding_length) + input_ids
_a : str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
_a : str = ([pad_token_segment_id] * padding_length) + segment_ids
_a : Tuple = ([pad_token_label_id] * padding_length) + label_ids
else:
input_ids += [pad_token] * padding_length
input_mask += [0 if mask_padding_with_zero else 1] * padding_length
segment_ids += [pad_token_segment_id] * padding_length
label_ids += [pad_token_label_id] * padding_length
assert len(_a ) == max_seq_length
assert len(_a ) == max_seq_length
assert len(_a ) == max_seq_length
assert len(_a ) == max_seq_length
if ex_index < 5:
logger.info('''*** Example ***''' )
logger.info('''guid: %s''' , example.guid )
logger.info('''tokens: %s''' , ''' '''.join([str(_a ) for x in tokens] ) )
logger.info('''input_ids: %s''' , ''' '''.join([str(_a ) for x in input_ids] ) )
logger.info('''input_mask: %s''' , ''' '''.join([str(_a ) for x in input_mask] ) )
logger.info('''segment_ids: %s''' , ''' '''.join([str(_a ) for x in segment_ids] ) )
logger.info('''label_ids: %s''' , ''' '''.join([str(_a ) for x in label_ids] ) )
if "token_type_ids" not in tokenizer.model_input_names:
_a : Dict = None
features.append(
InputFeatures(
input_ids=_a , attention_mask=_a , token_type_ids=_a , label_ids=_a ) )
return features
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
UpperCAmelCase__ : List[InputFeatures]
UpperCAmelCase__ : int = nn.CrossEntropyLoss().ignore_index
def __init__( self , _a , _a , _a , _a , _a , _a = None , _a=False , _a = Split.train , ) -> List[Any]:
# Load data features from cache or dataset file
_a : int = os.path.join(
_a , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(_a ) ) , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
_a : Optional[int] = cached_features_file + '''.lock'''
with FileLock(_a ):
if os.path.exists(_a ) and not overwrite_cache:
logger.info(F"""Loading features from cached file {cached_features_file}""" )
_a : Tuple = torch.load(_a )
else:
logger.info(F"""Creating features from dataset file at {data_dir}""" )
_a : Optional[int] = token_classification_task.read_examples_from_file(_a , _a )
# TODO clean up all this to leverage built-in features of tokenizers
_a : List[str] = token_classification_task.convert_examples_to_features(
_a , _a , _a , _a , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_a , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info(F"""Saving features into cached file {cached_features_file}""" )
torch.save(self.features , _a )
def __len__( self ) -> Union[str, Any]:
return len(self.features )
def __getitem__( self , _a ) -> InputFeatures:
return self.features[i]
if is_tf_available():
import tensorflow as tf
class UpperCAmelCase_ :
"""simple docstring"""
UpperCAmelCase__ : List[InputFeatures]
UpperCAmelCase__ : int = -100
def __init__( self , _a , _a , _a , _a , _a , _a = None , _a=False , _a = Split.train , ) -> List[Any]:
_a : Dict = token_classification_task.read_examples_from_file(_a , _a )
# TODO clean up all this to leverage built-in features of tokenizers
_a : List[Any] = token_classification_task.convert_examples_to_features(
_a , _a , _a , _a , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_a , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
def gen():
for ex in self.features:
if ex.token_type_ids is None:
yield (
{"input_ids": ex.input_ids, "attention_mask": ex.attention_mask},
ex.label_ids,
)
else:
yield (
{
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label_ids,
)
if "token_type_ids" not in tokenizer.model_input_names:
_a : Optional[Any] = tf.data.Dataset.from_generator(
_a , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , (
{'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )},
tf.TensorShape([None] ),
) , )
else:
_a : Dict = tf.data.Dataset.from_generator(
_a , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , (
{
'''input_ids''': tf.TensorShape([None] ),
'''attention_mask''': tf.TensorShape([None] ),
'''token_type_ids''': tf.TensorShape([None] ),
},
tf.TensorShape([None] ),
) , )
def __lowercase ( self ) -> Optional[int]:
_a : Tuple = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) )
return self.dataset
def __len__( self ) -> int:
return len(self.features )
def __getitem__( self , _a ) -> InputFeatures:
return self.features[i]
| 365 |
import re
import tempfile
from pathlib import Path
import pytest
import yaml
from datasets.utils.readme import ReadMe
# @pytest.fixture
# def example_yaml_structure():
a__ = yaml.safe_load(
'''\
name: ""
allow_empty: false
allow_empty_text: true
subsections:
- name: "Dataset Card for X" # First-level markdown heading
allow_empty: false
allow_empty_text: true
subsections:
- name: "Table of Contents"
allow_empty: false
allow_empty_text: false
subsections: null
- name: "Dataset Description"
allow_empty: false
allow_empty_text: false
subsections:
- name: "Dataset Summary"
allow_empty: false
allow_empty_text: false
subsections: null
- name: "Supported Tasks and Leaderboards"
allow_empty: true
allow_empty_text: true
subsections: null
- name: Languages
allow_empty: false
allow_empty_text: true
subsections: null
'''
)
a__ = {
'''name''': '''root''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{
'''name''': '''Dataset Card for My Dataset''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []},
{
'''name''': '''Dataset Description''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Dataset Summary''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [],
},
{
'''name''': '''Supported Tasks and Leaderboards''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
},
{'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []},
],
},
],
}
],
}
a__ = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
a__ = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
#### Extra Ignored Subsection
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
a__ = {
'''name''': '''root''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{
'''name''': '''Dataset Card for My Dataset''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []},
{
'''name''': '''Dataset Description''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Dataset Summary''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Extra Ignored Subsection''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
}
],
},
{
'''name''': '''Supported Tasks and Leaderboards''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
},
{'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []},
],
},
],
}
],
}
a__ = '''\
---
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
a__ = (
'''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.'''
)
a__ = '''\
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
a__ = (
'''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.'''
)
a__ = '''\
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
a__ = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.'''
a__ = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).'''
a__ = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
'''
a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.'''
a__ = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Languages
Language Text
'''
a__ = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.'''
a__ = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
'''
a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.'''
a__ = '''\
---
language:
- zh
- en
---
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.'''
a__ = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
# Dataset Card My Dataset
'''
a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.'''
a__ = '''\
---
language:
- zh
- en
---
# Dataset Card My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
a__ = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.'''
a__ = ''''''
a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.'''
a__ = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
a__ = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.'''
@pytest.mark.parametrize(
'''readme_md, expected_dict''' ,[
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] ,)
def __UpperCAmelCase ( __a : Union[str, Any] ,__a : List[str] ) -> Optional[int]:
"""simple docstring"""
assert ReadMe.from_string(__a ,__a ).to_dict() == expected_dict
@pytest.mark.parametrize(
'''readme_md, expected_error''' ,[
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] ,)
def __UpperCAmelCase ( __a : List[str] ,__a : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ):
_a : List[Any] = ReadMe.from_string(__a ,__a )
readme.validate()
@pytest.mark.parametrize(
'''readme_md, expected_error''' ,[
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] ,)
def __UpperCAmelCase ( __a : Dict ,__a : Dict ) -> Tuple:
"""simple docstring"""
with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ):
ReadMe.from_string(__a ,__a )
@pytest.mark.parametrize(
'''readme_md,''' ,[
(README_MULTIPLE_SAME_HEADING_1),
] ,)
def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple:
"""simple docstring"""
ReadMe.from_string(__a ,__a ,suppress_parsing_errors=__a )
@pytest.mark.parametrize(
'''readme_md, expected_dict''' ,[
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] ,)
def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Any ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
_a : Tuple = Path(__a ) / '''README.md'''
with open(__a ,'''w+''' ) as readme_file:
readme_file.write(__a )
_a : Optional[Any] = ReadMe.from_readme(__a ,__a ).to_dict()
assert out["name"] == path
assert out["text"] == ""
assert out["is_empty_text"]
assert out["subsections"] == expected_dict["subsections"]
@pytest.mark.parametrize(
'''readme_md, expected_error''' ,[
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] ,)
def __UpperCAmelCase ( __a : List[Any] ,__a : List[Any] ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
_a : int = Path(__a ) / '''README.md'''
with open(__a ,'''w+''' ) as readme_file:
readme_file.write(__a )
_a : Optional[int] = expected_error.format(path=__a )
with pytest.raises(__a ,match=re.escape(__a ) ):
_a : Any = ReadMe.from_readme(__a ,__a )
readme.validate()
@pytest.mark.parametrize(
'''readme_md, expected_error''' ,[
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] ,)
def __UpperCAmelCase ( __a : str ,__a : Union[str, Any] ) -> Dict:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
_a : Optional[Any] = Path(__a ) / '''README.md'''
with open(__a ,'''w+''' ) as readme_file:
readme_file.write(__a )
_a : str = expected_error.format(path=__a )
with pytest.raises(__a ,match=re.escape(__a ) ):
ReadMe.from_readme(__a ,__a )
@pytest.mark.parametrize(
'''readme_md,''' ,[
(README_MULTIPLE_SAME_HEADING_1),
] ,)
def __UpperCAmelCase ( __a : Optional[Any] ) -> str:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
_a : int = Path(__a ) / '''README.md'''
with open(__a ,'''w+''' ) as readme_file:
readme_file.write(__a )
ReadMe.from_readme(__a ,__a ,suppress_parsing_errors=__a )
| 15 | 0 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def __UpperCAmelCase ( __a : str ,__a : str ,__a : List[str]=None ,__a : List[Any]=None ) -> Optional[int]:
"""simple docstring"""
if attention_mask is None:
_a : Optional[int] = tf.cast(tf.math.not_equal(__a ,config.pad_token_id ) ,tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class UpperCAmelCase_ :
"""simple docstring"""
UpperCAmelCase__ : List[Any] = OPTConfig
UpperCAmelCase__ : Dict = {}
UpperCAmelCase__ : Tuple = "gelu"
def __init__( self , _a , _a=1_3 , _a=7 , _a=True , _a=False , _a=9_9 , _a=1_6 , _a=2 , _a=4 , _a=4 , _a="gelu" , _a=0.1 , _a=0.1 , _a=2_0 , _a=2 , _a=1 , _a=0 , _a=1_6 , _a=1_6 , ) -> Union[str, Any]:
_a : List[str] = parent
_a : Tuple = batch_size
_a : List[str] = seq_length
_a : Optional[Any] = is_training
_a : List[str] = use_labels
_a : Optional[int] = vocab_size
_a : Optional[Any] = hidden_size
_a : List[Any] = num_hidden_layers
_a : Any = num_attention_heads
_a : int = intermediate_size
_a : List[str] = hidden_act
_a : Optional[Any] = hidden_dropout_prob
_a : Optional[Any] = attention_probs_dropout_prob
_a : Optional[Any] = max_position_embeddings
_a : Tuple = eos_token_id
_a : Dict = pad_token_id
_a : int = bos_token_id
_a : Optional[int] = embed_dim
_a : Dict = word_embed_proj_dim
_a : Tuple = False
def __lowercase ( self ) -> int:
_a : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_a : Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_a : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 )
_a : Dict = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_a , **self.config_updates , )
_a : Optional[Any] = prepare_opt_inputs_dict(_a , _a )
return config, inputs_dict
def __lowercase ( self , _a , _a ) -> Union[str, Any]:
_a : int = TFOPTModel(config=_a )
_a : int = inputs_dict['''input_ids''']
_a : Optional[int] = input_ids[:1, :]
_a : Optional[Any] = inputs_dict['''attention_mask'''][:1, :]
_a : Union[str, Any] = 1
# first forward pass
_a : Any = model(_a , attention_mask=_a , use_cache=_a )
_a : Optional[Any] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_a : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_a : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_a : str = tf.concat([input_ids, next_tokens] , axis=-1 )
_a : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_a : str = model(_a , attention_mask=_a )[0]
_a : List[str] = model(_a , attention_mask=_a , past_key_values=_a )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_a : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_a : str = output_from_no_past[:, -3:, random_slice_idx]
_a : int = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_a , _a , rtol=1e-3 )
@require_tf
class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : List[Any] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
UpperCAmelCase__ : Union[str, Any] = (TFOPTForCausalLM,) if is_tf_available() else ()
UpperCAmelCase__ : Tuple = (
{"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {}
)
UpperCAmelCase__ : Any = False
UpperCAmelCase__ : Dict = False
UpperCAmelCase__ : Tuple = False
UpperCAmelCase__ : Any = 10
def __lowercase ( self ) -> int:
_a : str = TFOPTModelTester(self )
_a : int = ConfigTester(self , config_class=_a )
def __lowercase ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def __lowercase ( self ) -> Optional[int]:
_a : str = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_a )
def __lowercase ( self ) -> Tuple:
_a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(_a , _a ):
if hasattr(_a , '''weight''' ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(_a , '''weight''' ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]:
# build the embeddings
_a : List[str] = model_class(config=_a )
_a : List[str] = _get_word_embedding_weight(_a , model.get_input_embeddings() )
_a : Union[str, Any] = _get_word_embedding_weight(_a , model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(_a )
_a : List[Any] = _get_word_embedding_weight(_a , model.get_input_embeddings() )
_a : List[str] = _get_word_embedding_weight(_a , model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
_a : Union[str, Any] = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , _a )
# check that weights remain the same after resizing
_a : Any = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
_a : Union[str, Any] = False
self.assertTrue(_a )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , _a )
_a : List[Any] = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
_a : Optional[Any] = False
self.assertTrue(_a )
def __UpperCAmelCase ( __a : List[str] ) -> Dict:
"""simple docstring"""
return tf.constant(__a ,dtype=tf.intaa )
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : Optional[int] = 99
def __lowercase ( self ) -> List[str]:
_a : Dict = tf.ones((4, 1) , dtype=tf.intaa ) * 2
_a : Optional[Any] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 )
_a : str = input_ids.shape[0]
_a : Tuple = OPTConfig(
vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def __lowercase ( self ) -> List[Any]:
_a : int = TFOPTModel.from_pretrained('''facebook/opt-350m''' )
_a : Tuple = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] )
_a : List[Any] = tf.not_equal(_a , model.config.pad_token_id )
with tf.GradientTape():
_a : Dict = model(input_ids=_a , attention_mask=_a ).last_hidden_state
_a : Union[str, Any] = (1, 1_1, 5_1_2)
self.assertEqual(output.shape , _a )
_a : Tuple = tf.constant(
[[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] )
self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=4e-3 ) )
_a : Optional[int] = tf.function(_a , jit_compile=_a )
_a : Dict = xla_generate(_a , _a )[0]
self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=4e-2 ) )
@require_tf
@slow
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __lowercase ( self ) -> Optional[Any]:
super().setUp()
_a : Dict = '''facebook/opt-350m'''
def __lowercase ( self ) -> List[str]:
_a : str = TFOPTForCausalLM.from_pretrained(self.path_model )
_a : Tuple = GPTaTokenizer.from_pretrained(self.path_model )
_a : str = [
'''Today is a beautiful day and I want to''',
'''In the city of''',
'''Paris is the capital of France and''',
'''Computers and mobile phones have taken''',
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
_a : Any = tokenizer(_a , return_tensors='''tf''' , padding=_a , add_special_tokens=_a )
_a : Union[str, Any] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
_a : Dict = tf.constant(
[
[1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670],
[-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822],
[0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703],
[6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477],
] )
self.assertTrue(np.allclose(_a , _a , atol=1e-4 ) )
_a : str = tf.function(_a , jit_compile=_a )
_a : Optional[int] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
self.assertTrue(np.allclose(_a , _a , atol=1e-4 ) )
@require_tf
@slow
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@property
def __lowercase ( self ) -> Any:
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def __lowercase ( self ) -> str:
_a : List[Any] = '''facebook/opt-125m'''
_a : Optional[Any] = [
'''Today is a beautiful day and I want to''',
'''In the city of New York, the city''',
'''Paris is the capital of France and the capital''',
'''Computers and mobile phones have taken over the''',
]
_a : str = []
_a : List[Any] = GPTaTokenizer.from_pretrained(_a )
_a : Tuple = TFOPTForCausalLM.from_pretrained(_a )
for prompt in self.prompts:
_a : Union[str, Any] = tokenizer(_a , return_tensors='''tf''' ).input_ids
_a : Union[str, Any] = model.generate(_a , max_length=1_0 )
_a : str = tokenizer.batch_decode(_a , skip_special_tokens=_a )
predicted_outputs += generated_string
self.assertListEqual(_a , _a )
def __lowercase ( self ) -> Tuple:
_a : Any = '''facebook/opt-350m'''
_a : Any = GPTaTokenizer.from_pretrained(_a )
_a : Any = TFOPTForCausalLM.from_pretrained(_a )
_a : Dict = '''left'''
# use different length sentences to test batching
_a : Dict = [
'''Hello, my dog is a little''',
'''Today, I''',
]
_a : int = tokenizer(_a , return_tensors='''tf''' , padding=_a )
_a : List[str] = inputs['''input_ids''']
_a : Optional[Any] = model.generate(input_ids=_a , attention_mask=inputs['''attention_mask'''] )
_a : Any = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids
_a : Tuple = model.generate(input_ids=_a )
_a : str = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) )
_a : Optional[int] = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids
_a : Tuple = model.generate(input_ids=_a , max_length=model.config.max_length - num_paddings )
_a : str = tokenizer.batch_decode(_a , skip_special_tokens=_a )
_a : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_a )
_a : Dict = tokenizer.decode(output_padded[0] , skip_special_tokens=_a )
_a : List[str] = [
'''Hello, my dog is a little bit of a dork.\nI\'m a little bit''',
'''Today, I was in the middle of a conversation with a friend about the''',
]
self.assertListEqual(_a , _a )
self.assertListEqual(_a , [non_padded_sentence, padded_sentence] )
def __lowercase ( self ) -> str:
_a : Union[str, Any] = '''facebook/opt-350m'''
_a : Optional[Any] = [
'''Today is a beautiful day and I want to''',
'''In the city of San Francisco, the city''',
'''Paris is the capital of France and the capital''',
'''Computers and mobile phones have taken over the''',
]
_a : List[Any] = []
_a : Any = GPTaTokenizer.from_pretrained(_a )
_a : Any = TFOPTForCausalLM.from_pretrained(_a )
for prompt in self.prompts:
_a : str = tokenizer(_a , return_tensors='''tf''' ).input_ids
_a : List[Any] = model.generate(_a , max_length=1_0 )
_a : List[str] = tokenizer.batch_decode(_a , skip_special_tokens=_a )
predicted_outputs += generated_string
self.assertListEqual(_a , _a )
| 366 |
from __future__ import annotations
def __UpperCAmelCase ( __a : list ) -> float:
"""simple docstring"""
if not nums:
raise ValueError('''List is empty''' )
return sum(__a ) / len(__a )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 0 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
a__ = 16
a__ = 32
def __UpperCAmelCase ( __a : Accelerator ,__a : int = 16 ,__a : str = "bert-base-cased" ) -> int:
"""simple docstring"""
_a : int = AutoTokenizer.from_pretrained(__a )
_a : Optional[Any] = load_dataset('''glue''' ,'''mrpc''' )
def tokenize_function(__a : List[str] ):
# max_length=None => use the model max length (it's actually the default)
_a : int = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=__a ,max_length=__a )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
_a : Optional[Any] = datasets.map(
__a ,batched=__a ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,load_from_cache_file=__a )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_a : Union[str, Any] = tokenized_datasets.rename_column('''label''' ,'''labels''' )
def collate_fn(__a : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(__a ,padding='''max_length''' ,max_length=128 ,return_tensors='''pt''' )
return tokenizer.pad(__a ,padding='''longest''' ,return_tensors='''pt''' )
# Instantiate dataloaders.
_a : Dict = DataLoader(
tokenized_datasets['''train'''] ,shuffle=__a ,collate_fn=__a ,batch_size=__a )
_a : List[str] = DataLoader(
tokenized_datasets['''validation'''] ,shuffle=__a ,collate_fn=__a ,batch_size=__a )
return train_dataloader, eval_dataloader
def __UpperCAmelCase ( __a : str ,__a : Tuple ) -> List[str]:
"""simple docstring"""
_a : Tuple = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_a : Optional[int] = config['''lr''']
_a : Optional[int] = int(config['''num_epochs'''] )
_a : Optional[Any] = int(config['''seed'''] )
_a : Union[str, Any] = int(config['''batch_size'''] )
_a : List[str] = args.model_name_or_path
set_seed(__a )
_a : List[Any] = get_dataloaders(__a ,__a ,__a )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_a : str = AutoModelForSequenceClassification.from_pretrained(__a ,return_dict=__a )
# Instantiate optimizer
_a : Dict = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
_a : Union[str, Any] = optimizer_cls(params=model.parameters() ,lr=__a )
if accelerator.state.deepspeed_plugin is not None:
_a : Dict = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
_a : str = 1
_a : Optional[Any] = (len(__a ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
_a : Union[str, Any] = get_linear_schedule_with_warmup(
optimizer=__a ,num_warmup_steps=0 ,num_training_steps=__a ,)
else:
_a : Optional[int] = DummyScheduler(__a ,total_num_steps=__a ,warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_a : str = accelerator.prepare(
__a ,__a ,__a ,__a ,__a )
# We need to keep track of how many total steps we have iterated over
_a : Union[str, Any] = 0
# We also need to keep track of the stating epoch so files are named properly
_a : Dict = 0
# Now we train the model
_a : Dict = evaluate.load('''glue''' ,'''mrpc''' )
_a : Union[str, Any] = 0
_a : int = {}
for epoch in range(__a ,__a ):
model.train()
for step, batch in enumerate(__a ):
_a : List[Any] = model(**__a )
_a : Any = outputs.loss
_a : Optional[int] = loss / gradient_accumulation_steps
accelerator.backward(__a )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
_a : Dict = 0
for step, batch in enumerate(__a ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_a : Union[str, Any] = model(**__a )
_a : Dict = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
_a : Tuple = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(__a ) - 1:
_a : Any = predictions[: len(eval_dataloader.dataset ) - samples_seen]
_a : List[str] = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=__a ,references=__a ,)
_a : List[Any] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""" ,__a )
_a : List[Any] = eval_metric['''accuracy''']
if best_performance < eval_metric["accuracy"]:
_a : Union[str, Any] = eval_metric['''accuracy''']
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}"""
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir ,'''all_results.json''' ) ,'''w''' ) as f:
json.dump(__a ,__a )
def __UpperCAmelCase ( ) -> Tuple:
"""simple docstring"""
_a : int = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''' ,type=__a ,default='''bert-base-cased''' ,help='''Path to pretrained model or model identifier from huggingface.co/models.''' ,required=__a ,)
parser.add_argument(
'''--output_dir''' ,type=__a ,default='''.''' ,help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' ,)
parser.add_argument(
'''--performance_lower_bound''' ,type=__a ,default=__a ,help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' ,)
parser.add_argument(
'''--num_epochs''' ,type=__a ,default=3 ,help='''Number of train epochs.''' ,)
_a : Union[str, Any] = parser.parse_args()
_a : Optional[int] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(__a ,__a )
if __name__ == "__main__":
main()
| 367 |
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
a__ = ['''small''', '''medium''', '''large''']
a__ = '''lm_head.decoder.weight'''
a__ = '''lm_head.weight'''
def __UpperCAmelCase ( __a : str ,__a : str ) -> List[str]:
"""simple docstring"""
_a : Any = torch.load(__a )
_a : List[str] = d.pop(__a )
os.makedirs(__a ,exist_ok=__a )
torch.save(__a ,os.path.join(__a ,__a ) )
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
parser.add_argument('''--dialogpt_path''', default='''.''', type=str)
a__ = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
a__ = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''')
a__ = f'''./DialoGPT-{MODEL}'''
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 15 | 0 |
def __UpperCAmelCase ( __a : list ) -> list:
"""simple docstring"""
if len(__a ) <= 1:
return lst
_a : Optional[Any] = 1
while i < len(__a ):
if lst[i - 1] <= lst[i]:
i += 1
else:
_a : Optional[Any] = lst[i], lst[i - 1]
i -= 1
if i == 0:
_a : Dict = 1
return lst
if __name__ == "__main__":
a__ = input('''Enter numbers separated by a comma:\n''').strip()
a__ = [int(item) for item in user_input.split(''',''')]
print(gnome_sort(unsorted))
| 368 |
import enum
import warnings
from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING
from ..utils import add_end_docstrings, is_tf_available
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
class UpperCAmelCase_ ( enum.Enum ):
"""simple docstring"""
UpperCAmelCase__ : int = 0
UpperCAmelCase__ : Union[str, Any] = 1
UpperCAmelCase__ : Optional[Any] = 2
@add_end_docstrings(__lowercase )
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
UpperCAmelCase__ : Optional[Any] = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n "
def __init__( self , *_a , **_a ) -> List[str]:
super().__init__(*_a , **_a )
self.check_model_type(
TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING )
if "prefix" not in self._preprocess_params:
# This is very specific. The logic is quite complex and needs to be done
# as a "default".
# It also defines both some preprocess_kwargs and generate_kwargs
# which is why we cannot put them in their respective methods.
_a : Dict = None
if self.model.config.prefix is not None:
_a : List[Any] = self.model.config.prefix
if prefix is None and self.model.__class__.__name__ in [
"XLNetLMHeadModel",
"TransfoXLLMHeadModel",
"TFXLNetLMHeadModel",
"TFTransfoXLLMHeadModel",
]:
# For XLNet and TransformerXL we add an article to the prompt to give more state to the model.
_a : Optional[Any] = self.XL_PREFIX
if prefix is not None:
# Recalculate some generate_kwargs linked to prefix.
_a , _a , _a : str = self._sanitize_parameters(prefix=_a , **self._forward_params )
_a : Optional[Any] = {**self._preprocess_params, **preprocess_params}
_a : List[Any] = {**self._forward_params, **forward_params}
def __lowercase ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , **_a , ) -> Optional[int]:
_a : List[Any] = {}
if prefix is not None:
_a : Optional[Any] = prefix
if prefix:
_a : Dict = self.tokenizer(
_a , padding=_a , add_special_tokens=_a , return_tensors=self.framework )
_a : Tuple = prefix_inputs['''input_ids'''].shape[-1]
if handle_long_generation is not None:
if handle_long_generation not in {"hole"}:
raise ValueError(
F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected"""
''' [None, \'hole\']''' )
_a : Dict = handle_long_generation
preprocess_params.update(_a )
_a : Tuple = generate_kwargs
_a : Any = {}
if return_full_text is not None and return_type is None:
if return_text is not None:
raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' )
if return_tensors is not None:
raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' )
_a : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT
if return_tensors is not None and return_type is None:
if return_text is not None:
raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' )
_a : Any = ReturnType.TENSORS
if return_type is not None:
_a : Any = return_type
if clean_up_tokenization_spaces is not None:
_a : List[Any] = clean_up_tokenization_spaces
if stop_sequence is not None:
_a : Tuple = self.tokenizer.encode(_a , add_special_tokens=_a )
if len(_a ) > 1:
warnings.warn(
'''Stopping on a multiple token sequence is not yet supported on transformers. The first token of'''
''' the stop sequence will be used as the stop sequence string in the interim.''' )
_a : List[Any] = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def __lowercase ( self , *_a , **_a ) -> Union[str, Any]:
# Parse arguments
if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]:
kwargs.update({'''add_space_before_punct_symbol''': True} )
return super()._parse_and_tokenize(*_a , **_a )
def __call__( self , _a , **_a ) -> List[str]:
return super().__call__(_a , **_a )
def __lowercase ( self , _a , _a="" , _a=None , **_a ) -> List[Any]:
_a : Optional[int] = self.tokenizer(
prefix + prompt_text , padding=_a , add_special_tokens=_a , return_tensors=self.framework )
_a : Union[str, Any] = prompt_text
if handle_long_generation == "hole":
_a : List[str] = inputs['''input_ids'''].shape[-1]
if "max_new_tokens" in generate_kwargs:
_a : int = generate_kwargs['''max_new_tokens''']
else:
_a : List[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len
if new_tokens < 0:
raise ValueError('''We cannot infer how many new tokens are expected''' )
if cur_len + new_tokens > self.tokenizer.model_max_length:
_a : List[str] = self.tokenizer.model_max_length - new_tokens
if keep_length <= 0:
raise ValueError(
'''We cannot use `hole` to handle this generation the number of desired tokens exceeds the'''
''' models max length''' )
_a : List[Any] = inputs['''input_ids'''][:, -keep_length:]
if "attention_mask" in inputs:
_a : List[str] = inputs['''attention_mask'''][:, -keep_length:]
return inputs
def __lowercase ( self , _a , **_a ) -> Optional[int]:
_a : Any = model_inputs['''input_ids''']
_a : Optional[Any] = model_inputs.get('''attention_mask''' , _a )
# Allow empty prompts
if input_ids.shape[1] == 0:
_a : int = None
_a : int = None
_a : List[str] = 1
else:
_a : List[Any] = input_ids.shape[0]
_a : Union[str, Any] = model_inputs.pop('''prompt_text''' )
# If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
# generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
_a : int = generate_kwargs.pop('''prefix_length''' , 0 )
if prefix_length > 0:
_a : Tuple = '''max_new_tokens''' in generate_kwargs or (
'''generation_config''' in generate_kwargs
and generate_kwargs['''generation_config'''].max_new_tokens is not None
)
if not has_max_new_tokens:
_a : int = generate_kwargs.get('''max_length''' ) or self.model.config.max_length
generate_kwargs["max_length"] += prefix_length
_a : Dict = '''min_new_tokens''' in generate_kwargs or (
'''generation_config''' in generate_kwargs
and generate_kwargs['''generation_config'''].min_new_tokens is not None
)
if not has_min_new_tokens and "min_length" in generate_kwargs:
generate_kwargs["min_length"] += prefix_length
# BS x SL
_a : Optional[Any] = self.model.generate(input_ids=_a , attention_mask=_a , **_a )
_a : int = generated_sequence.shape[0]
if self.framework == "pt":
_a : Tuple = generated_sequence.reshape(_a , out_b // in_b , *generated_sequence.shape[1:] )
elif self.framework == "tf":
_a : List[Any] = tf.reshape(_a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) )
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text}
def __lowercase ( self , _a , _a=ReturnType.FULL_TEXT , _a=True ) -> int:
_a : Tuple = model_outputs['''generated_sequence'''][0]
_a : int = model_outputs['''input_ids''']
_a : Any = model_outputs['''prompt_text''']
_a : Any = generated_sequence.numpy().tolist()
_a : Any = []
for sequence in generated_sequence:
if return_type == ReturnType.TENSORS:
_a : Optional[int] = {'''generated_token_ids''': sequence}
elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}:
# Decode text
_a : str = self.tokenizer.decode(
_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , )
# Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used
if input_ids is None:
_a : Union[str, Any] = 0
else:
_a : str = len(
self.tokenizer.decode(
input_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) )
if return_type == ReturnType.FULL_TEXT:
_a : str = prompt_text + text[prompt_length:]
else:
_a : List[str] = text[prompt_length:]
_a : Union[str, Any] = {'''generated_text''': all_text}
records.append(_a )
return records
| 15 | 0 |
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
def __lowercase ( self ) -> Tuple:
_a : List[str] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) )
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , _a , _a=1_3 , _a=6_4 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=3_2 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=1_0 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ) -> Optional[int]:
_a : int = parent
_a : str = batch_size
_a : Dict = image_size
_a : str = patch_size
_a : Optional[Any] = num_channels
_a : str = make_divisible(5_1_2 * width_multiplier , divisor=8 )
_a : Any = hidden_act
_a : Dict = conv_kernel_size
_a : List[Any] = output_stride
_a : Any = classifier_dropout_prob
_a : Optional[int] = use_labels
_a : List[str] = is_training
_a : List[Any] = num_labels
_a : Any = initializer_range
_a : Union[str, Any] = scope
_a : Dict = width_multiplier
_a : int = ffn_dropout
_a : int = attn_dropout
def __lowercase ( self ) -> int:
_a : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_a : Union[str, Any] = None
_a : List[str] = None
if self.use_labels:
_a : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels )
_a : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
_a : Optional[Any] = self.get_config()
return config, pixel_values, labels, pixel_labels
def __lowercase ( self ) -> List[Any]:
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def __lowercase ( self , _a , _a , _a , _a ) -> Any:
_a : str = MobileViTVaModel(config=_a )
model.to(_a )
model.eval()
_a : List[str] = model(_a )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __lowercase ( self , _a , _a , _a , _a ) -> str:
_a : Union[str, Any] = self.num_labels
_a : int = MobileViTVaForImageClassification(_a )
model.to(_a )
model.eval()
_a : List[Any] = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowercase ( self , _a , _a , _a , _a ) -> Union[str, Any]:
_a : Optional[Any] = self.num_labels
_a : List[str] = MobileViTVaForSemanticSegmentation(_a )
model.to(_a )
model.eval()
_a : Optional[int] = model(_a )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
_a : Union[str, Any] = model(_a , labels=_a )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __lowercase ( self ) -> int:
_a : str = self.prepare_config_and_inputs()
_a : Dict = config_and_inputs
_a : Optional[Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : List[Any] = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCAmelCase__ : List[str] = (
{
"feature-extraction": MobileViTVaModel,
"image-classification": MobileViTVaForImageClassification,
"image-segmentation": MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCAmelCase__ : int = False
UpperCAmelCase__ : str = False
UpperCAmelCase__ : Optional[Any] = False
UpperCAmelCase__ : str = False
def __lowercase ( self ) -> List[str]:
_a : Any = MobileViTVaModelTester(self )
_a : List[Any] = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a )
def __lowercase ( self ) -> Union[str, Any]:
self.config_tester.run_common_tests()
@unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' )
def __lowercase ( self ) -> Tuple:
pass
@unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' )
def __lowercase ( self ) -> Optional[int]:
pass
@unittest.skip(reason='''MobileViTV2 does not output attentions''' )
def __lowercase ( self ) -> Optional[Any]:
pass
@require_torch_multi_gpu
@unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' )
def __lowercase ( self ) -> Union[str, Any]:
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __lowercase ( self ) -> Any:
pass
def __lowercase ( self ) -> List[Any]:
_a : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a : Dict = model_class(_a )
_a : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_a : Optional[int] = [*signature.parameters.keys()]
_a : int = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _a )
def __lowercase ( self ) -> Union[str, Any]:
_a : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def __lowercase ( self ) -> Any:
def check_hidden_states_output(_a , _a , _a ):
_a : List[Any] = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_a : Tuple = model(**self._prepare_for_class(_a , _a ) )
_a : Optional[int] = outputs.hidden_states
_a : List[str] = 5
self.assertEqual(len(_a ) , _a )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
_a : List[str] = 2
for i in range(len(_a ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
_a : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a : List[str] = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_a : List[str] = True
check_hidden_states_output(_a , _a , _a )
def __lowercase ( self ) -> Dict:
_a : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
def __lowercase ( self ) -> Any:
_a : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_a )
@slow
def __lowercase ( self ) -> Union[str, Any]:
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a : Any = MobileViTVaModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def __UpperCAmelCase ( ) -> Union[str, Any]:
"""simple docstring"""
_a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __lowercase ( self ) -> int:
return (
MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' )
if is_vision_available()
else None
)
@slow
def __lowercase ( self ) -> Union[str, Any]:
_a : Tuple = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to(
_a )
_a : str = self.default_image_processor
_a : List[Any] = prepare_img()
_a : str = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
_a : Any = model(**_a )
# verify the logits
_a : List[str] = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , _a )
_a : Dict = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
@slow
def __lowercase ( self ) -> Tuple:
_a : int = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
_a : List[str] = model.to(_a )
_a : Any = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
_a : Any = prepare_img()
_a : Any = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
_a : List[Any] = model(**_a )
_a : Dict = outputs.logits
# verify the logits
_a : Tuple = torch.Size((1, 2_1, 3_2, 3_2) )
self.assertEqual(logits.shape , _a )
_a : Any = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=_a , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1e-4 ) )
@slow
def __lowercase ( self ) -> Tuple:
_a : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
_a : Optional[Any] = model.to(_a )
_a : str = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
_a : List[str] = prepare_img()
_a : Dict = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
_a : int = model(**_a )
_a : List[Any] = outputs.logits.detach().cpu()
_a : List[Any] = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(5_0, 6_0)] )
_a : Tuple = torch.Size((5_0, 6_0) )
self.assertEqual(segmentation[0].shape , _a )
_a : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=_a )
_a : Optional[int] = torch.Size((3_2, 3_2) )
self.assertEqual(segmentation[0].shape , _a )
| 369 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __UpperCAmelCase ( __a : Dict=None ) -> str:
"""simple docstring"""
if subparsers is not None:
_a : Union[str, Any] = subparsers.add_parser('''test''' )
else:
_a : List[str] = argparse.ArgumentParser('''Accelerate test command''' )
parser.add_argument(
'''--config_file''' ,default=__a ,help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) ,)
if subparsers is not None:
parser.set_defaults(func=__a )
return parser
def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] )
if args.config_file is None:
_a : List[Any] = script_name
else:
_a : Union[str, Any] = F"""--config_file={args.config_file} {script_name}"""
_a : str = ['''accelerate-launch'''] + test_args.split()
_a : str = execute_subprocess_async(__a ,env=os.environ.copy() )
if result.returncode == 0:
print('''Test is a success! You are ready for your distributed training!''' )
def __UpperCAmelCase ( ) -> List[Any]:
"""simple docstring"""
_a : Optional[int] = test_command_parser()
_a : List[Any] = parser.parse_args()
test_command(__a )
if __name__ == "__main__":
main()
| 15 | 0 |
a__ = 256
# Modulus to hash a string
a__ = 1000003
def __UpperCAmelCase ( __a : str ,__a : str ) -> bool:
"""simple docstring"""
_a : str = len(__a )
_a : List[str] = len(__a )
if p_len > t_len:
return False
_a : Optional[Any] = 0
_a : List[Any] = 0
_a : Optional[int] = 1
# Calculating the hash of pattern and substring of text
for i in range(__a ):
_a : int = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
_a : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
_a : int = (modulus_power * alphabet_size) % modulus
for i in range(0 ,t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
_a : List[str] = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def __UpperCAmelCase ( ) -> None:
"""simple docstring"""
_a : List[str] = '''abc1abc12'''
_a : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc'''
_a : Optional[Any] = '''alskfjaldsk23adsfabcabc'''
assert rabin_karp(__a ,__a ) and not rabin_karp(__a ,__a )
# Test 2)
_a : str = '''ABABX'''
_a : List[str] = '''ABABZABABYABABX'''
assert rabin_karp(__a ,__a )
# Test 3)
_a : Dict = '''AAAB'''
_a : List[Any] = '''ABAAAAAB'''
assert rabin_karp(__a ,__a )
# Test 4)
_a : Optional[Any] = '''abcdabcy'''
_a : str = '''abcxabcdabxabcdabcdabcy'''
assert rabin_karp(__a ,__a )
# Test 5)
_a : Union[str, Any] = '''Lü'''
_a : Any = '''Lüsai'''
assert rabin_karp(__a ,__a )
_a : Tuple = '''Lue'''
assert not rabin_karp(__a ,__a )
print('''Success.''' )
if __name__ == "__main__":
test_rabin_karp()
| 370 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __lowercase ( self ) -> Union[str, Any]:
_a : Optional[Any] = tempfile.mkdtemp()
# fmt: off
_a : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
_a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
_a : Any = {
'''do_resize''': True,
'''size''': {'''height''': 1_8, '''width''': 1_8},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
_a : str = os.path.join(self.tmpdirname , _a )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(_a , _a )
def __lowercase ( self , **_a ) -> Any:
return BertTokenizer.from_pretrained(self.tmpdirname , **_a )
def __lowercase ( self , **_a ) -> str:
return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a )
def __lowercase ( self ) -> List[Any]:
shutil.rmtree(self.tmpdirname )
def __lowercase ( self ) -> Any:
_a : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
_a : Tuple = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __lowercase ( self ) -> str:
_a : List[str] = self.get_tokenizer()
_a : Tuple = self.get_image_processor()
_a : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a )
processor.save_pretrained(self.tmpdirname )
_a : Dict = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , _a )
def __lowercase ( self ) -> Dict:
_a : List[str] = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_a : Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
_a : List[Any] = self.get_image_processor(do_normalize=_a , padding_value=1.0 )
_a : Dict = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _a )
def __lowercase ( self ) -> Any:
_a : Dict = self.get_image_processor()
_a : str = self.get_tokenizer()
_a : int = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a )
_a : List[str] = self.prepare_image_inputs()
_a : List[Any] = image_processor(_a , return_tensors='''np''' )
_a : Dict = processor(images=_a , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowercase ( self ) -> List[str]:
_a : Union[str, Any] = self.get_image_processor()
_a : Dict = self.get_tokenizer()
_a : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a )
_a : Tuple = '''lower newer'''
_a : int = processor(text=_a )
_a : str = tokenizer(_a )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __lowercase ( self ) -> List[Any]:
_a : Any = self.get_image_processor()
_a : str = self.get_tokenizer()
_a : Tuple = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a )
_a : List[Any] = '''lower newer'''
_a : Union[str, Any] = self.prepare_image_inputs()
_a : Any = processor(text=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(_a ):
processor()
def __lowercase ( self ) -> Optional[int]:
_a : Union[str, Any] = self.get_image_processor()
_a : List[str] = self.get_tokenizer()
_a : Any = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a )
_a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_a : int = processor.batch_decode(_a )
_a : int = tokenizer.batch_decode(_a )
self.assertListEqual(_a , _a )
def __lowercase ( self ) -> List[Any]:
_a : Tuple = self.get_image_processor()
_a : List[str] = self.get_tokenizer()
_a : str = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a )
_a : Optional[int] = '''lower newer'''
_a : Dict = self.prepare_image_inputs()
_a : Any = processor(text=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 15 | 0 |
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
a__ = logging.get_logger(__name__)
a__ = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''}
a__ = {
'''vocab_file''': {
'''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''',
},
'''emoji_file''': {
'''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''',
},
}
a__ = {
'''abeja/gpt-neox-japanese-2.7b''': 2048,
}
def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
with open(__a ,'''r''' ,encoding='''utf-8''' ) as f:
_a : Dict = json.loads(f.read() )
_a : Tuple = collections.OrderedDict()
_a : List[str] = collections.OrderedDict()
_a : Any = collections.OrderedDict()
with open(__a ,'''r''' ,encoding='''utf-8''' ) as f:
_a : List[str] = f.readlines()
_a : Dict = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token]
for idx, b in enumerate(__a ):
_a : List[str] = b
_a : Optional[Any] = idx
for wd in b:
_a : List[Any] = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
UpperCAmelCase__ : Dict = VOCAB_FILES_NAMES
UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : List[str] = ["input_ids", "attention_mask"]
def __init__( self , _a , _a , _a="<|endoftext|>" , _a="<|endoftext|>" , _a="<|startoftext|>" , _a="<|endoftext|>" , _a=False , **_a , ) -> Optional[Any]:
super().__init__(
unk_token=_a , pad_token=_a , bos_token=_a , eos_token=_a , do_clean_text=_a , **_a , )
if not os.path.isfile(_a ):
raise ValueError(
F"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"""
''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' )
if not os.path.isfile(_a ):
raise ValueError(
F"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google"""
''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' )
_a : Dict = do_clean_text
_a : Any = load_vocab_and_emoji(_a , _a )
_a : List[Any] = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji )
@property
def __lowercase ( self ) -> Any:
# self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab
return len(self.raw_vocab )
def __lowercase ( self ) -> List[Any]:
return dict(self.raw_vocab , **self.added_tokens_encoder )
def __lowercase ( self , _a ) -> Tuple:
return self.subword_tokenizer.tokenize(_a , clean=self.do_clean_text )
def __lowercase ( self , _a ) -> Any:
return self.vocab.get(_a , self.vocab.get(self.unk_token ) )
def __lowercase ( self , _a ) -> Dict:
return self.subword_tokenizer.convert_id_to_token(_a )
def __lowercase ( self , _a ) -> Dict:
_a : Optional[int] = ''''''.join(_a ).strip()
return out_string
def __lowercase ( self , _a ) -> List[int]:
_a : Any = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(_a , add_special_tokens=_a ) + [self.eos_token_id] )
if len(_a ) > self.model_max_length:
_a : Dict = input_ids[-self.model_max_length :]
return input_ids
def __lowercase ( self , _a , _a = None ) -> Tuple[str]:
_a : int = 0
if os.path.isdir(_a ):
_a : Any = os.path.join(
_a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
_a : Dict = os.path.join(
_a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] )
else:
_a : str = (
(filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file''']
)
_a : Optional[int] = (
(filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file''']
)
with open(_a , '''w''' , encoding='''utf-8''' ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
''' Please check that the vocabulary is not corrupted!''' )
_a : Tuple = token_index
writer.write(''','''.join(_a ) + '''\n''' )
index += 1
with open(_a , '''w''' , encoding='''utf-8''' ) as writer:
json.dump(self.emoji , _a )
return vocab_file, emoji_file
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
def __init__( self , _a , _a , _a ) -> Optional[Any]:
_a : Tuple = vocab # same as swe
_a : str = ids_to_tokens # same as bpe
_a : str = emoji
_a : List[str] = np.max([len(_a ) for w in self.vocab.keys()] )
_a : int = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' )
_a : Any = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' )
_a : Union[str, Any] = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' )
_a : Any = re.compile(
R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' )
_a : Union[str, Any] = re.compile(
R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' )
_a : int = re.compile(
R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' )
_a : Union[str, Any] = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿'''
_a : Any = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟'''
_a : str = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} )
def __len__( self ) -> Optional[Any]:
return len(self.ids_to_tokens )
def __lowercase ( self , _a ) -> int:
_a : Union[str, Any] = self.content_repattera.sub('''<URL>''' , _a )
_a : List[Any] = self.content_repattera.sub('''<EMAIL>''' , _a )
_a : Optional[Any] = self.content_repattera.sub('''<TEL>''' , _a )
_a : str = self.content_repattera.sub('''<DATE>''' , _a )
_a : Union[str, Any] = self.content_repattera.sub('''<DATE>''' , _a )
_a : Dict = self.content_repattera.sub('''<PRICE>''' , _a )
_a : Union[str, Any] = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
_a : Union[str, Any] = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' )
return content
def __lowercase ( self , _a , _a=False ) -> Dict:
_a : List[str] = text.replace(''' ''' , '''<SP>''' )
_a : Any = text.replace(''' ''' , '''<SP>''' )
_a : Any = text.replace('''\r\n''' , '''<BR>''' )
_a : int = text.replace('''\n''' , '''<BR>''' )
_a : Optional[int] = text.replace('''\r''' , '''<BR>''' )
_a : Union[str, Any] = text.replace('''\t''' , '''<TAB>''' )
_a : Optional[Any] = text.replace('''—''' , '''ー''' )
_a : Tuple = text.replace('''−''' , '''ー''' )
for k, v in self.emoji["emoji"].items():
if k in text:
_a : Union[str, Any] = text.replace(_a , _a )
if clean:
_a : int = self.clean_text(_a )
def check_simbol(_a ):
_a : str = x.encode()
if len(_a ) == 1 and len(_a ) == 2:
_a : int = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0xc_2_a_1 and c <= 0xc_2_b_f)
or (c >= 0xc_7_8_0 and c <= 0xc_7_8_3)
or (c >= 0xc_a_b_9 and c <= 0xc_b_b_f)
or (c >= 0xc_c_8_0 and c <= 0xc_d_a_2)
):
return True
return False
def checkuae(_a ):
_a : Any = x.encode()
if len(_a ) == 1 and len(_a ) == 3:
_a : List[Any] = (int(e[0] ) << 1_6) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0xe_2_8_0_8_0 and c <= 0xe_2_b_0_7_f:
return True
return False
_a : str = 0
_a : Optional[Any] = []
while pos < len(_a ):
_a : int = min(len(_a ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3
_a : List[Any] = [] # (token_id, token, pos)
for e in range(_a , _a , -1 ):
_a : Tuple = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(_a ) > 2:
_a : List[Any] = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(_a ) > 0:
# the smallest token_id is adopted
_a : List[Any] = sorted(_a , key=lambda _a : x[0] )[0]
result.append(_a )
_a : Tuple = e
else:
_a : Optional[int] = pos + 1
_a : str = text[pos:end]
if check_simbol(_a ):
result.append('''<KIGOU>''' )
elif checkuae(_a ):
result.append('''<U2000U2BFF>''' )
else:
for i in wd.encode('''utf-8''' ):
result.append('''<|byte%d|>''' % i )
_a : str = end
return result
def __lowercase ( self , _a , _a="\n" ) -> List[str]:
_a : Optional[int] = []
_a : str = []
_a : int = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(_a ) > 0:
words.append(bytearray(_a ).decode('''utf-8''' , errors='''replace''' ) )
_a : List[Any] = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji['''emoji_inv'''][word] )
elif word == "<SP>":
words.append(''' ''' )
elif word == "<BR>":
words.append(_a )
elif word == "<TAB>":
words.append('''\t''' )
elif word == "<BLOCK>":
words.append('''▀''' )
elif word == "<KIGOU>":
words.append('''ǀ''' )
elif word == "<U2000U2BFF>":
words.append('''‖''' )
else:
words.append(_a )
if len(_a ) > 0:
words.append(bytearray(_a ).decode('''utf-8''' , errors='''replace''' ) )
_a : str = ''''''.join(_a )
return text
| 371 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
a__ = logging.get_logger(__name__)
a__ = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''w2v_encoder.proj''': '''lm_head''',
'''mask_emb''': '''masked_spec_embed''',
}
def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : Optional[int] ,__a : List[str] ,__a : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
for attribute in key.split('''.''' ):
_a : Optional[Any] = getattr(__a ,__a )
if weight_type is not None:
_a : Dict = getattr(__a ,__a ).shape
else:
_a : Optional[int] = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
_a : List[Any] = value
elif weight_type == "weight_g":
_a : Any = value
elif weight_type == "weight_v":
_a : Union[str, Any] = value
elif weight_type == "bias":
_a : Optional[int] = value
else:
_a : List[Any] = value
logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def __UpperCAmelCase ( __a : Any ,__a : Union[str, Any] ,__a : Union[str, Any] ) -> int:
"""simple docstring"""
_a : Union[str, Any] = []
_a : Union[str, Any] = fairseq_model.state_dict()
_a : Union[str, Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
_a : int = False
if "conv_layers" in name:
load_conv_layer(
__a ,__a ,__a ,__a ,hf_model.config.feat_extract_norm == '''group''' ,)
_a : Optional[Any] = True
else:
for key, mapped_key in MAPPING.items():
_a : Union[str, Any] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key
if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned):
_a : Any = True
if "*" in mapped_key:
_a : Optional[int] = name.split(__a )[0].split('''.''' )[-2]
_a : Any = mapped_key.replace('''*''' ,__a )
if "weight_g" in name:
_a : List[Any] = '''weight_g'''
elif "weight_v" in name:
_a : List[str] = '''weight_v'''
elif "weight" in name:
_a : Any = '''weight'''
elif "bias" in name:
_a : str = '''bias'''
else:
_a : Any = None
set_recursively(__a ,__a ,__a ,__a ,__a )
continue
if not is_used:
unused_weights.append(__a )
logger.warning(F"""Unused weights: {unused_weights}""" )
def __UpperCAmelCase ( __a : int ,__a : Optional[Any] ,__a : Dict ,__a : List[str] ,__a : Any ) -> Tuple:
"""simple docstring"""
_a : int = full_name.split('''conv_layers.''' )[-1]
_a : Any = name.split('''.''' )
_a : List[Any] = int(items[0] )
_a : Optional[int] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
_a : Optional[int] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
_a : Optional[Any] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
_a : int = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
_a : Any = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(__a )
@torch.no_grad()
def __UpperCAmelCase ( __a : Dict ,__a : List[Any] ,__a : List[str]=None ,__a : Optional[int]=None ,__a : int=True ) -> List[Any]:
"""simple docstring"""
if config_path is not None:
_a : Tuple = HubertConfig.from_pretrained(__a )
else:
_a : Any = HubertConfig()
if is_finetuned:
if dict_path:
_a : Tuple = Dictionary.load(__a )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_a : Any = target_dict.pad_index
_a : Tuple = target_dict.bos_index
_a : Optional[int] = target_dict.eos_index
_a : Optional[Any] = len(target_dict.symbols )
_a : Tuple = os.path.join(__a ,'''vocab.json''' )
if not os.path.isdir(__a ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__a ) )
return
os.makedirs(__a ,exist_ok=__a )
with open(__a ,'''w''' ,encoding='''utf-8''' ) as vocab_handle:
json.dump(target_dict.indices ,__a )
_a : Tuple = WavaVecaCTCTokenizer(
__a ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='''|''' ,do_lower_case=__a ,)
_a : Tuple = True if config.feat_extract_norm == '''layer''' else False
_a : List[Any] = WavaVecaFeatureExtractor(
feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__a ,return_attention_mask=__a ,)
_a : List[Any] = WavaVecaProcessor(feature_extractor=__a ,tokenizer=__a )
processor.save_pretrained(__a )
_a : Tuple = HubertForCTC(__a )
else:
_a : Tuple = HubertModel(__a )
if is_finetuned:
_a , _a , _a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
_a , _a , _a : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
_a : Any = model[0].eval()
recursively_load_weights(__a ,__a ,__a )
hf_wavavec.save_pretrained(__a )
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
a__ = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 15 | 0 |
'''simple docstring'''
from __future__ import annotations
import pandas as pd
def lowercase_ ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : List[str] = [0] * no_of_processes
__UpperCAmelCase : Optional[Any] = [0] * no_of_processes
# Copy the burst time into remaining_time[]
for i in range(lowerCAmelCase__ ):
__UpperCAmelCase : Union[str, Any] = burst_time[i]
__UpperCAmelCase : Optional[int] = 0
__UpperCAmelCase : int = 0
__UpperCAmelCase : Tuple = 999999999
__UpperCAmelCase : List[str] = 0
__UpperCAmelCase : Optional[int] = False
# Process until all processes are completed
while complete != no_of_processes:
for j in range(lowerCAmelCase__ ):
if arrival_time[j] <= increment_time and remaining_time[j] > 0:
if remaining_time[j] < minm:
__UpperCAmelCase : int = remaining_time[j]
__UpperCAmelCase : Tuple = j
__UpperCAmelCase : Union[str, Any] = True
if not check:
increment_time += 1
continue
remaining_time[short] -= 1
__UpperCAmelCase : Optional[int] = remaining_time[short]
if minm == 0:
__UpperCAmelCase : List[str] = 999999999
if remaining_time[short] == 0:
complete += 1
__UpperCAmelCase : Tuple = False
# Find finish time of current process
__UpperCAmelCase : List[Any] = increment_time + 1
# Calculate waiting time
__UpperCAmelCase : str = finish_time - arrival_time[short]
__UpperCAmelCase : Any = finar - burst_time[short]
if waiting_time[short] < 0:
__UpperCAmelCase : List[str] = 0
# Increment time
increment_time += 1
return waiting_time
def lowercase_ ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : list[int] ):
"""simple docstring"""
__UpperCAmelCase : int = [0] * no_of_processes
for i in range(lowerCAmelCase__ ):
__UpperCAmelCase : List[str] = burst_time[i] + waiting_time[i]
return turn_around_time
def lowercase_ ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Any = 0
__UpperCAmelCase : Tuple = 0
for i in range(lowerCAmelCase__ ):
__UpperCAmelCase : Optional[int] = total_waiting_time + waiting_time[i]
__UpperCAmelCase : Dict = total_turn_around_time + turn_around_time[i]
print(f'Average waiting time = {total_waiting_time / no_of_processes:.5f}' )
print("""Average turn around time =""" , total_turn_around_time / no_of_processes )
if __name__ == "__main__":
print('''Enter how many process you want to analyze''')
_UpperCamelCase = int(input())
_UpperCamelCase = [0] * no_of_processes
_UpperCamelCase = [0] * no_of_processes
_UpperCamelCase = list(range(1, no_of_processes + 1))
for i in range(no_of_processes):
print('''Enter the arrival time and burst time for process:--''' + str(i + 1))
_UpperCamelCase , _UpperCamelCase = map(int, input().split())
_UpperCamelCase = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
_UpperCamelCase = burst_time
_UpperCamelCase = no_of_processes
_UpperCamelCase = waiting_time
_UpperCamelCase = calculate_turnaroundtime(bt, n, wt)
calculate_average_times(waiting_time, turn_around_time, no_of_processes)
_UpperCamelCase = pd.DataFrame(
list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)),
columns=[
'''Process''',
'''BurstTime''',
'''ArrivalTime''',
'''WaitingTime''',
'''TurnAroundTime''',
],
)
# Printing the dataFrame
pd.set_option('''display.max_rows''', fcfs.shape[0] + 1)
print(fcfs)
| 16 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
_UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
_SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" )
__UpperCAmelCase : List[Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] )
__UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
# Legacy behavior
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] )
__UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""label""": """LABEL_0""", """score""": 0.504},
{"""label""": """LABEL_0""", """score""": 0.504},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
import torch
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@require_tf
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@slow
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = pipeline("""text-classification""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
@slow
@require_tf
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : int = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
__UpperCAmelCase : Union[str, Any] = """HuggingFace is in"""
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
__UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""]
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase )
__UpperCAmelCase : Any = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , )
__UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""}
__UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , )
self.assertTrue(outputs["""label"""] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
__UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]]
with self.assertRaises(__UpperCAmelCase ):
text_classifier(__UpperCAmelCase )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
__UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
| 16 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification
def lowercase_ ( lowerCAmelCase__ : Optional[int] ):
"""simple docstring"""
__UpperCAmelCase : Tuple = SwinvaConfig()
__UpperCAmelCase : Dict = swinva_name.split("""_""" )
__UpperCAmelCase : List[str] = name_split[1]
if "to" in name_split[3]:
__UpperCAmelCase : Optional[int] = int(name_split[3][-3:] )
else:
__UpperCAmelCase : Optional[int] = int(name_split[3] )
if "to" in name_split[2]:
__UpperCAmelCase : Optional[int] = int(name_split[2][-2:] )
else:
__UpperCAmelCase : Any = int(name_split[2][6:] )
if model_size == "tiny":
__UpperCAmelCase : List[Any] = 96
__UpperCAmelCase : str = (2, 2, 6, 2)
__UpperCAmelCase : Any = (3, 6, 12, 24)
elif model_size == "small":
__UpperCAmelCase : int = 96
__UpperCAmelCase : Any = (2, 2, 18, 2)
__UpperCAmelCase : Optional[int] = (3, 6, 12, 24)
elif model_size == "base":
__UpperCAmelCase : Union[str, Any] = 128
__UpperCAmelCase : Any = (2, 2, 18, 2)
__UpperCAmelCase : int = (4, 8, 16, 32)
else:
__UpperCAmelCase : int = 192
__UpperCAmelCase : Tuple = (2, 2, 18, 2)
__UpperCAmelCase : Union[str, Any] = (6, 12, 24, 48)
if "to" in swinva_name:
__UpperCAmelCase : Dict = (12, 12, 12, 6)
if ("22k" in swinva_name) and ("to" not in swinva_name):
__UpperCAmelCase : Tuple = 21841
__UpperCAmelCase : Any = """huggingface/label-files"""
__UpperCAmelCase : List[Any] = """imagenet-22k-id2label.json"""
__UpperCAmelCase : Dict = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) , """r""" ) )
__UpperCAmelCase : Union[str, Any] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : List[Any] = idalabel
__UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
else:
__UpperCAmelCase : Optional[int] = 1000
__UpperCAmelCase : Optional[int] = """huggingface/label-files"""
__UpperCAmelCase : str = """imagenet-1k-id2label.json"""
__UpperCAmelCase : str = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) , """r""" ) )
__UpperCAmelCase : int = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : Dict = idalabel
__UpperCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()}
__UpperCAmelCase : Union[str, Any] = img_size
__UpperCAmelCase : Optional[Any] = num_classes
__UpperCAmelCase : Dict = embed_dim
__UpperCAmelCase : Union[str, Any] = depths
__UpperCAmelCase : Dict = num_heads
__UpperCAmelCase : Optional[int] = window_size
return config
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
if "patch_embed.proj" in name:
__UpperCAmelCase : Union[str, Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
__UpperCAmelCase : str = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if "layers" in name:
__UpperCAmelCase : Optional[Any] = """encoder.""" + name
if "attn.proj" in name:
__UpperCAmelCase : int = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
__UpperCAmelCase : Union[str, Any] = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
__UpperCAmelCase : List[Any] = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
__UpperCAmelCase : str = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
__UpperCAmelCase : List[str] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
__UpperCAmelCase : Union[str, Any] = name.replace("""mlp.fc2""" , """output.dense""" )
if "q_bias" in name:
__UpperCAmelCase : Optional[Any] = name.replace("""q_bias""" , """query.bias""" )
if "k_bias" in name:
__UpperCAmelCase : Optional[int] = name.replace("""k_bias""" , """key.bias""" )
if "v_bias" in name:
__UpperCAmelCase : Any = name.replace("""v_bias""" , """value.bias""" )
if "cpb_mlp" in name:
__UpperCAmelCase : Optional[int] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" )
if name == "norm.weight":
__UpperCAmelCase : Any = """layernorm.weight"""
if name == "norm.bias":
__UpperCAmelCase : List[Any] = """layernorm.bias"""
if "head" in name:
__UpperCAmelCase : Optional[int] = name.replace("""head""" , """classifier""" )
else:
__UpperCAmelCase : Dict = """swinv2.""" + name
return name
def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
__UpperCAmelCase : str = orig_state_dict.pop(lowerCAmelCase__ )
if "mask" in key:
continue
elif "qkv" in key:
__UpperCAmelCase : Any = key.split(""".""" )
__UpperCAmelCase : str = int(key_split[1] )
__UpperCAmelCase : Optional[int] = int(key_split[3] )
__UpperCAmelCase : Any = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
__UpperCAmelCase : str = val[:dim, :]
__UpperCAmelCase : Any = val[dim : dim * 2, :]
__UpperCAmelCase : Union[str, Any] = val[-dim:, :]
else:
__UpperCAmelCase : int = val[:dim]
__UpperCAmelCase : int = val[
dim : dim * 2
]
__UpperCAmelCase : Optional[int] = val[-dim:]
else:
__UpperCAmelCase : Optional[int] = val
return orig_state_dict
def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase : str = timm.create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ )
timm_model.eval()
__UpperCAmelCase : List[Any] = get_swinva_config(lowerCAmelCase__ )
__UpperCAmelCase : str = SwinvaForImageClassification(lowerCAmelCase__ )
model.eval()
__UpperCAmelCase : Union[str, Any] = convert_state_dict(timm_model.state_dict() , lowerCAmelCase__ )
model.load_state_dict(lowerCAmelCase__ )
__UpperCAmelCase : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swinva_name.replace("""_""" , """-""" ) ) )
__UpperCAmelCase : int = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
__UpperCAmelCase : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" )
__UpperCAmelCase : Dict = timm_model(inputs["""pixel_values"""] )
__UpperCAmelCase : str = model(**lowerCAmelCase__ ).logits
assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 )
print(f'Saving model {swinva_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowerCAmelCase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowerCAmelCase__ )
model.push_to_hub(
repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization="""nandwalritik""" , commit_message="""Add model""" , )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--swinv2_name''',
default='''swinv2_tiny_patch4_window8_256''',
type=str,
help='''Name of the Swinv2 timm model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
_UpperCamelCase = parser.parse_args()
convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
| 16 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
| 16 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_UpperCamelCase = {
'''configuration_chinese_clip''': [
'''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''ChineseCLIPConfig''',
'''ChineseCLIPOnnxConfig''',
'''ChineseCLIPTextConfig''',
'''ChineseCLIPVisionConfig''',
],
'''processing_chinese_clip''': ['''ChineseCLIPProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''ChineseCLIPFeatureExtractor''']
_UpperCamelCase = ['''ChineseCLIPImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ChineseCLIPModel''',
'''ChineseCLIPPreTrainedModel''',
'''ChineseCLIPTextModel''',
'''ChineseCLIPVisionModel''',
]
if TYPE_CHECKING:
from .configuration_chinese_clip import (
CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
ChineseCLIPConfig,
ChineseCLIPOnnxConfig,
ChineseCLIPTextConfig,
ChineseCLIPVisionConfig,
)
from .processing_chinese_clip import ChineseCLIPProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_chinese_clip import (
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
ChineseCLIPModel,
ChineseCLIPPreTrainedModel,
ChineseCLIPTextModel,
ChineseCLIPVisionModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class _A :
def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase )
__UpperCAmelCase : List[str] = length
__UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa )
__UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ) -> Dict:
'''simple docstring'''
return self.length
def __getitem__( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return {"x": self.x[i], "y": self.y[i]}
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Any = True
def __A ( self , __UpperCAmelCase=None ) -> str:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : Optional[int] = False
return x * self.a[0] + self.b[0]
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : str = True
def __A ( self , __UpperCAmelCase=None ) -> Tuple:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : int = False
return x * self.a + self.b
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
__UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" )
__UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
__UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" )
__UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )}
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCAmelCase : List[Any] = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" )
if "label" in examples:
__UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCAmelCase : Tuple = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCAmelCase__ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 )
__UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 16 | 1 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''ctc_proj''',
'''mask_emb''': '''masked_spec_embed''',
}
_UpperCamelCase = [
'''ctc_proj''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
for attribute in key.split(""".""" ):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
__UpperCAmelCase : Any = """lm_head"""
__UpperCAmelCase : int = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
if weight_type is not None:
__UpperCAmelCase : str = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape
else:
__UpperCAmelCase : str = hf_pointer.shape
assert hf_shape == value.shape, (
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}'
)
if weight_type == "weight":
__UpperCAmelCase : Union[str, Any] = value
elif weight_type == "weight_g":
__UpperCAmelCase : List[Any] = value
elif weight_type == "weight_v":
__UpperCAmelCase : Optional[Any] = value
elif weight_type == "bias":
__UpperCAmelCase : List[str] = value
else:
__UpperCAmelCase : Dict = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def lowercase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = []
__UpperCAmelCase : List[str] = fairseq_model.state_dict()
__UpperCAmelCase : Tuple = hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
__UpperCAmelCase : Optional[int] = False
if "conv_layers" in name:
load_conv_layer(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == """group""" , )
__UpperCAmelCase : Optional[Any] = True
else:
for key, mapped_key in MAPPING.items():
__UpperCAmelCase : Optional[Any] = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__UpperCAmelCase : Optional[int] = True
if "*" in mapped_key:
__UpperCAmelCase : List[str] = name.split(lowerCAmelCase__ )[0].split(""".""" )[-2]
__UpperCAmelCase : List[Any] = mapped_key.replace("""*""" , lowerCAmelCase__ )
if "weight_g" in name:
__UpperCAmelCase : int = """weight_g"""
elif "weight_v" in name:
__UpperCAmelCase : Union[str, Any] = """weight_v"""
elif "bias" in name:
__UpperCAmelCase : Optional[int] = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__UpperCAmelCase : List[str] = """weight"""
else:
__UpperCAmelCase : int = None
set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
continue
if not is_used:
unused_weights.append(lowerCAmelCase__ )
logger.warning(f'Unused weights: {unused_weights}' )
def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = full_name.split("""conv_layers.""" )[-1]
__UpperCAmelCase : str = name.split(""".""" )
__UpperCAmelCase : Dict = int(items[0] )
__UpperCAmelCase : Tuple = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'
)
__UpperCAmelCase : Optional[int] = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'
)
__UpperCAmelCase : int = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'
" found."
)
__UpperCAmelCase : Union[str, Any] = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'
)
__UpperCAmelCase : Dict = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(lowerCAmelCase__ )
@torch.no_grad()
def lowercase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Any=True ):
"""simple docstring"""
if config_path is not None:
__UpperCAmelCase : str = UniSpeechConfig.from_pretrained(lowerCAmelCase__ )
else:
__UpperCAmelCase : Any = UniSpeechConfig()
if is_finetuned:
if dict_path:
__UpperCAmelCase : str = Dictionary.load_from_json(lowerCAmelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__UpperCAmelCase : Union[str, Any] = target_dict.pad_index
__UpperCAmelCase : Tuple = target_dict.bos_index
__UpperCAmelCase : Tuple = target_dict.eos_index
__UpperCAmelCase : Union[str, Any] = len(target_dict.symbols )
__UpperCAmelCase : Any = os.path.join(lowerCAmelCase__ , """vocab.json""" )
if not os.path.isdir(lowerCAmelCase__ ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase__ ) )
return
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
__UpperCAmelCase : Any = target_dict.indices
# fairseq has the <pad> and <s> switched
__UpperCAmelCase : Tuple = 42
__UpperCAmelCase : Optional[Any] = 43
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : List[Any] = WavaVecaPhonemeCTCTokenizer(
lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase__ , )
__UpperCAmelCase : str = True if config.feat_extract_norm == """layer""" else False
__UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , )
__UpperCAmelCase : List[Any] = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ )
processor.save_pretrained(lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = UniSpeechForCTC(lowerCAmelCase__ )
else:
__UpperCAmelCase : Dict = UniSpeechForPreTraining(lowerCAmelCase__ )
if is_finetuned:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} )
else:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
__UpperCAmelCase : int = model[0].eval()
recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
hf_unispeech.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
_UpperCamelCase = parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 16 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None
@property
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = (3, 32, 128)
__UpperCAmelCase : Tuple = tempfile.mkdtemp()
# fmt: off
__UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
__UpperCAmelCase : List[Any] = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
__UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) )
return image_input
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.get_tokenizer()
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
__UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.prepare_image_inputs()
__UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" )
__UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Dict = """test"""
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = """test"""
__UpperCAmelCase : int = self.prepare_image_inputs()
__UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase )
__UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = self.get_tokenizer()
__UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : str = None
__UpperCAmelCase : Dict = self.prepare_image_inputs()
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Any = self.get_image_processor()
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 )
__UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 )
__UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 )
__UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
| 16 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
_UpperCamelCase = {
'''vocab_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-german-cased''': (
'''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'''
),
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
},
}
_UpperCamelCase = {
'''distilbert-base-uncased''': 512,
'''distilbert-base-uncased-distilled-squad''': 512,
'''distilbert-base-cased''': 512,
'''distilbert-base-cased-distilled-squad''': 512,
'''distilbert-base-german-cased''': 512,
'''distilbert-base-multilingual-cased''': 512,
}
_UpperCamelCase = {
'''distilbert-base-uncased''': {'''do_lower_case''': True},
'''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True},
'''distilbert-base-cased''': {'''do_lower_case''': False},
'''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False},
'''distilbert-base-german-cased''': {'''do_lower_case''': False},
'''distilbert-base-multilingual-cased''': {'''do_lower_case''': False},
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION
_SCREAMING_SNAKE_CASE : str = ["input_ids", "attention_mask"]
_SCREAMING_SNAKE_CASE : Any = DistilBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars
):
__UpperCAmelCase : Tuple = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) )
__UpperCAmelCase : Optional[Any] = do_lower_case
__UpperCAmelCase : Dict = strip_accents
__UpperCAmelCase : int = tokenize_chinese_chars
__UpperCAmelCase : Union[str, Any] = normalizer_class(**__UpperCAmelCase )
__UpperCAmelCase : Tuple = do_lower_case
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : str = [self.sep_token_id]
__UpperCAmelCase : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
__UpperCAmelCase : str = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 16 |
'''simple docstring'''
from collections.abc import Sequence
def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ):
"""simple docstring"""
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__UpperCAmelCase : Any = nums[0]
for i in range(1 , len(lowerCAmelCase__ ) ):
__UpperCAmelCase : Union[str, Any] = nums[i]
__UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_UpperCamelCase = int(input('''Enter number of elements : ''').strip())
_UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n]
print(max_subsequence_sum(array))
| 16 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
_UpperCamelCase = logging.get_logger(__name__)
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : int = ["input_features", "attention_mask"]
def __init__( self , __UpperCAmelCase=80 , __UpperCAmelCase=16_000 , __UpperCAmelCase=80 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(feature_size=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , padding_value=__UpperCAmelCase , **__UpperCAmelCase )
__UpperCAmelCase : List[Any] = num_mel_bins
__UpperCAmelCase : List[str] = do_ceptral_normalize
__UpperCAmelCase : int = normalize_means
__UpperCAmelCase : str = normalize_vars
__UpperCAmelCase : Optional[Any] = True
def __A ( self , __UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : Tuple = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
__UpperCAmelCase : Dict = torch.from_numpy(__UpperCAmelCase ).unsqueeze(0 )
__UpperCAmelCase : Optional[Any] = ta_kaldi.fbank(__UpperCAmelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def __A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = 0.0 , ) -> np.ndarray:
'''simple docstring'''
# make sure we normalize float32 arrays
if normalize_means:
__UpperCAmelCase : Optional[Any] = x[:input_length].mean(axis=0 )
__UpperCAmelCase : Optional[int] = np.subtract(__UpperCAmelCase , __UpperCAmelCase )
if normalize_vars:
__UpperCAmelCase : str = x[:input_length].std(axis=0 )
__UpperCAmelCase : Tuple = np.divide(__UpperCAmelCase , __UpperCAmelCase )
if input_length < x.shape[0]:
__UpperCAmelCase : Any = padding_value
# make sure array is in float32
__UpperCAmelCase : Dict = x.astype(np.floataa )
return x
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[np.ndarray]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(__UpperCAmelCase , __UpperCAmelCase , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(__UpperCAmelCase , __UpperCAmelCase )
]
def __call__( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'
f' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
__UpperCAmelCase : Optional[Any] = isinstance(__UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'Only mono-channel audio is supported for input to {self}' )
__UpperCAmelCase : Optional[Any] = is_batched_numpy or (
isinstance(__UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
__UpperCAmelCase : Union[str, Any] = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(__UpperCAmelCase , np.ndarray ):
__UpperCAmelCase : Optional[Any] = np.asarray(__UpperCAmelCase , dtype=np.floataa )
elif isinstance(__UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
__UpperCAmelCase : Optional[Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
__UpperCAmelCase : List[Any] = [raw_speech]
# extract fbank features
__UpperCAmelCase : Dict = [self._extract_fbank_features(__UpperCAmelCase ) for waveform in raw_speech]
# convert into correct format for padding
__UpperCAmelCase : str = BatchFeature({"""input_features""": features} )
__UpperCAmelCase : List[str] = self.pad(
__UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , )
# make sure list is in array format
__UpperCAmelCase : Union[str, Any] = padded_inputs.get("""input_features""" )
if isinstance(input_features[0] , __UpperCAmelCase ):
__UpperCAmelCase : Any = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for feature in input_features]
__UpperCAmelCase : Tuple = padded_inputs.get("""attention_mask""" )
if attention_mask is not None:
__UpperCAmelCase : Any = [np.asarray(__UpperCAmelCase , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
__UpperCAmelCase : Optional[int] = (
np.array(__UpperCAmelCase , dtype=np.intaa )
if self._get_padding_strategies(__UpperCAmelCase , max_length=__UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
__UpperCAmelCase : Union[str, Any] = self.normalize(
padded_inputs["""input_features"""] , attention_mask=__UpperCAmelCase )
if return_tensors is not None:
__UpperCAmelCase : Dict = padded_inputs.convert_to_tensors(__UpperCAmelCase )
return padded_inputs
| 16 |
'''simple docstring'''
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = data
__UpperCAmelCase : int = previous
__UpperCAmelCase : Union[str, Any] = next_node
def __str__( self ) -> str:
'''simple docstring'''
return f'{self.data}'
def __A ( self ) -> int:
'''simple docstring'''
return self.data
def __A ( self ) -> List[str]:
'''simple docstring'''
return self.next
def __A ( self ) -> str:
'''simple docstring'''
return self.previous
class _A :
def __init__( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = head
def __iter__( self ) -> str:
'''simple docstring'''
return self
def __A ( self ) -> str:
'''simple docstring'''
if not self.current:
raise StopIteration
else:
__UpperCAmelCase : List[str] = self.current.get_data()
__UpperCAmelCase : int = self.current.get_next()
return value
class _A :
def __init__( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = None # First node in list
__UpperCAmelCase : List[str] = None # Last node in list
def __str__( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.head
__UpperCAmelCase : Optional[int] = []
while current is not None:
nodes.append(current.get_data() )
__UpperCAmelCase : Any = current.get_next()
return " ".join(str(__UpperCAmelCase ) for node in nodes )
def __contains__( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.head
while current:
if current.get_data() == value:
return True
__UpperCAmelCase : Optional[Any] = current.get_next()
return False
def __iter__( self ) -> str:
'''simple docstring'''
return LinkedListIterator(self.head )
def __A ( self ) -> List[Any]:
'''simple docstring'''
if self.head:
return self.head.get_data()
return None
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
if self.tail:
return self.tail.get_data()
return None
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
__UpperCAmelCase : str = node
__UpperCAmelCase : List[str] = node
else:
self.insert_before_node(self.head , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase )
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.set_tail(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Tuple = node
__UpperCAmelCase : List[Any] = node.previous
if node.get_previous() is None:
__UpperCAmelCase : str = node_to_insert
else:
__UpperCAmelCase : Optional[Any] = node_to_insert
__UpperCAmelCase : List[Any] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : List[str] = node
__UpperCAmelCase : Union[str, Any] = node.next
if node.get_next() is None:
__UpperCAmelCase : Dict = node_to_insert
else:
__UpperCAmelCase : Any = node_to_insert
__UpperCAmelCase : List[str] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.head
while node:
if current_position == position:
self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase )
return
current_position += 1
__UpperCAmelCase : int = node.next
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Node:
'''simple docstring'''
__UpperCAmelCase : Dict = self.head
while node:
if node.get_data() == item:
return node
__UpperCAmelCase : List[str] = node.get_next()
raise Exception("""Node not found""" )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
if (node := self.get_node(__UpperCAmelCase )) is not None:
if node == self.head:
__UpperCAmelCase : Optional[int] = self.head.get_next()
if node == self.tail:
__UpperCAmelCase : Union[str, Any] = self.tail.get_previous()
self.remove_node_pointers(__UpperCAmelCase )
@staticmethod
def __A ( __UpperCAmelCase ) -> None:
'''simple docstring'''
if node.get_next():
__UpperCAmelCase : Optional[Any] = node.previous
if node.get_previous():
__UpperCAmelCase : int = node.next
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Union[str, Any] = None
def __A ( self ) -> List[Any]:
'''simple docstring'''
return self.head is None
def lowercase_ ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors
@require_tokenizers
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : int = MvpTokenizer
_SCREAMING_SNAKE_CASE : Optional[Any] = MvpTokenizerFast
_SCREAMING_SNAKE_CASE : List[Any] = True
_SCREAMING_SNAKE_CASE : Any = filter_roberta_detectors
def __A ( self ) -> Dict:
'''simple docstring'''
super().setUp()
__UpperCAmelCase : Union[str, Any] = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
__UpperCAmelCase : Any = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : List[str] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
__UpperCAmelCase : str = {"""unk_token""": """<unk>"""}
__UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(__UpperCAmelCase ) )
def __A ( self , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> str:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
return "lower newer", "lower newer"
@cached_property
def __A ( self ) -> int:
'''simple docstring'''
return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" )
@cached_property
def __A ( self ) -> Optional[int]:
'''simple docstring'''
return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" )
@require_torch
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[str] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
__UpperCAmelCase : int = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : str = tokenizer(__UpperCAmelCase , max_length=len(__UpperCAmelCase ) , padding=__UpperCAmelCase , return_tensors="""pt""" )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
__UpperCAmelCase : int = batch.input_ids.tolist()[0]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
# Test that special tokens are reset
@require_torch
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Tuple = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="""pt""" )
# check if input_ids are returned and no labels
self.assertIn("""input_ids""" , __UpperCAmelCase )
self.assertIn("""attention_mask""" , __UpperCAmelCase )
self.assertNotIn("""labels""" , __UpperCAmelCase )
self.assertNotIn("""decoder_attention_mask""" , __UpperCAmelCase )
@require_torch
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = [
"""Summary of the text.""",
"""Another summary.""",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Union[str, Any] = tokenizer(text_target=__UpperCAmelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : List[str] = tokenizer(
["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="""pt""" )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(batch.input_ids.shape , (2, 1_024) )
@require_torch
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : str = ["""A long paragraph for summarization."""]
__UpperCAmelCase : List[Any] = [
"""Summary of the text.""",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Optional[int] = tokenizer(__UpperCAmelCase , text_target=__UpperCAmelCase , return_tensors="""pt""" )
__UpperCAmelCase : List[str] = inputs["""input_ids"""]
__UpperCAmelCase : Tuple = inputs["""labels"""]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
pass
def __A ( self ) -> str:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
__UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase )
__UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase )
__UpperCAmelCase : int = """A, <mask> AllenNLP sentence."""
__UpperCAmelCase : Tuple = tokenizer_r.encode_plus(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer_p.encode_plus(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , )
__UpperCAmelCase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] )
__UpperCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
__UpperCAmelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
self.assertSequenceEqual(
__UpperCAmelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
| 16 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : List[str]
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __call__( self ) -> Any:
'''simple docstring'''
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : Optional[List] = None
_SCREAMING_SNAKE_CASE : Optional[int] = None
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None
__UpperCAmelCase : int = len(self.languages ) if self.languages else None
def __call__( self ) -> Optional[Any]:
'''simple docstring'''
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def __A ( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = set(self.languages )
if self.languages and set(__UpperCAmelCase ) - lang_set:
raise ValueError(
f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__UpperCAmelCase : Dict = []
for lang, text in translation_dict.items():
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 16 | 1 |
'''simple docstring'''
import logging
import os
from typing import Dict, List, Optional, Union
import torch
import torch.nn as nn
from accelerate.utils.imports import (
is_abit_bnb_available,
is_abit_bnb_available,
is_bnb_available,
)
from ..big_modeling import dispatch_model, init_empty_weights
from .dataclasses import BnbQuantizationConfig
from .modeling import (
find_tied_parameters,
get_balanced_memory,
infer_auto_device_map,
load_checkpoint_in_model,
offload_weight,
set_module_tensor_to_device,
)
if is_bnb_available():
import bitsandbytes as bnb
from copy import deepcopy
_UpperCamelCase = logging.getLogger(__name__)
def lowercase_ ( lowerCAmelCase__ : torch.nn.Module , lowerCAmelCase__ : BnbQuantizationConfig , lowerCAmelCase__ : Union[str, os.PathLike] = None , lowerCAmelCase__ : Optional[Dict[str, Union[int, str, torch.device]]] = None , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : Optional[Dict[Union[int, str], Union[int, str]]] = None , lowerCAmelCase__ : Optional[Union[str, os.PathLike]] = None , lowerCAmelCase__ : bool = False , ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = bnb_quantization_config.load_in_abit
__UpperCAmelCase : int = bnb_quantization_config.load_in_abit
if load_in_abit and not is_abit_bnb_available():
raise ImportError(
"""You have a version of `bitsandbytes` that is not compatible with 8bit quantization,"""
""" make sure you have the latest version of `bitsandbytes` installed.""" )
if load_in_abit and not is_abit_bnb_available():
raise ValueError(
"""You have a version of `bitsandbytes` that is not compatible with 4bit quantization,"""
"""make sure you have the latest version of `bitsandbytes` installed.""" )
__UpperCAmelCase : Tuple = []
# custom device map
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(device_map.keys() ) > 1:
__UpperCAmelCase : List[str] = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]]
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if bnb_quantization_config.skip_modules is None:
__UpperCAmelCase : str = get_keys_to_not_convert(lowerCAmelCase__ )
# add cpu modules to skip modules only for 4-bit modules
if load_in_abit:
bnb_quantization_config.skip_modules.extend(lowerCAmelCase__ )
__UpperCAmelCase : Any = bnb_quantization_config.skip_modules
# We add the modules we want to keep in full precision
if bnb_quantization_config.keep_in_fpaa_modules is None:
__UpperCAmelCase : Dict = []
__UpperCAmelCase : int = bnb_quantization_config.keep_in_fpaa_modules
modules_to_not_convert.extend(lowerCAmelCase__ )
# compatibility with peft
__UpperCAmelCase : str = load_in_abit
__UpperCAmelCase : Optional[Any] = load_in_abit
__UpperCAmelCase : Dict = get_parameter_device(lowerCAmelCase__ )
if model_device.type != "meta":
# quantization of an already loaded model
logger.warning(
"""It is not recommended to quantize a loaded model. """
"""The model should be instantiated under the `init_empty_weights` context manager.""" )
__UpperCAmelCase : Dict = replace_with_bnb_layers(lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ )
# convert param to the right dtype
__UpperCAmelCase : Any = bnb_quantization_config.torch_dtype
for name, param in model.state_dict().items():
if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ):
param.to(torch.floataa )
if param.dtype != torch.floataa:
__UpperCAmelCase : Union[str, Any] = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" )
__UpperCAmelCase : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if param is not None:
param.to(torch.floataa )
elif torch.is_floating_point(lowerCAmelCase__ ):
param.to(lowerCAmelCase__ )
if model_device.type == "cuda":
# move everything to cpu in the first place because we can't do quantization if the weights are already on cuda
model.cuda(torch.cuda.current_device() )
torch.cuda.empty_cache()
elif torch.cuda.is_available():
model.to(torch.cuda.current_device() )
else:
raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" )
logger.info(
f'The model device type is {model_device.type}. However, cuda is needed for quantization.'
"""We move the model to cuda.""" )
return model
elif weights_location is None:
raise RuntimeError(
f'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' )
else:
with init_empty_weights():
__UpperCAmelCase : Union[str, Any] = replace_with_bnb_layers(
lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ )
__UpperCAmelCase : List[Any] = get_quantized_model_device_map(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , max_memory=lowerCAmelCase__ , no_split_module_classes=lowerCAmelCase__ , )
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
__UpperCAmelCase : Dict = True
__UpperCAmelCase : List[str] = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] )
load_checkpoint_in_model(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowerCAmelCase__ , offload_state_dict=lowerCAmelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , )
return dispatch_model(lowerCAmelCase__ , device_map=lowerCAmelCase__ , offload_dir=lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : List[Any]=None ):
"""simple docstring"""
if device_map is None:
if torch.cuda.is_available():
__UpperCAmelCase : Tuple = {"""""": torch.cuda.current_device()}
else:
raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" )
logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
raise ValueError(
"""If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """
"""'sequential'.""" )
__UpperCAmelCase : Any = {}
special_dtypes.update(
{
name: bnb_quantization_config.torch_dtype
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.skip_modules )
} )
special_dtypes.update(
{
name: torch.floataa
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules )
} )
__UpperCAmelCase : Tuple = {}
__UpperCAmelCase : str = special_dtypes
__UpperCAmelCase : int = no_split_module_classes
__UpperCAmelCase : List[str] = bnb_quantization_config.target_dtype
# get max_memory for each device.
if device_map != "sequential":
__UpperCAmelCase : List[str] = get_balanced_memory(
lowerCAmelCase__ , low_zero=(device_map == """balanced_low_0""") , max_memory=lowerCAmelCase__ , **lowerCAmelCase__ , )
__UpperCAmelCase : Any = max_memory
__UpperCAmelCase : Union[str, Any] = infer_auto_device_map(lowerCAmelCase__ , **lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
# check if don't have any quantized module on the cpu
__UpperCAmelCase : Any = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules
__UpperCAmelCase : Union[str, Any] = {
key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert
}
for device in ["cpu", "disk"]:
if device in device_map_without_some_modules.values():
if bnb_quantization_config.load_in_abit:
raise ValueError(
"""
Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit
the quantized model. If you want to dispatch the model on the CPU or the disk while keeping
these modules in `torch_dtype`, you need to pass a custom `device_map` to
`load_and_quantize_model`. Check
https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk
for more details.
""" )
else:
logger.info(
"""Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" )
del device_map_without_some_modules
return device_map
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : str=None ):
"""simple docstring"""
if modules_to_not_convert is None:
__UpperCAmelCase : str = []
__UpperCAmelCase , __UpperCAmelCase : Dict = _replace_with_bnb_layers(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if not has_been_replaced:
logger.warning(
"""You are loading your model in 8bit or 4bit but no linear modules were found in your model."""
""" this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers."""
""" Please double check your model architecture, or submit an issue on github if you think this is"""
""" a bug.""" )
return model
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Dict=None , ):
"""simple docstring"""
__UpperCAmelCase : Any = False
for name, module in model.named_children():
if current_key_name is None:
__UpperCAmelCase : str = []
current_key_name.append(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , nn.Linear ) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
__UpperCAmelCase : List[Any] = """.""".join(lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = True
for key in modules_to_not_convert:
if (
(key in current_key_name_str) and (key + "." in current_key_name_str)
) or key == current_key_name_str:
__UpperCAmelCase : Optional[Any] = False
break
if proceed:
# Load bnb module with empty weight and replace ``nn.Linear` module
if bnb_quantization_config.load_in_abit:
__UpperCAmelCase : List[str] = bnb.nn.LinearabitLt(
module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowerCAmelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , )
elif bnb_quantization_config.load_in_abit:
__UpperCAmelCase : Any = bnb.nn.Linearabit(
module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , )
else:
raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" )
__UpperCAmelCase : Optional[Any] = module.weight.data
if module.bias is not None:
__UpperCAmelCase : Dict = module.bias.data
bnb_module.requires_grad_(lowerCAmelCase__ )
setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : str = True
if len(list(module.children() ) ) > 0:
__UpperCAmelCase , __UpperCAmelCase : Any = _replace_with_bnb_layers(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : List[Any] = has_been_replaced | _has_been_replaced
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
with init_empty_weights():
__UpperCAmelCase : Optional[Any] = deepcopy(lowerCAmelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
__UpperCAmelCase : str = find_tied_parameters(lowerCAmelCase__ )
# For compatibility with Accelerate < 0.18
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase : Union[str, Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
__UpperCAmelCase : Any = sum(lowerCAmelCase__ , [] )
__UpperCAmelCase : Dict = len(lowerCAmelCase__ ) > 0
# Check if it is a base model
__UpperCAmelCase : Optional[Any] = False
if hasattr(lowerCAmelCase__ , """base_model_prefix""" ):
__UpperCAmelCase : Optional[Any] = not hasattr(lowerCAmelCase__ , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
__UpperCAmelCase : Union[str, Any] = list(model.named_children() )
__UpperCAmelCase : Tuple = [list_modules[-1][0]]
# add last module together with tied weights
__UpperCAmelCase : int = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ )
__UpperCAmelCase : Dict = list(set(lowerCAmelCase__ ) ) + list(lowerCAmelCase__ )
# remove ".weight" from the keys
__UpperCAmelCase : Tuple = [""".weight""", """.bias"""]
__UpperCAmelCase : List[str] = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
__UpperCAmelCase : Dict = name.replace(lowerCAmelCase__ , """""" )
filtered_module_names.append(lowerCAmelCase__ )
return filtered_module_names
def lowercase_ ( lowerCAmelCase__ : Tuple ):
"""simple docstring"""
for m in model.modules():
if isinstance(lowerCAmelCase__ , bnb.nn.Linearabit ):
return True
return False
def lowercase_ ( lowerCAmelCase__ : nn.Module ):
"""simple docstring"""
return next(parameter.parameters() ).device
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
if fpaa_statistics is None:
set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , 0 , dtype=lowerCAmelCase__ , value=lowerCAmelCase__ )
__UpperCAmelCase : Any = param_name
__UpperCAmelCase : Union[str, Any] = model
if "." in tensor_name:
__UpperCAmelCase : Any = tensor_name.split(""".""" )
for split in splits[:-1]:
__UpperCAmelCase : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
if new_module is None:
raise ValueError(f'{module} has no attribute {split}.' )
__UpperCAmelCase : Any = new_module
__UpperCAmelCase : Tuple = splits[-1]
# offload weights
__UpperCAmelCase : List[str] = False
offload_weight(module._parameters[tensor_name] , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ )
if hasattr(module._parameters[tensor_name] , """SCB""" ):
offload_weight(
module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , lowerCAmelCase__ , index=lowerCAmelCase__ , )
else:
offload_weight(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ )
offload_weight(lowerCAmelCase__ , param_name.replace("""weight""" , """SCB""" ) , lowerCAmelCase__ , index=lowerCAmelCase__ )
set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , """meta""" , dtype=lowerCAmelCase__ , value=torch.empty(*param.size() ) )
| 16 |
'''simple docstring'''
from statistics import mean
import numpy as np
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Tuple = 0
# Number of processes finished
__UpperCAmelCase : Optional[int] = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
__UpperCAmelCase : Tuple = [0] * no_of_process
# List to include calculation results
__UpperCAmelCase : int = [0] * no_of_process
# Sort by arrival time.
__UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )]
__UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )]
arrival_time.sort()
while no_of_process > finished_process_count:
__UpperCAmelCase : Dict = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
__UpperCAmelCase : Any = arrival_time[i]
__UpperCAmelCase : Any = 0
# Index showing the location of the process being performed
__UpperCAmelCase : Any = 0
# Saves the current response ratio.
__UpperCAmelCase : List[str] = 0
for i in range(0 , lowerCAmelCase__ ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
__UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
__UpperCAmelCase : Tuple = temp
__UpperCAmelCase : List[str] = i
# Calculate the turn around time
__UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
__UpperCAmelCase : List[str] = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [0] * no_of_process
for i in range(0 , lowerCAmelCase__ ):
__UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
_UpperCamelCase = 5
_UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E''']
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
_UpperCamelCase = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''')
for i in range(0, no_of_process):
print(
F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'
F'{turn_around_time[i]}\t\t\t{waiting_time[i]}'
)
print(F'average waiting time : {mean(waiting_time):.5f}')
print(F'average turn around time : {mean(turn_around_time):.5f}')
| 16 | 1 |
'''simple docstring'''
from math import loga
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
if a < 0:
raise ValueError("""Input value must be a positive integer""" )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError("""Input value must be a 'int' type""" )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = parent
__UpperCAmelCase : Any = batch_size
__UpperCAmelCase : Union[str, Any] = seq_length
__UpperCAmelCase : int = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[str] = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Union[str, Any] = num_hidden_layers
__UpperCAmelCase : Optional[int] = num_attention_heads
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_size
__UpperCAmelCase : Dict = type_sequence_label_size
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : Optional[Any] = num_choices
__UpperCAmelCase : int = scope
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : List[Any] = None
if self.use_input_mask:
__UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Any = None
if self.use_token_type_ids:
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Optional[int] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> List[str]:
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_config()
__UpperCAmelCase : List[Any] = 300
return config
def __A ( self ) -> Dict:
'''simple docstring'''
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = self.prepare_config_and_inputs()
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : List[str] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.num_labels
__UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_choices
__UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : List[str] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
__UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Any = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : int = False
_SCREAMING_SNAKE_CASE : List[str] = False
_SCREAMING_SNAKE_CASE : Dict = ()
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = MraModelTester(self )
__UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : List[Any] = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""MRA does not output attentions""" )
def __A ( self ) -> List[Any]:
'''simple docstring'''
return
@require_torch
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : int = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Union[str, Any] = 50_265
__UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" )
__UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : Any = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Dict = 50_265
__UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : str = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 1 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision.transforms import functional as F
from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
_UpperCamelCase = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight')
)
rename_keys.append(
(F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias')
)
rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight'))
rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias'))
rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight'))
rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias'))
rename_keys.append(
(F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight')
)
rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias'))
rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight'))
rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias'))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight')
)
rename_keys.append(
(F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias')
)
rename_keys.append(
(
F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight',
F'decoder.layers.{i}.encoder_attn.out_proj.weight',
)
)
rename_keys.append(
(
F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias',
F'decoder.layers.{i}.encoder_attn.out_proj.bias',
)
)
rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight'))
rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias'))
rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight'))
rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias'))
rename_keys.append(
(F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight')
)
rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias'))
rename_keys.append(
(F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight')
)
rename_keys.append(
(F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias')
)
rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight'))
rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias'))
# convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
('''input_proj.weight''', '''input_projection.weight'''),
('''input_proj.bias''', '''input_projection.bias'''),
('''query_embed.weight''', '''query_position_embeddings.weight'''),
('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''),
('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''),
('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''),
('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''),
('''class_embed.weight''', '''class_labels_classifier.weight'''),
('''class_embed.bias''', '''class_labels_classifier.bias'''),
('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''),
('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''),
('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''),
('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''),
('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''),
('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''),
]
)
def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : int = state_dict.pop(lowerCAmelCase__ )
__UpperCAmelCase : List[Any] = val
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
__UpperCAmelCase : List[Any] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" )
__UpperCAmelCase : str = value
else:
__UpperCAmelCase : List[str] = value
return new_state_dict
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase : str = """"""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
__UpperCAmelCase : Tuple = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' )
__UpperCAmelCase : int = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' )
# next, add query, keys and values (in that order) to the state dict
__UpperCAmelCase : Union[str, Any] = in_proj_weight[:256, :]
__UpperCAmelCase : Optional[Any] = in_proj_bias[:256]
__UpperCAmelCase : Optional[int] = in_proj_weight[256:512, :]
__UpperCAmelCase : Optional[Any] = in_proj_bias[256:512]
__UpperCAmelCase : List[Any] = in_proj_weight[-256:, :]
__UpperCAmelCase : Optional[Any] = in_proj_bias[-256:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
__UpperCAmelCase : Tuple = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' )
__UpperCAmelCase : Optional[int] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' )
# next, add query, keys and values (in that order) to the state dict
__UpperCAmelCase : Tuple = in_proj_weight[:256, :]
__UpperCAmelCase : Optional[int] = in_proj_bias[:256]
__UpperCAmelCase : str = in_proj_weight[256:512, :]
__UpperCAmelCase : str = in_proj_bias[256:512]
__UpperCAmelCase : Optional[int] = in_proj_weight[-256:, :]
__UpperCAmelCase : List[Any] = in_proj_bias[-256:]
# read in weights + bias of input projection layer of cross-attention
__UpperCAmelCase : List[str] = state_dict.pop(
f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' )
__UpperCAmelCase : Optional[int] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' )
# next, add query, keys and values (in that order) of cross-attention to the state dict
__UpperCAmelCase : Optional[Any] = in_proj_weight_cross_attn[:256, :]
__UpperCAmelCase : List[Any] = in_proj_bias_cross_attn[:256]
__UpperCAmelCase : List[Any] = in_proj_weight_cross_attn[256:512, :]
__UpperCAmelCase : List[Any] = in_proj_bias_cross_attn[256:512]
__UpperCAmelCase : Any = in_proj_weight_cross_attn[-256:, :]
__UpperCAmelCase : Optional[Any] = in_proj_bias_cross_attn[-256:]
def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = image.size
__UpperCAmelCase : Optional[Any] = max(lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : Dict = 800 if """detection""" in checkpoint_url else 1000
__UpperCAmelCase : Optional[int] = target_max_size / current_max_size
__UpperCAmelCase : List[str] = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) )
return resized_image
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = F.to_tensor(lowerCAmelCase__ )
__UpperCAmelCase : str = F.normalize(lowerCAmelCase__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] )
return image
@torch.no_grad()
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
logger.info("""Converting model...""" )
# load original state dict
__UpperCAmelCase : Any = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" )
# rename keys
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : Tuple = rename_backbone_keys(lowerCAmelCase__ )
# query, key and value matrices need special treatment
read_in_q_k_v(lowerCAmelCase__ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
__UpperCAmelCase : Tuple = """model."""
for key in state_dict.copy().keys():
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
__UpperCAmelCase : Union[str, Any] = state_dict.pop(lowerCAmelCase__ )
__UpperCAmelCase : Dict = val
# create HuggingFace model and load state dict
__UpperCAmelCase : Union[str, Any] = TableTransformerConfig(
backbone="""resnet18""" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , )
if "detection" in checkpoint_url:
__UpperCAmelCase : List[str] = 15
__UpperCAmelCase : Union[str, Any] = 2
__UpperCAmelCase : str = {0: """table""", 1: """table rotated"""}
__UpperCAmelCase : List[Any] = idalabel
__UpperCAmelCase : int = {v: k for k, v in idalabel.items()}
else:
__UpperCAmelCase : Optional[Any] = 125
__UpperCAmelCase : Any = 6
__UpperCAmelCase : Dict = {
0: """table""",
1: """table column""",
2: """table row""",
3: """table column header""",
4: """table projected row header""",
5: """table spanning cell""",
}
__UpperCAmelCase : Any = idalabel
__UpperCAmelCase : int = {v: k for k, v in idalabel.items()}
__UpperCAmelCase : str = DetrImageProcessor(
format="""coco_detection""" , max_size=800 if """detection""" in checkpoint_url else 1000 )
__UpperCAmelCase : Optional[Any] = TableTransformerForObjectDetection(lowerCAmelCase__ )
model.load_state_dict(lowerCAmelCase__ )
model.eval()
# verify our conversion
__UpperCAmelCase : str = """example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png"""
__UpperCAmelCase : List[Any] = hf_hub_download(repo_id="""nielsr/example-pdf""" , repo_type="""dataset""" , filename=lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = Image.open(lowerCAmelCase__ ).convert("""RGB""" )
__UpperCAmelCase : int = normalize(resize(lowerCAmelCase__ , lowerCAmelCase__ ) ).unsqueeze(0 )
__UpperCAmelCase : Dict = model(lowerCAmelCase__ )
if "detection" in checkpoint_url:
__UpperCAmelCase : Optional[int] = (1, 15, 3)
__UpperCAmelCase : Optional[int] = torch.tensor(
[[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] )
__UpperCAmelCase : str = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] )
else:
__UpperCAmelCase : List[str] = (1, 125, 7)
__UpperCAmelCase : Dict = torch.tensor(
[[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] )
__UpperCAmelCase : Any = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 )
assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' )
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
image_processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
# Push model to HF hub
logger.info("""Pushing model to the hub...""" )
__UpperCAmelCase : Tuple = (
"""microsoft/table-transformer-detection"""
if """detection""" in checkpoint_url
else """microsoft/table-transformer-structure-recognition"""
)
model.push_to_hub(lowerCAmelCase__ )
image_processor.push_to_hub(lowerCAmelCase__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_url''',
default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''',
type=str,
choices=[
'''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''',
'''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''',
],
help='''URL of the Table Transformer checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_UpperCamelCase = parser.parse_args()
convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 16 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Any = image_size
__UpperCAmelCase : Dict = patch_size
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : List[Any] = embed_dim
__UpperCAmelCase : str = depths
__UpperCAmelCase : Dict = num_heads
__UpperCAmelCase : str = window_size
__UpperCAmelCase : int = mlp_ratio
__UpperCAmelCase : Union[str, Any] = qkv_bias
__UpperCAmelCase : Dict = hidden_dropout_prob
__UpperCAmelCase : str = attention_probs_dropout_prob
__UpperCAmelCase : Optional[int] = drop_path_rate
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Optional[int] = use_absolute_embeddings
__UpperCAmelCase : Any = patch_norm
__UpperCAmelCase : Union[str, Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : Any = scope
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : Optional[int] = type_sequence_label_size
__UpperCAmelCase : int = encoder_stride
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : Tuple = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def __A ( self ) -> Dict:
'''simple docstring'''
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
__UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : str = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = self.type_sequence_label_size
__UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs
__UpperCAmelCase : Dict = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
_SCREAMING_SNAKE_CASE : List[str] = (
{"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Dict = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[str] = SwinvaModelTester(self )
__UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 )
def __A ( self ) -> Any:
'''simple docstring'''
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
@unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason="""Swinv2 does not use inputs_embeds""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCAmelCase : List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Tuple = model_class(__UpperCAmelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : str = [*signature.parameters.keys()]
__UpperCAmelCase : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = True
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : int = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : str = outputs.attentions
__UpperCAmelCase : Any = len(self.model_tester.depths )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__UpperCAmelCase : Dict = True
__UpperCAmelCase : int = config.window_size**2
__UpperCAmelCase : Any = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : Dict = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
__UpperCAmelCase : Dict = len(__UpperCAmelCase )
# Check attention is always last and order is fine
__UpperCAmelCase : Any = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
if hasattr(self.model_tester , """num_hidden_states_types""" ):
__UpperCAmelCase : Any = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
__UpperCAmelCase : Optional[int] = 2
self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) )
__UpperCAmelCase : Tuple = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : List[Any] = outputs.hidden_states
__UpperCAmelCase : List[Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# Swinv2 has a different seq_length
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__UpperCAmelCase : int = outputs.reshaped_hidden_states
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape
__UpperCAmelCase : Any = (
reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = 3
__UpperCAmelCase : str = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__UpperCAmelCase : int = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Tuple = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase )
for model_class in self.all_model_classes:
__UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class _A ( unittest.TestCase ):
@cached_property
def __A ( self ) -> int:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" )
if is_vision_available()
else None
)
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to(
__UpperCAmelCase )
__UpperCAmelCase : Tuple = self.default_image_processor
__UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase )
# verify the logits
__UpperCAmelCase : int = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["torch", "torchsde"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""torch""", """torchsde"""] )
@classmethod
def __A ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(cls , ["""torch""", """torchsde"""] )
@classmethod
def __A ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(cls , ["""torch""", """torchsde"""] )
| 16 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
_UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f'Could not make batched video from {videos}' )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
__UpperCAmelCase : int = do_resize
__UpperCAmelCase : List[str] = size
__UpperCAmelCase : Any = do_center_crop
__UpperCAmelCase : Any = crop_size
__UpperCAmelCase : Optional[Any] = resample
__UpperCAmelCase : Dict = do_rescale
__UpperCAmelCase : List[str] = rescale_factor
__UpperCAmelCase : Dict = offset
__UpperCAmelCase : List[str] = do_normalize
__UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" in size:
__UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase )
elif "height" in size and "width" in size:
__UpperCAmelCase : Any = (size["""height"""], size["""width"""])
else:
raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = image.astype(np.floataa )
if offset:
__UpperCAmelCase : Tuple = image - (scale / 2)
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
if offset and not do_rescale:
raise ValueError("""For offset, do_rescale must also be set to True.""" )
# All transformations expect numpy arrays.
__UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase )
if do_resize:
__UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase )
if do_center_crop:
__UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase )
if do_rescale:
__UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase )
if do_normalize:
__UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase )
return image
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : List[Any] = resample if resample is not None else self.resample
__UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : List[Any] = offset if offset is not None else self.offset
__UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : int = image_std if image_std is not None else self.image_std
__UpperCAmelCase : Any = size if size is not None else self.size
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
__UpperCAmelCase : int = make_batched(__UpperCAmelCase )
__UpperCAmelCase : Tuple = [
[
self._preprocess_image(
image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , )
for img in video
]
for video in videos
]
__UpperCAmelCase : Tuple = {"""pixel_values""": videos}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
StableDiffusionControlNetImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionControlNetImgaImgPipeline
_SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
_SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
_SCREAMING_SNAKE_CASE : int = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} )
_SCREAMING_SNAKE_CASE : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS
def __A ( self ) -> List[str]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
torch.manual_seed(0 )
__UpperCAmelCase : List[str] = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
torch.manual_seed(0 )
__UpperCAmelCase : str = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
__UpperCAmelCase : List[Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase : List[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__UpperCAmelCase : Any = CLIPTextModel(__UpperCAmelCase )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__UpperCAmelCase : List[Any] = {
"""unet""": unet,
"""controlnet""": controlnet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> List[str]:
'''simple docstring'''
if str(__UpperCAmelCase ).startswith("""mps""" ):
__UpperCAmelCase : List[str] = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCAmelCase : List[Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = 2
__UpperCAmelCase : Any = randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__UpperCAmelCase , device=torch.device(__UpperCAmelCase ) , )
__UpperCAmelCase : Dict = floats_tensor(control_image.shape , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__UpperCAmelCase : List[Any] = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
__UpperCAmelCase : str = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
"""image""": image,
"""control_image""": control_image,
}
return inputs
def __A ( self ) -> Tuple:
'''simple docstring'''
return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 )
def __A ( self ) -> List[str]:
'''simple docstring'''
self._test_inference_batch_single_identical(expected_max_diff=2E-3 )
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionControlNetImgaImgPipeline
_SCREAMING_SNAKE_CASE : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
_SCREAMING_SNAKE_CASE : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
_SCREAMING_SNAKE_CASE : Tuple = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def __A ( self ) -> List[Any]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : List[str] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
torch.manual_seed(0 )
def init_weights(__UpperCAmelCase ):
if isinstance(__UpperCAmelCase , torch.nn.Convad ):
torch.nn.init.normal(m.weight )
m.bias.data.fill_(1.0 )
__UpperCAmelCase : Dict = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(__UpperCAmelCase )
torch.manual_seed(0 )
__UpperCAmelCase : int = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(__UpperCAmelCase )
torch.manual_seed(0 )
__UpperCAmelCase : Any = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
__UpperCAmelCase : Optional[int] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase : str = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__UpperCAmelCase : Optional[int] = CLIPTextModel(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__UpperCAmelCase : Union[str, Any] = MultiControlNetModel([controlneta, controlneta] )
__UpperCAmelCase : Optional[int] = {
"""unet""": unet,
"""controlnet""": controlnet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> str:
'''simple docstring'''
if str(__UpperCAmelCase ).startswith("""mps""" ):
__UpperCAmelCase : List[Any] = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCAmelCase : Optional[int] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Dict = 2
__UpperCAmelCase : Dict = [
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__UpperCAmelCase , device=torch.device(__UpperCAmelCase ) , ),
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__UpperCAmelCase , device=torch.device(__UpperCAmelCase ) , ),
]
__UpperCAmelCase : int = floats_tensor(control_image[0].shape , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
__UpperCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__UpperCAmelCase : Optional[int] = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
__UpperCAmelCase : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
"""image""": image,
"""control_image""": control_image,
}
return inputs
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.get_dummy_components()
__UpperCAmelCase : str = self.pipeline_class(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = 10.0
__UpperCAmelCase : str = 4
__UpperCAmelCase : List[Any] = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = steps
__UpperCAmelCase : Optional[Any] = scale
__UpperCAmelCase : List[str] = pipe(**__UpperCAmelCase )[0]
__UpperCAmelCase : Dict = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : List[str] = steps
__UpperCAmelCase : Optional[Any] = scale
__UpperCAmelCase : int = pipe(**__UpperCAmelCase , control_guidance_start=0.1 , control_guidance_end=0.2 )[0]
__UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : List[str] = steps
__UpperCAmelCase : int = scale
__UpperCAmelCase : List[str] = pipe(**__UpperCAmelCase , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0]
__UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : Tuple = steps
__UpperCAmelCase : Union[str, Any] = scale
__UpperCAmelCase : int = pipe(**__UpperCAmelCase , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
def __A ( self ) -> int:
'''simple docstring'''
return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def __A ( self ) -> Tuple:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 )
def __A ( self ) -> Any:
'''simple docstring'''
self._test_inference_batch_single_identical(expected_max_diff=2E-3 )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : str = self.get_dummy_components()
__UpperCAmelCase : Optional[int] = self.pipeline_class(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdir:
try:
# save_pretrained is not implemented for Multi-ControlNet
pipe.save_pretrained(__UpperCAmelCase )
except NotImplementedError:
pass
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Tuple = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" )
__UpperCAmelCase : str = StableDiffusionControlNetImgaImgPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , safety_checker=__UpperCAmelCase , controlnet=__UpperCAmelCase )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__UpperCAmelCase : List[str] = """evil space-punk bird"""
__UpperCAmelCase : str = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((512, 512) )
__UpperCAmelCase : Any = load_image(
"""https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((512, 512) )
__UpperCAmelCase : Tuple = pipe(
__UpperCAmelCase , __UpperCAmelCase , control_image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , num_inference_steps=50 , strength=0.6 , )
__UpperCAmelCase : Any = output.images[0]
assert image.shape == (512, 512, 3)
__UpperCAmelCase : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" )
assert np.abs(expected_image - image ).max() < 9E-2
| 16 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline
_SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
_SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
_SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : Dict = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
__UpperCAmelCase : List[Any] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
__UpperCAmelCase : Any = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__UpperCAmelCase : Dict = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vqvae""": vae,
"""bert""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any:
'''simple docstring'''
if str(__UpperCAmelCase ).startswith("""mps""" ):
__UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : Dict = self.get_dummy_components()
__UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
__UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> List[str]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Tuple = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
__UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] )
__UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 50,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0]
__UpperCAmelCase : Tuple = load_numpy(
"""https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" )
__UpperCAmelCase : Dict = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 16 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTokenizer
_SCREAMING_SNAKE_CASE : int = CLIPTokenizerFast
_SCREAMING_SNAKE_CASE : Optional[Any] = True
_SCREAMING_SNAKE_CASE : Any = {}
_SCREAMING_SNAKE_CASE : Dict = False
def __A ( self ) -> Any:
'''simple docstring'''
super().setUp()
# fmt: off
__UpperCAmelCase : List[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""]
# fmt: on
__UpperCAmelCase : Tuple = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : str = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""]
__UpperCAmelCase : Optional[int] = {"""unk_token""": """<unk>"""}
__UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(__UpperCAmelCase ) )
def __A ( self , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CLIPTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> int:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """lower newer"""
__UpperCAmelCase : Tuple = """lower newer"""
return input_text, output_text
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
__UpperCAmelCase : Union[str, Any] = """lower newer"""
__UpperCAmelCase : int = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""]
__UpperCAmelCase : int = tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Dict = tokens + [tokenizer.unk_token]
__UpperCAmelCase : Tuple = [10, 2, 16, 9, 3, 2, 16, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
@require_ftfy
def __A ( self ) -> Tuple:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
__UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase )
__UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d."""
__UpperCAmelCase : Optional[Any] = tokenizer_s.tokenize(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer_r.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
# Test that the tokenization is identical on an example containing a character (Latin Small Letter A
# with Tilde) encoded in 2 different ways
__UpperCAmelCase : Dict = """xa\u0303y""" + """ """ + """x\xe3y"""
__UpperCAmelCase : int = tokenizer_s.tokenize(__UpperCAmelCase )
__UpperCAmelCase : Dict = tokenizer_r.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
# Test that the tokenization is identical on unicode of space type
__UpperCAmelCase : int = [
"""\u0009""", # (horizontal tab, '\t')
"""\u000B""", # (vertical tab)
"""\u000C""", # (form feed)
"""\u0020""", # (space, ' ')
"""\u200E""", # (left-to-right mark):w
"""\u200F""", # (right-to-left mark)
]
for unicode_seq in spaces_unicodes:
__UpperCAmelCase : Optional[int] = tokenizer_s.tokenize(__UpperCAmelCase )
__UpperCAmelCase : Any = tokenizer_r.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
# Test that the tokenization is identical on unicode of line break type
__UpperCAmelCase : Union[str, Any] = [
"""\u000A""", # (line feed, '\n')
"""\r\n""", # (carriage return and line feed, '\r\n')
"""\u000D""", # (carriage return, '\r')
"""\r""", # (carriage return, '\r')
"""\u000D""", # (carriage return, '\r')
"""\u2028""", # (line separator)
"""\u2029""", # (paragraph separator)
# "\u0085", # (next line)
]
# The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms
# it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a
# space (and thus into an empty list).
for unicode_seq in line_break_unicodes:
__UpperCAmelCase : str = tokenizer_s.tokenize(__UpperCAmelCase )
__UpperCAmelCase : int = tokenizer_r.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> Tuple:
'''simple docstring'''
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
__UpperCAmelCase : Optional[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name`
__UpperCAmelCase : str = f'{text_of_1_token} {text_of_1_token}'
__UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(
__UpperCAmelCase , use_fast=__UpperCAmelCase , )
__UpperCAmelCase : Optional[Any] = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , )
__UpperCAmelCase : Any = f' {text}'
__UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(
__UpperCAmelCase , use_fast=__UpperCAmelCase , )
__UpperCAmelCase : Dict = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__UpperCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ) + 1, 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , )
def __A ( self ) -> Tuple:
'''simple docstring'''
# Test related to the breaking change introduced in transformers v4.17.0
# We need to check that an error in raised when the user try to load a previous version of the tokenizer.
with self.assertRaises(__UpperCAmelCase ) as context:
self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" )
self.assertTrue(
context.exception.args[0].startswith(
"""The `backend_tokenizer` provided does not match the expected format.""" ) )
@require_ftfy
def __A ( self ) -> Optional[int]:
'''simple docstring'''
super().test_tokenization_python_rust_equals()
def __A ( self ) -> List[str]:
'''simple docstring'''
# CLIP always lower cases letters
pass
| 16 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column
__UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )]
def __str__( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n'
# Make string identifier
__UpperCAmelCase : Optional[Any] = 0
for row_vector in self.array:
for obj in row_vector:
__UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) )
__UpperCAmelCase : Optional[int] = f'%{max_element_length}s'
# Make string and return
def single_line(__UpperCAmelCase ) -> str:
nonlocal string_format_identifier
__UpperCAmelCase : Any = """["""
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array )
return s
def __repr__( self ) -> str:
'''simple docstring'''
return str(self )
def __A ( self , __UpperCAmelCase ) -> bool:
'''simple docstring'''
if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
return self.array[loc[0]][loc[1]]
def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = value
def __add__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == another.row and self.column == another.column
# Add
__UpperCAmelCase : Dict = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] + another[r, c]
return result
def __neg__( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : Dict = -self[r, c]
return result
def __sub__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
return self + (-another)
def __mul__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication
__UpperCAmelCase : Optional[int] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] * another
return result
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication
assert self.column == another.row
__UpperCAmelCase : Dict = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
__UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})'
raise TypeError(__UpperCAmelCase )
def __A ( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Dict = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[str] = self[r, c]
return result
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
__UpperCAmelCase : Optional[Any] = v.transpose()
__UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Dict = Matrix(3 , 3 , 0 )
for i in range(3 ):
__UpperCAmelCase : Tuple = 1
print(f'a^(-1) is {ainv}' )
# u, v
__UpperCAmelCase : Dict = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3
__UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5
print(f'u is {u}' )
print(f'v is {v}' )
print(f'uv^T is {u * v.transpose()}' )
# Sherman Morrison
print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' )
def lowercase_ ( ):
"""simple docstring"""
import doctest
doctest.testmod()
testa()
| 16 | 1 |
'''simple docstring'''
from math import pi, sqrt
def lowercase_ ( lowerCAmelCase__ : float ):
"""simple docstring"""
if num <= 0:
raise ValueError("""math domain error""" )
if num > 171.5:
raise OverflowError("""math range error""" )
elif num - int(lowerCAmelCase__ ) not in (0, 0.5):
raise NotImplementedError("""num must be an integer or a half-integer""" )
elif num == 0.5:
return sqrt(lowerCAmelCase__ )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def lowercase_ ( ):
"""simple docstring"""
assert gamma(0.5 ) == sqrt(lowerCAmelCase__ )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
_UpperCamelCase = 1.0
while num:
_UpperCamelCase = float(input('''Gamma of: '''))
print(F'gamma({num}) = {gamma(num)}')
print('''\nEnter 0 to exit...''')
| 16 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''],
'''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''],
'''processing_wav2vec2''': ['''Wav2Vec2Processor'''],
'''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Wav2Vec2ForAudioFrameClassification''',
'''Wav2Vec2ForCTC''',
'''Wav2Vec2ForMaskedLM''',
'''Wav2Vec2ForPreTraining''',
'''Wav2Vec2ForSequenceClassification''',
'''Wav2Vec2ForXVector''',
'''Wav2Vec2Model''',
'''Wav2Vec2PreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWav2Vec2ForCTC''',
'''TFWav2Vec2Model''',
'''TFWav2Vec2PreTrainedModel''',
'''TFWav2Vec2ForSequenceClassification''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FlaxWav2Vec2ForCTC''',
'''FlaxWav2Vec2ForPreTraining''',
'''FlaxWav2Vec2Model''',
'''FlaxWav2Vec2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 1 |
'''simple docstring'''
from __future__ import annotations
import csv
import requests
from bsa import BeautifulSoup
def lowercase_ ( lowerCAmelCase__ : str = "" ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = url or """https://www.imdb.com/chart/top/?ref_=nv_mv_250"""
__UpperCAmelCase : Dict = BeautifulSoup(requests.get(lowerCAmelCase__ ).text , """html.parser""" )
__UpperCAmelCase : int = soup.find_all("""td""" , attrs="""titleColumn""" )
__UpperCAmelCase : Tuple = soup.find_all("""td""" , class_="""ratingColumn imdbRating""" )
return {
title.a.text: float(rating.strong.text )
for title, rating in zip(lowerCAmelCase__ , lowerCAmelCase__ )
}
def lowercase_ ( lowerCAmelCase__ : str = "IMDb_Top_250_Movies.csv" ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = get_imdb_top_aaa_movies()
with open(lowerCAmelCase__ , """w""" , newline="""""" ) as out_file:
__UpperCAmelCase : Optional[int] = csv.writer(lowerCAmelCase__ )
writer.writerow(["""Movie title""", """IMDb rating"""] )
for title, rating in movies.items():
writer.writerow([title, rating] )
if __name__ == "__main__":
write_movies()
| 16 |
'''simple docstring'''
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING
_SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING
def __A ( self ) -> Any:
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""},
{"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""},
] , )
__UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is grouped""",
"""score""": 2.1E-05,
"""token""": 38_015,
"""token_str""": """ grouped""",
},
{
"""sequence""": """The largest city in France is accuser""",
"""score""": 2.1E-05,
"""token""": 25_506,
"""token_str""": """ accuser""",
},
] , )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""},
{"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is Maul""",
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
},
{"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""},
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is Maul<mask></s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""},
],
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is<mask> Maul</s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""},
],
] , )
@require_torch_gpu
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" )
# convert model to fp16
pipe.model.half()
__UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
@require_torch
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" )
self.run_large_test(__UpperCAmelCase )
@slow
@require_tf
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" )
self.run_large_test(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""},
{"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{
"""sequence""": """The largest city in France is Paris""",
"""score""": 0.251,
"""token""": 2_201,
"""token_str""": """ Paris""",
},
{
"""sequence""": """The largest city in France is Lyon""",
"""score""": 0.214,
"""token""": 12_790,
"""token_str""": """ Lyon""",
},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" )
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : int = None
self.run_pipeline_test(__UpperCAmelCase , [] )
@require_tf
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : str = None
self.run_pipeline_test(__UpperCAmelCase , [] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" )
__UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = [
f'This is another {tokenizer.mask_token} test',
]
return fill_masker, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = fill_masker.tokenizer
__UpperCAmelCase : Union[str, Any] = fill_masker.model
__UpperCAmelCase : Tuple = fill_masker(
f'This is a {tokenizer.mask_token}' , )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
with self.assertRaises(__UpperCAmelCase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(__UpperCAmelCase ):
fill_masker("""This is""" )
self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Dict = tokenizer.get_vocab()
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:2]
# Pipeline argument
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase )
__UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Any = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Call argument
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Score equivalence
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs]
__UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ) == set(__UpperCAmelCase ):
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
# Raises with invalid
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] )
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 )
__UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : int = tokenizer.get_vocab()
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
# top_k=2, ntargets=3
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
__UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = tokenizer.get_vocab()
# String duplicates + id duplicates
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]]
__UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(__UpperCAmelCase ) , 3 )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Dict = fill_masker(
f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
| 16 | 1 |
'''simple docstring'''
from __future__ import annotations
_UpperCamelCase = list[list[int]]
# assigning initial values to the grid
_UpperCamelCase = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
_UpperCamelCase = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def lowercase_ ( lowerCAmelCase__ : Matrix , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ):
"""simple docstring"""
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def lowercase_ ( lowerCAmelCase__ : Matrix ):
"""simple docstring"""
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def lowercase_ ( lowerCAmelCase__ : Matrix ):
"""simple docstring"""
if location := find_empty_location(lowerCAmelCase__ ):
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase : int = digit
if sudoku(lowerCAmelCase__ ) is not None:
return grid
__UpperCAmelCase : Optional[Any] = 0
return None
def lowercase_ ( lowerCAmelCase__ : Matrix ):
"""simple docstring"""
for row in grid:
for cell in row:
print(lowerCAmelCase__ , end=""" """ )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print('''\nExample grid:\n''' + '''=''' * 20)
print_solution(example_grid)
print('''\nExample grid solution:''')
_UpperCamelCase = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print('''Cannot find a solution.''')
| 16 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} )
_SCREAMING_SNAKE_CASE : str = "image"
_SCREAMING_SNAKE_CASE : str = "labels"
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(f'Column {self.label_column} is not present in features.' )
if not isinstance(features[self.label_column] , __UpperCAmelCase ):
raise ValueError(f'Column {self.label_column} is not a ClassLabel.' )
__UpperCAmelCase : int = copy.deepcopy(self )
__UpperCAmelCase : str = self.label_schema.copy()
__UpperCAmelCase : Optional[Any] = features[self.label_column]
__UpperCAmelCase : Optional[int] = label_schema
return task_template
@property
def __A ( self ) -> Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 16 | 1 |
'''simple docstring'''
from PIL import Image
def lowercase_ ( lowerCAmelCase__ : Image , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = (259 * (level + 255)) / (255 * (259 - level))
def contrast(lowerCAmelCase__ : int ) -> int:
return int(128 + factor * (c - 128) )
return img.point(lowerCAmelCase__ )
if __name__ == "__main__":
# Load image
with Image.open('''image_data/lena.jpg''') as img:
# Change contrast to 170
_UpperCamelCase = change_contrast(img, 170)
cont_img.save('''image_data/lena_high_contrast.png''', format='''png''')
| 16 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Tuple = seq_length
__UpperCAmelCase : str = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[Any] = use_token_type_ids
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : str = num_attention_heads
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : Tuple = max_position_embeddings
__UpperCAmelCase : Dict = type_vocab_size
__UpperCAmelCase : List[Any] = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[str] = num_labels
__UpperCAmelCase : str = num_choices
__UpperCAmelCase : List[Any] = scope
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Tuple = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
# first forward pass
__UpperCAmelCase : Optional[int] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCAmelCase : int = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
# select random slice
__UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = config_and_inputs
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : List[str] = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = LlamaModelTester(self )
__UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : str = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Any = 3
__UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[int] = 3
__UpperCAmelCase : Optional[Any] = """single_label_classification"""
__UpperCAmelCase : int = input_dict["""input_ids"""]
__UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = 3
__UpperCAmelCase : str = """multi_label_classification"""
__UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size )
__UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
original_model.to(__UpperCAmelCase )
original_model.eval()
__UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0}
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
scaled_model.to(__UpperCAmelCase )
scaled_model.eval()
__UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
@require_torch
class _A ( unittest.TestCase ):
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" )
__UpperCAmelCase : int = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" )
__UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" )
__UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
@unittest.skip(
"""Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" )
@slow
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" )
__UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) )
__UpperCAmelCase : Dict = torch.tensor(
[[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Model is curently gated""" )
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi"""
__UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """
__UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" )
__UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" )
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained(
"""meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase )
# greedy generation outputs
__UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import DistilBertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.distilbert.modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
)
class _A ( unittest.TestCase ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=4 , ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = parent
__UpperCAmelCase : List[Any] = batch_size
__UpperCAmelCase : Union[str, Any] = seq_length
__UpperCAmelCase : Optional[Any] = is_training
__UpperCAmelCase : Optional[Any] = use_attention_mask
__UpperCAmelCase : List[str] = use_token_type_ids
__UpperCAmelCase : List[Any] = use_labels
__UpperCAmelCase : Any = vocab_size
__UpperCAmelCase : Dict = hidden_size
__UpperCAmelCase : Optional[Any] = num_hidden_layers
__UpperCAmelCase : List[str] = num_attention_heads
__UpperCAmelCase : Any = intermediate_size
__UpperCAmelCase : Tuple = hidden_act
__UpperCAmelCase : Dict = hidden_dropout_prob
__UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob
__UpperCAmelCase : Optional[int] = max_position_embeddings
__UpperCAmelCase : Optional[int] = type_vocab_size
__UpperCAmelCase : List[str] = type_sequence_label_size
__UpperCAmelCase : str = initializer_range
__UpperCAmelCase : Any = num_choices
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Optional[Any] = None
if self.use_attention_mask:
__UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Tuple = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__UpperCAmelCase , )
return config, input_ids, attention_mask
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = config_and_inputs
__UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = (
(
FlaxDistilBertModel,
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self )
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__UpperCAmelCase : Any = model_class_name.from_pretrained("""distilbert-base-uncased""" )
__UpperCAmelCase : Any = model(np.ones((1, 1) ) )
self.assertIsNotNone(__UpperCAmelCase )
@require_flax
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" )
__UpperCAmelCase : List[str] = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] )
__UpperCAmelCase : List[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
__UpperCAmelCase : str = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0]
__UpperCAmelCase : int = (1, 11, 768)
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : List[str] = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1E-4 ) )
| 16 |
'''simple docstring'''
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
_UpperCamelCase = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ):
"""simple docstring"""
return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths )
def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = []
if args.gold_data_mode == "qa":
__UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ )
for answer_list in data[1]:
__UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ )
answers.append(lowerCAmelCase__ )
else:
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : str = [[reference] for reference in references]
__UpperCAmelCase : Optional[int] = 0
for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
total += 1
em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : int = 100.0 * em / total
__UpperCAmelCase : Dict = 100.0 * fa / total
logger.info(f'F1: {fa:.2f}' )
logger.info(f'EM: {em:.2f}' )
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : Tuple = args.k
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = 0
for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] )
__UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
__UpperCAmelCase : List[str] = 100.0 * em / total
logger.info(f'Precision@{k}: {em: .2f}' )
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ):
"""simple docstring"""
def strip_title(lowerCAmelCase__ : Optional[int] ):
if title.startswith("""\"""" ):
__UpperCAmelCase : List[Any] = title[1:]
if title.endswith("""\"""" ):
__UpperCAmelCase : int = title[:-1]
return title
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device )
__UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ )
__UpperCAmelCase : int = question_enc_outputs[0]
__UpperCAmelCase : Dict = rag_model.retriever(
lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , )
__UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
__UpperCAmelCase : Union[str, Any] = []
for docs in all_docs:
__UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]]
provenance_strings.append("""\t""".join(lowerCAmelCase__ ) )
return provenance_strings
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
with torch.no_grad():
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )
__UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device )
__UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device )
__UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
__UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
if args.print_predictions:
for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) )
return answers
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=(
"""RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the"""
""" model_name_or_path"""
) , )
parser.add_argument(
"""--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , )
parser.add_argument(
"""--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , )
parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" )
parser.add_argument(
"""--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=(
"""Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates"""
""" precision@k."""
) , )
parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" )
parser.add_argument(
"""--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , )
parser.add_argument(
"""--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , )
parser.add_argument(
"""--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=(
"""Format of the gold data file"""
"""qa - a single line in the following format: question [tab] answer_list"""
"""ans - a single line of the gold file contains the expected answer string"""
) , )
parser.add_argument(
"""--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , )
parser.add_argument(
"""--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , )
parser.add_argument(
"""--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , )
parser.add_argument(
"""--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , )
parser.add_argument(
"""--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , )
parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" )
parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" )
parser.add_argument(
"""--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , )
parser.add_argument(
"""--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , )
__UpperCAmelCase : str = parser.parse_args()
__UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
return args
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = {}
if args.model_type is None:
__UpperCAmelCase : str = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration
__UpperCAmelCase : Dict = args.n_docs
if args.index_name is not None:
__UpperCAmelCase : Union[str, Any] = args.index_name
if args.index_path is not None:
__UpperCAmelCase : Dict = args.index_path
else:
__UpperCAmelCase : str = BartForConditionalGeneration
__UpperCAmelCase : str = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k
__UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) )
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
continue
logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) )
logger.info(""" Batch size = %d""" , args.eval_batch_size )
logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) )
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
__UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ )
model.retriever.init_retrieval()
else:
__UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
model.to(args.device )
with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file:
__UpperCAmelCase : Union[str, Any] = []
for line in tqdm(lowerCAmelCase__ ):
questions.append(line.strip() )
if len(lowerCAmelCase__ ) == args.eval_batch_size:
__UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" )
preds_file.flush()
__UpperCAmelCase : List[str] = []
if len(lowerCAmelCase__ ) > 0:
__UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) )
preds_file.flush()
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
_UpperCamelCase = get_args()
main(args)
| 16 | 1 |
'''simple docstring'''
import os
def lowercase_ ( ):
"""simple docstring"""
with open(os.path.dirname(lowerCAmelCase__ ) + """/grid.txt""" ) as f:
__UpperCAmelCase : Optional[Any] = [] # noqa: E741
for _ in range(20 ):
l.append([int(lowerCAmelCase__ ) for x in f.readline().split()] )
__UpperCAmelCase : Any = 0
# right
for i in range(20 ):
for j in range(17 ):
__UpperCAmelCase : Optional[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3]
if temp > maximum:
__UpperCAmelCase : str = temp
# down
for i in range(17 ):
for j in range(20 ):
__UpperCAmelCase : List[str] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j]
if temp > maximum:
__UpperCAmelCase : Union[str, Any] = temp
# diagonal 1
for i in range(17 ):
for j in range(17 ):
__UpperCAmelCase : Optional[Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3]
if temp > maximum:
__UpperCAmelCase : Union[str, Any] = temp
# diagonal 2
for i in range(17 ):
for j in range(3 , 20 ):
__UpperCAmelCase : List[Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3]
if temp > maximum:
__UpperCAmelCase : Union[str, Any] = temp
return maximum
if __name__ == "__main__":
print(solution())
| 16 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _A :
@staticmethod
def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = [
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
]
return object_detector, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 )
__UpperCAmelCase : Tuple = len(__UpperCAmelCase )
self.assertGreater(__UpperCAmelCase , 0 )
self.assertEqual(
__UpperCAmelCase , [
{
"""score""": ANY(__UpperCAmelCase ),
"""label""": ANY(__UpperCAmelCase ),
"""box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )},
}
for i in range(__UpperCAmelCase )
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> Tuple:
'''simple docstring'''
pass
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
] , )
__UpperCAmelCase : str = object_detector(
[
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
]
] , )
@require_torch
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
] , )
__UpperCAmelCase : Any = object_detector(
[
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> List[str]:
'''simple docstring'''
pass
@require_torch
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = 0.2
__UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
] , )
@require_torch
@slow
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 2
__UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
] , )
| 16 | 1 |
'''simple docstring'''
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
_UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[int, Iterable[int]] , lowerCAmelCase__ : bool , lowerCAmelCase__ : int ):
"""simple docstring"""
def constraint_to_multiple_of(lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str]=0 , lowerCAmelCase__ : Any=None ):
__UpperCAmelCase : Tuple = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
__UpperCAmelCase : Optional[Any] = math.floor(val / multiple ) * multiple
if x < min_val:
__UpperCAmelCase : List[Any] = math.ceil(val / multiple ) * multiple
return x
__UpperCAmelCase : int = (output_size, output_size) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else output_size
__UpperCAmelCase , __UpperCAmelCase : Dict = get_image_size(lowerCAmelCase__ )
__UpperCAmelCase , __UpperCAmelCase : Any = output_size
# determine new height and width
__UpperCAmelCase : Tuple = output_height / input_height
__UpperCAmelCase : Optional[Any] = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
__UpperCAmelCase : Optional[Any] = scale_width
else:
# fit height
__UpperCAmelCase : str = scale_height
__UpperCAmelCase : Optional[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=lowerCAmelCase__ )
__UpperCAmelCase : List[str] = constraint_to_multiple_of(scale_width * input_width , multiple=lowerCAmelCase__ )
return (new_height, new_width)
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["pixel_values"]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = False , __UpperCAmelCase = 1 , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCAmelCase : List[str] = size if size is not None else {"""height""": 384, """width""": 384}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase )
__UpperCAmelCase : Dict = do_resize
__UpperCAmelCase : List[str] = size
__UpperCAmelCase : List[str] = keep_aspect_ratio
__UpperCAmelCase : Dict = ensure_multiple_of
__UpperCAmelCase : Any = resample
__UpperCAmelCase : Any = do_rescale
__UpperCAmelCase : str = rescale_factor
__UpperCAmelCase : Any = do_normalize
__UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = 1 , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' )
__UpperCAmelCase : List[Any] = get_resize_output_image_size(
__UpperCAmelCase , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=__UpperCAmelCase , multiple=__UpperCAmelCase , )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[str]:
'''simple docstring'''
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : str = size if size is not None else self.size
__UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase )
__UpperCAmelCase : str = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
__UpperCAmelCase : List[Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
__UpperCAmelCase : int = resample if resample is not None else self.resample
__UpperCAmelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : Optional[int] = image_std if image_std is not None else self.image_std
__UpperCAmelCase : Dict = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
__UpperCAmelCase : Optional[Any] = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
__UpperCAmelCase : Optional[int] = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_rescale:
__UpperCAmelCase : Any = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
__UpperCAmelCase : Tuple = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
__UpperCAmelCase : List[str] = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
__UpperCAmelCase : List[str] = {"""pixel_values""": images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(__UpperCAmelCase ) != len(__UpperCAmelCase ):
raise ValueError(
"""Make sure that you pass in as many target sizes as the batch dimension of the logits""" )
if is_torch_tensor(__UpperCAmelCase ):
__UpperCAmelCase : Any = target_sizes.numpy()
__UpperCAmelCase : Optional[Any] = []
for idx in range(len(__UpperCAmelCase ) ):
__UpperCAmelCase : str = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(__UpperCAmelCase )
else:
__UpperCAmelCase : Dict = logits.argmax(dim=1 )
__UpperCAmelCase : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 16 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.txt'''}
_UpperCamelCase = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': 512,
'''YituTech/conv-bert-medium-small''': 512,
'''YituTech/conv-bert-small''': 512,
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION
_SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars
):
__UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) )
__UpperCAmelCase : Union[str, Any] = do_lower_case
__UpperCAmelCase : str = strip_accents
__UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars
__UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase )
__UpperCAmelCase : List[Any] = do_lower_case
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [self.sep_token_id]
__UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_UpperCamelCase = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''OwlViTFeatureExtractor''']
_UpperCamelCase = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_UpperCamelCase = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''OwlViTFeatureExtractor''']
_UpperCamelCase = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 1 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
_UpperCamelCase = 8
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]=BITS ):
"""simple docstring"""
__UpperCAmelCase : Tuple = x.device
__UpperCAmelCase : Union[str, Any] = (x * 255).int().clamp(0 , 255 )
__UpperCAmelCase : Any = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = rearrange(lowerCAmelCase__ , """d -> d 1 1""" )
__UpperCAmelCase : List[str] = rearrange(lowerCAmelCase__ , """b c h w -> b c 1 h w""" )
__UpperCAmelCase : List[Any] = ((x & mask) != 0).float()
__UpperCAmelCase : Optional[Any] = rearrange(lowerCAmelCase__ , """b c d h w -> b (c d) h w""" )
__UpperCAmelCase : Union[str, Any] = bits * 2 - 1
return bits
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int=BITS ):
"""simple docstring"""
__UpperCAmelCase : Any = x.device
__UpperCAmelCase : Optional[int] = (x > 0).int()
__UpperCAmelCase : Optional[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCAmelCase__ , dtype=torch.intaa )
__UpperCAmelCase : Dict = rearrange(lowerCAmelCase__ , """d -> d 1 1""" )
__UpperCAmelCase : Optional[int] = rearrange(lowerCAmelCase__ , """b (c d) h w -> b c d h w""" , d=8 )
__UpperCAmelCase : int = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" )
return (dec / 255).clamp(0.0 , 1.0 )
def lowercase_ ( self : Dict , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : int , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : bool = True , ):
"""simple docstring"""
if self.num_inference_steps is None:
raise ValueError(
"""Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
__UpperCAmelCase : List[str] = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
__UpperCAmelCase : Dict = self.alphas_cumprod[timestep]
__UpperCAmelCase : Any = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
__UpperCAmelCase : Optional[Any] = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__UpperCAmelCase : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
__UpperCAmelCase : int = self.bit_scale
if self.config.clip_sample:
__UpperCAmelCase : Optional[int] = torch.clamp(lowerCAmelCase__ , -scale , lowerCAmelCase__ )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
__UpperCAmelCase : List[str] = self._get_variance(lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
__UpperCAmelCase : Optional[int] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__UpperCAmelCase : Any = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__UpperCAmelCase : Any = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
__UpperCAmelCase : Optional[Any] = model_output.device if torch.is_tensor(lowerCAmelCase__ ) else """cpu"""
__UpperCAmelCase : str = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowerCAmelCase__ ).to(lowerCAmelCase__ )
__UpperCAmelCase : Union[str, Any] = self._get_variance(lowerCAmelCase__ , lowerCAmelCase__ ) ** 0.5 * eta * noise
__UpperCAmelCase : int = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ )
def lowercase_ ( self : int , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : int , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : List[str]="epsilon" , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : bool = True , ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
__UpperCAmelCase , __UpperCAmelCase : List[Any] = torch.split(lowerCAmelCase__ , sample.shape[1] , dim=1 )
else:
__UpperCAmelCase : Optional[int] = None
# 1. compute alphas, betas
__UpperCAmelCase : Dict = self.alphas_cumprod[t]
__UpperCAmelCase : List[Any] = self.alphas_cumprod[t - 1] if t > 0 else self.one
__UpperCAmelCase : int = 1 - alpha_prod_t
__UpperCAmelCase : Dict = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
__UpperCAmelCase : Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
__UpperCAmelCase : Optional[Any] = model_output
else:
raise ValueError(f'Unsupported prediction_type {prediction_type}.' )
# 3. Clip "predicted x_0"
__UpperCAmelCase : Optional[Any] = self.bit_scale
if self.config.clip_sample:
__UpperCAmelCase : Any = torch.clamp(lowerCAmelCase__ , -scale , lowerCAmelCase__ )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__UpperCAmelCase : List[Any] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
__UpperCAmelCase : List[str] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__UpperCAmelCase : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
__UpperCAmelCase : Optional[int] = 0
if t > 0:
__UpperCAmelCase : Optional[int] = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowerCAmelCase__ ).to(model_output.device )
__UpperCAmelCase : List[str] = (self._get_variance(lowerCAmelCase__ , predicted_variance=lowerCAmelCase__ ) ** 0.5) * noise
__UpperCAmelCase : Tuple = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ )
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1.0 , ) -> Tuple:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Union[str, Any] = bit_scale
__UpperCAmelCase : Union[str, Any] = (
ddim_bit_scheduler_step if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase )
@torch.no_grad()
def __call__( self , __UpperCAmelCase = 256 , __UpperCAmelCase = 256 , __UpperCAmelCase = 50 , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=__UpperCAmelCase , )
__UpperCAmelCase : Dict = decimal_to_bits(__UpperCAmelCase ) * self.bit_scale
__UpperCAmelCase : Any = latents.to(self.device )
self.scheduler.set_timesteps(__UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
__UpperCAmelCase : Tuple = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
__UpperCAmelCase : Union[str, Any] = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample
__UpperCAmelCase : List[str] = bits_to_decimal(__UpperCAmelCase )
if output_type == "pil":
__UpperCAmelCase : str = self.numpy_to_pil(__UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__UpperCAmelCase )
| 16 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
'''simple docstring'''
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
if a < 0:
raise ValueError("""Input value must be a positive integer""" )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError("""Input value must be a 'int' type""" )
return bin(lowerCAmelCase__ ).count("""1""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
_UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
_SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" )
__UpperCAmelCase : List[Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] )
__UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
# Legacy behavior
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] )
__UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""label""": """LABEL_0""", """score""": 0.504},
{"""label""": """LABEL_0""", """score""": 0.504},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
import torch
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@require_tf
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@slow
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = pipeline("""text-classification""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
@slow
@require_tf
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : int = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
__UpperCAmelCase : Union[str, Any] = """HuggingFace is in"""
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
__UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""]
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase )
__UpperCAmelCase : Any = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , )
__UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""}
__UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , )
self.assertTrue(outputs["""label"""] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
__UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]]
with self.assertRaises(__UpperCAmelCase ):
text_classifier(__UpperCAmelCase )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
__UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
| 16 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from accelerate import PartialState
from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce
def lowercase_ ( lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device )
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase : str = create_tensor(lowerCAmelCase__ )
__UpperCAmelCase : Union[str, Any] = gather(lowerCAmelCase__ )
assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) )
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase : Dict = [state.process_index]
__UpperCAmelCase : int = gather_object(lowerCAmelCase__ )
assert len(lowerCAmelCase__ ) == state.num_processes, f'{gathered_obj}, {len(lowerCAmelCase__ )} != {state.num_processes}'
assert gathered_obj == list(range(state.num_processes ) ), f'{gathered_obj} != {list(range(state.num_processes ) )}'
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase : Any = create_tensor(lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = broadcast(lowerCAmelCase__ )
assert broadcasted_tensor.shape == torch.Size([state.num_processes] )
assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) )
def lowercase_ ( lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
if state.is_main_process:
__UpperCAmelCase : Optional[Any] = torch.arange(state.num_processes + 1 ).to(state.device )
else:
__UpperCAmelCase : List[str] = torch.arange(state.num_processes ).to(state.device )
__UpperCAmelCase : int = pad_across_processes(lowerCAmelCase__ )
assert padded_tensor.shape == torch.Size([state.num_processes + 1] )
if not state.is_main_process:
assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0]
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
if state.num_processes != 2:
return
__UpperCAmelCase : Any = create_tensor(lowerCAmelCase__ )
__UpperCAmelCase : str = reduce(lowerCAmelCase__ , """sum""" )
__UpperCAmelCase : Tuple = torch.tensor([4.0, 6] ).to(state.device )
assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ), f'{reduced_tensor} != {truth_tensor}'
def lowercase_ ( lowerCAmelCase__ : Tuple ):
"""simple docstring"""
if state.num_processes != 2:
return
__UpperCAmelCase : int = create_tensor(lowerCAmelCase__ )
__UpperCAmelCase : Union[str, Any] = reduce(lowerCAmelCase__ , """mean""" )
__UpperCAmelCase : int = torch.tensor([2.0, 3] ).to(state.device )
assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ), f'{reduced_tensor} != {truth_tensor}'
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
main()
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = PartialState()
state.print(f'State: {state}' )
state.print("""testing gather""" )
test_gather(lowerCAmelCase__ )
state.print("""testing gather_object""" )
test_gather_object(lowerCAmelCase__ )
state.print("""testing broadcast""" )
test_broadcast(lowerCAmelCase__ )
state.print("""testing pad_across_processes""" )
test_pad_across_processes(lowerCAmelCase__ )
state.print("""testing reduce_sum""" )
test_reduce_sum(lowerCAmelCase__ )
state.print("""testing reduce_mean""" )
test_reduce_mean(lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 16 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
| 16 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''uw-madison/mra-base-512-4''': '''https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json''',
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : int = "mra"
def __init__( self , __UpperCAmelCase=50_265 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3_072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase="absolute" , __UpperCAmelCase=4 , __UpperCAmelCase="full" , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
__UpperCAmelCase : List[str] = vocab_size
__UpperCAmelCase : Optional[int] = max_position_embeddings
__UpperCAmelCase : Dict = hidden_size
__UpperCAmelCase : Union[str, Any] = num_hidden_layers
__UpperCAmelCase : int = num_attention_heads
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_act
__UpperCAmelCase : Union[str, Any] = hidden_dropout_prob
__UpperCAmelCase : Any = attention_probs_dropout_prob
__UpperCAmelCase : Any = initializer_range
__UpperCAmelCase : List[str] = type_vocab_size
__UpperCAmelCase : List[str] = layer_norm_eps
__UpperCAmelCase : List[str] = position_embedding_type
__UpperCAmelCase : Union[str, Any] = block_per_row
__UpperCAmelCase : Union[str, Any] = approx_mode
__UpperCAmelCase : Dict = initial_prior_first_n_blocks
__UpperCAmelCase : Tuple = initial_prior_diagonal_n_blocks
| 16 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class _A :
def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase )
__UpperCAmelCase : List[str] = length
__UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa )
__UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ) -> Dict:
'''simple docstring'''
return self.length
def __getitem__( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return {"x": self.x[i], "y": self.y[i]}
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Any = True
def __A ( self , __UpperCAmelCase=None ) -> str:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : Optional[int] = False
return x * self.a[0] + self.b[0]
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : str = True
def __A ( self , __UpperCAmelCase=None ) -> Tuple:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : int = False
return x * self.a + self.b
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
__UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" )
__UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
__UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" )
__UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )}
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCAmelCase : List[Any] = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" )
if "label" in examples:
__UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCAmelCase : Tuple = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCAmelCase__ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 )
__UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 16 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_UpperCamelCase = {
'''configuration_mask2former''': [
'''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Mask2FormerConfig''',
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''Mask2FormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Mask2FormerForUniversalSegmentation''',
'''Mask2FormerModel''',
'''Mask2FormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 16 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None
@property
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = (3, 32, 128)
__UpperCAmelCase : Tuple = tempfile.mkdtemp()
# fmt: off
__UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
__UpperCAmelCase : List[Any] = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
__UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) )
return image_input
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.get_tokenizer()
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
__UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.prepare_image_inputs()
__UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" )
__UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Dict = """test"""
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = """test"""
__UpperCAmelCase : int = self.prepare_image_inputs()
__UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase )
__UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = self.get_tokenizer()
__UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : str = None
__UpperCAmelCase : Dict = self.prepare_image_inputs()
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Any = self.get_image_processor()
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 )
__UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 )
__UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 )
__UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
| 16 | 1 |
'''simple docstring'''
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print('''Googling.....''')
_UpperCamelCase = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:])
_UpperCamelCase = requests.get(url, headers={'''UserAgent''': UserAgent().random})
# res.raise_for_status()
with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class
for data in res.iter_content(1_0000):
out_file.write(data)
_UpperCamelCase = BeautifulSoup(res.text, '''html.parser''')
_UpperCamelCase = list(soup.select('''.eZt8xd'''))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get('''href'''))
else:
webbrowser.open(F'https://google.com{link.get("href")}')
| 16 |
'''simple docstring'''
from collections.abc import Sequence
def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ):
"""simple docstring"""
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__UpperCAmelCase : Any = nums[0]
for i in range(1 , len(lowerCAmelCase__ ) ):
__UpperCAmelCase : Union[str, Any] = nums[i]
__UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_UpperCamelCase = int(input('''Enter number of elements : ''').strip())
_UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n]
print(max_subsequence_sum(array))
| 16 | 1 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''',
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = "wavlm"
def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3_072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=320 , __UpperCAmelCase=800 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=(512, 512, 512, 512, 1_500) , __UpperCAmelCase=(5, 3, 3, 1, 1) , __UpperCAmelCase=(1, 2, 3, 1, 1) , __UpperCAmelCase=512 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
__UpperCAmelCase : int = hidden_size
__UpperCAmelCase : Optional[int] = feat_extract_norm
__UpperCAmelCase : Optional[Any] = feat_extract_activation
__UpperCAmelCase : List[str] = list(__UpperCAmelCase )
__UpperCAmelCase : Tuple = list(__UpperCAmelCase )
__UpperCAmelCase : List[str] = list(__UpperCAmelCase )
__UpperCAmelCase : List[str] = conv_bias
__UpperCAmelCase : Any = num_buckets
__UpperCAmelCase : List[Any] = max_bucket_distance
__UpperCAmelCase : List[Any] = num_conv_pos_embeddings
__UpperCAmelCase : Optional[Any] = num_conv_pos_embedding_groups
__UpperCAmelCase : List[Any] = len(self.conv_dim )
__UpperCAmelCase : Union[str, Any] = num_hidden_layers
__UpperCAmelCase : List[str] = intermediate_size
__UpperCAmelCase : Tuple = hidden_act
__UpperCAmelCase : str = num_attention_heads
__UpperCAmelCase : Tuple = hidden_dropout
__UpperCAmelCase : Optional[Any] = attention_dropout
__UpperCAmelCase : Any = activation_dropout
__UpperCAmelCase : Optional[int] = feat_proj_dropout
__UpperCAmelCase : List[Any] = final_dropout
__UpperCAmelCase : str = layerdrop
__UpperCAmelCase : Optional[Any] = layer_norm_eps
__UpperCAmelCase : int = initializer_range
__UpperCAmelCase : List[Any] = num_ctc_classes
__UpperCAmelCase : Union[str, Any] = vocab_size
__UpperCAmelCase : Optional[int] = do_stable_layer_norm
__UpperCAmelCase : Dict = use_weighted_layer_sum
__UpperCAmelCase : Any = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCAmelCase : Dict = apply_spec_augment
__UpperCAmelCase : Union[str, Any] = mask_time_prob
__UpperCAmelCase : List[str] = mask_time_length
__UpperCAmelCase : Union[str, Any] = mask_time_min_masks
__UpperCAmelCase : Dict = mask_feature_prob
__UpperCAmelCase : Any = mask_feature_length
# parameters for pretraining with codevector quantized representations
__UpperCAmelCase : int = num_codevectors_per_group
__UpperCAmelCase : Tuple = num_codevector_groups
__UpperCAmelCase : List[str] = contrastive_logits_temperature
__UpperCAmelCase : List[str] = num_negatives
__UpperCAmelCase : Any = codevector_dim
__UpperCAmelCase : str = proj_codevector_dim
__UpperCAmelCase : Any = diversity_loss_weight
# ctc loss
__UpperCAmelCase : Dict = ctc_loss_reduction
__UpperCAmelCase : List[str] = ctc_zero_infinity
# adapter
__UpperCAmelCase : Optional[Any] = add_adapter
__UpperCAmelCase : List[Any] = adapter_kernel_size
__UpperCAmelCase : int = adapter_stride
__UpperCAmelCase : List[Any] = num_adapter_layers
__UpperCAmelCase : List[str] = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__UpperCAmelCase : Dict = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__UpperCAmelCase : List[Any] = list(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = list(__UpperCAmelCase )
__UpperCAmelCase : Dict = list(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = xvector_output_dim
@property
def __A ( self ) -> Any:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 16 |
'''simple docstring'''
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = data
__UpperCAmelCase : int = previous
__UpperCAmelCase : Union[str, Any] = next_node
def __str__( self ) -> str:
'''simple docstring'''
return f'{self.data}'
def __A ( self ) -> int:
'''simple docstring'''
return self.data
def __A ( self ) -> List[str]:
'''simple docstring'''
return self.next
def __A ( self ) -> str:
'''simple docstring'''
return self.previous
class _A :
def __init__( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = head
def __iter__( self ) -> str:
'''simple docstring'''
return self
def __A ( self ) -> str:
'''simple docstring'''
if not self.current:
raise StopIteration
else:
__UpperCAmelCase : List[str] = self.current.get_data()
__UpperCAmelCase : int = self.current.get_next()
return value
class _A :
def __init__( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = None # First node in list
__UpperCAmelCase : List[str] = None # Last node in list
def __str__( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.head
__UpperCAmelCase : Optional[int] = []
while current is not None:
nodes.append(current.get_data() )
__UpperCAmelCase : Any = current.get_next()
return " ".join(str(__UpperCAmelCase ) for node in nodes )
def __contains__( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.head
while current:
if current.get_data() == value:
return True
__UpperCAmelCase : Optional[Any] = current.get_next()
return False
def __iter__( self ) -> str:
'''simple docstring'''
return LinkedListIterator(self.head )
def __A ( self ) -> List[Any]:
'''simple docstring'''
if self.head:
return self.head.get_data()
return None
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
if self.tail:
return self.tail.get_data()
return None
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
__UpperCAmelCase : str = node
__UpperCAmelCase : List[str] = node
else:
self.insert_before_node(self.head , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase )
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.set_tail(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Tuple = node
__UpperCAmelCase : List[Any] = node.previous
if node.get_previous() is None:
__UpperCAmelCase : str = node_to_insert
else:
__UpperCAmelCase : Optional[Any] = node_to_insert
__UpperCAmelCase : List[Any] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : List[str] = node
__UpperCAmelCase : Union[str, Any] = node.next
if node.get_next() is None:
__UpperCAmelCase : Dict = node_to_insert
else:
__UpperCAmelCase : Any = node_to_insert
__UpperCAmelCase : List[str] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.head
while node:
if current_position == position:
self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase )
return
current_position += 1
__UpperCAmelCase : int = node.next
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Node:
'''simple docstring'''
__UpperCAmelCase : Dict = self.head
while node:
if node.get_data() == item:
return node
__UpperCAmelCase : List[str] = node.get_next()
raise Exception("""Node not found""" )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
if (node := self.get_node(__UpperCAmelCase )) is not None:
if node == self.head:
__UpperCAmelCase : Optional[int] = self.head.get_next()
if node == self.tail:
__UpperCAmelCase : Union[str, Any] = self.tail.get_previous()
self.remove_node_pointers(__UpperCAmelCase )
@staticmethod
def __A ( __UpperCAmelCase ) -> None:
'''simple docstring'''
if node.get_next():
__UpperCAmelCase : Optional[Any] = node.previous
if node.get_previous():
__UpperCAmelCase : int = node.next
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Union[str, Any] = None
def __A ( self ) -> List[Any]:
'''simple docstring'''
return self.head is None
def lowercase_ ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 1 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Any = generate_pascal_triangle(lowerCAmelCase__ )
for row_idx in range(lowerCAmelCase__ ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=""" """ )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=""" """ )
else:
print(triangle[row_idx][col_idx] , end="""""" )
print()
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError("""The input value of 'num_rows' should be 'int'""" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"""The input value of 'num_rows' should be greater than or equal to 0""" )
__UpperCAmelCase : list[list[int]] = []
for current_row_idx in range(lowerCAmelCase__ ):
__UpperCAmelCase : Optional[int] = populate_current_row(lowerCAmelCase__ , lowerCAmelCase__ )
triangle.append(lowerCAmelCase__ )
return triangle
def lowercase_ ( lowerCAmelCase__ : list[list[int]] , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
__UpperCAmelCase , __UpperCAmelCase : Tuple = 1, 1
for current_col_idx in range(1 , lowerCAmelCase__ ):
calculate_current_element(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return current_row
def lowercase_ ( lowerCAmelCase__ : list[list[int]] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx - 1]
__UpperCAmelCase : Dict = triangle[current_row_idx - 1][current_col_idx]
__UpperCAmelCase : List[str] = above_to_left_elt + above_to_right_elt
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError("""The input value of 'num_rows' should be 'int'""" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"""The input value of 'num_rows' should be greater than or equal to 0""" )
__UpperCAmelCase : list[list[int]] = [[1]]
for row_index in range(1 , lowerCAmelCase__ ):
__UpperCAmelCase : Optional[int] = [0] + result[-1] + [0]
__UpperCAmelCase : str = row_index + 1
# Calculate the number of distinct elements in a row
__UpperCAmelCase : Dict = sum(divmod(lowerCAmelCase__ , 2 ) )
__UpperCAmelCase : Tuple = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
__UpperCAmelCase : str = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
__UpperCAmelCase : Any = row_first_half + row_second_half
result.append(lowerCAmelCase__ )
return result
def lowercase_ ( ):
"""simple docstring"""
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(lowerCAmelCase__ : Callable , lowerCAmelCase__ : int ) -> None:
__UpperCAmelCase : Optional[int] = f'{func.__name__}({value})'
__UpperCAmelCase : Optional[Any] = timeit(f'__main__.{call}' , setup="""import __main__""" )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f'{call:38} -- {timing:.4f} seconds' )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(lowerCAmelCase__ , lowerCAmelCase__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 16 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : List[str]
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __call__( self ) -> Any:
'''simple docstring'''
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : Optional[List] = None
_SCREAMING_SNAKE_CASE : Optional[int] = None
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None
__UpperCAmelCase : int = len(self.languages ) if self.languages else None
def __call__( self ) -> Optional[Any]:
'''simple docstring'''
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def __A ( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = set(self.languages )
if self.languages and set(__UpperCAmelCase ) - lang_set:
raise ValueError(
f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__UpperCAmelCase : Dict = []
for lang, text in translation_dict.items():
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 16 | 1 |
'''simple docstring'''
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
# TODO: is there an appropriate internal test set?
_SCREAMING_SNAKE_CASE : List[str] = "ssube/stable-diffusion-x4-upscaler-onnx"
def __A ( self , __UpperCAmelCase=0 ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : str = floats_tensor((1, 3, 128, 128) , rng=random.Random(__UpperCAmelCase ) )
__UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Tuple = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_dummy_inputs()
__UpperCAmelCase : Optional[Any] = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Any = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 512, 512, 3)
__UpperCAmelCase : Optional[Any] = np.array(
[0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
__UpperCAmelCase : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : str = self.get_dummy_inputs()
__UpperCAmelCase : Tuple = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
__UpperCAmelCase : Union[str, Any] = np.array(
[0.689_8892, 0.5924_0556, 0.5249_9527, 0.5886_6215, 0.5225_8235, 0.5257_2715, 0.6241_4473, 0.617_4387, 0.621_4964] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
__UpperCAmelCase : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : str = self.get_dummy_inputs()
__UpperCAmelCase : List[Any] = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
__UpperCAmelCase : Dict = np.array(
[0.765_9278, 0.7643_7664, 0.7557_9107, 0.769_1116, 0.7766_6986, 0.772_7672, 0.775_8664, 0.781_2226, 0.7694_2515] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
__UpperCAmelCase : Tuple = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.get_dummy_inputs()
__UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Tuple = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
__UpperCAmelCase : Optional[int] = np.array(
[0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
__UpperCAmelCase : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs()
__UpperCAmelCase : Any = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
__UpperCAmelCase : Optional[int] = np.array(
[0.7742_4496, 0.77_3601, 0.764_5288, 0.776_9598, 0.777_2739, 0.773_8688, 0.7818_7233, 0.7787_9584, 0.76_7043] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class _A ( unittest.TestCase ):
@property
def __A ( self ) -> Any:
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = ort.SessionOptions()
__UpperCAmelCase : Any = False
return options
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
__UpperCAmelCase : Optional[int] = init_image.resize((128, 128) )
# using the PNDM scheduler by default
__UpperCAmelCase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"""ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = """A fantasy landscape, trending on artstation"""
__UpperCAmelCase : str = torch.manual_seed(0 )
__UpperCAmelCase : Any = pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=__UpperCAmelCase , output_type="""np""" , )
__UpperCAmelCase : Any = output.images
__UpperCAmelCase : Union[str, Any] = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
__UpperCAmelCase : List[Any] = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
__UpperCAmelCase : Tuple = init_image.resize((128, 128) )
__UpperCAmelCase : Any = LMSDiscreteScheduler.from_pretrained(
"""ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" )
__UpperCAmelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"""ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=__UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : str = """A fantasy landscape, trending on artstation"""
__UpperCAmelCase : int = torch.manual_seed(0 )
__UpperCAmelCase : Union[str, Any] = pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=__UpperCAmelCase , output_type="""np""" , )
__UpperCAmelCase : Any = output.images
__UpperCAmelCase : int = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
__UpperCAmelCase : List[str] = np.array(
[0.5017_3753, 0.5022_3356, 0.50_2039, 0.5023_3036, 0.502_3725, 0.502_2601, 0.501_8758, 0.5023_4085, 0.5024_1566] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 16 |
'''simple docstring'''
from statistics import mean
import numpy as np
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Tuple = 0
# Number of processes finished
__UpperCAmelCase : Optional[int] = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
__UpperCAmelCase : Tuple = [0] * no_of_process
# List to include calculation results
__UpperCAmelCase : int = [0] * no_of_process
# Sort by arrival time.
__UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )]
__UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )]
arrival_time.sort()
while no_of_process > finished_process_count:
__UpperCAmelCase : Dict = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
__UpperCAmelCase : Any = arrival_time[i]
__UpperCAmelCase : Any = 0
# Index showing the location of the process being performed
__UpperCAmelCase : Any = 0
# Saves the current response ratio.
__UpperCAmelCase : List[str] = 0
for i in range(0 , lowerCAmelCase__ ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
__UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
__UpperCAmelCase : Tuple = temp
__UpperCAmelCase : List[str] = i
# Calculate the turn around time
__UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
__UpperCAmelCase : List[str] = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [0] * no_of_process
for i in range(0 , lowerCAmelCase__ ):
__UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
_UpperCamelCase = 5
_UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E''']
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
_UpperCamelCase = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''')
for i in range(0, no_of_process):
print(
F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'
F'{turn_around_time[i]}\t\t\t{waiting_time[i]}'
)
print(F'average waiting time : {mean(waiting_time):.5f}')
print(F'average turn around time : {mean(turn_around_time):.5f}')
| 16 | 1 |
'''simple docstring'''
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class _A ( __SCREAMING_SNAKE_CASE ):
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[str] = tempfile.mkdtemp()
__UpperCAmelCase : List[str] = 8
# DPR tok
__UpperCAmelCase : List[str] = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
__UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , """dpr_tokenizer""" )
os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = os.path.join(__UpperCAmelCase , DPR_VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
# BART tok
__UpperCAmelCase : str = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
__UpperCAmelCase : int = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
__UpperCAmelCase : Tuple = {"""unk_token""": """<unk>"""}
__UpperCAmelCase : str = os.path.join(self.tmpdirname , """bart_tokenizer""" )
os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase )
__UpperCAmelCase : List[str] = os.path.join(__UpperCAmelCase , BART_VOCAB_FILES_NAMES["""vocab_file"""] )
__UpperCAmelCase : Optional[int] = os.path.join(__UpperCAmelCase , BART_VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(__UpperCAmelCase ) )
def __A ( self ) -> DPRQuestionEncoderTokenizer:
'''simple docstring'''
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) )
def __A ( self ) -> DPRContextEncoderTokenizer:
'''simple docstring'''
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) )
def __A ( self ) -> BartTokenizer:
'''simple docstring'''
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) )
def __A ( self ) -> Tuple:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Dataset.from_dict(
{
"""id""": ["""0""", """1"""],
"""text""": ["""foo""", """bar"""],
"""title""": ["""Foo""", """Bar"""],
"""embeddings""": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index("""embeddings""" , string_factory="""Flat""" , metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.get_dummy_dataset()
__UpperCAmelCase : Union[str, Any] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , )
with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset:
__UpperCAmelCase : Union[str, Any] = dataset
__UpperCAmelCase : List[Any] = RagRetriever(
__UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
return retriever
def __A ( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = self.get_dummy_dataset()
__UpperCAmelCase : Optional[int] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="""custom""" , )
if from_disk:
__UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , """dataset""" )
__UpperCAmelCase : Dict = os.path.join(self.tmpdirname , """index.faiss""" )
dataset.get_index("""embeddings""" ).save(os.path.join(self.tmpdirname , """index.faiss""" ) )
dataset.drop_index("""embeddings""" )
dataset.save_to_disk(os.path.join(self.tmpdirname , """dataset""" ) )
del dataset
__UpperCAmelCase : Any = RagRetriever(
__UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
else:
__UpperCAmelCase : Tuple = RagRetriever(
__UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __UpperCAmelCase ) , )
return retriever
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = Dataset.from_dict(
{
"""id""": ["""0""", """1"""],
"""text""": ["""foo""", """bar"""],
"""title""": ["""Foo""", """Bar"""],
"""embeddings""": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index("""embeddings""" , string_factory="""Flat""" , metric_type=faiss.METRIC_INNER_PRODUCT )
__UpperCAmelCase : str = os.path.join(self.tmpdirname , """hf_bert_base.hnswSQ8_correct_phi_128.c_index""" )
dataset.save_faiss_index("""embeddings""" , index_file_name + """.index.dpr""" )
pickle.dump(dataset["""id"""] , open(index_file_name + """.index_meta.dpr""" , """wb""" ) )
__UpperCAmelCase : Any = os.path.join(self.tmpdirname , """psgs_w100.tsv.pkl""" )
__UpperCAmelCase : Optional[int] = {sample["""id"""]: [sample["""text"""], sample["""title"""]] for sample in dataset}
pickle.dump(__UpperCAmelCase , open(__UpperCAmelCase , """wb""" ) )
__UpperCAmelCase : Union[str, Any] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="""legacy""" , index_path=self.tmpdirname , )
__UpperCAmelCase : str = RagRetriever(
__UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = 1
__UpperCAmelCase : Optional[Any] = self.get_dummy_canonical_hf_index_retriever()
__UpperCAmelCase : List[str] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__UpperCAmelCase ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["""embeddings""", """id""", """text""", """title"""] )
self.assertEqual(len(doc_dicts[0]["""id"""] ) , __UpperCAmelCase )
self.assertEqual(doc_dicts[0]["""id"""][0] , """1""" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["""id"""][0] , """0""" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset:
__UpperCAmelCase : List[Any] = self.get_dummy_dataset()
retriever.save_pretrained(__UpperCAmelCase )
__UpperCAmelCase : List[str] = RagRetriever.from_pretrained(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__UpperCAmelCase : Dict = retriever.retrieve(__UpperCAmelCase , n_docs=1 )
self.assertTrue(out is not None )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[str] = 1
__UpperCAmelCase : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase )
__UpperCAmelCase : str = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__UpperCAmelCase ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["""embeddings""", """id""", """text""", """title"""] )
self.assertEqual(len(doc_dicts[0]["""id"""] ) , __UpperCAmelCase )
self.assertEqual(doc_dicts[0]["""id"""][0] , """1""" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["""id"""][0] , """0""" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(__UpperCAmelCase )
__UpperCAmelCase : Any = RagRetriever.from_pretrained(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Dict = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__UpperCAmelCase : Dict = retriever.retrieve(__UpperCAmelCase , n_docs=1 )
self.assertTrue(out is not None )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = 1
__UpperCAmelCase : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase )
__UpperCAmelCase : str = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__UpperCAmelCase ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["""embeddings""", """id""", """text""", """title"""] )
self.assertEqual(len(doc_dicts[0]["""id"""] ) , __UpperCAmelCase )
self.assertEqual(doc_dicts[0]["""id"""][0] , """1""" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["""id"""][0] , """0""" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(__UpperCAmelCase )
__UpperCAmelCase : int = RagRetriever.from_pretrained(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : List[str] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__UpperCAmelCase : Optional[int] = retriever.retrieve(__UpperCAmelCase , n_docs=1 )
self.assertTrue(out is not None )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = 1
__UpperCAmelCase : Tuple = self.get_dummy_legacy_index_retriever()
__UpperCAmelCase : List[str] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__UpperCAmelCase ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["""text""", """title"""] )
self.assertEqual(len(doc_dicts[0]["""text"""] ) , __UpperCAmelCase )
self.assertEqual(doc_dicts[0]["""text"""][0] , """bar""" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["""text"""][0] , """foo""" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(__UpperCAmelCase )
__UpperCAmelCase : int = RagRetriever.from_pretrained(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__UpperCAmelCase : Any = retriever.retrieve(__UpperCAmelCase , n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
import torch
__UpperCAmelCase : Any = 1
__UpperCAmelCase : Dict = self.get_dummy_canonical_hf_index_retriever()
__UpperCAmelCase : Tuple = [[5, 7], [10, 11]]
__UpperCAmelCase : List[str] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__UpperCAmelCase : Union[str, Any] = retriever(__UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = (
out["""context_input_ids"""],
out["""context_attention_mask"""],
out["""retrieved_doc_embeds"""],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , np.ndarray )
__UpperCAmelCase : str = retriever(
__UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase , return_tensors="""pt""" , )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = ( # noqa: F841
out["""context_input_ids"""],
out["""context_attention_mask"""],
out["""retrieved_doc_embeds"""],
out["""doc_ids"""],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(__UpperCAmelCase , torch.Tensor )
self.assertIsInstance(__UpperCAmelCase , torch.Tensor )
self.assertIsInstance(__UpperCAmelCase , torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_dpr_ctx_encoder_tokenizer()
__UpperCAmelCase : List[str] = 1
__UpperCAmelCase : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase )
retriever.set_ctx_encoder_tokenizer(__UpperCAmelCase )
__UpperCAmelCase : List[str] = [[5, 7], [10, 11]]
__UpperCAmelCase : Dict = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__UpperCAmelCase : Any = retriever(__UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase )
self.assertEqual(
len(__UpperCAmelCase ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ("""tokenized_doc_ids""", """tokenized_doc_attention_mask""") ) , __UpperCAmelCase ) # check for doc token related keys in dictionary.
| 16 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = parent
__UpperCAmelCase : Any = batch_size
__UpperCAmelCase : Union[str, Any] = seq_length
__UpperCAmelCase : int = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[str] = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Union[str, Any] = num_hidden_layers
__UpperCAmelCase : Optional[int] = num_attention_heads
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_size
__UpperCAmelCase : Dict = type_sequence_label_size
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : Optional[Any] = num_choices
__UpperCAmelCase : int = scope
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : List[Any] = None
if self.use_input_mask:
__UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Any = None
if self.use_token_type_ids:
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Optional[int] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> List[str]:
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_config()
__UpperCAmelCase : List[Any] = 300
return config
def __A ( self ) -> Dict:
'''simple docstring'''
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = self.prepare_config_and_inputs()
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : List[str] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.num_labels
__UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_choices
__UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : List[str] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
__UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Any = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : int = False
_SCREAMING_SNAKE_CASE : List[str] = False
_SCREAMING_SNAKE_CASE : Dict = ()
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = MraModelTester(self )
__UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : List[Any] = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""MRA does not output attentions""" )
def __A ( self ) -> List[Any]:
'''simple docstring'''
return
@require_torch
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : int = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Union[str, Any] = 50_265
__UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" )
__UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : Any = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Dict = 50_265
__UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : str = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 1 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : int = 100 ):
"""simple docstring"""
__UpperCAmelCase : int = (n * (n + 1) // 2) ** 2
__UpperCAmelCase : str = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(F'{solution() = }')
| 16 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Any = image_size
__UpperCAmelCase : Dict = patch_size
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : List[Any] = embed_dim
__UpperCAmelCase : str = depths
__UpperCAmelCase : Dict = num_heads
__UpperCAmelCase : str = window_size
__UpperCAmelCase : int = mlp_ratio
__UpperCAmelCase : Union[str, Any] = qkv_bias
__UpperCAmelCase : Dict = hidden_dropout_prob
__UpperCAmelCase : str = attention_probs_dropout_prob
__UpperCAmelCase : Optional[int] = drop_path_rate
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Optional[int] = use_absolute_embeddings
__UpperCAmelCase : Any = patch_norm
__UpperCAmelCase : Union[str, Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : Any = scope
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : Optional[int] = type_sequence_label_size
__UpperCAmelCase : int = encoder_stride
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : Tuple = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def __A ( self ) -> Dict:
'''simple docstring'''
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
__UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : str = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = self.type_sequence_label_size
__UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs
__UpperCAmelCase : Dict = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
_SCREAMING_SNAKE_CASE : List[str] = (
{"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Dict = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[str] = SwinvaModelTester(self )
__UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 )
def __A ( self ) -> Any:
'''simple docstring'''
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
@unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason="""Swinv2 does not use inputs_embeds""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCAmelCase : List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Tuple = model_class(__UpperCAmelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : str = [*signature.parameters.keys()]
__UpperCAmelCase : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = True
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : int = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : str = outputs.attentions
__UpperCAmelCase : Any = len(self.model_tester.depths )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__UpperCAmelCase : Dict = True
__UpperCAmelCase : int = config.window_size**2
__UpperCAmelCase : Any = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : Dict = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
__UpperCAmelCase : Dict = len(__UpperCAmelCase )
# Check attention is always last and order is fine
__UpperCAmelCase : Any = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
if hasattr(self.model_tester , """num_hidden_states_types""" ):
__UpperCAmelCase : Any = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
__UpperCAmelCase : Optional[int] = 2
self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) )
__UpperCAmelCase : Tuple = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : List[Any] = outputs.hidden_states
__UpperCAmelCase : List[Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# Swinv2 has a different seq_length
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__UpperCAmelCase : int = outputs.reshaped_hidden_states
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape
__UpperCAmelCase : Any = (
reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = 3
__UpperCAmelCase : str = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__UpperCAmelCase : int = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Tuple = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase )
for model_class in self.all_model_classes:
__UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class _A ( unittest.TestCase ):
@cached_property
def __A ( self ) -> int:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" )
if is_vision_available()
else None
)
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to(
__UpperCAmelCase )
__UpperCAmelCase : Tuple = self.default_image_processor
__UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase )
# verify the logits
__UpperCAmelCase : int = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 1 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str = " " ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = []
__UpperCAmelCase : Dict = 0
for index, char in enumerate(lowerCAmelCase__ ):
if char == separator:
split_words.append(string[last_index:index] )
__UpperCAmelCase : Union[str, Any] = index + 1
elif index + 1 == len(lowerCAmelCase__ ):
split_words.append(string[last_index : index + 1] )
return split_words
if __name__ == "__main__":
from doctest import testmod
testmod()
| 16 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
_UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f'Could not make batched video from {videos}' )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
__UpperCAmelCase : int = do_resize
__UpperCAmelCase : List[str] = size
__UpperCAmelCase : Any = do_center_crop
__UpperCAmelCase : Any = crop_size
__UpperCAmelCase : Optional[Any] = resample
__UpperCAmelCase : Dict = do_rescale
__UpperCAmelCase : List[str] = rescale_factor
__UpperCAmelCase : Dict = offset
__UpperCAmelCase : List[str] = do_normalize
__UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" in size:
__UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase )
elif "height" in size and "width" in size:
__UpperCAmelCase : Any = (size["""height"""], size["""width"""])
else:
raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = image.astype(np.floataa )
if offset:
__UpperCAmelCase : Tuple = image - (scale / 2)
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
if offset and not do_rescale:
raise ValueError("""For offset, do_rescale must also be set to True.""" )
# All transformations expect numpy arrays.
__UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase )
if do_resize:
__UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase )
if do_center_crop:
__UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase )
if do_rescale:
__UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase )
if do_normalize:
__UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase )
return image
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : List[Any] = resample if resample is not None else self.resample
__UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : List[Any] = offset if offset is not None else self.offset
__UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : int = image_std if image_std is not None else self.image_std
__UpperCAmelCase : Any = size if size is not None else self.size
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
__UpperCAmelCase : int = make_batched(__UpperCAmelCase )
__UpperCAmelCase : Tuple = [
[
self._preprocess_image(
image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , )
for img in video
]
for video in videos
]
__UpperCAmelCase : Tuple = {"""pixel_values""": videos}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ):
"""simple docstring"""
return x if y == 0 else greatest_common_divisor(lowerCAmelCase__ , x % y )
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ):
"""simple docstring"""
return (x * y) // greatest_common_divisor(lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : int = 20 ):
"""simple docstring"""
__UpperCAmelCase : int = 1
for i in range(1 , n + 1 ):
__UpperCAmelCase : Optional[Any] = lcm(lowerCAmelCase__ , lowerCAmelCase__ )
return g
if __name__ == "__main__":
print(F'{solution() = }')
| 16 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline
_SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
_SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
_SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : Dict = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
__UpperCAmelCase : List[Any] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
__UpperCAmelCase : Any = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__UpperCAmelCase : Dict = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vqvae""": vae,
"""bert""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any:
'''simple docstring'''
if str(__UpperCAmelCase ).startswith("""mps""" ):
__UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : Dict = self.get_dummy_components()
__UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
__UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> List[str]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Tuple = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
__UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] )
__UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 50,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0]
__UpperCAmelCase : Tuple = load_numpy(
"""https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" )
__UpperCAmelCase : Dict = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 16 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
| 16 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column
__UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )]
def __str__( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n'
# Make string identifier
__UpperCAmelCase : Optional[Any] = 0
for row_vector in self.array:
for obj in row_vector:
__UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) )
__UpperCAmelCase : Optional[int] = f'%{max_element_length}s'
# Make string and return
def single_line(__UpperCAmelCase ) -> str:
nonlocal string_format_identifier
__UpperCAmelCase : Any = """["""
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array )
return s
def __repr__( self ) -> str:
'''simple docstring'''
return str(self )
def __A ( self , __UpperCAmelCase ) -> bool:
'''simple docstring'''
if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
return self.array[loc[0]][loc[1]]
def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = value
def __add__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == another.row and self.column == another.column
# Add
__UpperCAmelCase : Dict = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] + another[r, c]
return result
def __neg__( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : Dict = -self[r, c]
return result
def __sub__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
return self + (-another)
def __mul__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication
__UpperCAmelCase : Optional[int] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] * another
return result
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication
assert self.column == another.row
__UpperCAmelCase : Dict = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
__UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})'
raise TypeError(__UpperCAmelCase )
def __A ( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Dict = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[str] = self[r, c]
return result
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
__UpperCAmelCase : Optional[Any] = v.transpose()
__UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Dict = Matrix(3 , 3 , 0 )
for i in range(3 ):
__UpperCAmelCase : Tuple = 1
print(f'a^(-1) is {ainv}' )
# u, v
__UpperCAmelCase : Dict = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3
__UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5
print(f'u is {u}' )
print(f'v is {v}' )
print(f'uv^T is {u * v.transpose()}' )
# Sherman Morrison
print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' )
def lowercase_ ( ):
"""simple docstring"""
import doctest
doctest.testmod()
testa()
| 16 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
class _A :
def __init__( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = size
# approximate the overall size of segment tree with given value
__UpperCAmelCase : Dict = [0 for i in range(0 , 4 * size )]
# create array to store lazy update
__UpperCAmelCase : str = [0 for i in range(0 , 4 * size )]
__UpperCAmelCase : List[str] = [0 for i in range(0 , 4 * size )] # flag for lazy update
def __A ( self , __UpperCAmelCase ) -> int:
'''simple docstring'''
return idx * 2
def __A ( self , __UpperCAmelCase ) -> int:
'''simple docstring'''
return idx * 2 + 1
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
if left_element == right_element:
__UpperCAmelCase : Optional[Any] = a[left_element - 1]
else:
__UpperCAmelCase : int = (left_element + right_element) // 2
self.build(self.left(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
self.build(self.right(__UpperCAmelCase ) , mid + 1 , __UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : List[Any] = max(
self.segment_tree[self.left(__UpperCAmelCase )] , self.segment_tree[self.right(__UpperCAmelCase )] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> bool:
'''simple docstring'''
if self.flag[idx] is True:
__UpperCAmelCase : Tuple = self.lazy[idx]
__UpperCAmelCase : List[Any] = False
if left_element != right_element:
__UpperCAmelCase : Any = self.lazy[idx]
__UpperCAmelCase : Optional[Any] = self.lazy[idx]
__UpperCAmelCase : Optional[Any] = True
__UpperCAmelCase : Any = True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
__UpperCAmelCase : Optional[int] = val
if left_element != right_element:
__UpperCAmelCase : Tuple = val
__UpperCAmelCase : Dict = val
__UpperCAmelCase : List[Any] = True
__UpperCAmelCase : int = True
return True
__UpperCAmelCase : List[str] = (left_element + right_element) // 2
self.update(self.left(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
self.update(self.right(__UpperCAmelCase ) , mid + 1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : List[str] = max(
self.segment_tree[self.left(__UpperCAmelCase )] , self.segment_tree[self.right(__UpperCAmelCase )] )
return True
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int | float:
'''simple docstring'''
if self.flag[idx] is True:
__UpperCAmelCase : Dict = self.lazy[idx]
__UpperCAmelCase : List[str] = False
if left_element != right_element:
__UpperCAmelCase : int = self.lazy[idx]
__UpperCAmelCase : Optional[int] = self.lazy[idx]
__UpperCAmelCase : Optional[Any] = True
__UpperCAmelCase : Dict = True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
__UpperCAmelCase : List[str] = (left_element + right_element) // 2
__UpperCAmelCase : List[str] = self.query(self.left(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : int = self.query(self.right(__UpperCAmelCase ) , mid + 1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return max(__UpperCAmelCase , __UpperCAmelCase )
def __str__( self ) -> str:
'''simple docstring'''
return str([self.query(1 , 1 , self.size , __UpperCAmelCase , __UpperCAmelCase ) for i in range(1 , self.size + 1 )] )
if __name__ == "__main__":
_UpperCamelCase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
_UpperCamelCase = 15
_UpperCamelCase = SegmentTree(size)
segt.build(1, 1, size, A)
print(segt.query(1, 1, size, 4, 6))
print(segt.query(1, 1, size, 7, 11))
print(segt.query(1, 1, size, 7, 12))
segt.update(1, 1, size, 1, 3, 111)
print(segt.query(1, 1, size, 1, 15))
segt.update(1, 1, size, 7, 8, 235)
print(segt)
| 16 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''],
'''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''],
'''processing_wav2vec2''': ['''Wav2Vec2Processor'''],
'''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Wav2Vec2ForAudioFrameClassification''',
'''Wav2Vec2ForCTC''',
'''Wav2Vec2ForMaskedLM''',
'''Wav2Vec2ForPreTraining''',
'''Wav2Vec2ForSequenceClassification''',
'''Wav2Vec2ForXVector''',
'''Wav2Vec2Model''',
'''Wav2Vec2PreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWav2Vec2ForCTC''',
'''TFWav2Vec2Model''',
'''TFWav2Vec2PreTrainedModel''',
'''TFWav2Vec2ForSequenceClassification''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FlaxWav2Vec2ForCTC''',
'''FlaxWav2Vec2ForPreTraining''',
'''FlaxWav2Vec2Model''',
'''FlaxWav2Vec2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import namedtuple
def lowercase_ ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ):
"""simple docstring"""
__UpperCAmelCase : str = namedtuple("""result""" , """name value""" )
if (voltage, current, power).count(0 ) != 1:
raise ValueError("""Only one argument must be 0""" )
elif power < 0:
raise ValueError(
"""Power cannot be negative in any electrical/electronics system""" )
elif voltage == 0:
return result("""voltage""" , power / current )
elif current == 0:
return result("""current""" , power / voltage )
elif power == 0:
return result("""power""" , float(round(abs(voltage * current ) , 2 ) ) )
else:
raise ValueError("""Exactly one argument must be 0""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 |
'''simple docstring'''
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING
_SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING
def __A ( self ) -> Any:
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""},
{"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""},
] , )
__UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is grouped""",
"""score""": 2.1E-05,
"""token""": 38_015,
"""token_str""": """ grouped""",
},
{
"""sequence""": """The largest city in France is accuser""",
"""score""": 2.1E-05,
"""token""": 25_506,
"""token_str""": """ accuser""",
},
] , )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""},
{"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is Maul""",
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
},
{"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""},
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is Maul<mask></s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""},
],
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is<mask> Maul</s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""},
],
] , )
@require_torch_gpu
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" )
# convert model to fp16
pipe.model.half()
__UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
@require_torch
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" )
self.run_large_test(__UpperCAmelCase )
@slow
@require_tf
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" )
self.run_large_test(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""},
{"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{
"""sequence""": """The largest city in France is Paris""",
"""score""": 0.251,
"""token""": 2_201,
"""token_str""": """ Paris""",
},
{
"""sequence""": """The largest city in France is Lyon""",
"""score""": 0.214,
"""token""": 12_790,
"""token_str""": """ Lyon""",
},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" )
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : int = None
self.run_pipeline_test(__UpperCAmelCase , [] )
@require_tf
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : str = None
self.run_pipeline_test(__UpperCAmelCase , [] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" )
__UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = [
f'This is another {tokenizer.mask_token} test',
]
return fill_masker, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = fill_masker.tokenizer
__UpperCAmelCase : Union[str, Any] = fill_masker.model
__UpperCAmelCase : Tuple = fill_masker(
f'This is a {tokenizer.mask_token}' , )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
with self.assertRaises(__UpperCAmelCase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(__UpperCAmelCase ):
fill_masker("""This is""" )
self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Dict = tokenizer.get_vocab()
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:2]
# Pipeline argument
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase )
__UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Any = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Call argument
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Score equivalence
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs]
__UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ) == set(__UpperCAmelCase ):
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
# Raises with invalid
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] )
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 )
__UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : int = tokenizer.get_vocab()
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
# top_k=2, ntargets=3
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
__UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = tokenizer.get_vocab()
# String duplicates + id duplicates
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]]
__UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(__UpperCAmelCase ) , 3 )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Dict = fill_masker(
f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
| 16 | 1 |
'''simple docstring'''
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
_UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Optional[int]=None ):
"""simple docstring"""
return field(default_factory=lambda: default , metadata=lowerCAmelCase__ )
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : List[str] = list_field(
default=[] , metadata={
"help": (
"Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"
" of all available models"
)
} , )
_SCREAMING_SNAKE_CASE : List[int] = list_field(
default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} )
_SCREAMING_SNAKE_CASE : List[int] = list_field(
default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , )
_SCREAMING_SNAKE_CASE : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , )
_SCREAMING_SNAKE_CASE : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , )
_SCREAMING_SNAKE_CASE : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} )
_SCREAMING_SNAKE_CASE : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Use FP16 to accelerate inference."} )
_SCREAMING_SNAKE_CASE : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Benchmark training of model"} )
_SCREAMING_SNAKE_CASE : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Verbose memory tracing"} )
_SCREAMING_SNAKE_CASE : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , )
_SCREAMING_SNAKE_CASE : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
} , )
_SCREAMING_SNAKE_CASE : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Trace memory line by line"} )
_SCREAMING_SNAKE_CASE : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Save result to a CSV file"} )
_SCREAMING_SNAKE_CASE : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Save all print statements in a log file"} )
_SCREAMING_SNAKE_CASE : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to print environment information"} )
_SCREAMING_SNAKE_CASE : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"
" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"
" for debugging / testing and on TPU."
)
} , )
_SCREAMING_SNAKE_CASE : str = field(
default=f'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , )
_SCREAMING_SNAKE_CASE : str = field(
default=f'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , )
_SCREAMING_SNAKE_CASE : str = field(
default=f'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , )
_SCREAMING_SNAKE_CASE : str = field(
default=f'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , )
_SCREAMING_SNAKE_CASE : str = field(
default=f'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , )
_SCREAMING_SNAKE_CASE : str = field(
default=f'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , )
_SCREAMING_SNAKE_CASE : int = field(default=3 , metadata={"help": "Times an experiment will be run."} )
_SCREAMING_SNAKE_CASE : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"
" model weights."
)
} , )
def __A ( self ) -> Any:
'''simple docstring'''
warnings.warn(
f'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils'
""" are deprecated in general and it is advised to use external Benchmarking libraries """
""" to benchmark Transformer models.""" , __UpperCAmelCase , )
def __A ( self ) -> List[str]:
'''simple docstring'''
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def __A ( self ) -> List[str]:
'''simple docstring'''
if len(self.models ) <= 0:
raise ValueError(
"""Please make sure you provide at least one model name / model identifier, *e.g.* `--models"""
""" bert-base-cased` or `args.models = ['bert-base-cased'].""" )
return self.models
@property
def __A ( self ) -> Optional[int]:
'''simple docstring'''
if not self.multi_process:
return False
elif self.is_tpu:
logger.info("""Multiprocessing is currently not possible on TPU.""" )
return False
else:
return True
| 16 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} )
_SCREAMING_SNAKE_CASE : str = "image"
_SCREAMING_SNAKE_CASE : str = "labels"
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(f'Column {self.label_column} is not present in features.' )
if not isinstance(features[self.label_column] , __UpperCAmelCase ):
raise ValueError(f'Column {self.label_column} is not a ClassLabel.' )
__UpperCAmelCase : int = copy.deepcopy(self )
__UpperCAmelCase : str = self.label_schema.copy()
__UpperCAmelCase : Optional[Any] = features[self.label_column]
__UpperCAmelCase : Optional[int] = label_schema
return task_template
@property
def __A ( self ) -> Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 16 | 1 |
'''simple docstring'''
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = data
__UpperCAmelCase : int = previous
__UpperCAmelCase : Union[str, Any] = next_node
def __str__( self ) -> str:
'''simple docstring'''
return f'{self.data}'
def __A ( self ) -> int:
'''simple docstring'''
return self.data
def __A ( self ) -> List[str]:
'''simple docstring'''
return self.next
def __A ( self ) -> str:
'''simple docstring'''
return self.previous
class _A :
def __init__( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = head
def __iter__( self ) -> str:
'''simple docstring'''
return self
def __A ( self ) -> str:
'''simple docstring'''
if not self.current:
raise StopIteration
else:
__UpperCAmelCase : List[str] = self.current.get_data()
__UpperCAmelCase : int = self.current.get_next()
return value
class _A :
def __init__( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = None # First node in list
__UpperCAmelCase : List[str] = None # Last node in list
def __str__( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.head
__UpperCAmelCase : Optional[int] = []
while current is not None:
nodes.append(current.get_data() )
__UpperCAmelCase : Any = current.get_next()
return " ".join(str(__UpperCAmelCase ) for node in nodes )
def __contains__( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.head
while current:
if current.get_data() == value:
return True
__UpperCAmelCase : Optional[Any] = current.get_next()
return False
def __iter__( self ) -> str:
'''simple docstring'''
return LinkedListIterator(self.head )
def __A ( self ) -> List[Any]:
'''simple docstring'''
if self.head:
return self.head.get_data()
return None
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
if self.tail:
return self.tail.get_data()
return None
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
__UpperCAmelCase : str = node
__UpperCAmelCase : List[str] = node
else:
self.insert_before_node(self.head , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase )
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.set_tail(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Tuple = node
__UpperCAmelCase : List[Any] = node.previous
if node.get_previous() is None:
__UpperCAmelCase : str = node_to_insert
else:
__UpperCAmelCase : Optional[Any] = node_to_insert
__UpperCAmelCase : List[Any] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : List[str] = node
__UpperCAmelCase : Union[str, Any] = node.next
if node.get_next() is None:
__UpperCAmelCase : Dict = node_to_insert
else:
__UpperCAmelCase : Any = node_to_insert
__UpperCAmelCase : List[str] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.head
while node:
if current_position == position:
self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase )
return
current_position += 1
__UpperCAmelCase : int = node.next
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Node:
'''simple docstring'''
__UpperCAmelCase : Dict = self.head
while node:
if node.get_data() == item:
return node
__UpperCAmelCase : List[str] = node.get_next()
raise Exception("""Node not found""" )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
if (node := self.get_node(__UpperCAmelCase )) is not None:
if node == self.head:
__UpperCAmelCase : Optional[int] = self.head.get_next()
if node == self.tail:
__UpperCAmelCase : Union[str, Any] = self.tail.get_previous()
self.remove_node_pointers(__UpperCAmelCase )
@staticmethod
def __A ( __UpperCAmelCase ) -> None:
'''simple docstring'''
if node.get_next():
__UpperCAmelCase : Optional[Any] = node.previous
if node.get_previous():
__UpperCAmelCase : int = node.next
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Union[str, Any] = None
def __A ( self ) -> List[Any]:
'''simple docstring'''
return self.head is None
def lowercase_ ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Tuple = seq_length
__UpperCAmelCase : str = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[Any] = use_token_type_ids
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : str = num_attention_heads
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : Tuple = max_position_embeddings
__UpperCAmelCase : Dict = type_vocab_size
__UpperCAmelCase : List[Any] = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[str] = num_labels
__UpperCAmelCase : str = num_choices
__UpperCAmelCase : List[Any] = scope
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Tuple = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
# first forward pass
__UpperCAmelCase : Optional[int] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCAmelCase : int = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
# select random slice
__UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = config_and_inputs
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : List[str] = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = LlamaModelTester(self )
__UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : str = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Any = 3
__UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[int] = 3
__UpperCAmelCase : Optional[Any] = """single_label_classification"""
__UpperCAmelCase : int = input_dict["""input_ids"""]
__UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = 3
__UpperCAmelCase : str = """multi_label_classification"""
__UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size )
__UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
original_model.to(__UpperCAmelCase )
original_model.eval()
__UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0}
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
scaled_model.to(__UpperCAmelCase )
scaled_model.eval()
__UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
@require_torch
class _A ( unittest.TestCase ):
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" )
__UpperCAmelCase : int = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" )
__UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" )
__UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
@unittest.skip(
"""Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" )
@slow
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" )
__UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) )
__UpperCAmelCase : Dict = torch.tensor(
[[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Model is curently gated""" )
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi"""
__UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """
__UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" )
__UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" )
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained(
"""meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase )
# greedy generation outputs
__UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
from __future__ import annotations
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : list[str] | None = None ):
"""simple docstring"""
__UpperCAmelCase : Any = word_bank or []
# create a table
__UpperCAmelCase : int = len(lowerCAmelCase__ ) + 1
__UpperCAmelCase : list[list[list[str]]] = []
for _ in range(lowerCAmelCase__ ):
table.append([] )
# seed value
__UpperCAmelCase : Optional[int] = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(lowerCAmelCase__ ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(lowerCAmelCase__ )] == word:
__UpperCAmelCase : list[list[str]] = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(lowerCAmelCase__ )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(lowerCAmelCase__ )]:
combination.reverse()
return table[len(lowerCAmelCase__ )]
if __name__ == "__main__":
print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa''']))
print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t''']))
print(
all_construct(
'''hexagonosaurus''',
['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''],
)
)
| 16 |
'''simple docstring'''
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
_UpperCamelCase = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ):
"""simple docstring"""
return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths )
def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = []
if args.gold_data_mode == "qa":
__UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ )
for answer_list in data[1]:
__UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ )
answers.append(lowerCAmelCase__ )
else:
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : str = [[reference] for reference in references]
__UpperCAmelCase : Optional[int] = 0
for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
total += 1
em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : int = 100.0 * em / total
__UpperCAmelCase : Dict = 100.0 * fa / total
logger.info(f'F1: {fa:.2f}' )
logger.info(f'EM: {em:.2f}' )
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : Tuple = args.k
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = 0
for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] )
__UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
__UpperCAmelCase : List[str] = 100.0 * em / total
logger.info(f'Precision@{k}: {em: .2f}' )
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ):
"""simple docstring"""
def strip_title(lowerCAmelCase__ : Optional[int] ):
if title.startswith("""\"""" ):
__UpperCAmelCase : List[Any] = title[1:]
if title.endswith("""\"""" ):
__UpperCAmelCase : int = title[:-1]
return title
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device )
__UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ )
__UpperCAmelCase : int = question_enc_outputs[0]
__UpperCAmelCase : Dict = rag_model.retriever(
lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , )
__UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
__UpperCAmelCase : Union[str, Any] = []
for docs in all_docs:
__UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]]
provenance_strings.append("""\t""".join(lowerCAmelCase__ ) )
return provenance_strings
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
with torch.no_grad():
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )
__UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device )
__UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device )
__UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
__UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
if args.print_predictions:
for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) )
return answers
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=(
"""RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the"""
""" model_name_or_path"""
) , )
parser.add_argument(
"""--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , )
parser.add_argument(
"""--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , )
parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" )
parser.add_argument(
"""--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=(
"""Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates"""
""" precision@k."""
) , )
parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" )
parser.add_argument(
"""--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , )
parser.add_argument(
"""--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , )
parser.add_argument(
"""--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=(
"""Format of the gold data file"""
"""qa - a single line in the following format: question [tab] answer_list"""
"""ans - a single line of the gold file contains the expected answer string"""
) , )
parser.add_argument(
"""--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , )
parser.add_argument(
"""--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , )
parser.add_argument(
"""--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , )
parser.add_argument(
"""--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , )
parser.add_argument(
"""--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , )
parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" )
parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" )
parser.add_argument(
"""--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , )
parser.add_argument(
"""--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , )
__UpperCAmelCase : str = parser.parse_args()
__UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
return args
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = {}
if args.model_type is None:
__UpperCAmelCase : str = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration
__UpperCAmelCase : Dict = args.n_docs
if args.index_name is not None:
__UpperCAmelCase : Union[str, Any] = args.index_name
if args.index_path is not None:
__UpperCAmelCase : Dict = args.index_path
else:
__UpperCAmelCase : str = BartForConditionalGeneration
__UpperCAmelCase : str = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k
__UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) )
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
continue
logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) )
logger.info(""" Batch size = %d""" , args.eval_batch_size )
logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) )
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
__UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ )
model.retriever.init_retrieval()
else:
__UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
model.to(args.device )
with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file:
__UpperCAmelCase : Union[str, Any] = []
for line in tqdm(lowerCAmelCase__ ):
questions.append(line.strip() )
if len(lowerCAmelCase__ ) == args.eval_batch_size:
__UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" )
preds_file.flush()
__UpperCAmelCase : List[str] = []
if len(lowerCAmelCase__ ) > 0:
__UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) )
preds_file.flush()
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
_UpperCamelCase = get_args()
main(args)
| 16 | 1 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class _A ( unittest.TestCase ):
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = tempfile.mkdtemp()
# fmt: off
__UpperCAmelCase : Optional[int] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""]
# fmt: on
__UpperCAmelCase : List[Any] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : str = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""]
__UpperCAmelCase : str = {"""unk_token""": """<unk>"""}
__UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(__UpperCAmelCase ) )
__UpperCAmelCase : List[str] = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073],
"""image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711],
}
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
__UpperCAmelCase : int = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = self.get_tokenizer()
__UpperCAmelCase : Optional[int] = self.get_rust_tokenizer()
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor_slow.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Optional[Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
__UpperCAmelCase : int = CLIPSegProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor_fast.save_pretrained(self.tmpdirname )
__UpperCAmelCase : List[str] = CLIPSegProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase )
self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase )
self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__UpperCAmelCase : Tuple = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
__UpperCAmelCase : Any = CLIPSegProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = self.get_tokenizer()
__UpperCAmelCase : int = CLIPSegProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = self.prepare_image_inputs()
__UpperCAmelCase : Dict = image_processor(__UpperCAmelCase , return_tensors="""np""" )
__UpperCAmelCase : Dict = processor(images=__UpperCAmelCase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.get_image_processor()
__UpperCAmelCase : Optional[int] = self.get_tokenizer()
__UpperCAmelCase : Any = CLIPSegProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = """lower newer"""
__UpperCAmelCase : List[str] = processor(text=__UpperCAmelCase )
__UpperCAmelCase : Any = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Any = CLIPSegProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : str = """lower newer"""
__UpperCAmelCase : Union[str, Any] = self.prepare_image_inputs()
__UpperCAmelCase : List[str] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Any = self.get_image_processor()
__UpperCAmelCase : int = self.get_tokenizer()
__UpperCAmelCase : Any = CLIPSegProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = self.prepare_image_inputs()
__UpperCAmelCase : Optional[int] = self.prepare_image_inputs()
__UpperCAmelCase : int = processor(images=__UpperCAmelCase , visual_prompt=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """conditional_pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = self.get_tokenizer()
__UpperCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase : List[str] = processor.batch_decode(__UpperCAmelCase )
__UpperCAmelCase : str = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
| 16 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _A :
@staticmethod
def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = [
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
]
return object_detector, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 )
__UpperCAmelCase : Tuple = len(__UpperCAmelCase )
self.assertGreater(__UpperCAmelCase , 0 )
self.assertEqual(
__UpperCAmelCase , [
{
"""score""": ANY(__UpperCAmelCase ),
"""label""": ANY(__UpperCAmelCase ),
"""box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )},
}
for i in range(__UpperCAmelCase )
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> Tuple:
'''simple docstring'''
pass
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
] , )
__UpperCAmelCase : str = object_detector(
[
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
]
] , )
@require_torch
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
] , )
__UpperCAmelCase : Any = object_detector(
[
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> List[str]:
'''simple docstring'''
pass
@require_torch
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = 0.2
__UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
] , )
@require_torch
@slow
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 2
__UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
] , )
| 16 | 1 |
'''simple docstring'''
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = LayoutLMTokenizer
_SCREAMING_SNAKE_CASE : Optional[Any] = LayoutLMTokenizerFast
_SCREAMING_SNAKE_CASE : Dict = True
_SCREAMING_SNAKE_CASE : Optional[Any] = True
def __A ( self ) -> Dict:
'''simple docstring'''
super().setUp()
__UpperCAmelCase : List[Any] = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def __A ( self , **__UpperCAmelCase ) -> int:
'''simple docstring'''
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : str = """UNwant\u00E9d,running"""
__UpperCAmelCase : Optional[Any] = """unwanted, running"""
return input_text, output_text
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.tokenizer_class(self.vocab_file )
__UpperCAmelCase : int = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(__UpperCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] )
def __A ( self ) -> str:
'''simple docstring'''
pass
| 16 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.txt'''}
_UpperCamelCase = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': 512,
'''YituTech/conv-bert-medium-small''': 512,
'''YituTech/conv-bert-small''': 512,
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION
_SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars
):
__UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) )
__UpperCAmelCase : Union[str, Any] = do_lower_case
__UpperCAmelCase : str = strip_accents
__UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars
__UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase )
__UpperCAmelCase : List[Any] = do_lower_case
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [self.sep_token_id]
__UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : list ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = 0
while len(lowerCAmelCase__ ) > 1:
__UpperCAmelCase : Dict = 0
# Consider two files with minimum cost to be merged
for _ in range(2 ):
__UpperCAmelCase : Optional[Any] = files.index(min(lowerCAmelCase__ ) )
temp += files[min_index]
files.pop(lowerCAmelCase__ )
files.append(lowerCAmelCase__ )
optimal_merge_cost += temp
return optimal_merge_cost
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_UpperCamelCase = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''OwlViTFeatureExtractor''']
_UpperCamelCase = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 1 |
'''simple docstring'''
print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
| 16 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
'''simple docstring'''
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
import argparse
import csv
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from tqdm import tqdm, trange
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
AdamW,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTTokenizer,
get_linear_schedule_with_warmup,
)
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
_UpperCamelCase = logging.getLogger(__name__)
def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = np.argmax(lowerCAmelCase__ , axis=1 )
return np.sum(outputs == labels )
def lowercase_ ( lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
with open(lowerCAmelCase__ , encoding="""utf_8""" ) as f:
__UpperCAmelCase : Union[str, Any] = csv.reader(lowerCAmelCase__ )
__UpperCAmelCase : Any = []
next(lowerCAmelCase__ ) # skip the first line
for line in tqdm(lowerCAmelCase__ ):
output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) )
return output
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
__UpperCAmelCase : str = []
for dataset in encoded_datasets:
__UpperCAmelCase : List[str] = len(lowerCAmelCase__ )
__UpperCAmelCase : Union[str, Any] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa )
__UpperCAmelCase : Optional[Any] = np.zeros((n_batch, 2) , dtype=np.intaa )
__UpperCAmelCase : Optional[Any] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa )
__UpperCAmelCase : Dict = np.zeros((n_batch,) , dtype=np.intaa )
for (
i,
(story, conta, conta, mc_label),
) in enumerate(lowerCAmelCase__ ):
__UpperCAmelCase : Dict = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
__UpperCAmelCase : int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
__UpperCAmelCase : Tuple = with_conta
__UpperCAmelCase : str = with_conta
__UpperCAmelCase : Dict = len(lowerCAmelCase__ ) - 1
__UpperCAmelCase : Tuple = len(lowerCAmelCase__ ) - 1
__UpperCAmelCase : Tuple = with_conta
__UpperCAmelCase : Optional[Any] = with_conta
__UpperCAmelCase : Dict = mc_label
__UpperCAmelCase : Tuple = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(lowerCAmelCase__ ) for t in all_inputs ) )
return tensor_datasets
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Dict = argparse.ArgumentParser()
parser.add_argument("""--model_name""" , type=lowerCAmelCase__ , default="""openai-gpt""" , help="""pretrained model name""" )
parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" )
parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""" )
parser.add_argument(
"""--output_dir""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""The output directory where the model predictions and checkpoints will be written.""" , )
parser.add_argument("""--train_dataset""" , type=lowerCAmelCase__ , default="""""" )
parser.add_argument("""--eval_dataset""" , type=lowerCAmelCase__ , default="""""" )
parser.add_argument("""--seed""" , type=lowerCAmelCase__ , default=42 )
parser.add_argument("""--num_train_epochs""" , type=lowerCAmelCase__ , default=3 )
parser.add_argument("""--train_batch_size""" , type=lowerCAmelCase__ , default=8 )
parser.add_argument("""--eval_batch_size""" , type=lowerCAmelCase__ , default=16 )
parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=lowerCAmelCase__ , help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--max_grad_norm""" , type=lowerCAmelCase__ , default=1 )
parser.add_argument(
"""--max_steps""" , default=-1 , type=lowerCAmelCase__ , help=(
"""If > 0: set total number of training steps to perform. Override num_train_epochs."""
) , )
parser.add_argument(
"""--gradient_accumulation_steps""" , type=lowerCAmelCase__ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , )
parser.add_argument("""--learning_rate""" , type=lowerCAmelCase__ , default=6.25E-5 )
parser.add_argument("""--warmup_steps""" , default=0 , type=lowerCAmelCase__ , help="""Linear warmup over warmup_steps.""" )
parser.add_argument("""--lr_schedule""" , type=lowerCAmelCase__ , default="""warmup_linear""" )
parser.add_argument("""--weight_decay""" , type=lowerCAmelCase__ , default=0.01 )
parser.add_argument("""--lm_coef""" , type=lowerCAmelCase__ , default=0.9 )
parser.add_argument("""--n_valid""" , type=lowerCAmelCase__ , default=374 )
parser.add_argument("""--server_ip""" , type=lowerCAmelCase__ , default="""""" , help="""Can be used for distant debugging.""" )
parser.add_argument("""--server_port""" , type=lowerCAmelCase__ , default="""""" , help="""Can be used for distant debugging.""" )
__UpperCAmelCase : Union[str, Any] = parser.parse_args()
print(lowerCAmelCase__ )
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("""Waiting for debugger attach""" )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase__ )
ptvsd.wait_for_attach()
random.seed(args.seed )
np.random.seed(args.seed )
torch.manual_seed(args.seed )
torch.cuda.manual_seed_all(args.seed )
__UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
__UpperCAmelCase : Tuple = torch.cuda.device_count()
logger.info("""device: {}, n_gpu {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) )
if not args.do_train and not args.do_eval:
raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" )
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
__UpperCAmelCase : List[Any] = ["""_start_""", """_delimiter_""", """_classify_"""]
__UpperCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name )
tokenizer.add_tokens(lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
__UpperCAmelCase : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name )
model.resize_token_embeddings(len(lowerCAmelCase__ ) )
model.to(lowerCAmelCase__ )
# Load and encode the datasets
def tokenize_and_encode(lowerCAmelCase__ : List[str] ):
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(lowerCAmelCase__ ) )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
return obj
return [tokenize_and_encode(lowerCAmelCase__ ) for o in obj]
logger.info("""Encoding dataset...""" )
__UpperCAmelCase : Any = load_rocstories_dataset(args.train_dataset )
__UpperCAmelCase : Optional[Any] = load_rocstories_dataset(args.eval_dataset )
__UpperCAmelCase : Optional[int] = (train_dataset, eval_dataset)
__UpperCAmelCase : str = tokenize_and_encode(lowerCAmelCase__ )
# Compute the max input length for the Transformer
__UpperCAmelCase : Optional[Any] = model.config.n_positions // 2 - 2
__UpperCAmelCase : Dict = max(
len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3
for dataset in encoded_datasets
for story, conta, conta, _ in dataset )
__UpperCAmelCase : Any = min(lowerCAmelCase__ , model.config.n_positions ) # Max size of input for the pre-trained model
# Prepare inputs tensors and dataloaders
__UpperCAmelCase : Any = pre_process_datasets(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ )
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = tensor_datasets[0], tensor_datasets[1]
__UpperCAmelCase : Optional[Any] = TensorDataset(*lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = RandomSampler(lowerCAmelCase__ )
__UpperCAmelCase : int = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ , batch_size=args.train_batch_size )
__UpperCAmelCase : Optional[int] = TensorDataset(*lowerCAmelCase__ )
__UpperCAmelCase : Union[str, Any] = SequentialSampler(lowerCAmelCase__ )
__UpperCAmelCase : Any = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ , batch_size=args.eval_batch_size )
# Prepare optimizer
if args.do_train:
if args.max_steps > 0:
__UpperCAmelCase : Dict = args.max_steps
__UpperCAmelCase : str = args.max_steps // (len(lowerCAmelCase__ ) // args.gradient_accumulation_steps) + 1
else:
__UpperCAmelCase : Optional[int] = len(lowerCAmelCase__ ) // args.gradient_accumulation_steps * args.num_train_epochs
__UpperCAmelCase : Union[str, Any] = list(model.named_parameters() )
__UpperCAmelCase : Dict = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""]
__UpperCAmelCase : List[str] = [
{
"""params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )],
"""weight_decay""": args.weight_decay,
},
{"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0},
]
__UpperCAmelCase : Union[str, Any] = AdamW(lowerCAmelCase__ , lr=args.learning_rate , eps=args.adam_epsilon )
__UpperCAmelCase : Dict = get_linear_schedule_with_warmup(
lowerCAmelCase__ , num_warmup_steps=args.warmup_steps , num_training_steps=lowerCAmelCase__ )
if args.do_train:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = 0, 0, None
model.train()
for _ in trange(int(args.num_train_epochs ) , desc="""Epoch""" ):
__UpperCAmelCase : List[str] = 0
__UpperCAmelCase : Any = 0
__UpperCAmelCase : Optional[int] = tqdm(lowerCAmelCase__ , desc="""Training""" )
for step, batch in enumerate(lowerCAmelCase__ ):
__UpperCAmelCase : Optional[Any] = tuple(t.to(lowerCAmelCase__ ) for t in batch )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = batch
__UpperCAmelCase : List[str] = model(lowerCAmelCase__ , mc_token_ids=lowerCAmelCase__ , lm_labels=lowerCAmelCase__ , mc_labels=lowerCAmelCase__ )
__UpperCAmelCase : List[str] = args.lm_coef * losses[0] + losses[1]
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
tr_loss += loss.item()
__UpperCAmelCase : Tuple = (
loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
)
nb_tr_steps += 1
__UpperCAmelCase : Optional[Any] = """Training loss: {:.2e} lr: {:.2e}""".format(lowerCAmelCase__ , scheduler.get_lr()[0] )
# Save a trained model
if args.do_train:
# Save a trained model, configuration and tokenizer
__UpperCAmelCase : Dict = model.module if hasattr(lowerCAmelCase__ , """module""" ) else model # Only save the model itself
# If we save using the predefined names, we can load using `from_pretrained`
__UpperCAmelCase : Any = os.path.join(args.output_dir , lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = os.path.join(args.output_dir , lowerCAmelCase__ )
torch.save(model_to_save.state_dict() , lowerCAmelCase__ )
model_to_save.config.to_json_file(lowerCAmelCase__ )
tokenizer.save_vocabulary(args.output_dir )
# Load a trained model and vocabulary that you have fine-tuned
__UpperCAmelCase : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir )
__UpperCAmelCase : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir )
model.to(lowerCAmelCase__ )
if args.do_eval:
model.eval()
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = 0, 0
__UpperCAmelCase , __UpperCAmelCase : int = 0, 0
for batch in tqdm(lowerCAmelCase__ , desc="""Evaluating""" ):
__UpperCAmelCase : str = tuple(t.to(lowerCAmelCase__ ) for t in batch )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = batch
with torch.no_grad():
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = model(
lowerCAmelCase__ , mc_token_ids=lowerCAmelCase__ , lm_labels=lowerCAmelCase__ , mc_labels=lowerCAmelCase__ )
__UpperCAmelCase : str = mc_logits.detach().cpu().numpy()
__UpperCAmelCase : str = mc_labels.to("""cpu""" ).numpy()
__UpperCAmelCase : Dict = accuracy(lowerCAmelCase__ , lowerCAmelCase__ )
eval_loss += mc_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0 )
nb_eval_steps += 1
__UpperCAmelCase : Optional[Any] = eval_loss / nb_eval_steps
__UpperCAmelCase : Any = eval_accuracy / nb_eval_examples
__UpperCAmelCase : Any = tr_loss / nb_tr_steps if args.do_train else None
__UpperCAmelCase : Optional[int] = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss}
__UpperCAmelCase : List[str] = os.path.join(args.output_dir , """eval_results.txt""" )
with open(lowerCAmelCase__ , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key in sorted(result.keys() ):
logger.info(""" %s = %s""" , lowerCAmelCase__ , str(result[key] ) )
writer.write("""%s = %s\n""" % (key, str(result[key] )) )
if __name__ == "__main__":
main()
| 16 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
_UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
_SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" )
__UpperCAmelCase : List[Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] )
__UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
# Legacy behavior
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] )
__UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""label""": """LABEL_0""", """score""": 0.504},
{"""label""": """LABEL_0""", """score""": 0.504},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
import torch
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@require_tf
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@slow
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = pipeline("""text-classification""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
@slow
@require_tf
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : int = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
__UpperCAmelCase : Union[str, Any] = """HuggingFace is in"""
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
__UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""]
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase )
__UpperCAmelCase : Any = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , )
__UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""}
__UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , )
self.assertTrue(outputs["""label"""] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
__UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]]
with self.assertRaises(__UpperCAmelCase ):
text_classifier(__UpperCAmelCase )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
__UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
| 16 | 1 |
'''simple docstring'''
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
_UpperCamelCase = '''sshleifer/bart-tiny-random'''
_UpperCamelCase = '''patrickvonplaten/t5-tiny-random'''
@require_torch
class _A ( unittest.TestCase ):
@cached_property
def __A ( self ) -> Tuple:
'''simple docstring'''
return AutoConfig.from_pretrained(__UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(__UpperCAmelCase , tempfile.mkdtemp() , e=1 , d=1 )
self.assertEqual(student.config.num_hidden_layers , 1 )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , *__UpperCAmelCase : Optional[Any] = create_student_by_copying_alternating_layers(__UpperCAmelCase , tempfile.mkdtemp() , e=1 , d=__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(__UpperCAmelCase , tempfile.mkdtemp() , e=1 , d=__UpperCAmelCase )
self.assertEqual(student.config.encoder_layers , 1 )
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase , *__UpperCAmelCase : str = create_student_by_copying_alternating_layers(__UpperCAmelCase , tempfile.mkdtemp() , e=1 , d=1 )
self.assertEqual(student.config.encoder_layers , 1 )
self.assertEqual(student.config.decoder_layers , 1 )
def __A ( self ) -> List[Any]:
'''simple docstring'''
with self.assertRaises(__UpperCAmelCase ):
create_student_by_copying_alternating_layers(__UpperCAmelCase , tempfile.mkdtemp() , e=__UpperCAmelCase , d=__UpperCAmelCase )
| 16 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
| 16 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
_UpperCamelCase = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class _A :
def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase )
__UpperCAmelCase : List[str] = length
__UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa )
__UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ) -> Dict:
'''simple docstring'''
return self.length
def __getitem__( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return {"x": self.x[i], "y": self.y[i]}
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Any = True
def __A ( self , __UpperCAmelCase=None ) -> str:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : Optional[int] = False
return x * self.a[0] + self.b[0]
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : str = True
def __A ( self , __UpperCAmelCase=None ) -> Tuple:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : int = False
return x * self.a + self.b
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
__UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" )
__UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
__UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" )
__UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )}
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCAmelCase : List[Any] = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" )
if "label" in examples:
__UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCAmelCase : Tuple = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCAmelCase__ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 )
__UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 16 | 1 |
'''simple docstring'''
import collections.abc
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_poolformer import PoolFormerConfig
_UpperCamelCase = logging.get_logger(__name__)
# General docstring
_UpperCamelCase = '''PoolFormerConfig'''
# Base docstring
_UpperCamelCase = '''sail/poolformer_s12'''
_UpperCamelCase = [1, 512, 7, 7]
# Image classification docstring
_UpperCamelCase = '''sail/poolformer_s12'''
_UpperCamelCase = '''tabby, tabby cat'''
_UpperCamelCase = [
'''sail/poolformer_s12''',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
]
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : bool = False ):
"""simple docstring"""
if drop_prob == 0.0 or not training:
return input
__UpperCAmelCase : Dict = 1 - drop_prob
__UpperCAmelCase : str = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
__UpperCAmelCase : List[Any] = keep_prob + torch.rand(lowerCAmelCase__ , dtype=input.dtype , device=input.device )
random_tensor.floor_() # binarize
__UpperCAmelCase : Optional[int] = input.div(lowerCAmelCase__ ) * random_tensor
return output
class _A ( nn.Module ):
def __init__( self , __UpperCAmelCase = None ) -> None:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Optional[Any] = drop_prob
def __A ( self , __UpperCAmelCase ) -> torch.Tensor:
'''simple docstring'''
return drop_path(__UpperCAmelCase , self.drop_prob , self.training )
def __A ( self ) -> str:
'''simple docstring'''
return "p={}".format(self.drop_prob )
class _A ( nn.Module ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Any:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : List[Any] = patch_size if isinstance(__UpperCAmelCase , collections.abc.Iterable ) else (patch_size, patch_size)
__UpperCAmelCase : Any = stride if isinstance(__UpperCAmelCase , collections.abc.Iterable ) else (stride, stride)
__UpperCAmelCase : Optional[int] = padding if isinstance(__UpperCAmelCase , collections.abc.Iterable ) else (padding, padding)
__UpperCAmelCase : Dict = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , kernel_size=__UpperCAmelCase , stride=__UpperCAmelCase , padding=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = norm_layer(__UpperCAmelCase ) if norm_layer else nn.Identity()
def __A ( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.projection(__UpperCAmelCase )
__UpperCAmelCase : Tuple = self.norm(__UpperCAmelCase )
return embeddings
class _A ( nn.GroupNorm ):
def __init__( self , __UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(1 , __UpperCAmelCase , **__UpperCAmelCase )
class _A ( nn.Module ):
def __init__( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Dict = nn.AvgPoolad(__UpperCAmelCase , stride=1 , padding=pool_size // 2 , count_include_pad=__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
return self.pool(__UpperCAmelCase ) - hidden_states
class _A ( nn.Module ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Optional[Any] = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 )
__UpperCAmelCase : Dict = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 )
__UpperCAmelCase : int = PoolFormerDropPath(__UpperCAmelCase )
if isinstance(config.hidden_act , __UpperCAmelCase ):
__UpperCAmelCase : Optional[Any] = ACTaFN[config.hidden_act]
else:
__UpperCAmelCase : str = config.hidden_act
def __A ( self , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.conva(__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.act_fn(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.drop(__UpperCAmelCase )
__UpperCAmelCase : int = self.conva(__UpperCAmelCase )
__UpperCAmelCase : Tuple = self.drop(__UpperCAmelCase )
return hidden_states
class _A ( nn.Module ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : List[str] = PoolFormerPooling(__UpperCAmelCase )
__UpperCAmelCase : Any = PoolFormerOutput(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Optional[int] = PoolFormerGroupNorm(__UpperCAmelCase )
__UpperCAmelCase : int = PoolFormerGroupNorm(__UpperCAmelCase )
# Useful for training neural nets
__UpperCAmelCase : Optional[int] = PoolFormerDropPath(__UpperCAmelCase ) if drop_path > 0.0 else nn.Identity()
__UpperCAmelCase : Optional[Any] = config.use_layer_scale
if config.use_layer_scale:
__UpperCAmelCase : Union[str, Any] = nn.Parameter(
config.layer_scale_init_value * torch.ones((__UpperCAmelCase) ) , requires_grad=__UpperCAmelCase )
__UpperCAmelCase : int = nn.Parameter(
config.layer_scale_init_value * torch.ones((__UpperCAmelCase) ) , requires_grad=__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
if self.use_layer_scale:
__UpperCAmelCase : int = self.pooling(self.before_norm(__UpperCAmelCase ) )
__UpperCAmelCase : str = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output
# First residual connection
__UpperCAmelCase : List[str] = hidden_states + self.drop_path(__UpperCAmelCase )
__UpperCAmelCase : List[str] = ()
__UpperCAmelCase : Union[str, Any] = self.output(self.after_norm(__UpperCAmelCase ) )
__UpperCAmelCase : Optional[Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output
# Second residual connection
__UpperCAmelCase : int = hidden_states + self.drop_path(__UpperCAmelCase )
__UpperCAmelCase : List[str] = (output,) + outputs
return outputs
else:
__UpperCAmelCase : Dict = self.drop_path(self.pooling(self.before_norm(__UpperCAmelCase ) ) )
# First residual connection
__UpperCAmelCase : Dict = pooling_output + hidden_states
__UpperCAmelCase : Any = ()
# Second residual connection inside the PoolFormerOutput block
__UpperCAmelCase : Optional[int] = self.drop_path(self.output(self.after_norm(__UpperCAmelCase ) ) )
__UpperCAmelCase : Tuple = hidden_states + layer_output
__UpperCAmelCase : int = (output,) + outputs
return outputs
class _A ( nn.Module ):
def __init__( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Tuple = config
# stochastic depth decay rule
__UpperCAmelCase : str = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )]
# patch embeddings
__UpperCAmelCase : int = []
for i in range(config.num_encoder_blocks ):
embeddings.append(
PoolFormerEmbeddings(
patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) )
__UpperCAmelCase : int = nn.ModuleList(__UpperCAmelCase )
# Transformer blocks
__UpperCAmelCase : List[Any] = []
__UpperCAmelCase : List[Any] = 0
for i in range(config.num_encoder_blocks ):
# each block consists of layers
__UpperCAmelCase : Any = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i] ):
layers.append(
PoolFormerLayer(
__UpperCAmelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) )
blocks.append(nn.ModuleList(__UpperCAmelCase ) )
__UpperCAmelCase : List[Any] = nn.ModuleList(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = () if output_hidden_states else None
__UpperCAmelCase : Optional[int] = pixel_values
for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ):
__UpperCAmelCase , __UpperCAmelCase : List[str] = layers
# Get patch embeddings from hidden_states
__UpperCAmelCase : List[str] = embedding_layer(__UpperCAmelCase )
# Send the embeddings through the blocks
for _, blk in enumerate(__UpperCAmelCase ):
__UpperCAmelCase : Dict = blk(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = layer_outputs[0]
if output_hidden_states:
__UpperCAmelCase : int = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=__UpperCAmelCase , hidden_states=__UpperCAmelCase )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = PoolFormerConfig
_SCREAMING_SNAKE_CASE : Optional[int] = "poolformer"
_SCREAMING_SNAKE_CASE : Union[str, Any] = "pixel_values"
_SCREAMING_SNAKE_CASE : Optional[int] = True
def __A ( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
if isinstance(__UpperCAmelCase , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(__UpperCAmelCase , nn.LayerNorm ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[Any]:
'''simple docstring'''
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
__UpperCAmelCase : Any = value
_UpperCamelCase = r'''
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
'''
_UpperCamelCase = r'''
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`PoolFormerImageProcessor.__call__`] for details.
'''
@add_start_docstrings(
"The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , __SCREAMING_SNAKE_CASE , )
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
super().__init__(__UpperCAmelCase )
__UpperCAmelCase : List[str] = config
__UpperCAmelCase : Optional[int] = PoolFormerEncoder(__UpperCAmelCase )
# Initialize weights and apply final processing
self.post_init()
def __A ( self ) -> Dict:
'''simple docstring'''
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(__UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def __A ( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]:
'''simple docstring'''
__UpperCAmelCase : Dict = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__UpperCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("""You have to specify pixel_values""" )
__UpperCAmelCase : List[str] = self.encoder(
__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase , )
__UpperCAmelCase : Tuple = encoder_outputs[0]
if not return_dict:
return (sequence_output, None) + encoder_outputs[1:]
return BaseModelOutputWithNoAttention(
last_hidden_state=__UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , )
class _A ( nn.Module ):
def __init__( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Union[str, Any] = nn.Linear(config.hidden_size , config.hidden_size )
def __A ( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.dense(__UpperCAmelCase )
return output
@add_start_docstrings(
"\n PoolFormer Model transformer with an image classification head on top\n " , __SCREAMING_SNAKE_CASE , )
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
super().__init__(__UpperCAmelCase )
__UpperCAmelCase : Tuple = config.num_labels
__UpperCAmelCase : List[str] = PoolFormerModel(__UpperCAmelCase )
# Final norm
__UpperCAmelCase : List[Any] = PoolFormerGroupNorm(config.hidden_sizes[-1] )
# Classifier head
__UpperCAmelCase : Union[str, Any] = (
nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def __A ( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
'''simple docstring'''
__UpperCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict
__UpperCAmelCase : List[str] = self.poolformer(
__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase , )
__UpperCAmelCase : Any = outputs[0]
__UpperCAmelCase : Any = self.classifier(self.norm(__UpperCAmelCase ).mean([-2, -1] ) )
__UpperCAmelCase : List[Any] = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__UpperCAmelCase : Union[str, Any] = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__UpperCAmelCase : Optional[int] = """single_label_classification"""
else:
__UpperCAmelCase : str = """multi_label_classification"""
if self.config.problem_type == "regression":
__UpperCAmelCase : Optional[int] = MSELoss()
if self.num_labels == 1:
__UpperCAmelCase : str = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__UpperCAmelCase : int = loss_fct(__UpperCAmelCase , __UpperCAmelCase )
elif self.config.problem_type == "single_label_classification":
__UpperCAmelCase : str = CrossEntropyLoss()
__UpperCAmelCase : List[str] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__UpperCAmelCase : Any = BCEWithLogitsLoss()
__UpperCAmelCase : Union[str, Any] = loss_fct(__UpperCAmelCase , __UpperCAmelCase )
if not return_dict:
__UpperCAmelCase : Any = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=__UpperCAmelCase , logits=__UpperCAmelCase , hidden_states=outputs.hidden_states )
| 16 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None
@property
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = (3, 32, 128)
__UpperCAmelCase : Tuple = tempfile.mkdtemp()
# fmt: off
__UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
__UpperCAmelCase : List[Any] = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
__UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) )
return image_input
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.get_tokenizer()
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
__UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.prepare_image_inputs()
__UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" )
__UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Dict = """test"""
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = """test"""
__UpperCAmelCase : int = self.prepare_image_inputs()
__UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase )
__UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = self.get_tokenizer()
__UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : str = None
__UpperCAmelCase : Dict = self.prepare_image_inputs()
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Any = self.get_image_processor()
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 )
__UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 )
__UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 )
__UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
| 16 | 1 |
'''simple docstring'''
from math import sqrt
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : int = 0
for i in range(1 , int(sqrt(lowerCAmelCase__ ) + 1 ) ):
if n % i == 0 and i != sqrt(lowerCAmelCase__ ):
total += i + n // i
elif i == sqrt(lowerCAmelCase__ ):
total += i
return total - n
def lowercase_ ( lowerCAmelCase__ : int = 10000 ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = sum(
i
for i in range(1 , lowerCAmelCase__ )
if sum_of_divisors(sum_of_divisors(lowerCAmelCase__ ) ) == i and sum_of_divisors(lowerCAmelCase__ ) != i )
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 16 |
'''simple docstring'''
from collections.abc import Sequence
def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ):
"""simple docstring"""
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__UpperCAmelCase : Any = nums[0]
for i in range(1 , len(lowerCAmelCase__ ) ):
__UpperCAmelCase : Union[str, Any] = nums[i]
__UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_UpperCamelCase = int(input('''Enter number of elements : ''').strip())
_UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n]
print(max_subsequence_sum(array))
| 16 | 1 |
'''simple docstring'''
import os
import re
import warnings
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_ta import TaTokenizer
else:
_UpperCamelCase = None
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
_UpperCamelCase = {
'''vocab_file''': {
'''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''',
'''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''',
'''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''',
'''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''',
'''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''',
},
'''tokenizer_file''': {
'''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''',
'''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''',
'''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''',
'''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''',
'''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''',
},
}
# TODO(PVP) - this should be removed in Transformers v5
_UpperCamelCase = {
'''t5-small''': 512,
'''t5-base''': 512,
'''t5-large''': 512,
'''t5-3b''': 512,
'''t5-11b''': 512,
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : Dict = ["input_ids", "attention_mask"]
_SCREAMING_SNAKE_CASE : List[Any] = TaTokenizer
_SCREAMING_SNAKE_CASE : List[int] = []
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase=100 , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
__UpperCAmelCase : str = [f'<extra_id_{i}>' for i in range(__UpperCAmelCase )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra special tokens
__UpperCAmelCase : Union[str, Any] = len(set(filter(lambda __UpperCAmelCase : bool("""extra_id_""" in str(__UpperCAmelCase ) ) , __UpperCAmelCase ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
""" provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids"""
""" tokens""" )
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , extra_ids=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = vocab_file
__UpperCAmelCase : Any = False if not self.vocab_file else True
__UpperCAmelCase : Tuple = extra_ids
@staticmethod
def __A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes:
__UpperCAmelCase : Optional[int] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
"""This tokenizer was incorrectly instantiated with a model max length of"""
f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'
""" behavior is kept to avoid breaking backwards compatibility when padding/encoding with"""
""" `truncation is True`.\n- Be aware that you SHOULD NOT rely on"""
f' {pretrained_model_name_or_path} automatically truncating your input to'
f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'
f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'
""" `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please"""
""" instantiate this tokenizer with `model_max_length` set to your preferred value.""" , __UpperCAmelCase , )
return max_model_length
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
__UpperCAmelCase : Optional[int] = os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
logger.info(f'Copy vocab file to {out_vocab_file}' )
return (out_vocab_file,)
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Any = token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return self.prefix_tokens + token_ids_a
else:
__UpperCAmelCase : Optional[int] = token_ids_a + [self.eos_token_id]
return self.prefix_tokens + token_ids_a + token_ids_a
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def __A ( self ) -> int:
'''simple docstring'''
return list(
set(filter(lambda __UpperCAmelCase : bool(re.search(r"""<extra_id_\d+>""" , __UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return [self.convert_tokens_to_ids(__UpperCAmelCase ) for token in self.get_sentinel_tokens()]
| 16 |
'''simple docstring'''
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = data
__UpperCAmelCase : int = previous
__UpperCAmelCase : Union[str, Any] = next_node
def __str__( self ) -> str:
'''simple docstring'''
return f'{self.data}'
def __A ( self ) -> int:
'''simple docstring'''
return self.data
def __A ( self ) -> List[str]:
'''simple docstring'''
return self.next
def __A ( self ) -> str:
'''simple docstring'''
return self.previous
class _A :
def __init__( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = head
def __iter__( self ) -> str:
'''simple docstring'''
return self
def __A ( self ) -> str:
'''simple docstring'''
if not self.current:
raise StopIteration
else:
__UpperCAmelCase : List[str] = self.current.get_data()
__UpperCAmelCase : int = self.current.get_next()
return value
class _A :
def __init__( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = None # First node in list
__UpperCAmelCase : List[str] = None # Last node in list
def __str__( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.head
__UpperCAmelCase : Optional[int] = []
while current is not None:
nodes.append(current.get_data() )
__UpperCAmelCase : Any = current.get_next()
return " ".join(str(__UpperCAmelCase ) for node in nodes )
def __contains__( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.head
while current:
if current.get_data() == value:
return True
__UpperCAmelCase : Optional[Any] = current.get_next()
return False
def __iter__( self ) -> str:
'''simple docstring'''
return LinkedListIterator(self.head )
def __A ( self ) -> List[Any]:
'''simple docstring'''
if self.head:
return self.head.get_data()
return None
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
if self.tail:
return self.tail.get_data()
return None
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
__UpperCAmelCase : str = node
__UpperCAmelCase : List[str] = node
else:
self.insert_before_node(self.head , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase )
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.set_tail(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Tuple = node
__UpperCAmelCase : List[Any] = node.previous
if node.get_previous() is None:
__UpperCAmelCase : str = node_to_insert
else:
__UpperCAmelCase : Optional[Any] = node_to_insert
__UpperCAmelCase : List[Any] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : List[str] = node
__UpperCAmelCase : Union[str, Any] = node.next
if node.get_next() is None:
__UpperCAmelCase : Dict = node_to_insert
else:
__UpperCAmelCase : Any = node_to_insert
__UpperCAmelCase : List[str] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.head
while node:
if current_position == position:
self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase )
return
current_position += 1
__UpperCAmelCase : int = node.next
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Node:
'''simple docstring'''
__UpperCAmelCase : Dict = self.head
while node:
if node.get_data() == item:
return node
__UpperCAmelCase : List[str] = node.get_next()
raise Exception("""Node not found""" )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
if (node := self.get_node(__UpperCAmelCase )) is not None:
if node == self.head:
__UpperCAmelCase : Optional[int] = self.head.get_next()
if node == self.tail:
__UpperCAmelCase : Union[str, Any] = self.tail.get_previous()
self.remove_node_pointers(__UpperCAmelCase )
@staticmethod
def __A ( __UpperCAmelCase ) -> None:
'''simple docstring'''
if node.get_next():
__UpperCAmelCase : Optional[Any] = node.previous
if node.get_previous():
__UpperCAmelCase : int = node.next
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Union[str, Any] = None
def __A ( self ) -> List[Any]:
'''simple docstring'''
return self.head is None
def lowercase_ ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 1 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Dict:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = 1
__UpperCAmelCase : List[str] = 3
__UpperCAmelCase : Dict = (32, 32)
__UpperCAmelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase )
return image
@property
def __A ( self ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : Any = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
return model
@property
def __A ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def __A ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModel(__UpperCAmelCase )
@property
def __A ( self ) -> Tuple:
'''simple docstring'''
def extract(*__UpperCAmelCase , **__UpperCAmelCase ):
class _A :
def __init__( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : str = torch.ones([0] )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
self.pixel_values.to(__UpperCAmelCase )
return self
return Out()
return extract
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet
__UpperCAmelCase : Optional[int] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
__UpperCAmelCase : int = self.dummy_vae
__UpperCAmelCase : Tuple = self.dummy_text_encoder
__UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
__UpperCAmelCase : List[str] = StableDiffusionPipeline(
unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , )
__UpperCAmelCase : str = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = """A painting of a squirrel eating a burger"""
__UpperCAmelCase : str = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
__UpperCAmelCase : List[Any] = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
__UpperCAmelCase : Union[str, Any] = output.images
__UpperCAmelCase : Tuple = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
__UpperCAmelCase : str = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0]
__UpperCAmelCase : str = image[0, -3:, -3:, -1]
__UpperCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__UpperCAmelCase : List[Any] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : List[str] = self.dummy_cond_unet
__UpperCAmelCase : Union[str, Any] = PNDMScheduler(skip_prk_steps=__UpperCAmelCase )
__UpperCAmelCase : str = self.dummy_vae
__UpperCAmelCase : List[str] = self.dummy_text_encoder
__UpperCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
__UpperCAmelCase : str = StableDiffusionPipeline(
unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , )
__UpperCAmelCase : Union[str, Any] = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Tuple = """A painting of a squirrel eating a burger"""
__UpperCAmelCase : Union[str, Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
__UpperCAmelCase : List[Any] = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
__UpperCAmelCase : Any = output.images
__UpperCAmelCase : Tuple = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
__UpperCAmelCase : Optional[Any] = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0]
__UpperCAmelCase : str = image[0, -3:, -3:, -1]
__UpperCAmelCase : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__UpperCAmelCase : List[str] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(
"""hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__UpperCAmelCase )
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert isinstance(pipe.scheduler , __UpperCAmelCase )
assert pipe.safety_checker is None
__UpperCAmelCase : List[Any] = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__UpperCAmelCase )
__UpperCAmelCase : Dict = StableDiffusionPipeline.from_pretrained(__UpperCAmelCase )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
__UpperCAmelCase : int = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.dummy_cond_unet
__UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.dummy_vae
__UpperCAmelCase : str = self.dummy_text_encoder
__UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# put models in fp16
__UpperCAmelCase : List[Any] = unet.half()
__UpperCAmelCase : List[Any] = vae.half()
__UpperCAmelCase : List[Any] = bert.half()
# make sure here that pndm scheduler skips prk
__UpperCAmelCase : int = StableDiffusionPipeline(
unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , )
__UpperCAmelCase : Any = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : str = """A painting of a squirrel eating a burger"""
__UpperCAmelCase : str = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[int]:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__UpperCAmelCase )
__UpperCAmelCase : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
__UpperCAmelCase : List[Any] = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Tuple = (
"""portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"""
""" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"""
""" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"""
""" children from bahnhof zoo, detailed """
)
__UpperCAmelCase : int = 4_003_660_346
__UpperCAmelCase : List[str] = 7
# without safety guidance (sld_guidance_scale = 0)
__UpperCAmelCase : List[str] = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Tuple = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
__UpperCAmelCase : Union[str, Any] = output.images
__UpperCAmelCase : Dict = image[0, -3:, -3:, -1]
__UpperCAmelCase : Union[str, Any] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
__UpperCAmelCase : str = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Tuple = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCAmelCase : Optional[int] = output.images
__UpperCAmelCase : Dict = image[0, -3:, -3:, -1]
__UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__UpperCAmelCase )
__UpperCAmelCase : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
__UpperCAmelCase : int = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Dict = """padme amidala taking a bath artwork, safe for work, no nudity"""
__UpperCAmelCase : Optional[Any] = 2_734_971_755
__UpperCAmelCase : Any = 7
__UpperCAmelCase : List[Any] = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : int = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
__UpperCAmelCase : Optional[Any] = output.images
__UpperCAmelCase : Dict = image[0, -3:, -3:, -1]
__UpperCAmelCase : Optional[Any] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
__UpperCAmelCase : Any = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : str = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCAmelCase : str = output.images
__UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
__UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" )
__UpperCAmelCase : List[Any] = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = (
"""the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."""
""" leyendecker"""
)
__UpperCAmelCase : Optional[int] = 1_044_355_234
__UpperCAmelCase : int = 12
__UpperCAmelCase : Any = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
__UpperCAmelCase : int = output.images
__UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
__UpperCAmelCase : List[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
__UpperCAmelCase : List[str] = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCAmelCase : Tuple = output.images
__UpperCAmelCase : int = image[0, -3:, -3:, -1]
__UpperCAmelCase : List[str] = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 16 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : List[str]
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __call__( self ) -> Any:
'''simple docstring'''
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : Optional[List] = None
_SCREAMING_SNAKE_CASE : Optional[int] = None
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None
__UpperCAmelCase : int = len(self.languages ) if self.languages else None
def __call__( self ) -> Optional[Any]:
'''simple docstring'''
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def __A ( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = set(self.languages )
if self.languages and set(__UpperCAmelCase ) - lang_set:
raise ValueError(
f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__UpperCAmelCase : Dict = []
for lang, text in translation_dict.items():
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 16 | 1 |
'''simple docstring'''
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class _A ( __SCREAMING_SNAKE_CASE ):
@staticmethod
@abstractmethod
def __A ( __UpperCAmelCase ) -> str:
'''simple docstring'''
raise NotImplementedError()
@abstractmethod
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError()
| 16 |
'''simple docstring'''
from statistics import mean
import numpy as np
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Tuple = 0
# Number of processes finished
__UpperCAmelCase : Optional[int] = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
__UpperCAmelCase : Tuple = [0] * no_of_process
# List to include calculation results
__UpperCAmelCase : int = [0] * no_of_process
# Sort by arrival time.
__UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )]
__UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )]
arrival_time.sort()
while no_of_process > finished_process_count:
__UpperCAmelCase : Dict = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
__UpperCAmelCase : Any = arrival_time[i]
__UpperCAmelCase : Any = 0
# Index showing the location of the process being performed
__UpperCAmelCase : Any = 0
# Saves the current response ratio.
__UpperCAmelCase : List[str] = 0
for i in range(0 , lowerCAmelCase__ ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
__UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
__UpperCAmelCase : Tuple = temp
__UpperCAmelCase : List[str] = i
# Calculate the turn around time
__UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
__UpperCAmelCase : List[str] = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [0] * no_of_process
for i in range(0 , lowerCAmelCase__ ):
__UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
_UpperCamelCase = 5
_UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E''']
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
_UpperCamelCase = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''')
for i in range(0, no_of_process):
print(
F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'
F'{turn_around_time[i]}\t\t\t{waiting_time[i]}'
)
print(F'average waiting time : {mean(waiting_time):.5f}')
print(F'average turn around time : {mean(turn_around_time):.5f}')
| 16 | 1 |
'''simple docstring'''
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class _A ( unittest.TestCase ):
def __A ( self ) -> List[Any]:
'''simple docstring'''
debug_launcher(test_script.main )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
debug_launcher(test_ops.main )
| 16 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = parent
__UpperCAmelCase : Any = batch_size
__UpperCAmelCase : Union[str, Any] = seq_length
__UpperCAmelCase : int = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[str] = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Union[str, Any] = num_hidden_layers
__UpperCAmelCase : Optional[int] = num_attention_heads
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_size
__UpperCAmelCase : Dict = type_sequence_label_size
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : Optional[Any] = num_choices
__UpperCAmelCase : int = scope
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : List[Any] = None
if self.use_input_mask:
__UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Any = None
if self.use_token_type_ids:
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Optional[int] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> List[str]:
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_config()
__UpperCAmelCase : List[Any] = 300
return config
def __A ( self ) -> Dict:
'''simple docstring'''
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = self.prepare_config_and_inputs()
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : List[str] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.num_labels
__UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_choices
__UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : List[str] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
__UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Any = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : int = False
_SCREAMING_SNAKE_CASE : List[str] = False
_SCREAMING_SNAKE_CASE : Dict = ()
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = MraModelTester(self )
__UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : List[Any] = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""MRA does not output attentions""" )
def __A ( self ) -> List[Any]:
'''simple docstring'''
return
@require_torch
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : int = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Union[str, Any] = 50_265
__UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" )
__UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : Any = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Dict = 50_265
__UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : str = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 1 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : int = 50 ):
"""simple docstring"""
__UpperCAmelCase : Any = [[0] * 3 for _ in range(length + 1 )]
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length] )
if __name__ == "__main__":
print(F'{solution() = }')
| 16 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Any = image_size
__UpperCAmelCase : Dict = patch_size
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : List[Any] = embed_dim
__UpperCAmelCase : str = depths
__UpperCAmelCase : Dict = num_heads
__UpperCAmelCase : str = window_size
__UpperCAmelCase : int = mlp_ratio
__UpperCAmelCase : Union[str, Any] = qkv_bias
__UpperCAmelCase : Dict = hidden_dropout_prob
__UpperCAmelCase : str = attention_probs_dropout_prob
__UpperCAmelCase : Optional[int] = drop_path_rate
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Optional[int] = use_absolute_embeddings
__UpperCAmelCase : Any = patch_norm
__UpperCAmelCase : Union[str, Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : Any = scope
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : Optional[int] = type_sequence_label_size
__UpperCAmelCase : int = encoder_stride
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : Tuple = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def __A ( self ) -> Dict:
'''simple docstring'''
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
__UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : str = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = self.type_sequence_label_size
__UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs
__UpperCAmelCase : Dict = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
_SCREAMING_SNAKE_CASE : List[str] = (
{"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Dict = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[str] = SwinvaModelTester(self )
__UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 )
def __A ( self ) -> Any:
'''simple docstring'''
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
@unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason="""Swinv2 does not use inputs_embeds""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCAmelCase : List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Tuple = model_class(__UpperCAmelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : str = [*signature.parameters.keys()]
__UpperCAmelCase : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = True
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : int = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : str = outputs.attentions
__UpperCAmelCase : Any = len(self.model_tester.depths )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__UpperCAmelCase : Dict = True
__UpperCAmelCase : int = config.window_size**2
__UpperCAmelCase : Any = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : Dict = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
__UpperCAmelCase : Dict = len(__UpperCAmelCase )
# Check attention is always last and order is fine
__UpperCAmelCase : Any = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
if hasattr(self.model_tester , """num_hidden_states_types""" ):
__UpperCAmelCase : Any = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
__UpperCAmelCase : Optional[int] = 2
self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) )
__UpperCAmelCase : Tuple = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : List[Any] = outputs.hidden_states
__UpperCAmelCase : List[Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# Swinv2 has a different seq_length
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__UpperCAmelCase : int = outputs.reshaped_hidden_states
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape
__UpperCAmelCase : Any = (
reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = 3
__UpperCAmelCase : str = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__UpperCAmelCase : int = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Tuple = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase )
for model_class in self.all_model_classes:
__UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class _A ( unittest.TestCase ):
@cached_property
def __A ( self ) -> int:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" )
if is_vision_available()
else None
)
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to(
__UpperCAmelCase )
__UpperCAmelCase : Tuple = self.default_image_processor
__UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase )
# verify the logits
__UpperCAmelCase : int = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 1 |
'''simple docstring'''
import inspect
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel, VQModel
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
super().__init__()
self.register_modules(vqvae=__UpperCAmelCase , unet=__UpperCAmelCase , scheduler=__UpperCAmelCase )
@torch.no_grad()
def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = None , __UpperCAmelCase = 0.0 , __UpperCAmelCase = 50 , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]:
'''simple docstring'''
__UpperCAmelCase : List[str] = randn_tensor(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__UpperCAmelCase , )
__UpperCAmelCase : List[Any] = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__UpperCAmelCase : Dict = latents * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(__UpperCAmelCase )
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
__UpperCAmelCase : List[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__UpperCAmelCase : int = {}
if accepts_eta:
__UpperCAmelCase : Union[str, Any] = eta
for t in self.progress_bar(self.scheduler.timesteps ):
__UpperCAmelCase : List[Any] = self.scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase )
# predict the noise residual
__UpperCAmelCase : Dict = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
__UpperCAmelCase : List[str] = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
# decode the image latents with the VAE
__UpperCAmelCase : Tuple = self.vqvae.decode(__UpperCAmelCase ).sample
__UpperCAmelCase : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 )
__UpperCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__UpperCAmelCase : List[str] = self.numpy_to_pil(__UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__UpperCAmelCase )
| 16 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
_UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f'Could not make batched video from {videos}' )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
__UpperCAmelCase : int = do_resize
__UpperCAmelCase : List[str] = size
__UpperCAmelCase : Any = do_center_crop
__UpperCAmelCase : Any = crop_size
__UpperCAmelCase : Optional[Any] = resample
__UpperCAmelCase : Dict = do_rescale
__UpperCAmelCase : List[str] = rescale_factor
__UpperCAmelCase : Dict = offset
__UpperCAmelCase : List[str] = do_normalize
__UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" in size:
__UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase )
elif "height" in size and "width" in size:
__UpperCAmelCase : Any = (size["""height"""], size["""width"""])
else:
raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = image.astype(np.floataa )
if offset:
__UpperCAmelCase : Tuple = image - (scale / 2)
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
if offset and not do_rescale:
raise ValueError("""For offset, do_rescale must also be set to True.""" )
# All transformations expect numpy arrays.
__UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase )
if do_resize:
__UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase )
if do_center_crop:
__UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase )
if do_rescale:
__UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase )
if do_normalize:
__UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase )
return image
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : List[Any] = resample if resample is not None else self.resample
__UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : List[Any] = offset if offset is not None else self.offset
__UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : int = image_std if image_std is not None else self.image_std
__UpperCAmelCase : Any = size if size is not None else self.size
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
__UpperCAmelCase : int = make_batched(__UpperCAmelCase )
__UpperCAmelCase : Tuple = [
[
self._preprocess_image(
image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , )
for img in video
]
for video in videos
]
__UpperCAmelCase : Tuple = {"""pixel_values""": videos}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
_UpperCamelCase = version.parse(importlib_metadata.version('''nltk'''))
if NLTK_VERSION >= version.Version('''3.6.4'''):
from nltk import word_tokenize
_UpperCamelCase = '''\
@inproceedings{banarjee2005,
title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},
author = {Banerjee, Satanjeev and Lavie, Alon},
booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},
month = jun,
year = {2005},
address = {Ann Arbor, Michigan},
publisher = {Association for Computational Linguistics},
url = {https://www.aclweb.org/anthology/W05-0909},
pages = {65--72},
}
'''
_UpperCamelCase = '''\
METEOR, an automatic metric for machine translation evaluation
that is based on a generalized concept of unigram matching between the
machine-produced translation and human-produced reference translations.
Unigrams can be matched based on their surface forms, stemmed forms,
and meanings; furthermore, METEOR can be easily extended to include more
advanced matching strategies. Once all generalized unigram matches
between the two strings have been found, METEOR computes a score for
this matching using a combination of unigram-precision, unigram-recall, and
a measure of fragmentation that is designed to directly capture how
well-ordered the matched words in the machine translation are in relation
to the reference.
METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic
data and 0.331 on the Chinese data. This is shown to be an improvement on
using simply unigram-precision, unigram-recall and their harmonic F1
combination.
'''
_UpperCamelCase = '''
Computes METEOR score of translated segments against one or more references.
Args:
predictions: list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
alpha: Parameter for controlling relative weights of precision and recall. default: 0.9
beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3
gamma: Relative weight assigned to fragmentation penalty. default: 0.5
Returns:
\'meteor\': meteor score.
Examples:
>>> meteor = datasets.load_metric(\'meteor\')
>>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]
>>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]
>>> results = meteor.compute(predictions=predictions, references=references)
>>> print(round(results["meteor"], 4))
0.6944
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _A ( datasets.Metric ):
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] , reference_urls=[
"""https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""",
"""https://en.wikipedia.org/wiki/METEOR""",
] , )
def __A ( self , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
import nltk
nltk.download("""wordnet""" )
if NLTK_VERSION >= version.Version("""3.6.5""" ):
nltk.download("""punkt""" )
if NLTK_VERSION >= version.Version("""3.6.6""" ):
nltk.download("""omw-1.4""" )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0.9 , __UpperCAmelCase=3 , __UpperCAmelCase=0.5 ) -> List[Any]:
'''simple docstring'''
if NLTK_VERSION >= version.Version("""3.6.5""" ):
__UpperCAmelCase : int = [
meteor_score.single_meteor_score(
word_tokenize(__UpperCAmelCase ) , word_tokenize(__UpperCAmelCase ) , alpha=__UpperCAmelCase , beta=__UpperCAmelCase , gamma=__UpperCAmelCase )
for ref, pred in zip(__UpperCAmelCase , __UpperCAmelCase )
]
else:
__UpperCAmelCase : Dict = [
meteor_score.single_meteor_score(__UpperCAmelCase , __UpperCAmelCase , alpha=__UpperCAmelCase , beta=__UpperCAmelCase , gamma=__UpperCAmelCase )
for ref, pred in zip(__UpperCAmelCase , __UpperCAmelCase )
]
return {"meteor": np.mean(__UpperCAmelCase )}
| 16 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline
_SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
_SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
_SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : Dict = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
__UpperCAmelCase : List[Any] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
__UpperCAmelCase : Any = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__UpperCAmelCase : Dict = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vqvae""": vae,
"""bert""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any:
'''simple docstring'''
if str(__UpperCAmelCase ).startswith("""mps""" ):
__UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : Dict = self.get_dummy_components()
__UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
__UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> List[str]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Tuple = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
__UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] )
__UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 50,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0]
__UpperCAmelCase : Tuple = load_numpy(
"""https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" )
__UpperCAmelCase : Dict = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 16 | 1 |
'''simple docstring'''
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def lowercase_ ( lowerCAmelCase__ : ndarray ):
"""simple docstring"""
return np.dot(lowerCAmelCase__ , lowerCAmelCase__ )
class _A :
def __init__( self , *,
__UpperCAmelCase = np.inf , __UpperCAmelCase = "linear" , __UpperCAmelCase = 0.0 , ) -> None:
'''simple docstring'''
__UpperCAmelCase : str = regularization
__UpperCAmelCase : int = gamma
if kernel == "linear":
__UpperCAmelCase : Dict = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError("""rbf kernel requires gamma""" )
if not isinstance(self.gamma , (float, int) ):
raise ValueError("""gamma must be float or int""" )
if not self.gamma > 0:
raise ValueError("""gamma must be > 0""" )
__UpperCAmelCase : Tuple = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
__UpperCAmelCase : str = f'Unknown kernel: {kernel}'
raise ValueError(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
return np.dot(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Tuple = observations
__UpperCAmelCase : Optional[Any] = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((__UpperCAmelCase) , ) : Dict = np.shape(__UpperCAmelCase )
def to_minimize(__UpperCAmelCase ) -> float:
__UpperCAmelCase : List[Any] = 0
((__UpperCAmelCase) , ) : Dict = np.shape(__UpperCAmelCase )
for i in range(__UpperCAmelCase ):
for j in range(__UpperCAmelCase ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(__UpperCAmelCase )
__UpperCAmelCase : int = LinearConstraint(__UpperCAmelCase , 0 , 0 )
__UpperCAmelCase : Optional[Any] = Bounds(0 , self.regularization )
__UpperCAmelCase : List[str] = minimize(
__UpperCAmelCase , np.ones(__UpperCAmelCase ) , bounds=__UpperCAmelCase , constraints=[ly_contraint] ).x
__UpperCAmelCase : Tuple = l_star
# calculating mean offset of separation plane to points
__UpperCAmelCase : Optional[Any] = 0
for i in range(__UpperCAmelCase ):
for j in range(__UpperCAmelCase ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
__UpperCAmelCase : Union[str, Any] = s / n
def __A ( self , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , __UpperCAmelCase )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column
__UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )]
def __str__( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n'
# Make string identifier
__UpperCAmelCase : Optional[Any] = 0
for row_vector in self.array:
for obj in row_vector:
__UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) )
__UpperCAmelCase : Optional[int] = f'%{max_element_length}s'
# Make string and return
def single_line(__UpperCAmelCase ) -> str:
nonlocal string_format_identifier
__UpperCAmelCase : Any = """["""
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array )
return s
def __repr__( self ) -> str:
'''simple docstring'''
return str(self )
def __A ( self , __UpperCAmelCase ) -> bool:
'''simple docstring'''
if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
return self.array[loc[0]][loc[1]]
def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = value
def __add__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == another.row and self.column == another.column
# Add
__UpperCAmelCase : Dict = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] + another[r, c]
return result
def __neg__( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : Dict = -self[r, c]
return result
def __sub__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
return self + (-another)
def __mul__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication
__UpperCAmelCase : Optional[int] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] * another
return result
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication
assert self.column == another.row
__UpperCAmelCase : Dict = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
__UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})'
raise TypeError(__UpperCAmelCase )
def __A ( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Dict = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[str] = self[r, c]
return result
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
__UpperCAmelCase : Optional[Any] = v.transpose()
__UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Dict = Matrix(3 , 3 , 0 )
for i in range(3 ):
__UpperCAmelCase : Tuple = 1
print(f'a^(-1) is {ainv}' )
# u, v
__UpperCAmelCase : Dict = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3
__UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5
print(f'u is {u}' )
print(f'v is {v}' )
print(f'uv^T is {u * v.transpose()}' )
# Sherman Morrison
print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' )
def lowercase_ ( ):
"""simple docstring"""
import doctest
doctest.testmod()
testa()
| 16 | 1 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ):
"""simple docstring"""
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError("""iterations must be defined as integers""" )
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not number >= 1:
raise ValueError(
"""starting number must be
and integer and be more than 0""" )
if not iterations >= 1:
raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" )
__UpperCAmelCase : int = """"""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(lowerCAmelCase__ )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''],
'''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''],
'''processing_wav2vec2''': ['''Wav2Vec2Processor'''],
'''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Wav2Vec2ForAudioFrameClassification''',
'''Wav2Vec2ForCTC''',
'''Wav2Vec2ForMaskedLM''',
'''Wav2Vec2ForPreTraining''',
'''Wav2Vec2ForSequenceClassification''',
'''Wav2Vec2ForXVector''',
'''Wav2Vec2Model''',
'''Wav2Vec2PreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWav2Vec2ForCTC''',
'''TFWav2Vec2Model''',
'''TFWav2Vec2PreTrainedModel''',
'''TFWav2Vec2ForSequenceClassification''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FlaxWav2Vec2ForCTC''',
'''FlaxWav2Vec2ForPreTraining''',
'''FlaxWav2Vec2Model''',
'''FlaxWav2Vec2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 1 |
'''simple docstring'''
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
_UpperCamelCase = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ):
"""simple docstring"""
return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths )
def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = []
if args.gold_data_mode == "qa":
__UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ )
for answer_list in data[1]:
__UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ )
answers.append(lowerCAmelCase__ )
else:
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : str = [[reference] for reference in references]
__UpperCAmelCase : Optional[int] = 0
for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
total += 1
em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : int = 100.0 * em / total
__UpperCAmelCase : Dict = 100.0 * fa / total
logger.info(f'F1: {fa:.2f}' )
logger.info(f'EM: {em:.2f}' )
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : Tuple = args.k
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = 0
for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] )
__UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
__UpperCAmelCase : List[str] = 100.0 * em / total
logger.info(f'Precision@{k}: {em: .2f}' )
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ):
"""simple docstring"""
def strip_title(lowerCAmelCase__ : Optional[int] ):
if title.startswith("""\"""" ):
__UpperCAmelCase : List[Any] = title[1:]
if title.endswith("""\"""" ):
__UpperCAmelCase : int = title[:-1]
return title
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device )
__UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ )
__UpperCAmelCase : int = question_enc_outputs[0]
__UpperCAmelCase : Dict = rag_model.retriever(
lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , )
__UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
__UpperCAmelCase : Union[str, Any] = []
for docs in all_docs:
__UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]]
provenance_strings.append("""\t""".join(lowerCAmelCase__ ) )
return provenance_strings
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
with torch.no_grad():
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )
__UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device )
__UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device )
__UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
__UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
if args.print_predictions:
for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) )
return answers
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=(
"""RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the"""
""" model_name_or_path"""
) , )
parser.add_argument(
"""--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , )
parser.add_argument(
"""--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , )
parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" )
parser.add_argument(
"""--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=(
"""Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates"""
""" precision@k."""
) , )
parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" )
parser.add_argument(
"""--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , )
parser.add_argument(
"""--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , )
parser.add_argument(
"""--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=(
"""Format of the gold data file"""
"""qa - a single line in the following format: question [tab] answer_list"""
"""ans - a single line of the gold file contains the expected answer string"""
) , )
parser.add_argument(
"""--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , )
parser.add_argument(
"""--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , )
parser.add_argument(
"""--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , )
parser.add_argument(
"""--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , )
parser.add_argument(
"""--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , )
parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" )
parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" )
parser.add_argument(
"""--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , )
parser.add_argument(
"""--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , )
__UpperCAmelCase : str = parser.parse_args()
__UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
return args
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = {}
if args.model_type is None:
__UpperCAmelCase : str = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration
__UpperCAmelCase : Dict = args.n_docs
if args.index_name is not None:
__UpperCAmelCase : Union[str, Any] = args.index_name
if args.index_path is not None:
__UpperCAmelCase : Dict = args.index_path
else:
__UpperCAmelCase : str = BartForConditionalGeneration
__UpperCAmelCase : str = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k
__UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) )
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
continue
logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) )
logger.info(""" Batch size = %d""" , args.eval_batch_size )
logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) )
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
__UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ )
model.retriever.init_retrieval()
else:
__UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
model.to(args.device )
with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file:
__UpperCAmelCase : Union[str, Any] = []
for line in tqdm(lowerCAmelCase__ ):
questions.append(line.strip() )
if len(lowerCAmelCase__ ) == args.eval_batch_size:
__UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" )
preds_file.flush()
__UpperCAmelCase : List[str] = []
if len(lowerCAmelCase__ ) > 0:
__UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) )
preds_file.flush()
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
_UpperCamelCase = get_args()
main(args)
| 16 |
'''simple docstring'''
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING
_SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING
def __A ( self ) -> Any:
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""},
{"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""},
] , )
__UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is grouped""",
"""score""": 2.1E-05,
"""token""": 38_015,
"""token_str""": """ grouped""",
},
{
"""sequence""": """The largest city in France is accuser""",
"""score""": 2.1E-05,
"""token""": 25_506,
"""token_str""": """ accuser""",
},
] , )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""},
{"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is Maul""",
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
},
{"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""},
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is Maul<mask></s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""},
],
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is<mask> Maul</s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""},
],
] , )
@require_torch_gpu
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" )
# convert model to fp16
pipe.model.half()
__UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
@require_torch
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" )
self.run_large_test(__UpperCAmelCase )
@slow
@require_tf
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" )
self.run_large_test(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""},
{"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{
"""sequence""": """The largest city in France is Paris""",
"""score""": 0.251,
"""token""": 2_201,
"""token_str""": """ Paris""",
},
{
"""sequence""": """The largest city in France is Lyon""",
"""score""": 0.214,
"""token""": 12_790,
"""token_str""": """ Lyon""",
},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" )
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : int = None
self.run_pipeline_test(__UpperCAmelCase , [] )
@require_tf
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : str = None
self.run_pipeline_test(__UpperCAmelCase , [] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" )
__UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = [
f'This is another {tokenizer.mask_token} test',
]
return fill_masker, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = fill_masker.tokenizer
__UpperCAmelCase : Union[str, Any] = fill_masker.model
__UpperCAmelCase : Tuple = fill_masker(
f'This is a {tokenizer.mask_token}' , )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
with self.assertRaises(__UpperCAmelCase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(__UpperCAmelCase ):
fill_masker("""This is""" )
self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Dict = tokenizer.get_vocab()
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:2]
# Pipeline argument
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase )
__UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Any = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Call argument
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Score equivalence
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs]
__UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ) == set(__UpperCAmelCase ):
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
# Raises with invalid
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] )
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 )
__UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : int = tokenizer.get_vocab()
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
# top_k=2, ntargets=3
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
__UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = tokenizer.get_vocab()
# String duplicates + id duplicates
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]]
__UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(__UpperCAmelCase ) , 3 )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Dict = fill_masker(
f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
| 16 | 1 |
'''simple docstring'''
import numpy as np
from cva import destroyAllWindows, imread, imshow, waitKey
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
if dst_width < 0 or dst_height < 0:
raise ValueError("""Destination width/height should be > 0""" )
__UpperCAmelCase : Tuple = img
__UpperCAmelCase : str = img.shape[1]
__UpperCAmelCase : Union[str, Any] = img.shape[0]
__UpperCAmelCase : List[Any] = dst_width
__UpperCAmelCase : List[str] = dst_height
__UpperCAmelCase : str = self.src_w / self.dst_w
__UpperCAmelCase : Optional[Any] = self.src_h / self.dst_h
__UpperCAmelCase : Tuple = (
np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255
)
def __A ( self ) -> str:
'''simple docstring'''
for i in range(self.dst_h ):
for j in range(self.dst_w ):
__UpperCAmelCase : str = self.img[self.get_y(__UpperCAmelCase )][self.get_x(__UpperCAmelCase )]
def __A ( self , __UpperCAmelCase ) -> int:
'''simple docstring'''
return int(self.ratio_x * x )
def __A ( self , __UpperCAmelCase ) -> int:
'''simple docstring'''
return int(self.ratio_y * y )
if __name__ == "__main__":
_UpperCamelCase , _UpperCamelCase = 800, 600
_UpperCamelCase = imread('''image_data/lena.jpg''', 1)
_UpperCamelCase = NearestNeighbour(im, dst_w, dst_h)
n.process()
imshow(
F'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output
)
waitKey(0)
destroyAllWindows()
| 16 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} )
_SCREAMING_SNAKE_CASE : str = "image"
_SCREAMING_SNAKE_CASE : str = "labels"
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(f'Column {self.label_column} is not present in features.' )
if not isinstance(features[self.label_column] , __UpperCAmelCase ):
raise ValueError(f'Column {self.label_column} is not a ClassLabel.' )
__UpperCAmelCase : int = copy.deepcopy(self )
__UpperCAmelCase : str = self.label_schema.copy()
__UpperCAmelCase : Optional[Any] = features[self.label_column]
__UpperCAmelCase : Optional[int] = label_schema
return task_template
@property
def __A ( self ) -> Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 16 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.