code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> int: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) __UpperCAmelCase : Dict = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler("""sample_euler""" ) __UpperCAmelCase : Tuple = """A painting of a squirrel eating a burger""" __UpperCAmelCase : Tuple = torch.manual_seed(0 ) __UpperCAmelCase : Optional[int] = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) __UpperCAmelCase : Optional[int] = output.images __UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase : Any = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) __UpperCAmelCase : int = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler("""sample_euler""" ) __UpperCAmelCase : int = """A painting of a squirrel eating a burger""" __UpperCAmelCase : List[str] = torch.manual_seed(0 ) __UpperCAmelCase : Any = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) __UpperCAmelCase : Optional[int] = output.images __UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase : List[str] = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) __UpperCAmelCase : Optional[int] = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler("""sample_dpmpp_2m""" ) __UpperCAmelCase : Optional[Any] = """A painting of a squirrel eating a burger""" __UpperCAmelCase : int = torch.manual_seed(0 ) __UpperCAmelCase : Optional[int] = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type="""np""" , use_karras_sigmas=__UpperCAmelCase , ) __UpperCAmelCase : Any = output.images __UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase : Optional[Any] = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
16
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _A : _SCREAMING_SNAKE_CASE : List[str] _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ) -> Any: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class _A : _SCREAMING_SNAKE_CASE : Optional[List] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None __UpperCAmelCase : int = len(self.languages ) if self.languages else None def __call__( self ) -> Optional[Any]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = set(self.languages ) if self.languages and set(__UpperCAmelCase ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) ) return {"language": languages, "translation": translations} def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
16
1
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=[10, 20, 30, 40] , __UpperCAmelCase=[2, 2, 3, 2] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase=["stage2", "stage3", "stage4"] , __UpperCAmelCase=[2, 3, 4] , __UpperCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : int = image_size __UpperCAmelCase : str = num_channels __UpperCAmelCase : List[Any] = num_stages __UpperCAmelCase : Union[str, Any] = hidden_sizes __UpperCAmelCase : List[str] = depths __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Union[str, Any] = num_labels __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : Optional[int] = out_features __UpperCAmelCase : Dict = out_indices __UpperCAmelCase : Optional[int] = scope def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : str = None if self.use_labels: __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __A ( self ) -> Optional[int]: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = ConvNextModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = ConvNextForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = ConvNextBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : Dict = None __UpperCAmelCase : Dict = ConvNextBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : int = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : List[Any] = False _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : str = False def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : str = ConvNextModelTester(self ) __UpperCAmelCase : Dict = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[Any]: '''simple docstring''' return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def __A ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Optional[int] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __UpperCAmelCase : str = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Any = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : List[str] = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : List[str] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[Any] = ConvNextModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> int: '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = self.default_image_processor __UpperCAmelCase : Tuple = prepare_img() __UpperCAmelCase : Optional[int] = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**__UpperCAmelCase ) # verify the logits __UpperCAmelCase : Optional[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Dict = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) @require_torch class _A ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : int = (ConvNextBackbone,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Optional[Any] = ConvNextConfig _SCREAMING_SNAKE_CASE : str = False def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = ConvNextModelTester(self )
16
'''simple docstring''' from statistics import mean import numpy as np def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Tuple = 0 # Number of processes finished __UpperCAmelCase : Optional[int] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __UpperCAmelCase : Tuple = [0] * no_of_process # List to include calculation results __UpperCAmelCase : int = [0] * no_of_process # Sort by arrival time. __UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )] __UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )] arrival_time.sort() while no_of_process > finished_process_count: __UpperCAmelCase : Dict = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __UpperCAmelCase : Any = arrival_time[i] __UpperCAmelCase : Any = 0 # Index showing the location of the process being performed __UpperCAmelCase : Any = 0 # Saves the current response ratio. __UpperCAmelCase : List[str] = 0 for i in range(0 , lowerCAmelCase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __UpperCAmelCase : Tuple = temp __UpperCAmelCase : List[str] = i # Calculate the turn around time __UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __UpperCAmelCase : List[str] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Optional[int] = [0] * no_of_process for i in range(0 , lowerCAmelCase__ ): __UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _UpperCamelCase = 5 _UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E'''] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _UpperCamelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
16
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=3 , __UpperCAmelCase=32 , __UpperCAmelCase=3 , __UpperCAmelCase=10 , __UpperCAmelCase=[10, 20, 30, 40] , __UpperCAmelCase=[1, 1, 2, 1] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=3 , __UpperCAmelCase=None , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : List[Any] = image_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : Union[str, Any] = embeddings_size __UpperCAmelCase : List[Any] = hidden_sizes __UpperCAmelCase : Tuple = depths __UpperCAmelCase : int = is_training __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : int = num_labels __UpperCAmelCase : Any = scope __UpperCAmelCase : Union[str, Any] = len(__UpperCAmelCase ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : str = None if self.use_labels: __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Any = self.get_config() return config, pixel_values, labels def __A ( self ) -> List[str]: '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = TFResNetModel(config=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = model(__UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.num_labels __UpperCAmelCase : str = TFResNetForImageClassification(__UpperCAmelCase ) __UpperCAmelCase : Tuple = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _SCREAMING_SNAKE_CASE : Union[str, Any] = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : int = False def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : str = TFResNetModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> Optional[int]: '''simple docstring''' return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def __A ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__UpperCAmelCase ) __UpperCAmelCase : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Union[str, Any] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __UpperCAmelCase : Optional[Any] = layer_type __UpperCAmelCase : int = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[int] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> int: '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> Any: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __UpperCAmelCase : Any = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : Dict = image_processor(images=__UpperCAmelCase , return_tensors="""tf""" ) # forward pass __UpperCAmelCase : Dict = model(**__UpperCAmelCase ) # verify the logits __UpperCAmelCase : Dict = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : str = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __UpperCAmelCase , atol=1E-4 ) )
16
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Union[str, Any] = seq_length __UpperCAmelCase : int = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : int = scope def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = None if self.use_input_mask: __UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> List[str]: '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_config() __UpperCAmelCase : List[Any] = 300 return config def __A ( self ) -> Dict: '''simple docstring''' ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = self.prepare_config_and_inputs() __UpperCAmelCase : Tuple = True __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : List[str] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Dict = () def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = MraModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Any: '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""MRA does not output attentions""" ) def __A ( self ) -> List[Any]: '''simple docstring''' return @require_torch class _A ( unittest.TestCase ): @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0] __UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : int = model(__UpperCAmelCase )[0] __UpperCAmelCase : Union[str, Any] = 50_265 __UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : Any = model(__UpperCAmelCase )[0] __UpperCAmelCase : Dict = 50_265 __UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : str = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
1
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants _UpperCamelCase = 300 # TEMPERATURE (unit = K) def lowercase_ ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ): """simple docstring""" if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
16
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : List[Any] = embed_dim __UpperCAmelCase : str = depths __UpperCAmelCase : Dict = num_heads __UpperCAmelCase : str = window_size __UpperCAmelCase : int = mlp_ratio __UpperCAmelCase : Union[str, Any] = qkv_bias __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Optional[int] = use_absolute_embeddings __UpperCAmelCase : Any = patch_norm __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : Any = scope __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : int = encoder_stride def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) __UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = self.type_sequence_label_size __UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = SwinvaModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 ) def __A ( self ) -> Any: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(__UpperCAmelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : str = outputs.attentions __UpperCAmelCase : Any = len(self.model_tester.depths ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : int = config.window_size**2 __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : Dict = len(__UpperCAmelCase ) # Check attention is always last and order is fine __UpperCAmelCase : Any = True __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): __UpperCAmelCase : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : Optional[int] = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) ) __UpperCAmelCase : Tuple = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # Swinv2 has a different seq_length __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : int = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape __UpperCAmelCase : Any = ( reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : int = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Tuple = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> int: '''simple docstring''' return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __UpperCAmelCase ) __UpperCAmelCase : Tuple = self.default_image_processor __UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( lowerCAmelCase__ : List[str] ): """simple docstring""" if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : Any = crop_size __UpperCAmelCase : Optional[Any] = resample __UpperCAmelCase : Dict = do_rescale __UpperCAmelCase : List[str] = rescale_factor __UpperCAmelCase : Dict = offset __UpperCAmelCase : List[str] = do_normalize __UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" in size: __UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: __UpperCAmelCase : Any = (size["""height"""], size["""width"""]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = image.astype(np.floataa ) if offset: __UpperCAmelCase : Tuple = image - (scale / 2) return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase ) if do_resize: __UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) if do_center_crop: __UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase ) if do_rescale: __UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase ) if do_normalize: __UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) return image def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' __UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : List[Any] = resample if resample is not None else self.resample __UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : List[Any] = offset if offset is not None else self.offset __UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : int = image_std if image_std is not None else self.image_std __UpperCAmelCase : Any = size if size is not None else self.size __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __UpperCAmelCase : int = make_batched(__UpperCAmelCase ) __UpperCAmelCase : Tuple = [ [ self._preprocess_image( image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , ) for img in video ] for video in videos ] __UpperCAmelCase : Tuple = {"""pixel_values""": videos} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
16
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( lowerCAmelCase__ : List[str] ): """simple docstring""" if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : Any = crop_size __UpperCAmelCase : Optional[Any] = resample __UpperCAmelCase : Dict = do_rescale __UpperCAmelCase : List[str] = rescale_factor __UpperCAmelCase : Dict = offset __UpperCAmelCase : List[str] = do_normalize __UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" in size: __UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: __UpperCAmelCase : Any = (size["""height"""], size["""width"""]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = image.astype(np.floataa ) if offset: __UpperCAmelCase : Tuple = image - (scale / 2) return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase ) if do_resize: __UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) if do_center_crop: __UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase ) if do_rescale: __UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase ) if do_normalize: __UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) return image def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' __UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : List[Any] = resample if resample is not None else self.resample __UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : List[Any] = offset if offset is not None else self.offset __UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : int = image_std if image_std is not None else self.image_std __UpperCAmelCase : Any = size if size is not None else self.size __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __UpperCAmelCase : int = make_batched(__UpperCAmelCase ) __UpperCAmelCase : Tuple = [ [ self._preprocess_image( image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , ) for img in video ] for video in videos ] __UpperCAmelCase : Tuple = {"""pixel_values""": videos} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
16
1
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : bool , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : float ): """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) ) def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Tuple = [90, 23, 6, 33, 21, 65, 123, 34423] __UpperCAmelCase : Optional[Any] = math.log(len(lowerCAmelCase__ ) , 2 ) print(f'Optimal value : {minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
16
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline _SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCAmelCase : Any = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : Dict = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any: '''simple docstring''' if str(__UpperCAmelCase ).startswith("""mps""" ): __UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase ) else: __UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] ) __UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0] __UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __UpperCAmelCase : Dict = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A ( unittest.TestCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=18 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = size if size is not None else {"""height""": 18, """width""": 18} __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : Any = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : List[str] = max_resolution __UpperCAmelCase : List[Any] = do_resize __UpperCAmelCase : str = size __UpperCAmelCase : List[str] = apply_ocr def __A ( self ) -> List[Any]: '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = LayoutLMvaImageProcessingTester(self ) @property def __A ( self ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """size""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """apply_ocr""" ) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __UpperCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __A ( self ) -> str: '''simple docstring''' pass def __A ( self ) -> List[Any]: '''simple docstring''' # Initialize image_processing __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input __UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __UpperCAmelCase ) self.assertIsInstance(encoding.boxes , __UpperCAmelCase ) # Test batched __UpperCAmelCase : int = image_processing(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' # Initialize image_processing __UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input __UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __UpperCAmelCase : List[Any] = image_processing(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' # Initialize image_processing __UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input __UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __UpperCAmelCase : Optional[Any] = image_processing(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __A ( self ) -> int: '''simple docstring''' # with apply_OCR = True __UpperCAmelCase : Any = LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCAmelCase : Any = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) __UpperCAmelCase : Any = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) __UpperCAmelCase : int = image_processing(__UpperCAmelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCAmelCase : Any = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 __UpperCAmelCase : int = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __UpperCAmelCase ) self.assertListEqual(encoding.boxes , __UpperCAmelCase ) # with apply_OCR = False __UpperCAmelCase : List[str] = LayoutLMvaImageProcessor(apply_ocr=__UpperCAmelCase ) __UpperCAmelCase : int = image_processing(__UpperCAmelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
16
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column __UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )] def __str__( self ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier __UpperCAmelCase : Optional[Any] = 0 for row_vector in self.array: for obj in row_vector: __UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) ) __UpperCAmelCase : Optional[int] = f'%{max_element_length}s' # Make string and return def single_line(__UpperCAmelCase ) -> str: nonlocal string_format_identifier __UpperCAmelCase : Any = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array ) return s def __repr__( self ) -> str: '''simple docstring''' return str(self ) def __A ( self , __UpperCAmelCase ) -> bool: '''simple docstring''' if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = value def __add__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add __UpperCAmelCase : Dict = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : Dict = -self[r, c] return result def __sub__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' return self + (-another) def __mul__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication __UpperCAmelCase : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] * another return result elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication assert self.column == another.row __UpperCAmelCase : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})' raise TypeError(__UpperCAmelCase ) def __A ( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Dict = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[str] = self[r, c] return result def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __UpperCAmelCase : Optional[Any] = v.transpose() __UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = Matrix(3 , 3 , 0 ) for i in range(3 ): __UpperCAmelCase : Tuple = 1 print(f'a^(-1) is {ainv}' ) # u, v __UpperCAmelCase : Dict = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3 __UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' ) def lowercase_ ( ): """simple docstring""" import doctest doctest.testmod() testa()
16
1
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _UpperCamelCase = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any=None ): """simple docstring""" if rng is None: __UpperCAmelCase : Any = random.Random() __UpperCAmelCase : Optional[int] = 1 for dim in shape: total_dims *= dim __UpperCAmelCase : Dict = [] for _ in range(lowerCAmelCase__ ): values.append(rng.randint(0 , vocab_size - 1 ) ) __UpperCAmelCase : Dict = np.array(lowerCAmelCase__ , dtype=jnp.intaa ).reshape(lowerCAmelCase__ ) return output def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Any=None ): """simple docstring""" __UpperCAmelCase : Tuple = ids_tensor(lowerCAmelCase__ , vocab_size=2 , rng=lowerCAmelCase__ ) # make sure that at least one token is attended to for each batch __UpperCAmelCase : Tuple = 1 return attn_mask @require_flax class _A : _SCREAMING_SNAKE_CASE : List[str] = None _SCREAMING_SNAKE_CASE : List[str] = () def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __UpperCAmelCase : Tuple = 2 __UpperCAmelCase : Tuple = inputs["""input_ids"""].shape[-1] // 2 __UpperCAmelCase : Optional[Any] = inputs["""input_ids"""][:max_batch_size, :sequence_length] __UpperCAmelCase : Tuple = jnp.ones_like(__UpperCAmelCase ) __UpperCAmelCase : Any = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __UpperCAmelCase : Any = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __UpperCAmelCase : Optional[int] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_input_ids_and_config() __UpperCAmelCase : List[str] = False __UpperCAmelCase : Optional[Any] = max_length __UpperCAmelCase : int = 0 for model_class in self.all_generative_model_classes: __UpperCAmelCase : int = model_class(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCAmelCase : Any = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : str = pt_model_class(__UpperCAmelCase ).eval() __UpperCAmelCase : Union[str, Any] = load_flax_weights_in_pytorch_model(__UpperCAmelCase , flax_model.params ) __UpperCAmelCase : str = flax_model.generate(__UpperCAmelCase ).sequences __UpperCAmelCase : int = pt_model.generate(torch.tensor(__UpperCAmelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __UpperCAmelCase : int = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self._get_input_ids_and_config() __UpperCAmelCase : str = False __UpperCAmelCase : Dict = max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase : List[Any] = model_class(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = jit(model.generate ) __UpperCAmelCase : Dict = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_input_ids_and_config() __UpperCAmelCase : int = True __UpperCAmelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase : List[str] = model_class(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) __UpperCAmelCase : Optional[int] = jit(model.generate ) __UpperCAmelCase : Any = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self._get_input_ids_and_config() __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Tuple = max_length __UpperCAmelCase : Dict = 2 for model_class in self.all_generative_model_classes: __UpperCAmelCase : List[Any] = model_class(__UpperCAmelCase ) __UpperCAmelCase : Dict = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = jit(model.generate ) __UpperCAmelCase : int = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = self._get_input_ids_and_config() __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Union[str, Any] = max_length __UpperCAmelCase : str = 2 __UpperCAmelCase : Dict = 2 for model_class in self.all_generative_model_classes: __UpperCAmelCase : List[Any] = model_class(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self._get_input_ids_and_config() __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Tuple = max_length __UpperCAmelCase : str = 0.8 __UpperCAmelCase : str = 10 __UpperCAmelCase : List[str] = 0.3 __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Union[str, Any] = 8 __UpperCAmelCase : Optional[Any] = 9 for model_class in self.all_generative_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) __UpperCAmelCase : List[str] = jit(model.generate ) __UpperCAmelCase : Union[str, Any] = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = self._get_input_ids_and_config() __UpperCAmelCase : List[Any] = max_length __UpperCAmelCase : List[str] = 1 __UpperCAmelCase : Optional[int] = 8 __UpperCAmelCase : List[Any] = 9 for model_class in self.all_generative_model_classes: __UpperCAmelCase : int = model_class(__UpperCAmelCase ) __UpperCAmelCase : Dict = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = jit(model.generate ) __UpperCAmelCase : List[str] = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_input_ids_and_config() __UpperCAmelCase : Tuple = max_length __UpperCAmelCase : List[Any] = 2 __UpperCAmelCase : str = 1 __UpperCAmelCase : Tuple = 8 __UpperCAmelCase : int = 9 for model_class in self.all_generative_model_classes: __UpperCAmelCase : str = model_class(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = jit(model.generate ) __UpperCAmelCase : Optional[int] = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left __UpperCAmelCase : Tuple = attention_mask.at[(0, 0)].set(0 ) __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : List[str] = max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) __UpperCAmelCase : str = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) __UpperCAmelCase : Dict = jit(model.generate ) __UpperCAmelCase : int = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = self._get_input_ids_and_config() # pad attention mask on the left __UpperCAmelCase : Union[str, Any] = attention_mask.at[(0, 0)].set(0 ) __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : List[str] = max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase : List[str] = model_class(__UpperCAmelCase ) __UpperCAmelCase : Any = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) __UpperCAmelCase : int = jit(model.generate ) __UpperCAmelCase : Union[str, Any] = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = self._get_input_ids_and_config() # pad attention mask on the left __UpperCAmelCase : str = attention_mask.at[(0, 0)].set(0 ) __UpperCAmelCase : Optional[int] = 2 __UpperCAmelCase : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = jit(model.generate ) __UpperCAmelCase : Dict = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class _A ( unittest.TestCase ): def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) __UpperCAmelCase : Optional[Any] = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) __UpperCAmelCase : Optional[Any] = """Hello world""" __UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__UpperCAmelCase , """do_samples""" ): model.generate(__UpperCAmelCase , do_samples=__UpperCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__UpperCAmelCase , """foo""" ): __UpperCAmelCase : Optional[Any] = {"""foo""": """bar"""} model.generate(__UpperCAmelCase , **__UpperCAmelCase )
16
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
1
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = IMAGENET_DEFAULT_MEAN , __UpperCAmelCase = IMAGENET_DEFAULT_STD , **__UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : str = size if size is not None else {"""shortest_edge""": 224} __UpperCAmelCase : Dict = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) __UpperCAmelCase : Union[str, Any] = do_resize __UpperCAmelCase : Optional[Any] = size __UpperCAmelCase : List[Any] = resample __UpperCAmelCase : Dict = do_center_crop __UpperCAmelCase : List[str] = crop_size __UpperCAmelCase : List[str] = do_rescale __UpperCAmelCase : List[str] = rescale_factor __UpperCAmelCase : Dict = do_normalize __UpperCAmelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCAmelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Optional[int] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __UpperCAmelCase : Optional[Any] = int((256 / 224) * size["""shortest_edge"""] ) __UpperCAmelCase : str = get_resize_output_image_size(__UpperCAmelCase , size=__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : str = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( __UpperCAmelCase , size=(size_dict["""height"""], size_dict["""width"""]) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Dict = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> BatchFeature: '''simple docstring''' __UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Optional[Any] = resample if resample is not None else self.resample __UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : List[str] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : int = image_std if image_std is not None else self.image_std __UpperCAmelCase : Any = size if size is not None else self.size __UpperCAmelCase : Union[str, Any] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Dict = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) __UpperCAmelCase : Dict = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : Dict = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: __UpperCAmelCase : Dict = [self.resize(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for image in images] if do_center_crop: __UpperCAmelCase : Tuple = [self.center_crop(__UpperCAmelCase , __UpperCAmelCase ) for image in images] if do_rescale: __UpperCAmelCase : Optional[int] = [self.rescale(__UpperCAmelCase , __UpperCAmelCase ) for image in images] if do_normalize: __UpperCAmelCase : str = [self.normalize(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCAmelCase : Optional[int] = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCAmelCase : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
16
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING _SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def __A ( self ) -> Any: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) __UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() __UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow @require_torch def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(__UpperCAmelCase ) @slow @require_tf def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) __UpperCAmelCase : Tuple = None __UpperCAmelCase : int = None self.run_pipeline_test(__UpperCAmelCase , [] ) @require_tf def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : str = None self.run_pipeline_test(__UpperCAmelCase , [] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) __UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = fill_masker.tokenizer __UpperCAmelCase : Union[str, Any] = fill_masker.model __UpperCAmelCase : Tuple = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , ) with self.assertRaises(__UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__UpperCAmelCase ): fill_masker("""This is""" ) self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = tokenizer.get_vocab() __UpperCAmelCase : Dict = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase ) __UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Any = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Call argument __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Score equivalence __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs] __UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ) == set(__UpperCAmelCase ): __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] ) with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 ) __UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = tokenizer.get_vocab() __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) # top_k=2, ntargets=3 __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__UpperCAmelCase ) , 3 ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Dict = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , )
16
1
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : List[Any] = embed_dim __UpperCAmelCase : str = depths __UpperCAmelCase : Dict = num_heads __UpperCAmelCase : str = window_size __UpperCAmelCase : int = mlp_ratio __UpperCAmelCase : Union[str, Any] = qkv_bias __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Optional[int] = use_absolute_embeddings __UpperCAmelCase : Any = patch_norm __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : Any = scope __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : int = encoder_stride def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) __UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = self.type_sequence_label_size __UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = SwinvaModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 ) def __A ( self ) -> Any: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(__UpperCAmelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : str = outputs.attentions __UpperCAmelCase : Any = len(self.model_tester.depths ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : int = config.window_size**2 __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : Dict = len(__UpperCAmelCase ) # Check attention is always last and order is fine __UpperCAmelCase : Any = True __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): __UpperCAmelCase : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : Optional[int] = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) ) __UpperCAmelCase : Tuple = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # Swinv2 has a different seq_length __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : int = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape __UpperCAmelCase : Any = ( reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : int = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Tuple = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> int: '''simple docstring''' return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __UpperCAmelCase ) __UpperCAmelCase : Tuple = self.default_image_processor __UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} ) _SCREAMING_SNAKE_CASE : str = "image" _SCREAMING_SNAKE_CASE : str = "labels" def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __UpperCAmelCase ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) __UpperCAmelCase : int = copy.deepcopy(self ) __UpperCAmelCase : str = self.label_schema.copy() __UpperCAmelCase : Optional[Any] = features[self.label_column] __UpperCAmelCase : Optional[int] = label_schema return task_template @property def __A ( self ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
16
1
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _A ( __SCREAMING_SNAKE_CASE ): def __init__( self ) -> str: '''simple docstring''' __UpperCAmelCase : Any = [] def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' self.events.append("""on_init_end""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' self.events.append("""on_train_begin""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' self.events.append("""on_train_end""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' self.events.append("""on_epoch_begin""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' self.events.append("""on_epoch_end""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' self.events.append("""on_step_begin""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' self.events.append("""on_step_end""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' self.events.append("""on_evaluate""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' self.events.append("""on_predict""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' self.events.append("""on_save""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: '''simple docstring''' self.events.append("""on_log""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' self.events.append("""on_prediction_step""" ) @require_torch class _A ( unittest.TestCase ): def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = tempfile.mkdtemp() def __A ( self ) -> List[str]: '''simple docstring''' shutil.rmtree(self.output_dir ) def __A ( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=64 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase=False , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __UpperCAmelCase : Union[str, Any] = RegressionDataset(length=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = RegressionDataset(length=__UpperCAmelCase ) __UpperCAmelCase : Any = RegressionModelConfig(a=__UpperCAmelCase , b=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = RegressionPreTrainedModel(__UpperCAmelCase ) __UpperCAmelCase : str = TrainingArguments(self.output_dir , disable_tqdm=__UpperCAmelCase , report_to=[] , **__UpperCAmelCase ) return Trainer( __UpperCAmelCase , __UpperCAmelCase , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , callbacks=__UpperCAmelCase , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) # Order doesn't matter __UpperCAmelCase : str = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : cb.__name__ if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cb.__class__.__name__ ) __UpperCAmelCase : int = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : cb.__name__ if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cb.__class__.__name__ ) for cba, cba in zip(__UpperCAmelCase , __UpperCAmelCase ): if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(__UpperCAmelCase , cba.__class__ ) elif not isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(cba.__class__ , __UpperCAmelCase ) else: self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = ["""on_init_end""", """on_train_begin"""] __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Dict = len(trainer.get_eval_dataloader() ) __UpperCAmelCase : List[Any] = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(__UpperCAmelCase ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : str = self.get_trainer() __UpperCAmelCase : Dict = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase ) # Callbacks passed at init are added to the default callbacks __UpperCAmelCase : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(__UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __UpperCAmelCase : Any = self.get_trainer(disable_tqdm=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __UpperCAmelCase : Any = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(__UpperCAmelCase ) expected_callbacks.remove(__UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase ) __UpperCAmelCase : Optional[int] = self.get_trainer() __UpperCAmelCase : Union[str, Any] = trainer.pop_callback(__UpperCAmelCase ) self.assertEqual(cb.__class__ , __UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase ) trainer.add_callback(__UpperCAmelCase ) expected_callbacks.insert(0 , __UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase ) # We can also add, pop, or remove by instance __UpperCAmelCase : int = self.get_trainer() __UpperCAmelCase : Dict = trainer.callback_handler.callbacks[0] trainer.remove_callback(__UpperCAmelCase ) expected_callbacks.remove(__UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase ) __UpperCAmelCase : Optional[int] = self.get_trainer() __UpperCAmelCase : Optional[int] = trainer.callback_handler.callbacks[0] __UpperCAmelCase : List[Any] = trainer.pop_callback(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase ) trainer.add_callback(__UpperCAmelCase ) expected_callbacks.insert(0 , __UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=__UpperCAmelCase ) __UpperCAmelCase : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __UpperCAmelCase : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(__UpperCAmelCase , self.get_expected_events(__UpperCAmelCase ) ) # Independent log/save/eval __UpperCAmelCase : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() __UpperCAmelCase : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(__UpperCAmelCase , self.get_expected_events(__UpperCAmelCase ) ) __UpperCAmelCase : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() __UpperCAmelCase : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(__UpperCAmelCase , self.get_expected_events(__UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() __UpperCAmelCase : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(__UpperCAmelCase , self.get_expected_events(__UpperCAmelCase ) ) __UpperCAmelCase : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() __UpperCAmelCase : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(__UpperCAmelCase , self.get_expected_events(__UpperCAmelCase ) ) # A bit of everything __UpperCAmelCase : Union[str, Any] = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() __UpperCAmelCase : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(__UpperCAmelCase , self.get_expected_events(__UpperCAmelCase ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: __UpperCAmelCase : Optional[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(__UpperCAmelCase ) in warn_mock.call_args[0][0]
16
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : str = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : str = num_choices __UpperCAmelCase : List[Any] = scope def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Tuple = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = True __UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass __UpperCAmelCase : Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : List[str] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = LlamaModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : str = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = 3 __UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : Optional[Any] = """single_label_classification""" __UpperCAmelCase : int = input_dict["""input_ids"""] __UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : str = """multi_label_classification""" __UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size ) __UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() __UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0} __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() __UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) @require_torch class _A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __UpperCAmelCase : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) ) __UpperCAmelCase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """ __UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" ) __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase ) # greedy generation outputs __UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
16
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : int = "lxmert" _SCREAMING_SNAKE_CASE : int = {} def __init__( self , __UpperCAmelCase=30_522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=9_500 , __UpperCAmelCase=1_600 , __UpperCAmelCase=400 , __UpperCAmelCase=3_072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=9 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=2_048 , __UpperCAmelCase=4 , __UpperCAmelCase=6.67 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : str = vocab_size __UpperCAmelCase : int = hidden_size __UpperCAmelCase : List[str] = num_attention_heads __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : int = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : int = type_vocab_size __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : str = layer_norm_eps __UpperCAmelCase : List[Any] = num_qa_labels __UpperCAmelCase : Optional[int] = num_object_labels __UpperCAmelCase : Optional[Any] = num_attr_labels __UpperCAmelCase : Tuple = l_layers __UpperCAmelCase : Union[str, Any] = x_layers __UpperCAmelCase : Optional[int] = r_layers __UpperCAmelCase : Optional[Any] = visual_feat_dim __UpperCAmelCase : Dict = visual_pos_dim __UpperCAmelCase : Dict = visual_loss_normalizer __UpperCAmelCase : Any = task_matched __UpperCAmelCase : List[Any] = task_mask_lm __UpperCAmelCase : Optional[Any] = task_obj_predict __UpperCAmelCase : Dict = task_qa __UpperCAmelCase : Any = visual_obj_loss __UpperCAmelCase : Union[str, Any] = visual_attr_loss __UpperCAmelCase : Tuple = visual_feat_loss __UpperCAmelCase : str = {"""vision""": r_layers, """cross_encoder""": x_layers, """language""": l_layers} super().__init__(**__UpperCAmelCase )
16
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _UpperCamelCase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ): """simple docstring""" return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths ) def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": __UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ ) for answer_list in data[1]: __UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : str = [[reference] for reference in references] __UpperCAmelCase : Optional[int] = 0 for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : int = 100.0 * em / total __UpperCAmelCase : Dict = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = args.k __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = 0 for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] ) __UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __UpperCAmelCase : List[str] = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ): """simple docstring""" def strip_title(lowerCAmelCase__ : Optional[int] ): if title.startswith("""\"""" ): __UpperCAmelCase : List[Any] = title[1:] if title.endswith("""\"""" ): __UpperCAmelCase : int = title[:-1] return title __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device ) __UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ ) __UpperCAmelCase : int = question_enc_outputs[0] __UpperCAmelCase : Dict = rag_model.retriever( lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) __UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __UpperCAmelCase : Union[str, Any] = [] for docs in all_docs: __UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(lowerCAmelCase__ ) ) return provenance_strings def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" with torch.no_grad(): __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) __UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device ) __UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device ) __UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) ) return answers def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) __UpperCAmelCase : str = parser.parse_args() __UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = {} if args.model_type is None: __UpperCAmelCase : str = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration __UpperCAmelCase : Dict = args.n_docs if args.index_name is not None: __UpperCAmelCase : Union[str, Any] = args.index_name if args.index_path is not None: __UpperCAmelCase : Dict = args.index_path else: __UpperCAmelCase : str = BartForConditionalGeneration __UpperCAmelCase : str = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k __UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ ) model.retriever.init_retrieval() else: __UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: __UpperCAmelCase : Union[str, Any] = [] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: __UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" ) preds_file.flush() __UpperCAmelCase : List[str] = [] if len(lowerCAmelCase__ ) > 0: __UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _UpperCamelCase = get_args() main(args)
16
1
'''simple docstring''' import os def lowercase_ ( lowerCAmelCase__ : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) as input_file: __UpperCAmelCase : List[Any] = [ [int(lowerCAmelCase__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] __UpperCAmelCase : int = len(lowerCAmelCase__ ) __UpperCAmelCase : str = len(matrix[0] ) __UpperCAmelCase : List[str] = [[-1 for _ in range(lowerCAmelCase__ )] for _ in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): __UpperCAmelCase : str = matrix[i][0] for j in range(1 , lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): __UpperCAmelCase : str = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowerCAmelCase__ ): __UpperCAmelCase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __UpperCAmelCase : Optional[Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'{solution() = }')
16
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : @staticmethod def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 ) __UpperCAmelCase : Tuple = len(__UpperCAmelCase ) self.assertGreater(__UpperCAmelCase , 0 ) self.assertEqual( __UpperCAmelCase , [ { """score""": ANY(__UpperCAmelCase ), """label""": ANY(__UpperCAmelCase ), """box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )}, } for i in range(__UpperCAmelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> Tuple: '''simple docstring''' pass @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) __UpperCAmelCase : str = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) __UpperCAmelCase : Any = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass @require_torch @slow def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = 0.2 __UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
16
1
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _UpperCamelCase = '''src/diffusers''' # Matches is_xxx_available() _UpperCamelCase = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla _UpperCamelCase = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') _UpperCamelCase = ''' {0} = None ''' _UpperCamelCase = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' _UpperCamelCase = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def lowercase_ ( lowerCAmelCase__ : Dict ): """simple docstring""" __UpperCAmelCase : Optional[int] = _re_backend.findall(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) == 0: return None return "_and_".join(lowerCAmelCase__ ) def lowercase_ ( ): """simple docstring""" with open(os.path.join(lowerCAmelCase__ , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __UpperCAmelCase : str = f.readlines() # Get to the point we do the actual imports for type checking __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : int = {} # Go through the end of the file while line_index < len(lowerCAmelCase__ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __UpperCAmelCase : List[Any] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 __UpperCAmelCase : Optional[Any] = [] # Until we unindent, add backend objects to the list while line_index < len(lowerCAmelCase__ ) and len(lines[line_index] ) > 1: __UpperCAmelCase : Optional[int] = lines[line_index] __UpperCAmelCase : Optional[int] = _re_single_line_import.search(lowerCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowerCAmelCase__ ) > 0: __UpperCAmelCase : List[Any] = objects else: line_index += 1 return backend_specific_objects def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ): """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(lowerCAmelCase__ ) elif name.islower(): return DUMMY_FUNCTION.format(lowerCAmelCase__ , lowerCAmelCase__ ) else: return DUMMY_CLASS.format(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : Optional[int]=None ): """simple docstring""" if backend_specific_objects is None: __UpperCAmelCase : List[Any] = read_init() # For special correspondence backend to module name as used in the function requires_modulename __UpperCAmelCase : str = {} for backend, objects in backend_specific_objects.items(): __UpperCAmelCase : List[str] = """[""" + """, """.join(f'"{b}"' for b in backend.split("""_and_""" ) ) + """]""" __UpperCAmelCase : Dict = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowerCAmelCase__ , lowerCAmelCase__ ) for o in objects] ) __UpperCAmelCase : Optional[Any] = dummy_file return dummy_files def lowercase_ ( lowerCAmelCase__ : Optional[int]=False ): """simple docstring""" __UpperCAmelCase : List[Any] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __UpperCAmelCase : Optional[int] = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. __UpperCAmelCase : str = os.path.join(lowerCAmelCase__ , """utils""" ) __UpperCAmelCase : Dict = { backend: os.path.join(lowerCAmelCase__ , f'dummy_{short_names.get(lowerCAmelCase__ , lowerCAmelCase__ )}_objects.py' ) for backend in dummy_files.keys() } __UpperCAmelCase : Tuple = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __UpperCAmelCase : List[str] = f.read() else: __UpperCAmelCase : List[Any] = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'Updating diffusers.utils.dummy_{short_names.get(lowerCAmelCase__ , lowerCAmelCase__ )}_objects.py as the main ' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ f'diffusers.utils.dummy_{short_names.get(lowerCAmelCase__ , lowerCAmelCase__ )}_objects.py. Run `make fix-copies` ' """to fix this.""" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _UpperCamelCase = parser.parse_args() check_dummies(args.fix_and_overwrite)
16
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.txt'''} _UpperCamelCase = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } _UpperCamelCase = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } _UpperCamelCase = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : Union[str, Any] = do_lower_case __UpperCAmelCase : str = strip_accents __UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars __UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase ) __UpperCAmelCase : List[Any] = do_lower_case def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
16
1
'''simple docstring''' import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger() def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : LevitConfig , lowerCAmelCase__ : Path , lowerCAmelCase__ : bool = True ): """simple docstring""" print(f'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": __UpperCAmelCase : List[Any] = timm.create_model("""levit_128s""" , pretrained=lowerCAmelCase__ ) else: __UpperCAmelCase : Tuple = timm.create_model("""levit_128""" , pretrained=lowerCAmelCase__ ) if hidden_sizes == 192: __UpperCAmelCase : Any = timm.create_model("""levit_192""" , pretrained=lowerCAmelCase__ ) if hidden_sizes == 256: __UpperCAmelCase : List[str] = timm.create_model("""levit_256""" , pretrained=lowerCAmelCase__ ) if hidden_sizes == 384: __UpperCAmelCase : Tuple = timm.create_model("""levit_384""" , pretrained=lowerCAmelCase__ ) from_model.eval() __UpperCAmelCase : List[Any] = LevitForImageClassificationWithTeacher(lowerCAmelCase__ ).eval() __UpperCAmelCase : List[Any] = OrderedDict() __UpperCAmelCase : Optional[Any] = from_model.state_dict() __UpperCAmelCase : int = list(from_model.state_dict().keys() ) __UpperCAmelCase : str = list(our_model.state_dict().keys() ) print(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for i in range(len(lowerCAmelCase__ ) ): __UpperCAmelCase : Tuple = weights[og_keys[i]] our_model.load_state_dict(lowerCAmelCase__ ) __UpperCAmelCase : Any = torch.randn((2, 3, 224, 224) ) __UpperCAmelCase : Optional[Any] = from_model(lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = our_model(lowerCAmelCase__ ).logits assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ), "The model logits don't match the original one." __UpperCAmelCase : Any = name print(lowerCAmelCase__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __UpperCAmelCase : Tuple = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f'Pushed {checkpoint_name}' ) def lowercase_ ( lowerCAmelCase__ : Path , lowerCAmelCase__ : str = None , lowerCAmelCase__ : bool = True ): """simple docstring""" __UpperCAmelCase : Optional[Any] = """imagenet-1k-id2label.json""" __UpperCAmelCase : str = 1000 __UpperCAmelCase : List[str] = (1, num_labels) __UpperCAmelCase : Optional[int] = """huggingface/label-files""" __UpperCAmelCase : Optional[int] = num_labels __UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : Optional[int] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} __UpperCAmelCase : List[str] = idalabel __UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : Optional[Any] = partial(lowerCAmelCase__ , num_labels=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = { """levit-128S""": 128, """levit-128""": 128, """levit-192""": 192, """levit-256""": 256, """levit-384""": 384, } __UpperCAmelCase : str = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , lowerCAmelCase__ , names_to_config[model_name] , lowerCAmelCase__ , lowerCAmelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, expected_shape if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
16
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''OwlViTFeatureExtractor'''] _UpperCamelCase = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
1
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : Optional[int] = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def lowercase_ ( lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Any = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Optional[int] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def lowercase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Optional[int] = """imagenet-1k-id2label.json""" __UpperCAmelCase : Optional[int] = 1000 __UpperCAmelCase : List[str] = """huggingface/label-files""" __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Union[str, Any] = json.load(open(cached_download(hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) ) , """r""" ) ) __UpperCAmelCase : Union[str, Any] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[Any] = idalabel __UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : Union[str, Any] = CvtConfig(num_labels=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": __UpperCAmelCase : Optional[int] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": __UpperCAmelCase : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __UpperCAmelCase : Union[str, Any] = [2, 2, 20] __UpperCAmelCase : List[str] = [3, 12, 16] __UpperCAmelCase : Tuple = [192, 768, 1024] __UpperCAmelCase : Dict = CvtForImageClassification(lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) __UpperCAmelCase : Tuple = image_size __UpperCAmelCase : Dict = torch.load(lowerCAmelCase__ , map_location=torch.device("""cpu""" ) ) __UpperCAmelCase : List[str] = OrderedDict() __UpperCAmelCase : Any = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __UpperCAmelCase : Optional[Any] = list_of_state_dict + cls_token(lowerCAmelCase__ ) __UpperCAmelCase : str = list_of_state_dict + embeddings(lowerCAmelCase__ ) for cnt in range(config.depth[idx] ): __UpperCAmelCase : Union[str, Any] = list_of_state_dict + attention(lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : Dict = list_of_state_dict + final() for gg in list_of_state_dict: print(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): __UpperCAmelCase : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=r'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _UpperCamelCase = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
16
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: '''simple docstring''' warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
16
1
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger() @dataclass class _A : _SCREAMING_SNAKE_CASE : nn.Module _SCREAMING_SNAKE_CASE : List[nn.Module] = field(default_factory=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : list = field(default_factory=__SCREAMING_SNAKE_CASE ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[Any] = len(list(m.modules() ) ) == 1 or isinstance(__UpperCAmelCase , nn.Convad ) or isinstance(__UpperCAmelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase ) -> str: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__UpperCAmelCase ) [x.remove() for x in self.handles] return self @property def __A ( self ) -> Union[str, Any]: '''simple docstring''' # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda __UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _A : _SCREAMING_SNAKE_CASE : nn.Module _SCREAMING_SNAKE_CASE : nn.Module _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : List = field(default_factory=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : List = field(default_factory=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : bool = True def __call__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : str = Tracker(self.dest )(__UpperCAmelCase ).parametrized __UpperCAmelCase : int = Tracker(self.src )(__UpperCAmelCase ).parametrized __UpperCAmelCase : Optional[Any] = list(filter(lambda __UpperCAmelCase : type(__UpperCAmelCase ) not in self.src_skip , __UpperCAmelCase ) ) __UpperCAmelCase : Any = list(filter(lambda __UpperCAmelCase : type(__UpperCAmelCase ) not in self.dest_skip , __UpperCAmelCase ) ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(__UpperCAmelCase )} operations while' f' destination module has {len(__UpperCAmelCase )}.' ) for dest_m, src_m in zip(__UpperCAmelCase , __UpperCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class _A ( nn.Module ): def __init__( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' super().__init__() __UpperCAmelCase : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), f'Unexpected layer name {k}' __UpperCAmelCase : Any = len(__UpperCAmelCase ) + 1 feature_blocks.append((f'res{block_index}', v) ) __UpperCAmelCase : List[Any] = nn.ModuleDict(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' return get_trunk_forward_outputs( __UpperCAmelCase , out_feat_keys=__UpperCAmelCase , feature_blocks=self._feature_blocks , ) class _A ( __SCREAMING_SNAKE_CASE ): def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , __UpperCAmelCase ) -> Callable[[], Tuple[nn.Module, Dict]]: '''simple docstring''' # default to timm! if x not in self: __UpperCAmelCase : List[Any] = self.convert_name_to_timm(__UpperCAmelCase ) __UpperCAmelCase : Tuple = partial(lambda: (timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval(), None) ) else: __UpperCAmelCase : str = super().__getitem__(__UpperCAmelCase ) return val class _A ( __SCREAMING_SNAKE_CASE ): def __getitem__( self , __UpperCAmelCase ) -> Callable[[], nn.Module]: '''simple docstring''' if "seer" in x and "in1k" not in x: __UpperCAmelCase : Tuple = RegNetModel else: __UpperCAmelCase : int = RegNetForImageClassification return val def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Tuple[str, str]] ): """simple docstring""" for from_key, to_key in keys: __UpperCAmelCase : int = from_state_dict[from_key].clone() print(f'Copied key={from_key} to={to_key}' ) return to_state_dict def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Callable[[], nn.Module] , lowerCAmelCase__ : Callable[[], nn.Module] , lowerCAmelCase__ : RegNetConfig , lowerCAmelCase__ : Path , lowerCAmelCase__ : bool = True , ): """simple docstring""" print(f'Converting {name}...' ) with torch.no_grad(): __UpperCAmelCase , __UpperCAmelCase : Tuple = from_model_func() __UpperCAmelCase : Optional[int] = our_model_func(lowerCAmelCase__ ).eval() __UpperCAmelCase : Dict = ModuleTransfer(src=lowerCAmelCase__ , dest=lowerCAmelCase__ , raise_if_mismatch=lowerCAmelCase__ ) __UpperCAmelCase : Union[str, Any] = torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase__ ) if from_state_dict is not None: __UpperCAmelCase : List[str] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __UpperCAmelCase : Tuple = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] __UpperCAmelCase : Any = manually_copy_vissl_head(lowerCAmelCase__ , our_model.state_dict() , lowerCAmelCase__ ) our_model.load_state_dict(lowerCAmelCase__ ) __UpperCAmelCase : List[str] = our_model(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = ( our_outputs.logits if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else our_outputs.last_hidden_state ) __UpperCAmelCase : Tuple = from_model(lowerCAmelCase__ ) __UpperCAmelCase : List[Any] = from_output[-1] if type(lowerCAmelCase__ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __UpperCAmelCase : Union[str, Any] = our_outputs.hidden_states[-1] assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase__ , ) __UpperCAmelCase : Tuple = 224 if """seer""" not in name else 384 # we can use the convnext one __UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=lowerCAmelCase__ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase__ , ) print(f'Pushed {name}' ) def lowercase_ ( lowerCAmelCase__ : Path , lowerCAmelCase__ : str = None , lowerCAmelCase__ : bool = True ): """simple docstring""" __UpperCAmelCase : List[str] = """imagenet-1k-id2label.json""" __UpperCAmelCase : List[str] = 1000 __UpperCAmelCase : Optional[Any] = (1, num_labels) __UpperCAmelCase : Any = """huggingface/label-files""" __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[Any] = json.load(open(cached_download(hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) ) , """r""" ) ) __UpperCAmelCase : List[str] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = idalabel __UpperCAmelCase : int = {v: k for k, v in idalabel.items()} __UpperCAmelCase : Dict = partial(lowerCAmelCase__ , num_labels=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ ) __UpperCAmelCase : Tuple = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), } __UpperCAmelCase : int = NameToOurModelFuncMap() __UpperCAmelCase : str = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase__ : str , lowerCAmelCase__ : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: __UpperCAmelCase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , model_dir=str(lowerCAmelCase__ ) , map_location="""cpu""" ) __UpperCAmelCase : int = model_func() # check if we have a head, if yes add it __UpperCAmelCase : Optional[int] = files["""classy_state_dict"""]["""base_model"""]["""model"""] __UpperCAmelCase : List[str] = model_state_dict["""trunk"""] model.load_state_dict(lowerCAmelCase__ ) return model.eval(), model_state_dict["heads"] # pretrained __UpperCAmelCase : Any = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __UpperCAmelCase : Optional[Any] = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __UpperCAmelCase : Optional[int] = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __UpperCAmelCase : int = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __UpperCAmelCase : List[str] = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __UpperCAmelCase : Optional[int] = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __UpperCAmelCase : str = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __UpperCAmelCase : Any = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( lowerCAmelCase__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , lowerCAmelCase__ , lowerCAmelCase__ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCAmelCase__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) return config, expected_shape if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
16
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) __UpperCAmelCase : List[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) __UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) __UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' import torch __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = pipeline("""text-classification""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : int = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __UpperCAmelCase : Union[str, Any] = """HuggingFace is in""" __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""] __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase ) __UpperCAmelCase : Any = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , ) __UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(__UpperCAmelCase ): text_classifier(__UpperCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
16
1
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["input_features"] def __init__( self , __UpperCAmelCase=80 , __UpperCAmelCase=16_000 , __UpperCAmelCase=160 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> List[str]: '''simple docstring''' super().__init__( feature_size=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , padding_value=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : int = n_fft __UpperCAmelCase : int = hop_length __UpperCAmelCase : Union[str, Any] = chunk_length __UpperCAmelCase : Optional[int] = chunk_length * sampling_rate __UpperCAmelCase : Tuple = self.n_samples // hop_length __UpperCAmelCase : List[Any] = sampling_rate __UpperCAmelCase : Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__UpperCAmelCase , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=__UpperCAmelCase , norm="""slaney""" , mel_scale="""slaney""" , ) def __A ( self , __UpperCAmelCase ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Optional[int] = spectrogram( __UpperCAmelCase , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) __UpperCAmelCase : Any = log_spec[:, :-1] __UpperCAmelCase : Dict = np.maximum(__UpperCAmelCase , log_spec.max() - 8.0 ) __UpperCAmelCase : Union[str, Any] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: __UpperCAmelCase : List[str] = np.array(__UpperCAmelCase , np.intaa ) __UpperCAmelCase : int = [] for vector, length in zip(__UpperCAmelCase , attention_mask.sum(-1 ) ): __UpperCAmelCase : List[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: __UpperCAmelCase : int = padding_value normed_input_values.append(__UpperCAmelCase ) else: __UpperCAmelCase : List[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = "max_length" , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __UpperCAmelCase : Dict = isinstance(__UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __UpperCAmelCase : Optional[int] = is_batched_numpy or ( isinstance(__UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCAmelCase : Union[str, Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__UpperCAmelCase , np.ndarray ): __UpperCAmelCase : Tuple = np.asarray(__UpperCAmelCase , dtype=np.floataa ) elif isinstance(__UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCAmelCase : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCAmelCase : Dict = [np.asarray([raw_speech] ).T] __UpperCAmelCase : List[Any] = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding __UpperCAmelCase : Optional[int] = self.pad( __UpperCAmelCase , padding=__UpperCAmelCase , max_length=max_length if max_length else self.n_samples , truncation=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __UpperCAmelCase : List[Any] = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) __UpperCAmelCase : Any = np.stack(padded_inputs["""input_features"""] , axis=0 ) # make sure list is in array format __UpperCAmelCase : str = padded_inputs.get("""input_features""" ).transpose(2 , 0 , 1 ) __UpperCAmelCase : Optional[int] = [self._np_extract_fbank_features(__UpperCAmelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , __UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for feature in input_features] else: __UpperCAmelCase : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __UpperCAmelCase : Dict = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: __UpperCAmelCase : Any = padded_inputs.convert_to_tensors(__UpperCAmelCase ) return padded_inputs def __A ( self ) -> Dict[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Any = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
16
'''simple docstring''' from ..utils import DummyObject, requires_backends class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
16
1
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="resnet50" , __UpperCAmelCase=3 , __UpperCAmelCase=32 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : Any = out_indices if out_indices is not None else [4] __UpperCAmelCase : Optional[int] = stage_names __UpperCAmelCase : int = out_features __UpperCAmelCase : Tuple = backbone __UpperCAmelCase : int = batch_size __UpperCAmelCase : Dict = image_size __UpperCAmelCase : Any = num_channels __UpperCAmelCase : List[Any] = use_pretrained_backbone __UpperCAmelCase : Optional[int] = is_training def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : str = self.get_config() return config, pixel_values def __A ( self ) -> List[Any]: '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = TimmBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase : List[str] = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Dict = {"feature-extraction": TimmBackbone} if is_torch_available() else {} _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = TimmBackboneModelTester(self ) __UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = """resnet18""" __UpperCAmelCase : Optional[int] = """microsoft/resnet-18""" __UpperCAmelCase : str = AutoBackbone.from_pretrained(__UpperCAmelCase , use_timm_backbone=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = AutoBackbone.from_pretrained(__UpperCAmelCase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __UpperCAmelCase : str = AutoBackbone.from_pretrained(__UpperCAmelCase , use_timm_backbone=__UpperCAmelCase , out_indices=[1, 2, 3] ) __UpperCAmelCase : List[str] = AutoBackbone.from_pretrained(__UpperCAmelCase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def __A ( self ) -> Any: '''simple docstring''' pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def __A ( self ) -> int: '''simple docstring''' pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def __A ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def __A ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def __A ( self ) -> Any: '''simple docstring''' pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("""Safetensors is not supported by timm.""" ) def __A ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__UpperCAmelCase ) __UpperCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : str = True __UpperCAmelCase : Optional[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __UpperCAmelCase : List[str] = self.all_model_classes[0] __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) __UpperCAmelCase : Tuple = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : int = model(**__UpperCAmelCase ) __UpperCAmelCase : str = outputs[0][-1] # Encoder-/Decoder-only models __UpperCAmelCase : Union[str, Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __UpperCAmelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__UpperCAmelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(**__UpperCAmelCase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __UpperCAmelCase : Tuple = copy.deepcopy(__UpperCAmelCase ) __UpperCAmelCase : Any = None __UpperCAmelCase : Dict = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(**__UpperCAmelCase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __UpperCAmelCase : Optional[Any] = copy.deepcopy(__UpperCAmelCase ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(**__UpperCAmelCase )
16
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _A : def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase ) __UpperCAmelCase : List[str] = length __UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa ) __UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Dict: '''simple docstring''' return self.length def __getitem__( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int: '''simple docstring''' super().__init__() __UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Any = True def __A ( self , __UpperCAmelCase=None ) -> str: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : Optional[int] = False return x * self.a[0] + self.b[0] class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : str = True def __A ( self , __UpperCAmelCase=None ) -> Tuple: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : int = False return x * self.a + self.b def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer __UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" ) __UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )} def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : List[Any] = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) if "label" in examples: __UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCAmelCase : Tuple = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCAmelCase__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 ) __UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
16
1
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class _A : def __init__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = str(id_ ) __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : str = None __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Dict = {} # {vertex:distance} def __lt__( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.key < other.key def __repr__( self ) -> List[Any]: '''simple docstring''' return self.id def __A ( self , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' self.neighbors.append(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Any = weight def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] ): """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowerCAmelCase__ ) graph[b - 1].add_edge(graph[a - 1] , lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : Vertex ): """simple docstring""" __UpperCAmelCase : int = [] for u in graph: __UpperCAmelCase : Any = math.inf __UpperCAmelCase : str = None __UpperCAmelCase : str = 0 __UpperCAmelCase : List[Any] = graph[:] while q: __UpperCAmelCase : str = min(lowerCAmelCase__ ) q.remove(lowerCAmelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCAmelCase : List[str] = u __UpperCAmelCase : Any = u.edges[v.id] for i in range(1 , len(lowerCAmelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : Vertex ): """simple docstring""" for u in graph: __UpperCAmelCase : str = math.inf __UpperCAmelCase : Tuple = None __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Any = list(lowerCAmelCase__ ) hq.heapify(lowerCAmelCase__ ) while h: __UpperCAmelCase : List[Any] = hq.heappop(lowerCAmelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCAmelCase : List[str] = u __UpperCAmelCase : Optional[int] = u.edges[v.id] hq.heapify(lowerCAmelCase__ ) for i in range(1 , len(lowerCAmelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowercase_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
16
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None @property def __A ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = (3, 32, 128) __UpperCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) __UpperCAmelCase : List[Any] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) return image_input def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[str] = self.prepare_image_inputs() __UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" ) __UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Dict = """test""" __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = """test""" __UpperCAmelCase : int = self.prepare_image_inputs() __UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase ) __UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Optional[Any] = self.get_tokenizer() __UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : str = None __UpperCAmelCase : Dict = self.prepare_image_inputs() __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 ) __UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 ) __UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 ) __UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
16
1
'''simple docstring''' from collections.abc import Callable import numpy as np def lowercase_ ( lowerCAmelCase__ : Callable , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ): """simple docstring""" __UpperCAmelCase : int = int(np.ceil((x_end - xa) / step_size ) ) __UpperCAmelCase : Union[str, Any] = np.zeros((n + 1,) ) __UpperCAmelCase : int = ya __UpperCAmelCase : Optional[int] = xa for k in range(lowerCAmelCase__ ): __UpperCAmelCase : str = y[k] + step_size * ode_func(lowerCAmelCase__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
16
'''simple docstring''' from collections.abc import Sequence def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ): """simple docstring""" if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __UpperCAmelCase : Any = nums[0] for i in range(1 , len(lowerCAmelCase__ ) ): __UpperCAmelCase : Union[str, Any] = nums[i] __UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _UpperCamelCase = int(input('''Enter number of elements : ''').strip()) _UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
16
1
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) _UpperCamelCase = logging.getLogger(__name__) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_0522, type=int) _UpperCamelCase = parser.parse_args() logger.info(F'Loading data from {args.data_file}') with open(args.data_file, '''rb''') as fp: _UpperCamelCase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') _UpperCamelCase = Counter() for tk_ids in data: counter.update(tk_ids) _UpperCamelCase = [0] * args.vocab_size for k, v in counter.items(): _UpperCamelCase = v logger.info(F'Dump to {args.token_counts_dump}') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
16
'''simple docstring''' class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = data __UpperCAmelCase : int = previous __UpperCAmelCase : Union[str, Any] = next_node def __str__( self ) -> str: '''simple docstring''' return f'{self.data}' def __A ( self ) -> int: '''simple docstring''' return self.data def __A ( self ) -> List[str]: '''simple docstring''' return self.next def __A ( self ) -> str: '''simple docstring''' return self.previous class _A : def __init__( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = head def __iter__( self ) -> str: '''simple docstring''' return self def __A ( self ) -> str: '''simple docstring''' if not self.current: raise StopIteration else: __UpperCAmelCase : List[str] = self.current.get_data() __UpperCAmelCase : int = self.current.get_next() return value class _A : def __init__( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = None # First node in list __UpperCAmelCase : List[str] = None # Last node in list def __str__( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = self.head __UpperCAmelCase : Optional[int] = [] while current is not None: nodes.append(current.get_data() ) __UpperCAmelCase : Any = current.get_next() return " ".join(str(__UpperCAmelCase ) for node in nodes ) def __contains__( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.head while current: if current.get_data() == value: return True __UpperCAmelCase : Optional[Any] = current.get_next() return False def __iter__( self ) -> str: '''simple docstring''' return LinkedListIterator(self.head ) def __A ( self ) -> List[Any]: '''simple docstring''' if self.head: return self.head.get_data() return None def __A ( self ) -> Optional[Any]: '''simple docstring''' if self.tail: return self.tail.get_data() return None def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: __UpperCAmelCase : str = node __UpperCAmelCase : List[str] = node else: self.insert_before_node(self.head , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: self.set_head(__UpperCAmelCase ) else: self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase ) if self.head is None: self.set_head(__UpperCAmelCase ) else: self.set_tail(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Tuple = node __UpperCAmelCase : List[Any] = node.previous if node.get_previous() is None: __UpperCAmelCase : str = node_to_insert else: __UpperCAmelCase : Optional[Any] = node_to_insert __UpperCAmelCase : List[Any] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : List[str] = node __UpperCAmelCase : Union[str, Any] = node.next if node.get_next() is None: __UpperCAmelCase : Dict = node_to_insert else: __UpperCAmelCase : Any = node_to_insert __UpperCAmelCase : List[str] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase ) return current_position += 1 __UpperCAmelCase : int = node.next self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Node: '''simple docstring''' __UpperCAmelCase : Dict = self.head while node: if node.get_data() == item: return node __UpperCAmelCase : List[str] = node.get_next() raise Exception("""Node not found""" ) def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if (node := self.get_node(__UpperCAmelCase )) is not None: if node == self.head: __UpperCAmelCase : Optional[int] = self.head.get_next() if node == self.tail: __UpperCAmelCase : Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(__UpperCAmelCase ) @staticmethod def __A ( __UpperCAmelCase ) -> None: '''simple docstring''' if node.get_next(): __UpperCAmelCase : Optional[Any] = node.previous if node.get_previous(): __UpperCAmelCase : int = node.next __UpperCAmelCase : Tuple = None __UpperCAmelCase : Union[str, Any] = None def __A ( self ) -> List[Any]: '''simple docstring''' return self.head is None def lowercase_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
16
1
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Any = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Dict = 0 while number > 0: __UpperCAmelCase : Any = number % 10 sum_of_digits += last_digit __UpperCAmelCase : Any = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowercase_ ( lowerCAmelCase__ : int = 100 ): """simple docstring""" __UpperCAmelCase : Any = factorial(lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = split_and_add(lowerCAmelCase__ ) return result if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
16
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _A : _SCREAMING_SNAKE_CASE : List[str] _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ) -> Any: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class _A : _SCREAMING_SNAKE_CASE : Optional[List] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None __UpperCAmelCase : int = len(self.languages ) if self.languages else None def __call__( self ) -> Optional[Any]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = set(self.languages ) if self.languages and set(__UpperCAmelCase ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) ) return {"language": languages, "translation": translations} def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
16
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["note_seq"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""note_seq"""] ) @classmethod def __A ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""note_seq"""] ) @classmethod def __A ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""note_seq"""] )
16
'''simple docstring''' from statistics import mean import numpy as np def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Tuple = 0 # Number of processes finished __UpperCAmelCase : Optional[int] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __UpperCAmelCase : Tuple = [0] * no_of_process # List to include calculation results __UpperCAmelCase : int = [0] * no_of_process # Sort by arrival time. __UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )] __UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )] arrival_time.sort() while no_of_process > finished_process_count: __UpperCAmelCase : Dict = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __UpperCAmelCase : Any = arrival_time[i] __UpperCAmelCase : Any = 0 # Index showing the location of the process being performed __UpperCAmelCase : Any = 0 # Saves the current response ratio. __UpperCAmelCase : List[str] = 0 for i in range(0 , lowerCAmelCase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __UpperCAmelCase : Tuple = temp __UpperCAmelCase : List[str] = i # Calculate the turn around time __UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __UpperCAmelCase : List[str] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Optional[int] = [0] * no_of_process for i in range(0 , lowerCAmelCase__ ): __UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _UpperCamelCase = 5 _UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E'''] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _UpperCamelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
16
1
'''simple docstring''' import os def lowercase_ ( ): """simple docstring""" with open(os.path.dirname(lowerCAmelCase__ ) + """/p022_names.txt""" ) as file: __UpperCAmelCase : Union[str, Any] = str(file.readlines()[0] ) __UpperCAmelCase : int = names.replace("""\"""" , """""" ).split(""",""" ) names.sort() __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 for i, name in enumerate(lowerCAmelCase__ ): for letter in name: name_score += ord(lowerCAmelCase__ ) - 64 total_score += (i + 1) * name_score __UpperCAmelCase : int = 0 return total_score if __name__ == "__main__": print(solution())
16
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Union[str, Any] = seq_length __UpperCAmelCase : int = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : int = scope def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = None if self.use_input_mask: __UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> List[str]: '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_config() __UpperCAmelCase : List[Any] = 300 return config def __A ( self ) -> Dict: '''simple docstring''' ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = self.prepare_config_and_inputs() __UpperCAmelCase : Tuple = True __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : List[str] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Dict = () def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = MraModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Any: '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""MRA does not output attentions""" ) def __A ( self ) -> List[Any]: '''simple docstring''' return @require_torch class _A ( unittest.TestCase ): @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0] __UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : int = model(__UpperCAmelCase )[0] __UpperCAmelCase : Union[str, Any] = 50_265 __UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : Any = model(__UpperCAmelCase )[0] __UpperCAmelCase : Dict = 50_265 __UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : str = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline _SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCAmelCase : Any = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : Dict = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any: '''simple docstring''' if str(__UpperCAmelCase ).startswith("""mps""" ): __UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase ) else: __UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] ) __UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0] __UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __UpperCAmelCase : Dict = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : List[Any] = embed_dim __UpperCAmelCase : str = depths __UpperCAmelCase : Dict = num_heads __UpperCAmelCase : str = window_size __UpperCAmelCase : int = mlp_ratio __UpperCAmelCase : Union[str, Any] = qkv_bias __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Optional[int] = use_absolute_embeddings __UpperCAmelCase : Any = patch_norm __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : Any = scope __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : int = encoder_stride def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) __UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = self.type_sequence_label_size __UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = SwinvaModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 ) def __A ( self ) -> Any: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(__UpperCAmelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : str = outputs.attentions __UpperCAmelCase : Any = len(self.model_tester.depths ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : int = config.window_size**2 __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : Dict = len(__UpperCAmelCase ) # Check attention is always last and order is fine __UpperCAmelCase : Any = True __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): __UpperCAmelCase : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : Optional[int] = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) ) __UpperCAmelCase : Tuple = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # Swinv2 has a different seq_length __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : int = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape __UpperCAmelCase : Any = ( reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : int = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Tuple = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> int: '''simple docstring''' return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __UpperCAmelCase ) __UpperCAmelCase : Tuple = self.default_image_processor __UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( lowerCAmelCase__ : List[str] ): """simple docstring""" if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : Any = crop_size __UpperCAmelCase : Optional[Any] = resample __UpperCAmelCase : Dict = do_rescale __UpperCAmelCase : List[str] = rescale_factor __UpperCAmelCase : Dict = offset __UpperCAmelCase : List[str] = do_normalize __UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" in size: __UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: __UpperCAmelCase : Any = (size["""height"""], size["""width"""]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = image.astype(np.floataa ) if offset: __UpperCAmelCase : Tuple = image - (scale / 2) return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase ) if do_resize: __UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) if do_center_crop: __UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase ) if do_rescale: __UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase ) if do_normalize: __UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) return image def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' __UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : List[Any] = resample if resample is not None else self.resample __UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : List[Any] = offset if offset is not None else self.offset __UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : int = image_std if image_std is not None else self.image_std __UpperCAmelCase : Any = size if size is not None else self.size __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __UpperCAmelCase : int = make_batched(__UpperCAmelCase ) __UpperCAmelCase : Tuple = [ [ self._preprocess_image( image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , ) for img in video ] for video in videos ] __UpperCAmelCase : Tuple = {"""pixel_values""": videos} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
16
1
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = "" _SCREAMING_SNAKE_CASE : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _SCREAMING_SNAKE_CASE : str = None # compression type in fsspec. ex: "gzip" _SCREAMING_SNAKE_CASE : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , __UpperCAmelCase = "" , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' super().__init__(self , **__UpperCAmelCase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __UpperCAmelCase : Dict = fsspec.open( __UpperCAmelCase , mode="""rb""" , protocol=__UpperCAmelCase , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __UpperCAmelCase : Optional[Any] = os.path.basename(self.file.path.split("""::""" )[0] ) __UpperCAmelCase : int = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) __UpperCAmelCase : Any = None @classmethod def __A ( cls , __UpperCAmelCase ) -> List[str]: '''simple docstring''' # compressed file paths are always relative to the archive root return super()._strip_protocol(__UpperCAmelCase ).lstrip("""/""" ) def __A ( self ) -> Tuple: '''simple docstring''' if self.dir_cache is None: __UpperCAmelCase : Tuple = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} __UpperCAmelCase : Tuple = {f["""name"""]: f} def __A ( self , __UpperCAmelCase ) -> int: '''simple docstring''' return self.file.open().read() def __A ( self , __UpperCAmelCase , __UpperCAmelCase = "rb" , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[int] = self._strip_protocol(__UpperCAmelCase ) if mode != "rb": raise ValueError(f'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = "bz2" _SCREAMING_SNAKE_CASE : List[str] = "bz2" _SCREAMING_SNAKE_CASE : Optional[Any] = ".bz2" class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = "gzip" _SCREAMING_SNAKE_CASE : List[Any] = "gzip" _SCREAMING_SNAKE_CASE : int = ".gz" class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = "lz4" _SCREAMING_SNAKE_CASE : List[str] = "lz4" _SCREAMING_SNAKE_CASE : int = ".lz4" class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : int = "xz" _SCREAMING_SNAKE_CASE : Dict = "xz" _SCREAMING_SNAKE_CASE : Any = ".xz" class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : int = "zstd" _SCREAMING_SNAKE_CASE : Optional[int] = "zstd" _SCREAMING_SNAKE_CASE : Optional[Any] = ".zst" def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "rb" , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = DEFAULT_BLOCK_SIZE , **__UpperCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__( fo=__UpperCAmelCase , mode=__UpperCAmelCase , target_protocol=__UpperCAmelCase , target_options=__UpperCAmelCase , block_size=__UpperCAmelCase , **__UpperCAmelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __UpperCAmelCase : Tuple = self.file.__enter__ class _A : def __init__( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = file_ def __enter__( self ) -> Dict: '''simple docstring''' self._file.__enter__() return self def __exit__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' self._file.__exit__(*__UpperCAmelCase , **__UpperCAmelCase ) def __iter__( self ) -> str: '''simple docstring''' return iter(self._file ) def __A ( self ) -> List[Any]: '''simple docstring''' return next(self._file ) def __getattr__( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' return getattr(self._file , __UpperCAmelCase ) def fixed_enter(*__UpperCAmelCase , **__UpperCAmelCase ): return WrappedFile(_enter(*__UpperCAmelCase , **__UpperCAmelCase ) ) __UpperCAmelCase : Dict = fixed_enter
16
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline _SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCAmelCase : Any = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : Dict = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any: '''simple docstring''' if str(__UpperCAmelCase ).startswith("""mps""" ): __UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase ) else: __UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] ) __UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0] __UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __UpperCAmelCase : Dict = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
1
'''simple docstring''' import datasets _UpperCamelCase = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' _UpperCamelCase = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' _UpperCamelCase = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ): """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def __A ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return {"accuracy": simple_accuracy(__UpperCAmelCase , __UpperCAmelCase )}
16
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column __UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )] def __str__( self ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier __UpperCAmelCase : Optional[Any] = 0 for row_vector in self.array: for obj in row_vector: __UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) ) __UpperCAmelCase : Optional[int] = f'%{max_element_length}s' # Make string and return def single_line(__UpperCAmelCase ) -> str: nonlocal string_format_identifier __UpperCAmelCase : Any = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array ) return s def __repr__( self ) -> str: '''simple docstring''' return str(self ) def __A ( self , __UpperCAmelCase ) -> bool: '''simple docstring''' if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = value def __add__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add __UpperCAmelCase : Dict = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : Dict = -self[r, c] return result def __sub__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' return self + (-another) def __mul__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication __UpperCAmelCase : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] * another return result elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication assert self.column == another.row __UpperCAmelCase : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})' raise TypeError(__UpperCAmelCase ) def __A ( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Dict = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[str] = self[r, c] return result def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __UpperCAmelCase : Optional[Any] = v.transpose() __UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = Matrix(3 , 3 , 0 ) for i in range(3 ): __UpperCAmelCase : Tuple = 1 print(f'a^(-1) is {ainv}' ) # u, v __UpperCAmelCase : Dict = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3 __UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' ) def lowercase_ ( ): """simple docstring""" import doctest doctest.testmod() testa()
16
1
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _UpperCamelCase = Lock() def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowerCAmelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __UpperCAmelCase : List[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __UpperCAmelCase : List[Any] = min(lowerCAmelCase__ , lowerCAmelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowerCAmelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __UpperCAmelCase : List[Any] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __UpperCAmelCase : Dict = max(lowerCAmelCase__ , lowerCAmelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Union[str, Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __UpperCAmelCase : int = Pipe() __UpperCAmelCase : str = Pipe() process_array_.append( Process( target=lowerCAmelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __UpperCAmelCase : Dict = temp_rs __UpperCAmelCase : List[Any] = temp_rr for i in range(1 , len(lowerCAmelCase__ ) - 1 ): __UpperCAmelCase : Any = Pipe() __UpperCAmelCase : str = Pipe() process_array_.append( Process( target=lowerCAmelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __UpperCAmelCase : Dict = temp_rs __UpperCAmelCase : Union[str, Any] = temp_rr process_array_.append( Process( target=lowerCAmelCase__ , args=( len(lowerCAmelCase__ ) - 1, arr[len(lowerCAmelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowerCAmelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowerCAmelCase__ ) ): __UpperCAmelCase : Optional[int] = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = list(range(10 , 0 , -1 ) ) print("""Initial List""" ) print(*lowerCAmelCase__ ) __UpperCAmelCase : List[Any] = odd_even_transposition(lowerCAmelCase__ ) print("""Sorted List\n""" ) print(*lowerCAmelCase__ ) if __name__ == "__main__": main()
16
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
1
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = BertJapaneseTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : List[Any] = True def __A ( self ) -> Tuple: '''simple docstring''' super().setUp() __UpperCAmelCase : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] __UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def __A ( self , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = """こんにちは、世界。 \nこんばんは、世界。""" __UpperCAmelCase : int = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.get_input_output_texts(__UpperCAmelCase ) __UpperCAmelCase : Dict = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __UpperCAmelCase : Tuple = tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) return text, ids def __A ( self ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def __A ( self ) -> str: '''simple docstring''' pass # TODO add if relevant def __A ( self ) -> Dict: '''simple docstring''' pass # TODO add if relevant def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Any = self.tokenizer_class(self.vocab_file ) __UpperCAmelCase : int = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" ) self.assertIsNotNone(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = """こんにちは、世界。\nこんばんは、世界。""" __UpperCAmelCase : str = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __UpperCAmelCase : Dict = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__UpperCAmelCase , """wb""" ) as handle: pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , """rb""" ) as handle: __UpperCAmelCase : Union[str, Any] = pickle.load(__UpperCAmelCase ) __UpperCAmelCase : Any = tokenizer_new.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def __A ( self ) -> str: '''simple docstring''' try: __UpperCAmelCase : str = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def __A ( self ) -> Dict: '''simple docstring''' try: __UpperCAmelCase : Optional[int] = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : str = MecabTokenizer(do_lower_case=__UpperCAmelCase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def __A ( self ) -> Dict: '''simple docstring''' try: __UpperCAmelCase : List[str] = MecabTokenizer( do_lower_case=__UpperCAmelCase , normalize_text=__UpperCAmelCase , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = MecabTokenizer(normalize_text=__UpperCAmelCase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = """こんにちは、世界。\nこんばんは、世界。""" __UpperCAmelCase : List[Any] = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__UpperCAmelCase , """wb""" ) as handle: pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , """rb""" ) as handle: __UpperCAmelCase : int = pickle.load(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer_new.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @require_sudachi def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : int = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] ) @require_sudachi def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[Any] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] ) @require_sudachi def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = SudachiTokenizer(do_lower_case=__UpperCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = SudachiTokenizer(normalize_text=__UpperCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Any = SudachiTokenizer(trim_whitespace=__UpperCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(__UpperCAmelCase ) __UpperCAmelCase : int = """こんにちは、世界。\nこんばんは、世界。""" __UpperCAmelCase : int = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__UpperCAmelCase , """wb""" ) as handle: pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , """rb""" ) as handle: __UpperCAmelCase : List[str] = pickle.load(__UpperCAmelCase ) __UpperCAmelCase : Any = tokenizer_new.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @require_jumanpp def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Dict = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = JumanppTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Tuple = JumanppTokenizer(normalize_text=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = JumanppTokenizer(trim_whitespace=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] __UpperCAmelCase : Union[str, Any] = {} for i, token in enumerate(__UpperCAmelCase ): __UpperCAmelCase : Optional[int] = i __UpperCAmelCase : str = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) __UpperCAmelCase : List[Any] = tokenizer.subword_tokenizer __UpperCAmelCase : Union[str, Any] = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(__UpperCAmelCase , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) __UpperCAmelCase : int = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(__UpperCAmelCase , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) __UpperCAmelCase : Any = tokenizer.encode("""ありがとう。""" , add_special_tokens=__UpperCAmelCase ) __UpperCAmelCase : Any = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__UpperCAmelCase ) __UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = BertJapaneseTokenizer _SCREAMING_SNAKE_CASE : List[Any] = False def __A ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __UpperCAmelCase : Union[str, Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def __A ( self , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = """こんにちは、世界。 \nこんばんは、世界。""" __UpperCAmelCase : List[Any] = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def __A ( self ) -> Optional[int]: '''simple docstring''' pass # TODO add if relevant def __A ( self ) -> List[str]: '''simple docstring''' pass # TODO add if relevant def __A ( self ) -> Any: '''simple docstring''' pass # TODO add if relevant def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" ) __UpperCAmelCase : int = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( __UpperCAmelCase , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __UpperCAmelCase : List[Any] = {} for i, token in enumerate(__UpperCAmelCase ): __UpperCAmelCase : List[str] = i __UpperCAmelCase : List[Any] = CharacterTokenizer(vocab=__UpperCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : str = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) __UpperCAmelCase : List[str] = tokenizer.encode("""ありがとう。""" , add_special_tokens=__UpperCAmelCase ) __UpperCAmelCase : int = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _A ( unittest.TestCase ): def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[Any] = """cl-tohoku/bert-base-japanese""" __UpperCAmelCase : str = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) class _A ( unittest.TestCase ): def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(__UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) __UpperCAmelCase : Optional[Any] = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(__UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
16
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING _SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def __A ( self ) -> Any: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) __UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() __UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow @require_torch def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(__UpperCAmelCase ) @slow @require_tf def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) __UpperCAmelCase : Tuple = None __UpperCAmelCase : int = None self.run_pipeline_test(__UpperCAmelCase , [] ) @require_tf def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : str = None self.run_pipeline_test(__UpperCAmelCase , [] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) __UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = fill_masker.tokenizer __UpperCAmelCase : Union[str, Any] = fill_masker.model __UpperCAmelCase : Tuple = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , ) with self.assertRaises(__UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__UpperCAmelCase ): fill_masker("""This is""" ) self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = tokenizer.get_vocab() __UpperCAmelCase : Dict = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase ) __UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Any = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Call argument __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Score equivalence __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs] __UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ) == set(__UpperCAmelCase ): __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] ) with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 ) __UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = tokenizer.get_vocab() __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) # top_k=2, ntargets=3 __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__UpperCAmelCase ) , 3 ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Dict = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , )
16
1
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): def __init__( self , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""bs4"""] ) super().__init__(**__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = [] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Optional[Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __UpperCAmelCase : Dict = parent.find_all(child.name , recursive=__UpperCAmelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__UpperCAmelCase ) else next(i for i, s in enumerate(__UpperCAmelCase , 1 ) if s is child ) ) __UpperCAmelCase : Any = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def __A ( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = BeautifulSoup(__UpperCAmelCase , """html.parser""" ) __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : Tuple = [] __UpperCAmelCase : List[str] = [] for element in html_code.descendants: if type(__UpperCAmelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __UpperCAmelCase : Union[str, Any] = html.unescape(__UpperCAmelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(__UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : Dict = self.xpath_soup(__UpperCAmelCase ) stringaxtag_seq.append(__UpperCAmelCase ) stringaxsubs_seq.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = """""" for tagname, subs in zip(__UpperCAmelCase , __UpperCAmelCase ): xpath += f'/{tagname}' if subs != 0: xpath += f'[{subs}]' return xpath def __call__( self , __UpperCAmelCase ) -> BatchFeature: '''simple docstring''' __UpperCAmelCase : str = False # Check that strings has a valid type if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCAmelCase : List[str] = True elif isinstance(__UpperCAmelCase , (list, tuple) ): if len(__UpperCAmelCase ) == 0 or isinstance(html_strings[0] , __UpperCAmelCase ): __UpperCAmelCase : List[str] = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ f'but is of type {type(__UpperCAmelCase )}.' ) __UpperCAmelCase : Tuple = bool(isinstance(__UpperCAmelCase , (list, tuple) ) and (isinstance(html_strings[0] , __UpperCAmelCase )) ) if not is_batched: __UpperCAmelCase : List[str] = [html_strings] # Get nodes + xpaths __UpperCAmelCase : Tuple = [] __UpperCAmelCase : List[Any] = [] for html_string in html_strings: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = self.get_three_from_single(__UpperCAmelCase ) nodes.append(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = [] for node, tag_list, sub_list in zip(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __UpperCAmelCase : Any = self.construct_xpath(__UpperCAmelCase , __UpperCAmelCase ) xpath_strings.append(__UpperCAmelCase ) xpaths.append(__UpperCAmelCase ) # return as Dict __UpperCAmelCase : str = {"""nodes""": nodes, """xpaths""": xpaths} __UpperCAmelCase : Optional[Any] = BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase ) return encoded_inputs
16
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} ) _SCREAMING_SNAKE_CASE : str = "image" _SCREAMING_SNAKE_CASE : str = "labels" def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __UpperCAmelCase ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) __UpperCAmelCase : int = copy.deepcopy(self ) __UpperCAmelCase : str = self.label_schema.copy() __UpperCAmelCase : Optional[Any] = features[self.label_column] __UpperCAmelCase : Optional[int] = label_schema return task_template @property def __A ( self ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
16
1
'''simple docstring''' from importlib import import_module from .logging import get_logger _UpperCamelCase = get_logger(__name__) class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("""__""" ): setattr(self , __UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : str = module._original_module if isinstance(__UpperCAmelCase , _PatchedModuleObj ) else module class _A : _SCREAMING_SNAKE_CASE : List[Any] = [] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = obj __UpperCAmelCase : str = target __UpperCAmelCase : Any = new __UpperCAmelCase : Optional[int] = target.split(""".""" )[0] __UpperCAmelCase : Dict = {} __UpperCAmelCase : List[Any] = attrs or [] def __enter__( self ) -> str: '''simple docstring''' *__UpperCAmelCase , __UpperCAmelCase : Tuple = self.target.split(""".""" ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(__UpperCAmelCase ) ): try: __UpperCAmelCase : List[str] = import_module(""".""".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __UpperCAmelCase : int = getattr(self.obj , __UpperCAmelCase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(__UpperCAmelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , __UpperCAmelCase , _PatchedModuleObj(__UpperCAmelCase , attrs=self.attrs ) ) __UpperCAmelCase : Tuple = getattr(self.obj , __UpperCAmelCase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(__UpperCAmelCase , __UpperCAmelCase , _PatchedModuleObj(getattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , attrs=self.attrs ) ) __UpperCAmelCase : Optional[Any] = getattr(__UpperCAmelCase , __UpperCAmelCase ) # finally set the target attribute setattr(__UpperCAmelCase , __UpperCAmelCase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __UpperCAmelCase : str = getattr(import_module(""".""".join(__UpperCAmelCase ) ) , __UpperCAmelCase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , __UpperCAmelCase ) is attr_value: __UpperCAmelCase : int = getattr(self.obj , __UpperCAmelCase ) setattr(self.obj , __UpperCAmelCase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __UpperCAmelCase : Tuple = globals()["""__builtins__"""][target_attr] setattr(self.obj , __UpperCAmelCase , self.new ) else: raise RuntimeError(f'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self , *__UpperCAmelCase ) -> Any: '''simple docstring''' for attr in list(self.original ): setattr(self.obj , __UpperCAmelCase , self.original.pop(__UpperCAmelCase ) ) def __A ( self ) -> str: '''simple docstring''' self.__enter__() self._active_patches.append(self ) def __A ( self ) -> Tuple: '''simple docstring''' try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
16
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : str = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : str = num_choices __UpperCAmelCase : List[Any] = scope def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Tuple = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = True __UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass __UpperCAmelCase : Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : List[str] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = LlamaModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : str = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = 3 __UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : Optional[Any] = """single_label_classification""" __UpperCAmelCase : int = input_dict["""input_ids"""] __UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : str = """multi_label_classification""" __UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size ) __UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() __UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0} __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() __UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) @require_torch class _A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __UpperCAmelCase : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) ) __UpperCAmelCase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """ __UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" ) __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase ) # greedy generation outputs __UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
16
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase__ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase__ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase__ ) return parser.parse_args() def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Optional[int] = parse_args() # Import training_script as a module. __UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __UpperCAmelCase : Any = script_fpath.stem __UpperCAmelCase : str = importlib.import_module(lowerCAmelCase__ ) # Patch sys.argv __UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
16
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _UpperCamelCase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ): """simple docstring""" return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths ) def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": __UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ ) for answer_list in data[1]: __UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : str = [[reference] for reference in references] __UpperCAmelCase : Optional[int] = 0 for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : int = 100.0 * em / total __UpperCAmelCase : Dict = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = args.k __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = 0 for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] ) __UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __UpperCAmelCase : List[str] = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ): """simple docstring""" def strip_title(lowerCAmelCase__ : Optional[int] ): if title.startswith("""\"""" ): __UpperCAmelCase : List[Any] = title[1:] if title.endswith("""\"""" ): __UpperCAmelCase : int = title[:-1] return title __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device ) __UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ ) __UpperCAmelCase : int = question_enc_outputs[0] __UpperCAmelCase : Dict = rag_model.retriever( lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) __UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __UpperCAmelCase : Union[str, Any] = [] for docs in all_docs: __UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(lowerCAmelCase__ ) ) return provenance_strings def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" with torch.no_grad(): __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) __UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device ) __UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device ) __UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) ) return answers def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) __UpperCAmelCase : str = parser.parse_args() __UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = {} if args.model_type is None: __UpperCAmelCase : str = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration __UpperCAmelCase : Dict = args.n_docs if args.index_name is not None: __UpperCAmelCase : Union[str, Any] = args.index_name if args.index_path is not None: __UpperCAmelCase : Dict = args.index_path else: __UpperCAmelCase : str = BartForConditionalGeneration __UpperCAmelCase : str = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k __UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ ) model.retriever.init_retrieval() else: __UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: __UpperCAmelCase : Union[str, Any] = [] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: __UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" ) preds_file.flush() __UpperCAmelCase : List[str] = [] if len(lowerCAmelCase__ ) > 0: __UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _UpperCamelCase = get_args() main(args)
16
1
'''simple docstring''' from graphs.minimum_spanning_tree_kruskal import kruskal def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : List[str] = 9 __UpperCAmelCase : Dict = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __UpperCAmelCase : Tuple = kruskal(lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : List[str] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(lowerCAmelCase__ ) == sorted(lowerCAmelCase__ )
16
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : @staticmethod def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 ) __UpperCAmelCase : Tuple = len(__UpperCAmelCase ) self.assertGreater(__UpperCAmelCase , 0 ) self.assertEqual( __UpperCAmelCase , [ { """score""": ANY(__UpperCAmelCase ), """label""": ANY(__UpperCAmelCase ), """box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )}, } for i in range(__UpperCAmelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> Tuple: '''simple docstring''' pass @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) __UpperCAmelCase : str = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) __UpperCAmelCase : Any = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass @require_torch @slow def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = 0.2 __UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
16
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { '''configuration_layoutlmv3''': [ '''LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv3Config''', '''LayoutLMv3OnnxConfig''', ], '''processing_layoutlmv3''': ['''LayoutLMv3Processor'''], '''tokenization_layoutlmv3''': ['''LayoutLMv3Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''LayoutLMv3TokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv3ForQuestionAnswering''', '''LayoutLMv3ForSequenceClassification''', '''LayoutLMv3ForTokenClassification''', '''LayoutLMv3Model''', '''LayoutLMv3PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLayoutLMv3ForQuestionAnswering''', '''TFLayoutLMv3ForSequenceClassification''', '''TFLayoutLMv3ForTokenClassification''', '''TFLayoutLMv3Model''', '''TFLayoutLMv3PreTrainedModel''', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''LayoutLMv3FeatureExtractor'''] _UpperCamelCase = ['''LayoutLMv3ImageProcessor'''] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.txt'''} _UpperCamelCase = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } _UpperCamelCase = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } _UpperCamelCase = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : Union[str, Any] = do_lower_case __UpperCAmelCase : str = strip_accents __UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars __UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase ) __UpperCAmelCase : List[Any] = do_lower_case def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
16
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = "poolformer" def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=4.0 , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[64, 128, 320, 512] , __UpperCAmelCase=[7, 3, 3, 3] , __UpperCAmelCase=[4, 2, 2, 2] , __UpperCAmelCase=[2, 1, 1, 1] , __UpperCAmelCase=4 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.02 , **__UpperCAmelCase , ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = num_channels __UpperCAmelCase : List[str] = patch_size __UpperCAmelCase : List[str] = stride __UpperCAmelCase : Dict = padding __UpperCAmelCase : Tuple = pool_size __UpperCAmelCase : Optional[Any] = hidden_sizes __UpperCAmelCase : List[Any] = mlp_ratio __UpperCAmelCase : List[str] = depths __UpperCAmelCase : Union[str, Any] = patch_sizes __UpperCAmelCase : Dict = strides __UpperCAmelCase : Dict = num_encoder_blocks __UpperCAmelCase : Any = drop_path_rate __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Optional[Any] = use_layer_scale __UpperCAmelCase : Tuple = layer_scale_init_value __UpperCAmelCase : Union[str, Any] = initializer_range super().__init__(**__UpperCAmelCase ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = version.parse("1.11" ) @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __A ( self ) -> float: '''simple docstring''' return 2E-3
16
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''OwlViTFeatureExtractor'''] _UpperCamelCase = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
16
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: '''simple docstring''' warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
16
1
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _A : _SCREAMING_SNAKE_CASE : List[str] _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ) -> Any: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class _A : _SCREAMING_SNAKE_CASE : Optional[List] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None __UpperCAmelCase : int = len(self.languages ) if self.languages else None def __call__( self ) -> Optional[Any]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = set(self.languages ) if self.languages and set(__UpperCAmelCase ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) ) return {"language": languages, "translation": translations} def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
16
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) __UpperCAmelCase : List[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) __UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) __UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' import torch __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = pipeline("""text-classification""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : int = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __UpperCAmelCase : Union[str, Any] = """HuggingFace is in""" __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""] __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase ) __UpperCAmelCase : Any = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , ) __UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(__UpperCAmelCase ): text_classifier(__UpperCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
16
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = "roc_bert" def __init__( self , __UpperCAmelCase=30_522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3_072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=768 , __UpperCAmelCase=910 , __UpperCAmelCase=512 , __UpperCAmelCase=24_858 , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> Dict: '''simple docstring''' __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : List[str] = layer_norm_eps __UpperCAmelCase : Tuple = use_cache __UpperCAmelCase : Optional[int] = enable_pronunciation __UpperCAmelCase : str = enable_shape __UpperCAmelCase : List[Any] = pronunciation_embed_dim __UpperCAmelCase : Union[str, Any] = pronunciation_vocab_size __UpperCAmelCase : Any = shape_embed_dim __UpperCAmelCase : Dict = shape_vocab_size __UpperCAmelCase : Optional[int] = concat_input __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Optional[int] = classifier_dropout super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase )
16
'''simple docstring''' from ..utils import DummyObject, requires_backends class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
16
1
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = '''▁''' _UpperCamelCase = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } _UpperCamelCase = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } _UpperCamelCase = { '''facebook/s2t-small-librispeech-asr''': 1024, } _UpperCamelCase = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] _UpperCamelCase = {'''mustc''': MUSTC_LANGS} class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[Any] = MAX_MODEL_INPUT_SIZES _SCREAMING_SNAKE_CASE : str = ["input_ids", "attention_mask"] _SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , do_upper_case=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , lang_codes=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) __UpperCAmelCase : Dict = do_upper_case __UpperCAmelCase : List[Any] = do_lower_case __UpperCAmelCase : List[str] = load_json(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : int = spm_file __UpperCAmelCase : str = load_spm(__UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __UpperCAmelCase : Dict = lang_codes __UpperCAmelCase : Dict = LANGUAGES[lang_codes] __UpperCAmelCase : List[Any] = [f'<lang:{lang}>' for lang in self.langs] __UpperCAmelCase : Union[str, Any] = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs} __UpperCAmelCase : Any = self.lang_tokens __UpperCAmelCase : int = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __UpperCAmelCase : int = {} @property def __A ( self ) -> int: '''simple docstring''' return len(self.encoder ) @property def __A ( self ) -> str: '''simple docstring''' return self._tgt_lang @tgt_lang.setter def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = new_tgt_lang self.set_tgt_lang_special_tokens(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : int = self.lang_code_to_id[tgt_lang] __UpperCAmelCase : str = [lang_code_id] def __A ( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' return self.encoder.get(__UpperCAmelCase , self.encoder[self.unk_token] ) def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' return self.decoder.get(__UpperCAmelCase , self.unk_token ) def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Any = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __UpperCAmelCase : int = self.sp_model.decode(__UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __UpperCAmelCase : Tuple = [] else: current_sub_tokens.append(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = self.sp_model.decode(__UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = [1] * len(self.prefix_tokens ) __UpperCAmelCase : Optional[int] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCAmelCase )) + ([0] * len(__UpperCAmelCase )) + suffix_ones def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = self.__dict__.copy() __UpperCAmelCase : Dict = None return state def __setstate__( self , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Any = load_spm(self.spm_file , self.sp_model_kwargs ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : List[str] = Path(__UpperCAmelCase ) assert save_dir.is_dir(), f'{save_directory} should be a directory' __UpperCAmelCase : List[Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) __UpperCAmelCase : Union[str, Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , __UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(__UpperCAmelCase , """wb""" ) as fi: __UpperCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (str(__UpperCAmelCase ), str(__UpperCAmelCase )) def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict[str, Any] ): """simple docstring""" __UpperCAmelCase : int = sentencepiece.SentencePieceProcessor(**lowerCAmelCase__ ) spm.Load(str(lowerCAmelCase__ ) ) return spm def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" with open(lowerCAmelCase__ , """r""" ) as f: return json.load(lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ): """simple docstring""" with open(lowerCAmelCase__ , """w""" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ , indent=2 )
16
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _A : def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase ) __UpperCAmelCase : List[str] = length __UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa ) __UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Dict: '''simple docstring''' return self.length def __getitem__( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int: '''simple docstring''' super().__init__() __UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Any = True def __A ( self , __UpperCAmelCase=None ) -> str: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : Optional[int] = False return x * self.a[0] + self.b[0] class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : str = True def __A ( self , __UpperCAmelCase=None ) -> Tuple: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : int = False return x * self.a + self.b def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer __UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" ) __UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )} def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : List[Any] = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) if "label" in examples: __UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCAmelCase : Tuple = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCAmelCase__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 ) __UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
16
1
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) _UpperCamelCase = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) _UpperCamelCase = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) _UpperCamelCase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) _UpperCamelCase = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) _UpperCamelCase = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) _UpperCamelCase = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) _UpperCamelCase = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) _UpperCamelCase = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) _UpperCamelCase = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) _UpperCamelCase = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) _UpperCamelCase = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) _UpperCamelCase = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) _UpperCamelCase = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) _UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _A ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE : Tuple = FLAX_MODEL_MAPPING _UpperCamelCase = auto_class_update(FlaxAutoModel) class _A ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE : Tuple = FLAX_MODEL_FOR_PRETRAINING_MAPPING _UpperCamelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class _A ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE : str = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _UpperCamelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class _A ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE : Optional[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING _UpperCamelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class _A ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE : str = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCamelCase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class _A ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE : Tuple = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _UpperCamelCase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class _A ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE : List[Any] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _UpperCamelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class _A ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE : Tuple = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _UpperCamelCase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class _A ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE : Optional[int] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _UpperCamelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class _A ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE : int = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _UpperCamelCase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class _A ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE : List[Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _UpperCamelCase = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class _A ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE : str = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _UpperCamelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class _A ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE : Dict = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _UpperCamelCase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
16
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None @property def __A ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = (3, 32, 128) __UpperCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) __UpperCAmelCase : List[Any] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) return image_input def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[str] = self.prepare_image_inputs() __UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" ) __UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Dict = """test""" __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = """test""" __UpperCAmelCase : int = self.prepare_image_inputs() __UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase ) __UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Optional[Any] = self.get_tokenizer() __UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : str = None __UpperCAmelCase : Dict = self.prepare_image_inputs() __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 ) __UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 ) __UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 ) __UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
16
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None @property def __A ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = (3, 32, 128) __UpperCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) __UpperCAmelCase : List[Any] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) return image_input def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[str] = self.prepare_image_inputs() __UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" ) __UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Dict = """test""" __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = """test""" __UpperCAmelCase : int = self.prepare_image_inputs() __UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase ) __UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Optional[Any] = self.get_tokenizer() __UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : str = None __UpperCAmelCase : Dict = self.prepare_image_inputs() __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 ) __UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 ) __UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 ) __UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
16
'''simple docstring''' from collections.abc import Sequence def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ): """simple docstring""" if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __UpperCAmelCase : Any = nums[0] for i in range(1 , len(lowerCAmelCase__ ) ): __UpperCAmelCase : Union[str, Any] = nums[i] __UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _UpperCamelCase = int(input('''Enter number of elements : ''').strip()) _UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
16
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable _UpperCamelCase = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''GPTNeoXTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXForCausalLM''', '''GPTNeoXForQuestionAnswering''', '''GPTNeoXForSequenceClassification''', '''GPTNeoXForTokenClassification''', '''GPTNeoXLayer''', '''GPTNeoXModel''', '''GPTNeoXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
'''simple docstring''' class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = data __UpperCAmelCase : int = previous __UpperCAmelCase : Union[str, Any] = next_node def __str__( self ) -> str: '''simple docstring''' return f'{self.data}' def __A ( self ) -> int: '''simple docstring''' return self.data def __A ( self ) -> List[str]: '''simple docstring''' return self.next def __A ( self ) -> str: '''simple docstring''' return self.previous class _A : def __init__( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = head def __iter__( self ) -> str: '''simple docstring''' return self def __A ( self ) -> str: '''simple docstring''' if not self.current: raise StopIteration else: __UpperCAmelCase : List[str] = self.current.get_data() __UpperCAmelCase : int = self.current.get_next() return value class _A : def __init__( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = None # First node in list __UpperCAmelCase : List[str] = None # Last node in list def __str__( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = self.head __UpperCAmelCase : Optional[int] = [] while current is not None: nodes.append(current.get_data() ) __UpperCAmelCase : Any = current.get_next() return " ".join(str(__UpperCAmelCase ) for node in nodes ) def __contains__( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.head while current: if current.get_data() == value: return True __UpperCAmelCase : Optional[Any] = current.get_next() return False def __iter__( self ) -> str: '''simple docstring''' return LinkedListIterator(self.head ) def __A ( self ) -> List[Any]: '''simple docstring''' if self.head: return self.head.get_data() return None def __A ( self ) -> Optional[Any]: '''simple docstring''' if self.tail: return self.tail.get_data() return None def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: __UpperCAmelCase : str = node __UpperCAmelCase : List[str] = node else: self.insert_before_node(self.head , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: self.set_head(__UpperCAmelCase ) else: self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase ) if self.head is None: self.set_head(__UpperCAmelCase ) else: self.set_tail(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Tuple = node __UpperCAmelCase : List[Any] = node.previous if node.get_previous() is None: __UpperCAmelCase : str = node_to_insert else: __UpperCAmelCase : Optional[Any] = node_to_insert __UpperCAmelCase : List[Any] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : List[str] = node __UpperCAmelCase : Union[str, Any] = node.next if node.get_next() is None: __UpperCAmelCase : Dict = node_to_insert else: __UpperCAmelCase : Any = node_to_insert __UpperCAmelCase : List[str] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase ) return current_position += 1 __UpperCAmelCase : int = node.next self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Node: '''simple docstring''' __UpperCAmelCase : Dict = self.head while node: if node.get_data() == item: return node __UpperCAmelCase : List[str] = node.get_next() raise Exception("""Node not found""" ) def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if (node := self.get_node(__UpperCAmelCase )) is not None: if node == self.head: __UpperCAmelCase : Optional[int] = self.head.get_next() if node == self.tail: __UpperCAmelCase : Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(__UpperCAmelCase ) @staticmethod def __A ( __UpperCAmelCase ) -> None: '''simple docstring''' if node.get_next(): __UpperCAmelCase : Optional[Any] = node.previous if node.get_previous(): __UpperCAmelCase : int = node.next __UpperCAmelCase : Tuple = None __UpperCAmelCase : Union[str, Any] = None def __A ( self ) -> List[Any]: '''simple docstring''' return self.head is None def lowercase_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
16
1
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int = 100 ): """simple docstring""" __UpperCAmelCase : Optional[int] = set() __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[str] = n + 1 # maximum limit for a in range(2 , lowerCAmelCase__ ): for b in range(2 , lowerCAmelCase__ ): __UpperCAmelCase : Tuple = a**b # calculates the current power collect_powers.add(lowerCAmelCase__ ) # adds the result to the set return len(lowerCAmelCase__ ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
16
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _A : _SCREAMING_SNAKE_CASE : List[str] _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ) -> Any: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class _A : _SCREAMING_SNAKE_CASE : Optional[List] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None __UpperCAmelCase : int = len(self.languages ) if self.languages else None def __call__( self ) -> Optional[Any]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = set(self.languages ) if self.languages and set(__UpperCAmelCase ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) ) return {"language": languages, "translation": translations} def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
16
1
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class _A ( unittest.TestCase ): def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : int = inspect.getfile(accelerate.test_utils ) __UpperCAmelCase : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) __UpperCAmelCase : Union[str, Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] ) __UpperCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] ) @require_multi_gpu def __A ( self ) -> Optional[int]: '''simple docstring''' print(f'Found {torch.cuda.device_count()} devices.' ) __UpperCAmelCase : Optional[int] = ["""torchrun""", f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def __A ( self ) -> Tuple: '''simple docstring''' print(f'Found {torch.cuda.device_count()} devices.' ) __UpperCAmelCase : Union[str, Any] = ["""torchrun""", f'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(f'Command: {cmd}' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = ["""torchrun""", f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def __A ( self ) -> int: '''simple docstring''' print(f'Found {torch.cuda.device_count()} devices, using 2 devices only' ) __UpperCAmelCase : Union[str, Any] = ["""torchrun""", f'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1""" ): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": _UpperCamelCase = Accelerator() _UpperCamelCase = (accelerator.state.process_index + 2, 10) _UpperCamelCase = torch.randint(0, 10, shape).to(accelerator.device) _UpperCamelCase = '''''' _UpperCamelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _UpperCamelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _UpperCamelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
'''simple docstring''' from statistics import mean import numpy as np def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Tuple = 0 # Number of processes finished __UpperCAmelCase : Optional[int] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __UpperCAmelCase : Tuple = [0] * no_of_process # List to include calculation results __UpperCAmelCase : int = [0] * no_of_process # Sort by arrival time. __UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )] __UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )] arrival_time.sort() while no_of_process > finished_process_count: __UpperCAmelCase : Dict = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __UpperCAmelCase : Any = arrival_time[i] __UpperCAmelCase : Any = 0 # Index showing the location of the process being performed __UpperCAmelCase : Any = 0 # Saves the current response ratio. __UpperCAmelCase : List[str] = 0 for i in range(0 , lowerCAmelCase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __UpperCAmelCase : Tuple = temp __UpperCAmelCase : List[str] = i # Calculate the turn around time __UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __UpperCAmelCase : List[str] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Optional[int] = [0] * no_of_process for i in range(0 , lowerCAmelCase__ ): __UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _UpperCamelCase = 5 _UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E'''] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _UpperCamelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
16
1
'''simple docstring''' import torch def lowercase_ ( ): """simple docstring""" if torch.cuda.is_available(): __UpperCAmelCase : Dict = torch.cuda.device_count() else: __UpperCAmelCase : str = 0 print(f'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
16
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Union[str, Any] = seq_length __UpperCAmelCase : int = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : int = scope def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = None if self.use_input_mask: __UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> List[str]: '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_config() __UpperCAmelCase : List[Any] = 300 return config def __A ( self ) -> Dict: '''simple docstring''' ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = self.prepare_config_and_inputs() __UpperCAmelCase : Tuple = True __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : List[str] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Dict = () def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = MraModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Any: '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""MRA does not output attentions""" ) def __A ( self ) -> List[Any]: '''simple docstring''' return @require_torch class _A ( unittest.TestCase ): @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0] __UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : int = model(__UpperCAmelCase )[0] __UpperCAmelCase : Union[str, Any] = 50_265 __UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : Any = model(__UpperCAmelCase )[0] __UpperCAmelCase : Dict = 50_265 __UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : str = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
1
'''simple docstring''' class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = name __UpperCAmelCase : Any = value __UpperCAmelCase : int = weight def __repr__( self ) -> Dict: '''simple docstring''' return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def __A ( self ) -> Dict: '''simple docstring''' return self.value def __A ( self ) -> List[Any]: '''simple docstring''' return self.name def __A ( self ) -> Optional[int]: '''simple docstring''' return self.weight def __A ( self ) -> str: '''simple docstring''' return self.value / self.weight def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = [] for i in range(len(lowerCAmelCase__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any ): """simple docstring""" __UpperCAmelCase : Optional[Any] = sorted(lowerCAmelCase__ , key=lowerCAmelCase__ , reverse=lowerCAmelCase__ ) __UpperCAmelCase : str = [] __UpperCAmelCase , __UpperCAmelCase : Tuple = 0.0, 0.0 for i in range(len(lowerCAmelCase__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowercase_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
16
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : List[Any] = embed_dim __UpperCAmelCase : str = depths __UpperCAmelCase : Dict = num_heads __UpperCAmelCase : str = window_size __UpperCAmelCase : int = mlp_ratio __UpperCAmelCase : Union[str, Any] = qkv_bias __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Optional[int] = use_absolute_embeddings __UpperCAmelCase : Any = patch_norm __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : Any = scope __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : int = encoder_stride def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) __UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = self.type_sequence_label_size __UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = SwinvaModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 ) def __A ( self ) -> Any: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(__UpperCAmelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : str = outputs.attentions __UpperCAmelCase : Any = len(self.model_tester.depths ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : int = config.window_size**2 __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : Dict = len(__UpperCAmelCase ) # Check attention is always last and order is fine __UpperCAmelCase : Any = True __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): __UpperCAmelCase : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : Optional[int] = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) ) __UpperCAmelCase : Tuple = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # Swinv2 has a different seq_length __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : int = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape __UpperCAmelCase : Any = ( reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : int = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Tuple = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> int: '''simple docstring''' return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __UpperCAmelCase ) __UpperCAmelCase : Tuple = self.default_image_processor __UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: '''simple docstring''' warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
16
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( lowerCAmelCase__ : List[str] ): """simple docstring""" if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : Any = crop_size __UpperCAmelCase : Optional[Any] = resample __UpperCAmelCase : Dict = do_rescale __UpperCAmelCase : List[str] = rescale_factor __UpperCAmelCase : Dict = offset __UpperCAmelCase : List[str] = do_normalize __UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" in size: __UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: __UpperCAmelCase : Any = (size["""height"""], size["""width"""]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = image.astype(np.floataa ) if offset: __UpperCAmelCase : Tuple = image - (scale / 2) return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase ) if do_resize: __UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) if do_center_crop: __UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase ) if do_rescale: __UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase ) if do_normalize: __UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) return image def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' __UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : List[Any] = resample if resample is not None else self.resample __UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : List[Any] = offset if offset is not None else self.offset __UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : int = image_std if image_std is not None else self.image_std __UpperCAmelCase : Any = size if size is not None else self.size __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __UpperCAmelCase : int = make_batched(__UpperCAmelCase ) __UpperCAmelCase : Tuple = [ [ self._preprocess_image( image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , ) for img in video ] for video in videos ] __UpperCAmelCase : Tuple = {"""pixel_values""": videos} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
16
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _UpperCamelCase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _UpperCamelCase = {F'funnel-transformer/{name}': 512 for name in _model_names} _UpperCamelCase = {F'funnel-transformer/{name}': {'''do_lower_case''': True} for name in _model_names} class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Optional[int] = FunnelTokenizer _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : int = 2 def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase="##" , **__UpperCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , clean_text=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , wordpieces_prefix=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : Optional[int] = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : List[Any] = do_lower_case __UpperCAmelCase : List[str] = strip_accents __UpperCAmelCase : Optional[Any] = tokenize_chinese_chars __UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = do_lower_case def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Dict: '''simple docstring''' __UpperCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = [self.sep_token_id] __UpperCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : List[str] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
16
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline _SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCAmelCase : Any = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : Dict = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any: '''simple docstring''' if str(__UpperCAmelCase ).startswith("""mps""" ): __UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase ) else: __UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] ) __UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0] __UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __UpperCAmelCase : Dict = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
1
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "new-model" if is_tf_available(): class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = NewModelConfig @require_tf class _A ( unittest.TestCase ): @slow def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = """bert-base-cased""" __UpperCAmelCase : Any = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[Any] = """bert-base-cased""" __UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = TFAutoModelForPreTraining.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Tuple: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : int = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[int] = TFAutoModelForCausalLM.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : Tuple = TFAutoModelForCausalLM.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : str = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : int = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Dict = TFAutoModelForMaskedLM.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : Any = TFAutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Dict: '''simple docstring''' # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __UpperCAmelCase : Any = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Tuple = TFAutoModelForSequenceClassification.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Any = TFAutoModelForQuestionAnswering.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow @require_tensorflow_probability def __A ( self ) -> int: '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained( __UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 14_410 ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[Any] = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 14_410 ) def __A ( self ) -> Optional[Any]: '''simple docstring''' # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel __UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = copy.deepcopy(model.config ) __UpperCAmelCase : Dict = ["""FunnelBaseModel"""] __UpperCAmelCase : Tuple = TFAutoModel.from_config(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = TFAutoModel.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' try: AutoConfig.register("""new-model""" , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__UpperCAmelCase ): auto_class.register(__UpperCAmelCase , __UpperCAmelCase ) auto_class.register(__UpperCAmelCase , __UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCAmelCase ): auto_class.register(__UpperCAmelCase , __UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCAmelCase : Tuple = BertModelTester(self ).get_config() __UpperCAmelCase : Optional[Any] = NewModelConfig(**tiny_config.to_dict() ) __UpperCAmelCase : str = auto_class.from_config(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Dict = auto_class.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __A ( self ) -> Tuple: '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ): __UpperCAmelCase : Union[str, Any] = TFAutoModel.from_pretrained("""bert-base""" ) def __A ( self ) -> Dict: '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __UpperCAmelCase : List[str] = TFAutoModel.from_pretrained(__UpperCAmelCase , revision="""aaaaaa""" ) def __A ( self ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ): __UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def __A ( self ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex(__UpperCAmelCase , """Use `from_pt=True` to load this model""" ): __UpperCAmelCase : Optional[Any] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' # Make sure we have cached the model. __UpperCAmelCase : Tuple = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: __UpperCAmelCase : Optional[Any] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __UpperCAmelCase : List[str] = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) with RequestCounter() as counter: __UpperCAmelCase : List[str] = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
16
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column __UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )] def __str__( self ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier __UpperCAmelCase : Optional[Any] = 0 for row_vector in self.array: for obj in row_vector: __UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) ) __UpperCAmelCase : Optional[int] = f'%{max_element_length}s' # Make string and return def single_line(__UpperCAmelCase ) -> str: nonlocal string_format_identifier __UpperCAmelCase : Any = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array ) return s def __repr__( self ) -> str: '''simple docstring''' return str(self ) def __A ( self , __UpperCAmelCase ) -> bool: '''simple docstring''' if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = value def __add__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add __UpperCAmelCase : Dict = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : Dict = -self[r, c] return result def __sub__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' return self + (-another) def __mul__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication __UpperCAmelCase : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] * another return result elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication assert self.column == another.row __UpperCAmelCase : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})' raise TypeError(__UpperCAmelCase ) def __A ( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Dict = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[str] = self[r, c] return result def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __UpperCAmelCase : Optional[Any] = v.transpose() __UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = Matrix(3 , 3 , 0 ) for i in range(3 ): __UpperCAmelCase : Tuple = 1 print(f'a^(-1) is {ainv}' ) # u, v __UpperCAmelCase : Dict = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3 __UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' ) def lowercase_ ( ): """simple docstring""" import doctest doctest.testmod() testa()
16
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = size if size is not None else {"""height""": 384, """width""": 384} __UpperCAmelCase : Dict = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Tuple = do_resize __UpperCAmelCase : int = size __UpperCAmelCase : Dict = resample __UpperCAmelCase : Optional[int] = do_rescale __UpperCAmelCase : Optional[int] = rescale_factor __UpperCAmelCase : Optional[Any] = do_normalize __UpperCAmelCase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCAmelCase : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCAmelCase : Optional[int] = do_convert_rgb def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) __UpperCAmelCase : str = (size["""height"""], size["""width"""]) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[str]: '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Optional[int] = resample if resample is not None else self.resample __UpperCAmelCase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : List[str] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Optional[int] = image_std if image_std is not None else self.image_std __UpperCAmelCase : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCAmelCase : Optional[Any] = size if size is not None else self.size __UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Tuple = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCAmelCase : Any = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __UpperCAmelCase : int = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: __UpperCAmelCase : List[Any] = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_rescale: __UpperCAmelCase : Optional[int] = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: __UpperCAmelCase : Tuple = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] __UpperCAmelCase : Union[str, Any] = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCAmelCase : str = BatchFeature(data={"""pixel_values""": images} , tensor_type=__UpperCAmelCase ) return encoded_outputs
16
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING _SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def __A ( self ) -> Any: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) __UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() __UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow @require_torch def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(__UpperCAmelCase ) @slow @require_tf def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) __UpperCAmelCase : Tuple = None __UpperCAmelCase : int = None self.run_pipeline_test(__UpperCAmelCase , [] ) @require_tf def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : str = None self.run_pipeline_test(__UpperCAmelCase , [] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) __UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = fill_masker.tokenizer __UpperCAmelCase : Union[str, Any] = fill_masker.model __UpperCAmelCase : Tuple = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , ) with self.assertRaises(__UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__UpperCAmelCase ): fill_masker("""This is""" ) self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = tokenizer.get_vocab() __UpperCAmelCase : Dict = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase ) __UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Any = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Call argument __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Score equivalence __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs] __UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ) == set(__UpperCAmelCase ): __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] ) with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 ) __UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = tokenizer.get_vocab() __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) # top_k=2, ntargets=3 __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__UpperCAmelCase ) , 3 ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Dict = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , )
16
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = "speech_to_text_2" _SCREAMING_SNAKE_CASE : Union[str, Any] = ["past_key_values"] _SCREAMING_SNAKE_CASE : Union[str, Any] = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __UpperCAmelCase=10_000 , __UpperCAmelCase=6 , __UpperCAmelCase=2_048 , __UpperCAmelCase=4 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=1_024 , **__UpperCAmelCase , ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = vocab_size __UpperCAmelCase : Dict = d_model __UpperCAmelCase : Dict = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : Optional[Any] = decoder_attention_heads __UpperCAmelCase : List[str] = dropout __UpperCAmelCase : Optional[int] = attention_dropout __UpperCAmelCase : List[Any] = activation_dropout __UpperCAmelCase : List[str] = activation_function __UpperCAmelCase : str = init_std __UpperCAmelCase : Tuple = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : Dict = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
16
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} ) _SCREAMING_SNAKE_CASE : str = "image" _SCREAMING_SNAKE_CASE : str = "labels" def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __UpperCAmelCase ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) __UpperCAmelCase : int = copy.deepcopy(self ) __UpperCAmelCase : str = self.label_schema.copy() __UpperCAmelCase : Optional[Any] = features[self.label_column] __UpperCAmelCase : Optional[int] = label_schema return task_template @property def __A ( self ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
16
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class _A ( unittest.TestCase ): @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __UpperCAmelCase : List[str] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : List[str] = TFAutoModel.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = AutoModel.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __UpperCAmelCase : int = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Tuple = TFAutoModelForPreTraining.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : int = AutoModelForPreTraining.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Any = TFAutoModelForCausalLM.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : List[str] = TFAutoModelForCausalLM.from_pretrained( __UpperCAmelCase , output_loading_info=__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : int = AutoModelForCausalLM.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained( __UpperCAmelCase , output_loading_info=__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Dict: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : int = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[int] = AutoModelWithLMHead.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> List[str]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = TFAutoModelForMaskedLM.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : List[str] = TFAutoModelForMaskedLM.from_pretrained( __UpperCAmelCase , output_loading_info=__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[int] = AutoModelForMaskedLM.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = AutoModelForMaskedLM.from_pretrained( __UpperCAmelCase , output_loading_info=__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Dict: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : int = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained( __UpperCAmelCase , output_loading_info=__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( __UpperCAmelCase , output_loading_info=__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __UpperCAmelCase : Dict = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = TFAutoModelForSequenceClassification.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Any = AutoModelForSequenceClassification.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : List[str] = TFAutoModelForQuestionAnswering.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : int = AutoModelForQuestionAnswering.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 14_410 ) __UpperCAmelCase : str = AutoModelWithLMHead.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 14_410 ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[Any] = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 14_410 ) __UpperCAmelCase : Dict = AutoModelWithLMHead.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 14_410 )
16
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : str = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : str = num_choices __UpperCAmelCase : List[Any] = scope def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Tuple = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = True __UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass __UpperCAmelCase : Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : List[str] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = LlamaModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : str = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = 3 __UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : Optional[Any] = """single_label_classification""" __UpperCAmelCase : int = input_dict["""input_ids"""] __UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : str = """multi_label_classification""" __UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size ) __UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() __UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0} __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() __UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) @require_torch class _A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __UpperCAmelCase : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) ) __UpperCAmelCase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """ __UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" ) __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase ) # greedy generation outputs __UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
16
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = StableDiffusionSAGPipeline _SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS _SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE : int = False def __A ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __UpperCAmelCase : Any = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCAmelCase : int = CLIPTextModel(__UpperCAmelCase ) __UpperCAmelCase : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Dict: '''simple docstring''' if str(__UpperCAmelCase ).startswith("""mps""" ): __UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase ) else: __UpperCAmelCase : Union[str, Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> List[str]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Tuple: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) __UpperCAmelCase : List[Any] = sag_pipe.to(__UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Dict = """.""" __UpperCAmelCase : List[str] = torch.manual_seed(0 ) __UpperCAmelCase : Union[str, Any] = sag_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) __UpperCAmelCase : List[Any] = output.images __UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase : Optional[int] = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) __UpperCAmelCase : str = sag_pipe.to(__UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = """.""" __UpperCAmelCase : List[Any] = torch.manual_seed(0 ) __UpperCAmelCase : Optional[int] = sag_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) __UpperCAmelCase : Any = output.images __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase : Dict = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : str = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) __UpperCAmelCase : List[str] = sag_pipe.to(__UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = """.""" __UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) __UpperCAmelCase : Dict = sag_pipe( [prompt] , width=768 , height=512 , generator=__UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) __UpperCAmelCase : str = output.images assert image.shape == (1, 512, 768, 3)
16
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _UpperCamelCase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ): """simple docstring""" return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths ) def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": __UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ ) for answer_list in data[1]: __UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : str = [[reference] for reference in references] __UpperCAmelCase : Optional[int] = 0 for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : int = 100.0 * em / total __UpperCAmelCase : Dict = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = args.k __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = 0 for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] ) __UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __UpperCAmelCase : List[str] = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ): """simple docstring""" def strip_title(lowerCAmelCase__ : Optional[int] ): if title.startswith("""\"""" ): __UpperCAmelCase : List[Any] = title[1:] if title.endswith("""\"""" ): __UpperCAmelCase : int = title[:-1] return title __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device ) __UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ ) __UpperCAmelCase : int = question_enc_outputs[0] __UpperCAmelCase : Dict = rag_model.retriever( lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) __UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __UpperCAmelCase : Union[str, Any] = [] for docs in all_docs: __UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(lowerCAmelCase__ ) ) return provenance_strings def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" with torch.no_grad(): __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) __UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device ) __UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device ) __UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) ) return answers def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) __UpperCAmelCase : str = parser.parse_args() __UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = {} if args.model_type is None: __UpperCAmelCase : str = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration __UpperCAmelCase : Dict = args.n_docs if args.index_name is not None: __UpperCAmelCase : Union[str, Any] = args.index_name if args.index_path is not None: __UpperCAmelCase : Dict = args.index_path else: __UpperCAmelCase : str = BartForConditionalGeneration __UpperCAmelCase : str = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k __UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ ) model.retriever.init_retrieval() else: __UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: __UpperCAmelCase : Union[str, Any] = [] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: __UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" ) preds_file.flush() __UpperCAmelCase : List[str] = [] if len(lowerCAmelCase__ ) > 0: __UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _UpperCamelCase = get_args() main(args)
16
1
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Optional[int] = HfArgumentParser(lowerCAmelCase__ ) __UpperCAmelCase : int = parser.parse_args_into_dataclasses()[0] __UpperCAmelCase : List[Any] = TensorFlowBenchmark(args=lowerCAmelCase__ ) try: __UpperCAmelCase : Any = parser.parse_args_into_dataclasses()[0] except ValueError as e: __UpperCAmelCase : List[str] = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" __UpperCAmelCase : Dict = """ """.join(str(lowerCAmelCase__ ).split(""" """ )[:-1] ) __UpperCAmelCase : Any = """""" __UpperCAmelCase : List[Any] = eval(str(lowerCAmelCase__ ).split(""" """ )[-1] ) __UpperCAmelCase : Union[str, Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: __UpperCAmelCase : Tuple = full_error_msg + begin_error_msg + str(lowerCAmelCase__ ) raise ValueError(lowerCAmelCase__ ) benchmark.run() if __name__ == "__main__": main()
16
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : @staticmethod def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 ) __UpperCAmelCase : Tuple = len(__UpperCAmelCase ) self.assertGreater(__UpperCAmelCase , 0 ) self.assertEqual( __UpperCAmelCase , [ { """score""": ANY(__UpperCAmelCase ), """label""": ANY(__UpperCAmelCase ), """box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )}, } for i in range(__UpperCAmelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> Tuple: '''simple docstring''' pass @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) __UpperCAmelCase : str = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) __UpperCAmelCase : Any = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass @require_torch @slow def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = 0.2 __UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
16
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowercase_ ( lowerCAmelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase : Any = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Any = emb.weight.shape __UpperCAmelCase : Dict = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) __UpperCAmelCase : Tuple = emb.weight.data return lin_layer def lowercase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any="facebook/mbart-large-en-ro" , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Union[str, Any]=False ): """simple docstring""" __UpperCAmelCase : Dict = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] remove_ignore_keys_(lowerCAmelCase__ ) __UpperCAmelCase : str = state_dict["""encoder.embed_tokens.weight"""].shape[0] __UpperCAmelCase : int = MBartConfig.from_pretrained(lowerCAmelCase__ , vocab_size=lowerCAmelCase__ ) if mbart_aa and finetuned: __UpperCAmelCase : List[str] = """relu""" __UpperCAmelCase : List[str] = state_dict["""decoder.embed_tokens.weight"""] __UpperCAmelCase : Optional[int] = MBartForConditionalGeneration(lowerCAmelCase__ ) model.model.load_state_dict(lowerCAmelCase__ ) if finetuned: __UpperCAmelCase : str = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') _UpperCamelCase = parser.parse_args() _UpperCamelCase = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
16
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.txt'''} _UpperCamelCase = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } _UpperCamelCase = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } _UpperCamelCase = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : Union[str, Any] = do_lower_case __UpperCAmelCase : str = strip_accents __UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars __UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase ) __UpperCAmelCase : List[Any] = do_lower_case def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
16
1
'''simple docstring''' from __future__ import annotations from typing import Generic, TypeVar _UpperCamelCase = TypeVar('''T''') class _A ( Generic[T] ): def __init__( self , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : List[str] = data __UpperCAmelCase : Tuple = self __UpperCAmelCase : Union[str, Any] = 0 class _A ( Generic[T] ): def __init__( self ) -> None: '''simple docstring''' # map from node name to the node object __UpperCAmelCase : dict[T, DisjointSetTreeNode[T]] = {} def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' # create a new set with x as its member __UpperCAmelCase : Union[str, Any] = DisjointSetTreeNode(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> DisjointSetTreeNode[T]: '''simple docstring''' # find the set x belongs to (with path-compression) __UpperCAmelCase : Dict = self.map[data] if elem_ref != elem_ref.parent: __UpperCAmelCase : Dict = self.find_set(elem_ref.parent.data ) return elem_ref.parent def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' # helper function for union operation if nodea.rank > nodea.rank: __UpperCAmelCase : Any = nodea else: __UpperCAmelCase : Optional[Any] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' # merge 2 disjoint sets self.link(self.find_set(__UpperCAmelCase ) , self.find_set(__UpperCAmelCase ) ) class _A ( Generic[T] ): def __init__( self ) -> None: '''simple docstring''' # connections: map from the node to the neighbouring nodes (with weights) __UpperCAmelCase : dict[T, dict[T, int]] = {} def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' # add a node ONLY if its not present in the graph if node not in self.connections: __UpperCAmelCase : Dict = {} def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' # add an edge with the given weight self.add_node(__UpperCAmelCase ) self.add_node(__UpperCAmelCase ) __UpperCAmelCase : Any = weight __UpperCAmelCase : int = weight def __A ( self ) -> GraphUndirectedWeighted[T]: '''simple docstring''' __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __UpperCAmelCase : x[2] ) # creating the disjoint set __UpperCAmelCase : str = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__UpperCAmelCase ) # MST generation __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Union[str, Any] = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = edges[index] index += 1 __UpperCAmelCase : List[Any] = disjoint_set.find_set(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = disjoint_set.find_set(__UpperCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) disjoint_set.union(__UpperCAmelCase , __UpperCAmelCase ) return graph
16
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''OwlViTFeatureExtractor'''] _UpperCamelCase = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
1
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def lowercase_ ( lowerCAmelCase__ : NDArray[floataa] , lowerCAmelCase__ : NDArray[floataa] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int , ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = coefficient_matrix.shape __UpperCAmelCase , __UpperCAmelCase : int = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : List[str] = f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(lowerCAmelCase__ ) if colsa != 1: __UpperCAmelCase : int = f'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(lowerCAmelCase__ ) if rowsa != rowsa: __UpperCAmelCase : Union[str, Any] = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) != rowsa: __UpperCAmelCase : Optional[Any] = ( """Number of initial values must be equal to number of rows in coefficient """ f'matrix but received {len(lowerCAmelCase__ )} and {rowsa}' ) raise ValueError(lowerCAmelCase__ ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase , __UpperCAmelCase : Any = table.shape strictly_diagonally_dominant(lowerCAmelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCAmelCase__ ): __UpperCAmelCase : List[str] = [] for row in range(lowerCAmelCase__ ): __UpperCAmelCase : Union[str, Any] = 0 for col in range(lowerCAmelCase__ ): if col == row: __UpperCAmelCase : int = table[row][col] elif col == cols - 1: __UpperCAmelCase : Tuple = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : Optional[int] = (temp + val) / denom new_val.append(lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = new_val return [float(lowerCAmelCase__ ) for i in new_val] def lowercase_ ( lowerCAmelCase__ : NDArray[floataa] ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape __UpperCAmelCase : Optional[int] = True for i in range(0 , lowerCAmelCase__ ): __UpperCAmelCase : Any = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
16
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: '''simple docstring''' warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
16
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _A ( SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE : Any = "gpt_neo" _SCREAMING_SNAKE_CASE : List[Any] = ["past_key_values"] _SCREAMING_SNAKE_CASE : Optional[Any] = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , __UpperCAmelCase=50_257 , __UpperCAmelCase=2_048 , __UpperCAmelCase=2_048 , __UpperCAmelCase=24 , __UpperCAmelCase=[[["global", "local"], 12]] , __UpperCAmelCase=16 , __UpperCAmelCase=None , __UpperCAmelCase=256 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50_256 , __UpperCAmelCase=50_256 , **__UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : int = vocab_size __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[str] = num_layers __UpperCAmelCase : List[Any] = num_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Optional[Any] = window_size __UpperCAmelCase : int = activation_function __UpperCAmelCase : Optional[int] = resid_dropout __UpperCAmelCase : List[Any] = embed_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Any = classifier_dropout __UpperCAmelCase : int = layer_norm_epsilon __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = use_cache __UpperCAmelCase : Dict = bos_token_id __UpperCAmelCase : List[Any] = eos_token_id __UpperCAmelCase : Union[str, Any] = attention_types __UpperCAmelCase : Union[str, Any] = self.expand_attention_types_params(__a ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ f'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' f'`config.num_layers = {self.num_layers}`. ' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=__a , eos_token_id=__a , **__a ) @staticmethod def __A ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Tuple = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" import torch __UpperCAmelCase : Tuple = input.size() __UpperCAmelCase : Any = len(_UpperCAmelCase ) __UpperCAmelCase : Any = shape[dimension] __UpperCAmelCase : Any = torch.arange(0 , _UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : int = torch.div(sizedim - size , _UpperCAmelCase , rounding_mode="""floor""" ) + 1 __UpperCAmelCase : List[Any] = torch.arange(_UpperCAmelCase ) + low_indices[:min_length][:, None] __UpperCAmelCase : int = [slice(_UpperCAmelCase )] * rank __UpperCAmelCase : Optional[Any] = indices __UpperCAmelCase : Union[str, Any] = input[s] __UpperCAmelCase : List[Any] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_UpperCAmelCase ) def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ): """simple docstring""" import torch __UpperCAmelCase : Union[str, Any] = torch.arange(1 , _UpperCAmelCase ) __UpperCAmelCase : Dict = torch.remainder(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Optional[int] = remainders == 0 __UpperCAmelCase : Tuple = candidates[divisor_indices] __UpperCAmelCase : str = torch.max(_UpperCAmelCase ) return largest_divisor, torch.div(_UpperCAmelCase , _UpperCAmelCase , rounding_mode="""floor""" ) class _A ( SCREAMING_SNAKE_CASE_ ): @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __UpperCAmelCase : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__a , direction="""inputs""" ) __UpperCAmelCase : Dict = {0: 'batch', 1: 'past_sequence + sequence'} else: __UpperCAmelCase : Tuple = {0: 'batch', 1: 'sequence'} return common_inputs @property def __A ( self ) -> int: '''simple docstring''' return self._config.num_heads def __A ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' __UpperCAmelCase : Tuple = super(__a , self ).generate_dummy_inputs( __a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a ) # We need to order the input in the way they appears in the forward() __UpperCAmelCase : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __UpperCAmelCase : int = common_inputs['input_ids'].shape # Not using the same length for past_key_values __UpperCAmelCase : List[Any] = seqlen + 2 __UpperCAmelCase : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCAmelCase : Optional[Any] = [ (torch.zeros(__a ), torch.zeros(__a )) for _ in range(self.num_layers ) ] __UpperCAmelCase : Dict = common_inputs['attention_mask'] if self.use_past: __UpperCAmelCase : Dict = ordered_inputs['attention_mask'].dtype __UpperCAmelCase : Dict = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__a , __a , dtype=__a )] , dim=1 ) return ordered_inputs @property def __A ( self ) -> int: '''simple docstring''' return 13
350
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) __UpperCAmelCase : List[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) __UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) __UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' import torch __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = pipeline("""text-classification""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : int = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __UpperCAmelCase : Union[str, Any] = """HuggingFace is in""" __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""] __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase ) __UpperCAmelCase : Any = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , ) __UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(__UpperCAmelCase ): text_classifier(__UpperCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
16
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _A : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : List[str] = seq_length __UpperCAmelCase : int = is_training __UpperCAmelCase : Optional[int] = use_input_mask __UpperCAmelCase : Tuple = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : List[str] = num_attention_heads __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : Optional[Any] = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Optional[int] = num_labels __UpperCAmelCase : Tuple = num_choices __UpperCAmelCase : Optional[Any] = scope def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Optional[Any] = None if self.use_input_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : int = None __UpperCAmelCase : List[str] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__A , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = FalconModel(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase : List[Any] = model(__A , attention_mask=__A ) __UpperCAmelCase : str = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[str] = FalconModel(__A ) model.to(__A ) model.eval() __UpperCAmelCase : int = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , ) __UpperCAmelCase : Optional[Any] = model( __A , attention_mask=__A , encoder_hidden_states=__A , ) __UpperCAmelCase : List[str] = model(__A , attention_mask=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[int] = FalconForCausalLM(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase : Optional[Any] = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : str = True __UpperCAmelCase : List[str] = FalconForCausalLM(config=__A ) model.to(__A ) model.eval() # first forward pass __UpperCAmelCase : int = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , use_cache=__A , ) __UpperCAmelCase : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : int = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , output_hidden_states=__A , )["""hidden_states"""][0] __UpperCAmelCase : Dict = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , past_key_values=__A , output_hidden_states=__A , )["""hidden_states"""][0] # select random slice __UpperCAmelCase : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1E-3 ) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( __UpperCAmelCase ) : Optional[Any] = config_and_inputs __UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : str = (FalconForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Union[str, Any] = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : int = False def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = FalconModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__A , hidden_size=37 ) def __A ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: __UpperCAmelCase : int = alibi self.model_tester.create_and_check_model(__A , *__A ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : Any = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__A ) __UpperCAmelCase : List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Dict = FalconForSequenceClassification(__A ) model.to(__A ) model.eval() __UpperCAmelCase : Any = model(__A , attention_mask=__A , labels=__A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Union[str, Any] = """single_label_classification""" __UpperCAmelCase : int = input_dict["""input_ids"""] __UpperCAmelCase : Tuple = input_ids.ne(1 ).to(__A ) __UpperCAmelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Any = FalconForSequenceClassification(__A ) model.to(__A ) model.eval() __UpperCAmelCase : int = model(__A , attention_mask=__A , labels=__A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] __UpperCAmelCase : Any = FalconForCausalLM(__A ) model.to(__A ) model.eval() __UpperCAmelCase : Optional[int] = model(__A , use_cache=__A ) __UpperCAmelCase : Union[str, Any] = input_ids.shape[0] __UpperCAmelCase : Tuple = model._convert_to_rw_cache(result.past_key_values ) __UpperCAmelCase : Optional[int] = model._convert_cache_to_standard_format(__A , __A ) for layer in range(len(__A ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : Optional[int] = """multi_label_classification""" __UpperCAmelCase : List[str] = input_dict["""input_ids"""] __UpperCAmelCase : Optional[int] = input_ids.ne(1 ).to(__A ) __UpperCAmelCase : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase : Tuple = FalconForSequenceClassification(__A ) model.to(__A ) model.eval() __UpperCAmelCase : Optional[Any] = model(__A , attention_mask=__A , labels=__A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Tuple: '''simple docstring''' # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(__A , """use_cache""" ): return __UpperCAmelCase : Optional[Any] = model_class(__A ).to(__A ) if "use_cache" not in inputs: __UpperCAmelCase : Any = True __UpperCAmelCase : List[str] = model(**__A ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return __UpperCAmelCase : int = ( getattr(__A , """decoder_layers""" , __A ) or getattr(__A , """num_decoder_layers""" , __A ) or config.num_hidden_layers ) __UpperCAmelCase : Optional[int] = getattr(__A , """num_kv_heads""" , config.num_attention_heads ) __UpperCAmelCase : int = getattr(__A , """d_model""" , config.hidden_size ) __UpperCAmelCase : Tuple = embed_dim // num_attention_heads __UpperCAmelCase : List[str] = outputs["""past_key_values"""] self.assertEqual(len(__A ) , __A ) __UpperCAmelCase : List[str] = inputs["""input_ids"""].shape for i in range(__A ): if config.new_decoder_architecture: __UpperCAmelCase : Tuple = config.num_attention_heads elif config.multi_query: __UpperCAmelCase : List[Any] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class _A ( unittest.TestCase ): """simple docstring""" @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) __UpperCAmelCase : int = FalconForCausalLM.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) model.eval() model.to(__A ) __UpperCAmelCase : List[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__A ) __UpperCAmelCase : List[str] = ( """My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.""" ) __UpperCAmelCase : int = model.generate(**__A , do_sample=__A , max_new_tokens=19 ) __UpperCAmelCase : List[str] = tokenizer.batch_decode(__A )[0] self.assertEqual(__A , __A ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: __UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(__A ) __UpperCAmelCase : str = FalconForCausalLM.from_pretrained(__A ) model.eval() model.to(__A ) __UpperCAmelCase : List[str] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__A ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**__A , do_sample=__A , max_new_tokens=4 ) model.generate(**__A , do_sample=__A , max_new_tokens=4 ) model.generate(**__A , num_beams=2 , max_new_tokens=4 ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(__A ) __UpperCAmelCase : Dict = FalconForCausalLM.from_pretrained(__A ) model.eval() model.to(device=__A ) __UpperCAmelCase : Tuple = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__A ) # Test results are the same with and without cache __UpperCAmelCase : List[Any] = model.generate(**__A , do_sample=__A , max_new_tokens=20 , use_cache=__A ) __UpperCAmelCase : Dict = model.generate(**__A , do_sample=__A , max_new_tokens=20 , use_cache=__A ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
351
'''simple docstring''' from ..utils import DummyObject, requires_backends class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
16
0
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class _A ( _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = DebertaVaTokenizer _SCREAMING_SNAKE_CASE : Tuple = DebertaVaTokenizerFast _SCREAMING_SNAKE_CASE : int = True _SCREAMING_SNAKE_CASE : int = True def __A ( self ) -> Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : List[Any] = DebertaVaTokenizer(_UpperCAmelCase , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[str] = '''this is a test''' __UpperCAmelCase : int = '''this is a test''' return input_text, output_text def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''<pad>''' __UpperCAmelCase : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(_UpperCAmelCase ) , 30_001 ) def __A ( self ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def __A ( self ) -> int: '''simple docstring''' # fmt: off __UpperCAmelCase : int = ''' \tHeLLo!how \n Are yoU? ''' __UpperCAmelCase : List[str] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on __UpperCAmelCase : Any = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def __A ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def __A ( self ) -> Optional[int]: '''simple docstring''' pass def __A ( self ) -> Optional[int]: '''simple docstring''' # fmt: off __UpperCAmelCase : Dict = '''I was born in 92000, and this is falsé.''' __UpperCAmelCase : str = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on __UpperCAmelCase : Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __UpperCAmelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Tuple = DebertaVaTokenizerFast(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' # fmt: off __UpperCAmelCase : Any = '''I was born in 92000, and this is falsé.''' __UpperCAmelCase : str = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on __UpperCAmelCase : Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __UpperCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Optional[int] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __UpperCAmelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' # fmt: off __UpperCAmelCase : List[str] = '''I was born in 92000, and this is falsé.''' __UpperCAmelCase : List[str] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on __UpperCAmelCase : Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : int = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __UpperCAmelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def __A ( self ) -> Tuple: '''simple docstring''' # fmt: off __UpperCAmelCase : Union[str, Any] = '''I was born in 92000, and this is falsé.''' __UpperCAmelCase : int = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on __UpperCAmelCase : Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __UpperCAmelCase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' # fmt: off __UpperCAmelCase : Optional[int] = ''' \tHeLLo!how \n Are yoU? ''' __UpperCAmelCase : str = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on __UpperCAmelCase : Dict = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __UpperCAmelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : int = self.get_tokenizer() __UpperCAmelCase : List[Any] = self.get_rust_tokenizer() __UpperCAmelCase : List[str] = '''I was born in 92000, and this is falsé.''' __UpperCAmelCase : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) __UpperCAmelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __UpperCAmelCase : Tuple = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Any = self.get_rust_tokenizer() __UpperCAmelCase : str = tokenizer.encode(_UpperCAmelCase ) __UpperCAmelCase : Any = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[Any] = '''This is a test''' __UpperCAmelCase : str = [13, 1, 4_398, 25, 21, 1_289] __UpperCAmelCase : List[Any] = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] __UpperCAmelCase : Any = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] __UpperCAmelCase : int = DebertaVaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __UpperCAmelCase : int = DebertaVaTokenizerFast(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __UpperCAmelCase : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : str = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Any = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : List[Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : str = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # fmt: off __UpperCAmelCase : str = '''I was born in 92000, and this is falsé.''' __UpperCAmelCase : Dict = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] __UpperCAmelCase : Tuple = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] __UpperCAmelCase : Dict = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on __UpperCAmelCase : Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Dict = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : List[Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Dict = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = DebertaVaTokenizer(_UpperCAmelCase ) __UpperCAmelCase : Optional[int] = tokenizer.encode("""sequence builders""" ) __UpperCAmelCase : Optional[Any] = tokenizer.encode("""multi-sequence build""" ) __UpperCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __UpperCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _UpperCAmelCase , ) @slow def __A ( self ) -> int: '''simple docstring''' # fmt: off __UpperCAmelCase : List[Any] = {'''input_ids''': [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
352
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _A : def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase ) __UpperCAmelCase : List[str] = length __UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa ) __UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Dict: '''simple docstring''' return self.length def __getitem__( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int: '''simple docstring''' super().__init__() __UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Any = True def __A ( self , __UpperCAmelCase=None ) -> str: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : Optional[int] = False return x * self.a[0] + self.b[0] class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : str = True def __A ( self , __UpperCAmelCase=None ) -> Tuple: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : int = False return x * self.a + self.b def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer __UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" ) __UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )} def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : List[Any] = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) if "label" in examples: __UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCAmelCase : Tuple = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCAmelCase__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 ) __UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
16
0
'''simple docstring''' from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration _UpperCamelCase = HfArgumentParser(InitializationArguments) _UpperCamelCase = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization _UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks _UpperCamelCase = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) _UpperCamelCase = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config _UpperCamelCase = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
353
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None @property def __A ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = (3, 32, 128) __UpperCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) __UpperCAmelCase : List[Any] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) return image_input def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[str] = self.prepare_image_inputs() __UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" ) __UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Dict = """test""" __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = """test""" __UpperCAmelCase : int = self.prepare_image_inputs() __UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase ) __UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Optional[Any] = self.get_tokenizer() __UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : str = None __UpperCAmelCase : Dict = self.prepare_image_inputs() __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 ) __UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 ) __UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 ) __UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
16
0
'''simple docstring''' from __future__ import annotations _UpperCamelCase = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = graph # mapping node to its parent in resulting breadth first tree __UpperCAmelCase : dict[str, str | None] = {} __UpperCAmelCase : str = source_vertex def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = {self.source_vertex} __UpperCAmelCase : Any = None __UpperCAmelCase : List[Any] = [self.source_vertex] # first in first out queue while queue: __UpperCAmelCase : str = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_lowerCamelCase ) __UpperCAmelCase : Any = vertex queue.append(_lowerCamelCase ) def __A ( self , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __UpperCAmelCase : Any = self.parent.get(_lowerCamelCase ) if target_vertex_parent is None: __UpperCAmelCase : Union[str, Any] = ( f'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(_lowerCamelCase ) return self.shortest_path(_lowerCamelCase ) + f'->{target_vertex}' if __name__ == "__main__": _UpperCamelCase = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
354
'''simple docstring''' from collections.abc import Sequence def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ): """simple docstring""" if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __UpperCAmelCase : Any = nums[0] for i in range(1 , len(lowerCAmelCase__ ) ): __UpperCAmelCase : Union[str, Any] = nums[i] __UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _UpperCamelCase = int(input('''Enter number of elements : ''').strip()) _UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
16
0
'''simple docstring''' import argparse from collections import defaultdict import yaml _UpperCamelCase = '''docs/source/en/_toctree.yml''' def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : Any = defaultdict(__a ) for doc in model_doc: counts[doc["local"]] += 1 __UpperCAmelCase : List[str] = [key for key, value in counts.items() if value > 1] __UpperCAmelCase : str = [] for duplicate_key in duplicates: __UpperCAmelCase : Union[str, Any] = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(__a , key=lambda lowerCAmelCase__ : s["title"].lower() ) def lowercase_ ( lowerCAmelCase__ : Optional[int]=False ): """simple docstring""" with open(__a , encoding="""utf-8""" ) as f: __UpperCAmelCase : Tuple = yaml.safe_load(f.read() ) # Get to the API doc __UpperCAmelCase : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCAmelCase : Union[str, Any] = content[api_idx]['sections'] # Then to the model doc __UpperCAmelCase : List[str] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __UpperCAmelCase : List[str] = api_doc[model_idx]['sections'] __UpperCAmelCase : List[Any] = [(idx, section) for idx, section in enumerate(__a ) if 'sections' in section] __UpperCAmelCase : Tuple = False for idx, modality_doc in modalities_docs: __UpperCAmelCase : List[Any] = modality_doc['sections'] __UpperCAmelCase : Any = clean_model_doc_toc(__a ) if old_modality_doc != new_modality_doc: __UpperCAmelCase : Union[str, Any] = True if overwrite: __UpperCAmelCase : str = new_modality_doc if diff: if overwrite: __UpperCAmelCase : Dict = model_doc __UpperCAmelCase : Dict = api_doc with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _UpperCamelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
355
'''simple docstring''' class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = data __UpperCAmelCase : int = previous __UpperCAmelCase : Union[str, Any] = next_node def __str__( self ) -> str: '''simple docstring''' return f'{self.data}' def __A ( self ) -> int: '''simple docstring''' return self.data def __A ( self ) -> List[str]: '''simple docstring''' return self.next def __A ( self ) -> str: '''simple docstring''' return self.previous class _A : def __init__( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = head def __iter__( self ) -> str: '''simple docstring''' return self def __A ( self ) -> str: '''simple docstring''' if not self.current: raise StopIteration else: __UpperCAmelCase : List[str] = self.current.get_data() __UpperCAmelCase : int = self.current.get_next() return value class _A : def __init__( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = None # First node in list __UpperCAmelCase : List[str] = None # Last node in list def __str__( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = self.head __UpperCAmelCase : Optional[int] = [] while current is not None: nodes.append(current.get_data() ) __UpperCAmelCase : Any = current.get_next() return " ".join(str(__UpperCAmelCase ) for node in nodes ) def __contains__( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.head while current: if current.get_data() == value: return True __UpperCAmelCase : Optional[Any] = current.get_next() return False def __iter__( self ) -> str: '''simple docstring''' return LinkedListIterator(self.head ) def __A ( self ) -> List[Any]: '''simple docstring''' if self.head: return self.head.get_data() return None def __A ( self ) -> Optional[Any]: '''simple docstring''' if self.tail: return self.tail.get_data() return None def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: __UpperCAmelCase : str = node __UpperCAmelCase : List[str] = node else: self.insert_before_node(self.head , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: self.set_head(__UpperCAmelCase ) else: self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase ) if self.head is None: self.set_head(__UpperCAmelCase ) else: self.set_tail(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Tuple = node __UpperCAmelCase : List[Any] = node.previous if node.get_previous() is None: __UpperCAmelCase : str = node_to_insert else: __UpperCAmelCase : Optional[Any] = node_to_insert __UpperCAmelCase : List[Any] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : List[str] = node __UpperCAmelCase : Union[str, Any] = node.next if node.get_next() is None: __UpperCAmelCase : Dict = node_to_insert else: __UpperCAmelCase : Any = node_to_insert __UpperCAmelCase : List[str] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase ) return current_position += 1 __UpperCAmelCase : int = node.next self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Node: '''simple docstring''' __UpperCAmelCase : Dict = self.head while node: if node.get_data() == item: return node __UpperCAmelCase : List[str] = node.get_next() raise Exception("""Node not found""" ) def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if (node := self.get_node(__UpperCAmelCase )) is not None: if node == self.head: __UpperCAmelCase : Optional[int] = self.head.get_next() if node == self.tail: __UpperCAmelCase : Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(__UpperCAmelCase ) @staticmethod def __A ( __UpperCAmelCase ) -> None: '''simple docstring''' if node.get_next(): __UpperCAmelCase : Optional[Any] = node.previous if node.get_previous(): __UpperCAmelCase : int = node.next __UpperCAmelCase : Tuple = None __UpperCAmelCase : Union[str, Any] = None def __A ( self ) -> List[Any]: '''simple docstring''' return self.head is None def lowercase_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
16
0
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : Union[str, Any] = 100 __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Tuple = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : List[Any] = is_training __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : int = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Union[str, Any] = intermediate_size __UpperCAmelCase : int = hidden_act __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : Tuple = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : str = scope __UpperCAmelCase : List[str] = out_indices __UpperCAmelCase : List[Any] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCAmelCase : Union[str, Any] = (image_size // patch_size) ** 2 __UpperCAmelCase : str = num_patches + 1 def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCAmelCase : str = self.get_config() return config, pixel_values, labels, pixel_labels def __A ( self ) -> List[Any]: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.type_sequence_label_size __UpperCAmelCase : Optional[int] = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Union[str, Any] = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.num_labels __UpperCAmelCase : Tuple = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : str = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = config_and_inputs __UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Tuple = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : List[Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = BeitModelTester(self ) __UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`""" ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' pass def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Dict = [*signature.parameters.keys()] __UpperCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' if not self.model_tester.is_training: return __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue __UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCAmelCase : Optional[int] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCAmelCase : str = model(**__UpperCAmelCase ).loss loss.backward() def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCAmelCase : List[str] = False __UpperCAmelCase : Any = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __UpperCAmelCase : List[str] = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCAmelCase : List[str] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCAmelCase : Any = model(**__UpperCAmelCase ).loss loss.backward() def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __A ( self ) -> Any: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Any = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> Optional[Any]: '''simple docstring''' return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(__UpperCAmelCase ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : List[str] = prepare_img() __UpperCAmelCase : str = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos __UpperCAmelCase : Optional[int] = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : int = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = outputs.logits # verify the logits __UpperCAmelCase : str = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Dict = torch.tensor( [[-3.2437, 0.5072, -13.9_174], [-3.2456, 0.4948, -13.9_401], [-3.2033, 0.5121, -13.8_550]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = self.default_image_processor __UpperCAmelCase : List[str] = prepare_img() __UpperCAmelCase : List[Any] = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = outputs.logits # verify the logits __UpperCAmelCase : Tuple = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCAmelCase : Optional[int] = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : int = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( __UpperCAmelCase ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : str = prepare_img() __UpperCAmelCase : Optional[int] = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase ) __UpperCAmelCase : Any = outputs.logits # verify the logits __UpperCAmelCase : Optional[Any] = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCAmelCase : Any = 2_396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) __UpperCAmelCase : Tuple = model.to(__UpperCAmelCase ) __UpperCAmelCase : str = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCAmelCase : int = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) __UpperCAmelCase : str = Image.open(ds[0]["""file"""] ) __UpperCAmelCase : Optional[int] = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Dict = model(**__UpperCAmelCase ) __UpperCAmelCase : str = outputs.logits # verify the logits __UpperCAmelCase : List[str] = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCAmelCase : str = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: __UpperCAmelCase : str = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=__UpperCAmelCase , ) else: __UpperCAmelCase : List[str] = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : str = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) __UpperCAmelCase : str = model.to(__UpperCAmelCase ) __UpperCAmelCase : List[str] = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) __UpperCAmelCase : Any = Image.open(ds[0]["""file"""] ) __UpperCAmelCase : List[str] = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Tuple = model(**__UpperCAmelCase ) __UpperCAmelCase : Any = outputs.logits.detach().cpu() __UpperCAmelCase : List[str] = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) __UpperCAmelCase : List[Any] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) __UpperCAmelCase : Dict = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) __UpperCAmelCase : str = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
356
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _A : _SCREAMING_SNAKE_CASE : List[str] _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ) -> Any: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class _A : _SCREAMING_SNAKE_CASE : Optional[List] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None __UpperCAmelCase : int = len(self.languages ) if self.languages else None def __call__( self ) -> Optional[Any]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = set(self.languages ) if self.languages and set(__UpperCAmelCase ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) ) return {"language": languages, "translation": translations} def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
16
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__SCREAMING_SNAKE_CASE ) , "Tatoeba directory does not exist." ) class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() return TatoebaConverter(save_dir=_snake_case ) @slow def __A ( self ) -> Any: '''simple docstring''' self.resolver.convert_models(["""heb-eng"""] ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=_snake_case ) assert mmeta["long_pair"] == "heb-eng"
357
'''simple docstring''' from statistics import mean import numpy as np def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Tuple = 0 # Number of processes finished __UpperCAmelCase : Optional[int] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __UpperCAmelCase : Tuple = [0] * no_of_process # List to include calculation results __UpperCAmelCase : int = [0] * no_of_process # Sort by arrival time. __UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )] __UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )] arrival_time.sort() while no_of_process > finished_process_count: __UpperCAmelCase : Dict = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __UpperCAmelCase : Any = arrival_time[i] __UpperCAmelCase : Any = 0 # Index showing the location of the process being performed __UpperCAmelCase : Any = 0 # Saves the current response ratio. __UpperCAmelCase : List[str] = 0 for i in range(0 , lowerCAmelCase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __UpperCAmelCase : Tuple = temp __UpperCAmelCase : List[str] = i # Calculate the turn around time __UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __UpperCAmelCase : List[str] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Optional[int] = [0] * no_of_process for i in range(0 , lowerCAmelCase__ ): __UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _UpperCamelCase = 5 _UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E'''] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _UpperCamelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
16
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
358
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Union[str, Any] = seq_length __UpperCAmelCase : int = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : int = scope def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = None if self.use_input_mask: __UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> List[str]: '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_config() __UpperCAmelCase : List[Any] = 300 return config def __A ( self ) -> Dict: '''simple docstring''' ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = self.prepare_config_and_inputs() __UpperCAmelCase : Tuple = True __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : List[str] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Dict = () def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = MraModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Any: '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""MRA does not output attentions""" ) def __A ( self ) -> List[Any]: '''simple docstring''' return @require_torch class _A ( unittest.TestCase ): @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0] __UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : int = model(__UpperCAmelCase )[0] __UpperCAmelCase : Union[str, Any] = 50_265 __UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : Any = model(__UpperCAmelCase )[0] __UpperCAmelCase : Dict = 50_265 __UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : str = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
0
'''simple docstring''' from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool _UpperCamelCase = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class _A ( __A ): _SCREAMING_SNAKE_CASE : List[str] = 'facebook/nllb-200-distilled-600M' _SCREAMING_SNAKE_CASE : Dict = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) _SCREAMING_SNAKE_CASE : Optional[int] = 'translator' _SCREAMING_SNAKE_CASE : Any = AutoTokenizer _SCREAMING_SNAKE_CASE : Any = AutoModelForSeqaSeqLM _SCREAMING_SNAKE_CASE : Optional[Any] = LANGUAGE_CODES _SCREAMING_SNAKE_CASE : Optional[int] = ['text', 'text', 'text'] _SCREAMING_SNAKE_CASE : Union[str, Any] = ['text'] def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'{tgt_lang} is not a supported language.' ) __UpperCAmelCase : List[str] = self.lang_to_code[src_lang] __UpperCAmelCase : Union[str, Any] = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __lowercase , return_tensors="""pt""" , src_lang=__lowercase , tgt_lang=__lowercase ) def __A ( self , __UpperCAmelCase ) -> Dict: '''simple docstring''' return self.model.generate(**__lowercase ) def __A ( self , __UpperCAmelCase ) -> int: '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__lowercase )
359
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : List[Any] = embed_dim __UpperCAmelCase : str = depths __UpperCAmelCase : Dict = num_heads __UpperCAmelCase : str = window_size __UpperCAmelCase : int = mlp_ratio __UpperCAmelCase : Union[str, Any] = qkv_bias __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Optional[int] = use_absolute_embeddings __UpperCAmelCase : Any = patch_norm __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : Any = scope __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : int = encoder_stride def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) __UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = self.type_sequence_label_size __UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = SwinvaModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 ) def __A ( self ) -> Any: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(__UpperCAmelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : str = outputs.attentions __UpperCAmelCase : Any = len(self.model_tester.depths ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : int = config.window_size**2 __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : Dict = len(__UpperCAmelCase ) # Check attention is always last and order is fine __UpperCAmelCase : Any = True __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): __UpperCAmelCase : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : Optional[int] = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) ) __UpperCAmelCase : Tuple = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # Swinv2 has a different seq_length __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : int = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape __UpperCAmelCase : Any = ( reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : int = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Tuple = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> int: '''simple docstring''' return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __UpperCAmelCase ) __UpperCAmelCase : Tuple = self.default_image_processor __UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''PerceiverFeatureExtractor'''] _UpperCamelCase = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
360
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( lowerCAmelCase__ : List[str] ): """simple docstring""" if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : Any = crop_size __UpperCAmelCase : Optional[Any] = resample __UpperCAmelCase : Dict = do_rescale __UpperCAmelCase : List[str] = rescale_factor __UpperCAmelCase : Dict = offset __UpperCAmelCase : List[str] = do_normalize __UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" in size: __UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: __UpperCAmelCase : Any = (size["""height"""], size["""width"""]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = image.astype(np.floataa ) if offset: __UpperCAmelCase : Tuple = image - (scale / 2) return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase ) if do_resize: __UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) if do_center_crop: __UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase ) if do_rescale: __UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase ) if do_normalize: __UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) return image def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' __UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : List[Any] = resample if resample is not None else self.resample __UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : List[Any] = offset if offset is not None else self.offset __UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : int = image_std if image_std is not None else self.image_std __UpperCAmelCase : Any = size if size is not None else self.size __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __UpperCAmelCase : int = make_batched(__UpperCAmelCase ) __UpperCAmelCase : Tuple = [ [ self._preprocess_image( image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , ) for img in video ] for video in videos ] __UpperCAmelCase : Tuple = {"""pixel_values""": videos} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
16
0
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def lowercase_ ( lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[int]=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=lowerCAmelCase__ ) @dataclass class _A : _SCREAMING_SNAKE_CASE : str = field( metadata={"help": "The csv file to plot."} , ) _SCREAMING_SNAKE_CASE : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) _SCREAMING_SNAKE_CASE : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) _SCREAMING_SNAKE_CASE : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Disable logarithmic scale when plotting"} , ) _SCREAMING_SNAKE_CASE : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) _SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def lowercase_ ( lowerCAmelCase__ : Dict ): """simple docstring""" try: int(lowerCAmelCase__ ) return True except ValueError: return False def lowercase_ ( lowerCAmelCase__ : Optional[int] ): """simple docstring""" try: float(lowerCAmelCase__ ) return True except ValueError: return False class _A : def __init__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : str = args __UpperCAmelCase : List[str] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="""""" ) as csv_file: __UpperCAmelCase : Tuple = csv.DictReader(_a ) for row in reader: __UpperCAmelCase : Optional[int] = row["""model"""] self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""] ) ) self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""] ) ) if can_convert_to_int(row["""result"""] ): # value is not None __UpperCAmelCase : Optional[Any] = int(row["""result"""] ) elif can_convert_to_float(row["""result"""] ): # value is not None __UpperCAmelCase : List[str] = float(row["""result"""] ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = plt.subplots() __UpperCAmelCase : Optional[Any] = """Time usage""" if self.args.is_time else """Memory usage""" __UpperCAmelCase : Optional[Any] = title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("""log""" ) ax.set_yscale("""log""" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __UpperCAmelCase : Optional[int] = sorted(set(self.result_dict[model_name]["""bsz"""] ) ) __UpperCAmelCase : Union[str, Any] = sorted(set(self.result_dict[model_name]["""seq_len"""] ) ) __UpperCAmelCase : str = self.result_dict[model_name]["""result"""] ((__UpperCAmelCase) , (__UpperCAmelCase)) : List[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __UpperCAmelCase : Tuple = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __UpperCAmelCase : Tuple = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=_a , ) else: __UpperCAmelCase : Tuple = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__UpperCAmelCase) , (__UpperCAmelCase)) : List[Any] = ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) __UpperCAmelCase : int = np.asarray(_a , _a )[: len(_a )] plt.scatter( _a , _a , label=f'{label_model_name} - {inner_loop_label}: {inner_loop_value}' ) plt.plot(_a , _a , """--""" ) title_str += f' {label_model_name} vs.' __UpperCAmelCase : Dict = title_str[:-4] __UpperCAmelCase : str = """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(_a ) plt.xlabel(_a ) plt.ylabel(_a ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : int = HfArgumentParser(lowerCAmelCase__ ) __UpperCAmelCase : Tuple = parser.parse_args_into_dataclasses()[0] __UpperCAmelCase : Union[str, Any] = Plot(args=lowerCAmelCase__ ) plot.plot() if __name__ == "__main__": main()
361
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline _SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCAmelCase : Any = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : Dict = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any: '''simple docstring''' if str(__UpperCAmelCase ).startswith("""mps""" ): __UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase ) else: __UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] ) __UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0] __UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __UpperCAmelCase : Dict = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
0
'''simple docstring''' from PIL import Image def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ): """simple docstring""" def brightness(lowerCAmelCase__ : Dict ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(lowercase__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 _UpperCamelCase = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
362
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column __UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )] def __str__( self ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier __UpperCAmelCase : Optional[Any] = 0 for row_vector in self.array: for obj in row_vector: __UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) ) __UpperCAmelCase : Optional[int] = f'%{max_element_length}s' # Make string and return def single_line(__UpperCAmelCase ) -> str: nonlocal string_format_identifier __UpperCAmelCase : Any = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array ) return s def __repr__( self ) -> str: '''simple docstring''' return str(self ) def __A ( self , __UpperCAmelCase ) -> bool: '''simple docstring''' if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = value def __add__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add __UpperCAmelCase : Dict = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : Dict = -self[r, c] return result def __sub__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' return self + (-another) def __mul__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication __UpperCAmelCase : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] * another return result elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication assert self.column == another.row __UpperCAmelCase : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})' raise TypeError(__UpperCAmelCase ) def __A ( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Dict = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[str] = self[r, c] return result def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __UpperCAmelCase : Optional[Any] = v.transpose() __UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = Matrix(3 , 3 , 0 ) for i in range(3 ): __UpperCAmelCase : Tuple = 1 print(f'a^(-1) is {ainv}' ) # u, v __UpperCAmelCase : Dict = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3 __UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' ) def lowercase_ ( ): """simple docstring""" import doctest doctest.testmod() testa()
16
0
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _UpperCamelCase = 10 def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ): """simple docstring""" for i in range(_lowerCamelCase , _lowerCamelCase ): if array[i] == target: return i return -1 def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ): """simple docstring""" __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[str] = len(_lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __UpperCAmelCase : List[Any] = (left + right) // 3 + 1 __UpperCAmelCase : str = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __UpperCAmelCase : List[Any] = one_third - 1 elif array[two_third] < target: __UpperCAmelCase : Tuple = two_third + 1 else: __UpperCAmelCase : str = one_third + 1 __UpperCAmelCase : Tuple = two_third - 1 else: return -1 def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] ): """simple docstring""" if left < right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __UpperCAmelCase : List[Any] = (left + right) // 3 + 1 __UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by comma:\n''').strip() _UpperCamelCase = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." _UpperCamelCase = int(input('''Enter the number to be found in the list:\n''').strip()) _UpperCamelCase = ite_ternary_search(collection, target) _UpperCamelCase = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'Iterative search: {target} found at positions: {resulta}') print(F'Recursive search: {target} found at positions: {resulta}') else: print('''Not found''')
363
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
0
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : Optional[int] = 600851475143 ): """simple docstring""" try: __UpperCAmelCase : Tuple = int(a_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) __UpperCAmelCase : Union[str, Any] = 2 __UpperCAmelCase : List[str] = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __UpperCAmelCase : List[Any] = i while n % i == 0: __UpperCAmelCase : Union[str, Any] = n // i i += 1 return int(a_ ) if __name__ == "__main__": print(F'{solution() = }')
364
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING _SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def __A ( self ) -> Any: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) __UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() __UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow @require_torch def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(__UpperCAmelCase ) @slow @require_tf def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) __UpperCAmelCase : Tuple = None __UpperCAmelCase : int = None self.run_pipeline_test(__UpperCAmelCase , [] ) @require_tf def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : str = None self.run_pipeline_test(__UpperCAmelCase , [] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) __UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = fill_masker.tokenizer __UpperCAmelCase : Union[str, Any] = fill_masker.model __UpperCAmelCase : Tuple = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , ) with self.assertRaises(__UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__UpperCAmelCase ): fill_masker("""This is""" ) self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = tokenizer.get_vocab() __UpperCAmelCase : Dict = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase ) __UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Any = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Call argument __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Score equivalence __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs] __UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ) == set(__UpperCAmelCase ): __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] ) with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 ) __UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = tokenizer.get_vocab() __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) # top_k=2, ntargets=3 __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__UpperCAmelCase ) , 3 ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Dict = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , )
16
0
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _A ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[int] = ["vqvae"] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: '''simple docstring''' super().__init__() self.register_modules(unet=_a , scheduler=_a , mel=_a , vqvae=_a ) def __A ( self ) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , _a ) else 1_000 @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(_a ) __UpperCAmelCase : str = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __UpperCAmelCase : Optional[Any] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __UpperCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_a , device=self.device , ) __UpperCAmelCase : str = noise __UpperCAmelCase : Dict = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_a , _a ) __UpperCAmelCase : Any = self.mel.audio_slice_to_image(_a ) __UpperCAmelCase : Tuple = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) __UpperCAmelCase : Optional[Any] = (input_image / 255) * 2 - 1 __UpperCAmelCase : List[str] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __UpperCAmelCase : List[str] = self.vqvae.encode(torch.unsqueeze(_a , 0 ) ).latent_dist.sample( generator=_a )[0] __UpperCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: __UpperCAmelCase : List[str] = self.scheduler.add_noise(_a , _a , self.scheduler.timesteps[start_step - 1] ) __UpperCAmelCase : List[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __UpperCAmelCase : List[Any] = int(mask_start_secs * pixels_per_second ) __UpperCAmelCase : int = int(mask_end_secs * pixels_per_second ) __UpperCAmelCase : Any = self.scheduler.add_noise(_a , _a , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _a ): __UpperCAmelCase : Tuple = self.unet(_a , _a , _a )['''sample'''] else: __UpperCAmelCase : Tuple = self.unet(_a , _a )['''sample'''] if isinstance(self.scheduler , _a ): __UpperCAmelCase : Tuple = self.scheduler.step( model_output=_a , timestep=_a , sample=_a , eta=_a , generator=_a , )['''prev_sample'''] else: __UpperCAmelCase : int = self.scheduler.step( model_output=_a , timestep=_a , sample=_a , generator=_a , )['''prev_sample'''] if mask is not None: if mask_start > 0: __UpperCAmelCase : Tuple = mask[:, step, :, :mask_start] if mask_end > 0: __UpperCAmelCase : int = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __UpperCAmelCase : Dict = 1 / self.vqvae.config.scaling_factor * images __UpperCAmelCase : Optional[Any] = self.vqvae.decode(_a )['''sample'''] __UpperCAmelCase : Optional[Any] = (images / 2 + 0.5).clamp(0 , 1 ) __UpperCAmelCase : str = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __UpperCAmelCase : Optional[int] = (images * 255).round().astype("""uint8""" ) __UpperCAmelCase : List[str] = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_a , mode="""RGB""" ).convert("""L""" ) for _ in images) ) __UpperCAmelCase : List[str] = [self.mel.image_to_audio(_a ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_a )[:, np.newaxis, :] ) , **ImagePipelineOutput(_a ) ) @torch.no_grad() def __A ( self , __UpperCAmelCase , __UpperCAmelCase = 50 ) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , _a ) self.scheduler.set_timesteps(_a ) __UpperCAmelCase : List[str] = np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) __UpperCAmelCase : int = (sample / 255) * 2 - 1 __UpperCAmelCase : List[Any] = torch.Tensor(_a ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __UpperCAmelCase : Dict = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __UpperCAmelCase : List[Any] = self.scheduler.alphas_cumprod[t] __UpperCAmelCase : List[str] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __UpperCAmelCase : List[Any] = 1 - alpha_prod_t __UpperCAmelCase : int = self.unet(_a , _a )['''sample'''] __UpperCAmelCase : Tuple = (1 - alpha_prod_t_prev) ** 0.5 * model_output __UpperCAmelCase : List[str] = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __UpperCAmelCase : Optional[Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' __UpperCAmelCase : Dict = acos(torch.dot(torch.flatten(_a ) , torch.flatten(_a ) ) / torch.norm(_a ) / torch.norm(_a ) ) return sin((1 - alpha) * theta ) * xa / sin(_a ) + sin(alpha * theta ) * xa / sin(_a )
365
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} ) _SCREAMING_SNAKE_CASE : str = "image" _SCREAMING_SNAKE_CASE : str = "labels" def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __UpperCAmelCase ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) __UpperCAmelCase : int = copy.deepcopy(self ) __UpperCAmelCase : str = self.label_schema.copy() __UpperCAmelCase : Optional[Any] = features[self.label_column] __UpperCAmelCase : Optional[int] = label_schema return task_template @property def __A ( self ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
16
0
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): """simple docstring""" return int(input_a == input_a == 0 ) def lowercase_ ( ): """simple docstring""" print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f'| 0 | 0 | {nor_gate(0 , 0 )} |' ) print(f'| 0 | 1 | {nor_gate(0 , 1 )} |' ) print(f'| 1 | 0 | {nor_gate(1 , 0 )} |' ) print(f'| 1 | 1 | {nor_gate(1 , 1 )} |' ) if __name__ == "__main__": import doctest doctest.testmod() main()
366
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : str = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : str = num_choices __UpperCAmelCase : List[Any] = scope def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Tuple = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = True __UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass __UpperCAmelCase : Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : List[str] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = LlamaModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : str = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = 3 __UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : Optional[Any] = """single_label_classification""" __UpperCAmelCase : int = input_dict["""input_ids"""] __UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : str = """multi_label_classification""" __UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size ) __UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() __UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0} __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() __UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) @require_torch class _A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __UpperCAmelCase : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) ) __UpperCAmelCase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """ __UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" ) __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase ) # greedy generation outputs __UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
16
0
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Dict = number while duplicate > 0: __UpperCAmelCase , __UpperCAmelCase : List[Any] = divmod(_UpperCamelCase , 10 ) fact_sum += factorial(_UpperCamelCase ) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') _UpperCamelCase = int(input('''Enter number: ''').strip()) print( F'{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.' )
367
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _UpperCamelCase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ): """simple docstring""" return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths ) def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": __UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ ) for answer_list in data[1]: __UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : str = [[reference] for reference in references] __UpperCAmelCase : Optional[int] = 0 for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : int = 100.0 * em / total __UpperCAmelCase : Dict = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = args.k __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = 0 for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] ) __UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __UpperCAmelCase : List[str] = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ): """simple docstring""" def strip_title(lowerCAmelCase__ : Optional[int] ): if title.startswith("""\"""" ): __UpperCAmelCase : List[Any] = title[1:] if title.endswith("""\"""" ): __UpperCAmelCase : int = title[:-1] return title __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device ) __UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ ) __UpperCAmelCase : int = question_enc_outputs[0] __UpperCAmelCase : Dict = rag_model.retriever( lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) __UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __UpperCAmelCase : Union[str, Any] = [] for docs in all_docs: __UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(lowerCAmelCase__ ) ) return provenance_strings def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" with torch.no_grad(): __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) __UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device ) __UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device ) __UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) ) return answers def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) __UpperCAmelCase : str = parser.parse_args() __UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = {} if args.model_type is None: __UpperCAmelCase : str = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration __UpperCAmelCase : Dict = args.n_docs if args.index_name is not None: __UpperCAmelCase : Union[str, Any] = args.index_name if args.index_path is not None: __UpperCAmelCase : Dict = args.index_path else: __UpperCAmelCase : str = BartForConditionalGeneration __UpperCAmelCase : str = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k __UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ ) model.retriever.init_retrieval() else: __UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: __UpperCAmelCase : Union[str, Any] = [] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: __UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" ) preds_file.flush() __UpperCAmelCase : List[str] = [] if len(lowerCAmelCase__ ) > 0: __UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _UpperCamelCase = get_args() main(args)
16
0
'''simple docstring''' import math def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def lowercase_ ( lowerCAmelCase__ : Union[str, Any] = 1 / 12345 ): """simple docstring""" __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Dict = 0 __UpperCAmelCase : int = 3 while True: __UpperCAmelCase : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): __UpperCAmelCase : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F'{solution() = }')
368
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : @staticmethod def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 ) __UpperCAmelCase : Tuple = len(__UpperCAmelCase ) self.assertGreater(__UpperCAmelCase , 0 ) self.assertEqual( __UpperCAmelCase , [ { """score""": ANY(__UpperCAmelCase ), """label""": ANY(__UpperCAmelCase ), """box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )}, } for i in range(__UpperCAmelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> Tuple: '''simple docstring''' pass @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) __UpperCAmelCase : str = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) __UpperCAmelCase : Any = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass @require_torch @slow def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = 0.2 __UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
16
0
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap _UpperCamelCase = '''Usage of script: script_name <size_of_canvas:int>''' _UpperCamelCase = [0] * 100 + [1] * 10 random.shuffle(choice) def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : List[str] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )] return canvas def lowercase_ ( lowerCAmelCase__ : list[list[bool]] ): """simple docstring""" for i, row in enumerate(__SCREAMING_SNAKE_CASE ): for j, _ in enumerate(__SCREAMING_SNAKE_CASE ): __UpperCAmelCase : int = bool(random.getrandbits(1 ) ) def lowercase_ ( lowerCAmelCase__ : list[list[bool]] ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__SCREAMING_SNAKE_CASE ): for c, pt in enumerate(__SCREAMING_SNAKE_CASE ): __UpperCAmelCase : Optional[Any] = __judge_point( __SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __UpperCAmelCase : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __UpperCAmelCase : list[list[bool]] = current_canvas.tolist() return return_canvas def lowercase_ ( lowerCAmelCase__ : bool , lowerCAmelCase__ : list[list[bool]] ): """simple docstring""" __UpperCAmelCase : Any = 0 __UpperCAmelCase : Dict = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __UpperCAmelCase : str = pt if pt: if alive < 2: __UpperCAmelCase : Optional[Any] = False elif alive == 2 or alive == 3: __UpperCAmelCase : Union[str, Any] = True elif alive > 3: __UpperCAmelCase : Optional[int] = False else: if alive == 3: __UpperCAmelCase : List[Any] = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) _UpperCamelCase = int(sys.argv[1]) # main working structure of this module. _UpperCamelCase = create_canvas(canvas_size) seed(c) _UpperCamelCase , _UpperCamelCase = plt.subplots() fig.show() _UpperCamelCase = ListedColormap(['''w''', '''k''']) try: while True: _UpperCamelCase = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
369
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.txt'''} _UpperCamelCase = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } _UpperCamelCase = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } _UpperCamelCase = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : Union[str, Any] = do_lower_case __UpperCAmelCase : str = strip_accents __UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars __UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase ) __UpperCAmelCase : List[Any] = do_lower_case def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
16
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _UpperCamelCase = pd.read_csv('''sample_data.csv''', header=None) _UpperCamelCase = df.shape[:1][0] # If you're using some other dataset input the target column _UpperCamelCase = df.iloc[:, 1:2] _UpperCamelCase = actual_data.values.reshape(len_data, 1) _UpperCamelCase = MinMaxScaler().fit_transform(actual_data) _UpperCamelCase = 10 _UpperCamelCase = 5 _UpperCamelCase = 20 _UpperCamelCase = len_data - periods * look_back _UpperCamelCase = actual_data[:division] _UpperCamelCase = actual_data[division - look_back :] _UpperCamelCase = [], [] _UpperCamelCase = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _UpperCamelCase = np.array(train_x) _UpperCamelCase = np.array(test_x) _UpperCamelCase = np.array([list(i.ravel()) for i in train_y]) _UpperCamelCase = np.array([list(i.ravel()) for i in test_y]) _UpperCamelCase = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') _UpperCamelCase = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) _UpperCamelCase = model.predict(x_test)
370
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''OwlViTFeatureExtractor'''] _UpperCamelCase = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _A : @property def __A ( self ) -> int: '''simple docstring''' return self.get_dummy_input() @property def __A ( self ) -> str: '''simple docstring''' if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' ) def __A ( self , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 4 __UpperCAmelCase : str = 32 __UpperCAmelCase : List[Any] = (32, 32) __UpperCAmelCase : List[Any] = torch.manual_seed(0 ) __UpperCAmelCase : Tuple = torch.device(_a ) __UpperCAmelCase : Optional[Any] = (batch_size, num_channels) + sizes __UpperCAmelCase : Dict = randn_tensor(_a , generator=_a , device=_a ) __UpperCAmelCase : Dict = {"""hidden_states""": hidden_states} if include_temb: __UpperCAmelCase : str = 128 __UpperCAmelCase : Any = randn_tensor((batch_size, temb_channels) , generator=_a , device=_a ) if include_res_hidden_states_tuple: __UpperCAmelCase : Optional[int] = torch.manual_seed(1 ) __UpperCAmelCase : Any = (randn_tensor(_a , generator=_a , device=_a ),) if include_encoder_hidden_states: __UpperCAmelCase : Any = floats_tensor((batch_size, 32, 32) ).to(_a ) if include_skip_sample: __UpperCAmelCase : Any = randn_tensor(((batch_size, 3) + sizes) , generator=_a , device=_a ) return dummy_input def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[Any] = { """in_channels""": 32, """out_channels""": 32, """temb_channels""": 128, } if self.block_type == "up": __UpperCAmelCase : List[Any] = 32 if self.block_type == "mid": init_dict.pop("""out_channels""" ) __UpperCAmelCase : Any = self.dummy_input return init_dict, inputs_dict def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.prepare_init_args_and_inputs_for_common() __UpperCAmelCase : List[Any] = self.block_class(**_a ) unet_block.to(_a ) unet_block.eval() with torch.no_grad(): __UpperCAmelCase : str = unet_block(**_a ) if isinstance(_a , _a ): __UpperCAmelCase : Any = output[0] self.assertEqual(output.shape , self.output_shape ) __UpperCAmelCase : Optional[int] = output[0, -1, -3:, -3:] __UpperCAmelCase : Any = torch.tensor(_a ).to(_a ) assert torch_all_close(output_slice.flatten() , _a , atol=5E-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.prepare_init_args_and_inputs_for_common() __UpperCAmelCase : Tuple = self.block_class(**_a ) model.to(_a ) model.train() __UpperCAmelCase : Union[str, Any] = model(**_a ) if isinstance(_a , _a ): __UpperCAmelCase : str = output[0] __UpperCAmelCase : int = torch.device(_a ) __UpperCAmelCase : List[str] = randn_tensor(output.shape , device=_a ) __UpperCAmelCase : Tuple = torch.nn.functional.mse_loss(_a , _a ) loss.backward()
371
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: '''simple docstring''' warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
16
0
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union _UpperCamelCase = TypeVar('''T''') _UpperCamelCase = Union[List[T], Tuple[T, ...]] _UpperCamelCase = Union[T, List[T], Dict[str, T]] _UpperCamelCase = Union[str, bytes, os.PathLike]
350
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) __UpperCAmelCase : List[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) __UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) __UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' import torch __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = pipeline("""text-classification""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : int = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __UpperCAmelCase : Union[str, Any] = """HuggingFace is in""" __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""] __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase ) __UpperCAmelCase : Any = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , ) __UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(__UpperCAmelCase ): text_classifier(__UpperCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
16
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCamelCase = logging.getLogger(__name__) @dataclass class _A : """simple docstring""" _SCREAMING_SNAKE_CASE : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _SCREAMING_SNAKE_CASE : int = field( default=__snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _SCREAMING_SNAKE_CASE : Tuple = field( default=__snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _SCREAMING_SNAKE_CASE : int = field( default=__snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = field(default=__snake_case , metadata={"help": "Whether tp freeze the encoder."} ) _SCREAMING_SNAKE_CASE : Tuple = field(default=__snake_case , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class _A : """simple docstring""" _SCREAMING_SNAKE_CASE : int = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) _SCREAMING_SNAKE_CASE : Tuple = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) _SCREAMING_SNAKE_CASE : List[str] = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _SCREAMING_SNAKE_CASE : Dict = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _SCREAMING_SNAKE_CASE : List[Any] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) _SCREAMING_SNAKE_CASE : str = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) _SCREAMING_SNAKE_CASE : int = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) _SCREAMING_SNAKE_CASE : List[Any] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) _SCREAMING_SNAKE_CASE : List[Any] = field(default=__snake_case , metadata={"help": "Source language id for translation."} ) _SCREAMING_SNAKE_CASE : int = field(default=__snake_case , metadata={"help": "Target language id for translation."} ) _SCREAMING_SNAKE_CASE : Optional[Any] = field(default=__snake_case , metadata={"help": "# num_beams to use for evaluation."} ) _SCREAMING_SNAKE_CASE : List[Any] = field( default=__snake_case , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def lowercase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple ): """simple docstring""" logger.info(f'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(f' {key} = {metrics[key]}' ) save_json(_snake_case , os.path.join(_snake_case , f'{split}_results.json' ) ) def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCAmelCase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_snake_case ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , _snake_case ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase : List[str] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(_snake_case , _snake_case , _snake_case ): assert hasattr(_snake_case , _snake_case ), f'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_snake_case , _snake_case , getattr(_snake_case , _snake_case ) ) __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=_snake_case , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_snake_case , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __UpperCAmelCase : Any = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_snake_case , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_snake_case , _snake_case ): __UpperCAmelCase : Optional[Any] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __UpperCAmelCase : Any = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_snake_case ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __UpperCAmelCase : Union[str, Any] = SeqaSeqDataset # Get datasets __UpperCAmelCase : Optional[int] = ( dataset_class( _snake_case , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) __UpperCAmelCase : Any = ( dataset_class( _snake_case , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __UpperCAmelCase : str = ( dataset_class( _snake_case , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer __UpperCAmelCase : List[str] = ( build_compute_metrics_fn(data_args.task , _snake_case ) if training_args.predict_with_generate else None ) __UpperCAmelCase : int = SeqaSeqTrainer( model=_snake_case , args=_snake_case , data_args=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , data_collator=SeqaSeqDataCollator( _snake_case , _snake_case , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_snake_case , tokenizer=_snake_case , ) __UpperCAmelCase : str = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) __UpperCAmelCase : Tuple = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __UpperCAmelCase : Union[str, Any] = train_result.metrics __UpperCAmelCase : Optional[Any] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , _snake_case , training_args.output_dir ) all_metrics.update(_snake_case ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __UpperCAmelCase : Tuple = trainer.evaluate(metric_key_prefix="""val""" ) __UpperCAmelCase : int = data_args.n_val __UpperCAmelCase : List[Any] = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , _snake_case , training_args.output_dir ) all_metrics.update(_snake_case ) if training_args.do_predict: logger.info("""*** Predict ***""" ) __UpperCAmelCase : str = trainer.predict(test_dataset=_snake_case , metric_key_prefix="""test""" ) __UpperCAmelCase : Tuple = test_output.metrics __UpperCAmelCase : Tuple = data_args.n_test if trainer.is_world_process_zero(): __UpperCAmelCase : Dict = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , _snake_case , training_args.output_dir ) all_metrics.update(_snake_case ) if training_args.predict_with_generate: __UpperCAmelCase : Optional[int] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) __UpperCAmelCase : Optional[int] = lmap(str.strip , _snake_case ) write_txt_file(_snake_case , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(_snake_case , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def lowercase_ ( lowerCAmelCase__ : Tuple ): """simple docstring""" main() if __name__ == "__main__": main()
351
'''simple docstring''' from ..utils import DummyObject, requires_backends class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
16
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : List[Any] = SwinvaConfig() __UpperCAmelCase : Any = swinva_name.split("""_""" ) __UpperCAmelCase : Dict = name_split[1] if "to" in name_split[3]: __UpperCAmelCase : Tuple = int(name_split[3][-3:] ) else: __UpperCAmelCase : Any = int(name_split[3] ) if "to" in name_split[2]: __UpperCAmelCase : int = int(name_split[2][-2:] ) else: __UpperCAmelCase : int = int(name_split[2][6:] ) if model_size == "tiny": __UpperCAmelCase : Union[str, Any] = 96 __UpperCAmelCase : List[str] = (2, 2, 6, 2) __UpperCAmelCase : str = (3, 6, 12, 24) elif model_size == "small": __UpperCAmelCase : str = 96 __UpperCAmelCase : List[str] = (2, 2, 18, 2) __UpperCAmelCase : List[str] = (3, 6, 12, 24) elif model_size == "base": __UpperCAmelCase : int = 128 __UpperCAmelCase : Any = (2, 2, 18, 2) __UpperCAmelCase : str = (4, 8, 16, 32) else: __UpperCAmelCase : Union[str, Any] = 192 __UpperCAmelCase : Dict = (2, 2, 18, 2) __UpperCAmelCase : List[Any] = (6, 12, 24, 48) if "to" in swinva_name: __UpperCAmelCase : List[Any] = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __UpperCAmelCase : List[str] = 21841 __UpperCAmelCase : List[Any] = 'huggingface/label-files' __UpperCAmelCase : str = 'imagenet-22k-id2label.json' __UpperCAmelCase : int = json.load(open(hf_hub_download(_A , _A , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : Optional[Any] = {int(_A ): v for k, v in idalabel.items()} __UpperCAmelCase : List[str] = idalabel __UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} else: __UpperCAmelCase : List[Any] = 1000 __UpperCAmelCase : Any = 'huggingface/label-files' __UpperCAmelCase : Union[str, Any] = 'imagenet-1k-id2label.json' __UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(_A , _A , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : Optional[Any] = {int(_A ): v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = idalabel __UpperCAmelCase : Any = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = img_size __UpperCAmelCase : int = num_classes __UpperCAmelCase : Dict = embed_dim __UpperCAmelCase : Optional[Any] = depths __UpperCAmelCase : List[Any] = num_heads __UpperCAmelCase : List[Any] = window_size return config def lowercase_ ( lowerCAmelCase__ : Optional[int] ): """simple docstring""" if "patch_embed.proj" in name: __UpperCAmelCase : List[Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __UpperCAmelCase : List[str] = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: __UpperCAmelCase : str = 'encoder.' + name if "attn.proj" in name: __UpperCAmelCase : Optional[int] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __UpperCAmelCase : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __UpperCAmelCase : List[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __UpperCAmelCase : List[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __UpperCAmelCase : Any = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __UpperCAmelCase : List[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: __UpperCAmelCase : List[Any] = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: __UpperCAmelCase : List[Any] = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: __UpperCAmelCase : List[Any] = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: __UpperCAmelCase : Tuple = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if name == "norm.weight": __UpperCAmelCase : str = 'layernorm.weight' if name == "norm.bias": __UpperCAmelCase : int = 'layernorm.bias' if "head" in name: __UpperCAmelCase : Tuple = name.replace("""head""" , """classifier""" ) else: __UpperCAmelCase : Optional[int] = 'swinv2.' + name return name def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ): """simple docstring""" for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Optional[Any] = orig_state_dict.pop(_A ) if "mask" in key: continue elif "qkv" in key: __UpperCAmelCase : Union[str, Any] = key.split(""".""" ) __UpperCAmelCase : List[str] = int(key_split[1] ) __UpperCAmelCase : Optional[Any] = int(key_split[3] ) __UpperCAmelCase : Optional[Any] = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __UpperCAmelCase : List[Any] = val[:dim, :] __UpperCAmelCase : List[str] = val[dim : dim * 2, :] __UpperCAmelCase : Union[str, Any] = val[-dim:, :] else: __UpperCAmelCase : List[Any] = val[:dim] __UpperCAmelCase : Union[str, Any] = val[ dim : dim * 2 ] __UpperCAmelCase : Tuple = val[-dim:] else: __UpperCAmelCase : Union[str, Any] = val return orig_state_dict def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = timm.create_model(_A , pretrained=_A ) timm_model.eval() __UpperCAmelCase : Any = get_swinva_config(_A ) __UpperCAmelCase : Union[str, Any] = SwinvaForImageClassification(_A ) model.eval() __UpperCAmelCase : Any = convert_state_dict(timm_model.state_dict() , _A ) model.load_state_dict(_A ) __UpperCAmelCase : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swinva_name.replace("""_""" , """-""" ) ) ) __UpperCAmelCase : List[Any] = Image.open(requests.get(_A , stream=_A ).raw ) __UpperCAmelCase : int = image_processor(images=_A , return_tensors="""pt""" ) __UpperCAmelCase : Any = timm_model(inputs["""pixel_values"""] ) __UpperCAmelCase : Dict = model(**_A ).logits assert torch.allclose(_A , _A , atol=1E-3 ) print(f'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_A ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_A ) model.push_to_hub( repo_path_or_name=Path(_A , _A ) , organization="""nandwalritik""" , commit_message="""Add model""" , ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _UpperCamelCase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
352
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _A : def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase ) __UpperCAmelCase : List[str] = length __UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa ) __UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Dict: '''simple docstring''' return self.length def __getitem__( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int: '''simple docstring''' super().__init__() __UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Any = True def __A ( self , __UpperCAmelCase=None ) -> str: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : Optional[int] = False return x * self.a[0] + self.b[0] class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : str = True def __A ( self , __UpperCAmelCase=None ) -> Tuple: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : int = False return x * self.a + self.b def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer __UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" ) __UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )} def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : List[Any] = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) if "label" in examples: __UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCAmelCase : Tuple = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCAmelCase__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 ) __UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
16
0
'''simple docstring''' import itertools import math def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = 2 while True: if is_prime(lowerCAmelCase__ ): yield num num += 1 def lowercase_ ( lowerCAmelCase__ : int = 10001 ): """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , lowerCAmelCase__ ) ) if __name__ == "__main__": print(F'{solution() = }')
353
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None @property def __A ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = (3, 32, 128) __UpperCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) __UpperCAmelCase : List[Any] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) return image_input def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[str] = self.prepare_image_inputs() __UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" ) __UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Dict = """test""" __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = """test""" __UpperCAmelCase : int = self.prepare_image_inputs() __UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase ) __UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Optional[Any] = self.get_tokenizer() __UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : str = None __UpperCAmelCase : Dict = self.prepare_image_inputs() __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 ) __UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 ) __UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 ) __UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
16
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } _UpperCamelCase = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models __UpperCAmelCase : Union[str, Any] = """lm_head""" __UpperCAmelCase : Union[str, Any] = getattr(snake_case_ , snake_case_ ) if weight_type is not None: __UpperCAmelCase : List[str] = getattr(snake_case_ , snake_case_ ).shape else: __UpperCAmelCase : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __UpperCAmelCase : Dict = value elif weight_type == "weight_g": __UpperCAmelCase : List[Any] = value elif weight_type == "weight_v": __UpperCAmelCase : Tuple = value elif weight_type == "bias": __UpperCAmelCase : Union[str, Any] = value else: __UpperCAmelCase : int = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : List[Any] = fairseq_model.state_dict() __UpperCAmelCase : str = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): __UpperCAmelCase : Any = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == """group""" , ) __UpperCAmelCase : int = True else: for key, mapped_key in MAPPING.items(): __UpperCAmelCase : Optional[int] = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __UpperCAmelCase : Optional[int] = True if "*" in mapped_key: __UpperCAmelCase : List[Any] = name.split(snake_case_ )[0].split(""".""" )[-2] __UpperCAmelCase : Optional[Any] = mapped_key.replace("""*""" , snake_case_ ) if "weight_g" in name: __UpperCAmelCase : Optional[int] = """weight_g""" elif "weight_v" in name: __UpperCAmelCase : Optional[Any] = """weight_v""" elif "bias" in name: __UpperCAmelCase : List[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCAmelCase : Optional[int] = """weight""" else: __UpperCAmelCase : Optional[int] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f'Unused weights: {unused_weights}' ) def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = full_name.split("""conv_layers.""" )[-1] __UpperCAmelCase : List[str] = name.split(""".""" ) __UpperCAmelCase : Dict = int(items[0] ) __UpperCAmelCase : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __UpperCAmelCase : Dict = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __UpperCAmelCase : Dict = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __UpperCAmelCase : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __UpperCAmelCase : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=True ): """simple docstring""" if config_path is not None: __UpperCAmelCase : Optional[int] = UniSpeechConfig.from_pretrained(snake_case_ ) else: __UpperCAmelCase : Tuple = UniSpeechConfig() if is_finetuned: if dict_path: __UpperCAmelCase : Tuple = Dictionary.load_from_json(snake_case_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCAmelCase : Union[str, Any] = target_dict.pad_index __UpperCAmelCase : List[Any] = target_dict.bos_index __UpperCAmelCase : str = target_dict.eos_index __UpperCAmelCase : Tuple = len(target_dict.symbols ) __UpperCAmelCase : Union[str, Any] = os.path.join(snake_case_ , """vocab.json""" ) if not os.path.isdir(snake_case_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(snake_case_ ) ) return os.makedirs(snake_case_ , exist_ok=snake_case_ ) __UpperCAmelCase : str = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCAmelCase : int = 42 __UpperCAmelCase : str = 43 with open(snake_case_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(snake_case_ , snake_case_ ) __UpperCAmelCase : Dict = WavaVecaPhonemeCTCTokenizer( snake_case_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=snake_case_ , ) __UpperCAmelCase : List[Any] = True if config.feat_extract_norm == """layer""" else False __UpperCAmelCase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , ) __UpperCAmelCase : Any = WavaVecaProcessor(feature_extractor=snake_case_ , tokenizer=snake_case_ ) processor.save_pretrained(snake_case_ ) __UpperCAmelCase : Optional[int] = UniSpeechForCTC(snake_case_ ) else: __UpperCAmelCase : Any = UniSpeechForPreTraining(snake_case_ ) if is_finetuned: __UpperCAmelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: __UpperCAmelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __UpperCAmelCase : Optional[Any] = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ , snake_case_ ) hf_unispeech.save_pretrained(snake_case_ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _UpperCamelCase = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
354
'''simple docstring''' from collections.abc import Sequence def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ): """simple docstring""" if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __UpperCAmelCase : Any = nums[0] for i in range(1 , len(lowerCAmelCase__ ) ): __UpperCAmelCase : Union[str, Any] = nums[i] __UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _UpperCamelCase = int(input('''Enter number of elements : ''').strip()) _UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
16
0
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(lowercase__ , lowercase__ ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) __UpperCAmelCase : str = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(lowercase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
355
'''simple docstring''' class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = data __UpperCAmelCase : int = previous __UpperCAmelCase : Union[str, Any] = next_node def __str__( self ) -> str: '''simple docstring''' return f'{self.data}' def __A ( self ) -> int: '''simple docstring''' return self.data def __A ( self ) -> List[str]: '''simple docstring''' return self.next def __A ( self ) -> str: '''simple docstring''' return self.previous class _A : def __init__( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = head def __iter__( self ) -> str: '''simple docstring''' return self def __A ( self ) -> str: '''simple docstring''' if not self.current: raise StopIteration else: __UpperCAmelCase : List[str] = self.current.get_data() __UpperCAmelCase : int = self.current.get_next() return value class _A : def __init__( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = None # First node in list __UpperCAmelCase : List[str] = None # Last node in list def __str__( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = self.head __UpperCAmelCase : Optional[int] = [] while current is not None: nodes.append(current.get_data() ) __UpperCAmelCase : Any = current.get_next() return " ".join(str(__UpperCAmelCase ) for node in nodes ) def __contains__( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.head while current: if current.get_data() == value: return True __UpperCAmelCase : Optional[Any] = current.get_next() return False def __iter__( self ) -> str: '''simple docstring''' return LinkedListIterator(self.head ) def __A ( self ) -> List[Any]: '''simple docstring''' if self.head: return self.head.get_data() return None def __A ( self ) -> Optional[Any]: '''simple docstring''' if self.tail: return self.tail.get_data() return None def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: __UpperCAmelCase : str = node __UpperCAmelCase : List[str] = node else: self.insert_before_node(self.head , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: self.set_head(__UpperCAmelCase ) else: self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase ) if self.head is None: self.set_head(__UpperCAmelCase ) else: self.set_tail(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Tuple = node __UpperCAmelCase : List[Any] = node.previous if node.get_previous() is None: __UpperCAmelCase : str = node_to_insert else: __UpperCAmelCase : Optional[Any] = node_to_insert __UpperCAmelCase : List[Any] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : List[str] = node __UpperCAmelCase : Union[str, Any] = node.next if node.get_next() is None: __UpperCAmelCase : Dict = node_to_insert else: __UpperCAmelCase : Any = node_to_insert __UpperCAmelCase : List[str] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase ) return current_position += 1 __UpperCAmelCase : int = node.next self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Node: '''simple docstring''' __UpperCAmelCase : Dict = self.head while node: if node.get_data() == item: return node __UpperCAmelCase : List[str] = node.get_next() raise Exception("""Node not found""" ) def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if (node := self.get_node(__UpperCAmelCase )) is not None: if node == self.head: __UpperCAmelCase : Optional[int] = self.head.get_next() if node == self.tail: __UpperCAmelCase : Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(__UpperCAmelCase ) @staticmethod def __A ( __UpperCAmelCase ) -> None: '''simple docstring''' if node.get_next(): __UpperCAmelCase : Optional[Any] = node.previous if node.get_previous(): __UpperCAmelCase : int = node.next __UpperCAmelCase : Tuple = None __UpperCAmelCase : Union[str, Any] = None def __A ( self ) -> List[Any]: '''simple docstring''' return self.head is None def lowercase_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
16
0
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _A : def __init__( self , __UpperCAmelCase = "cpu" , __UpperCAmelCase = "openai/clip-vit-large-patch14" ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = device __UpperCAmelCase : str = CLIPTokenizerFast.from_pretrained(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = [0.4814_5466, 0.457_8275, 0.4082_1073] __UpperCAmelCase : Optional[int] = [0.2686_2954, 0.2613_0258, 0.2757_7711] __UpperCAmelCase : Any = torchvision.transforms.Normalize(self.image_mean , self.image_std ) __UpperCAmelCase : Any = torchvision.transforms.Resize(224 ) __UpperCAmelCase : str = torchvision.transforms.CenterCrop(224 ) def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = self.resize(UpperCamelCase_ ) __UpperCAmelCase : Any = self.center_crop(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self.normalize(UpperCamelCase_ ) return images def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.tokenizer(text=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.preprocess_img(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _A ( nn.Module ): def __init__( self , __UpperCAmelCase=10 , __UpperCAmelCase=0.01 , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="image" , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , ) -> str: '''simple docstring''' super().__init__() __UpperCAmelCase : List[str] = None __UpperCAmelCase : Optional[Any] = device if device else get_device() if vqgan: __UpperCAmelCase : int = vqgan else: __UpperCAmelCase : List[str] = load_vqgan(self.device , conf_path=UpperCamelCase_ , ckpt_path=UpperCamelCase_ ) self.vqgan.eval() if clip: __UpperCAmelCase : Union[str, Any] = clip else: __UpperCAmelCase : Tuple = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) __UpperCAmelCase : Any = ProcessorGradientFlow(device=self.device ) __UpperCAmelCase : List[Any] = iterations __UpperCAmelCase : int = lr __UpperCAmelCase : str = log __UpperCAmelCase : Any = make_grid __UpperCAmelCase : Optional[Any] = return_val __UpperCAmelCase : Dict = quantize __UpperCAmelCase : Optional[Any] = self.vqgan.decoder.z_shape def __A ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=5 , __UpperCAmelCase=True ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [] if output_path is None: __UpperCAmelCase : Any = """./animation.gif""" if input_path is None: __UpperCAmelCase : List[Any] = self.save_path __UpperCAmelCase : str = sorted(glob(input_path + """/*""" ) ) if not len(UpperCamelCase_ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(UpperCamelCase_ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) __UpperCAmelCase : Optional[Any] = total_duration / len(UpperCamelCase_ ) __UpperCAmelCase : Tuple = [frame_duration] * len(UpperCamelCase_ ) if extend_frames: __UpperCAmelCase : List[str] = 1.5 __UpperCAmelCase : Union[str, Any] = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(UpperCamelCase_ ) ) imageio.mimsave(UpperCamelCase_ , UpperCamelCase_ , duration=UpperCamelCase_ ) print(f'gif saved to {output_path}' ) def __A ( self , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Any: '''simple docstring''' if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError __UpperCAmelCase : int = preprocess(Image.open(UpperCamelCase_ ) , target_image_size=256 ).to(self.device ) __UpperCAmelCase : Any = preprocess_vqgan(UpperCamelCase_ ) __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = self.vqgan.encode(UpperCamelCase_ ) return z def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.latent.detach().requires_grad_() __UpperCAmelCase : Optional[Any] = base_latent + transform_vector if self.quantize: __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = self.vqgan.quantize(UpperCamelCase_ ) else: __UpperCAmelCase : Dict = trans_latent return self.vqgan.decode(UpperCamelCase_ ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = self.clip_preprocessor(text=UpperCamelCase_ , images=UpperCamelCase_ , return_tensors="""pt""" , padding=UpperCamelCase_ ) __UpperCAmelCase : int = self.clip(**UpperCamelCase_ ) __UpperCAmelCase : str = clip_outputs.logits_per_image if weights is not None: __UpperCAmelCase : List[str] = similarity_logits * weights return similarity_logits.sum() def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = self._get_clip_similarity(pos_prompts["""prompts"""] , UpperCamelCase_ , weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: __UpperCAmelCase : int = self._get_clip_similarity(neg_prompts["""prompts"""] , UpperCamelCase_ , weights=neg_prompts["""weights"""] ) else: __UpperCAmelCase : List[Any] = torch.tensor([1] , device=self.device ) __UpperCAmelCase : int = -torch.log(UpperCamelCase_ ) + torch.log(UpperCamelCase_ ) return loss def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = torch.randn_like(self.latent , requires_grad=UpperCamelCase_ , device=self.device ) __UpperCAmelCase : Optional[Any] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __UpperCAmelCase : Optional[Any] = self._add_vector(UpperCamelCase_ ) __UpperCAmelCase : str = loop_post_process(UpperCamelCase_ ) __UpperCAmelCase : Any = self._get_CLIP_loss(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) print("""CLIP loss""" , UpperCamelCase_ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=UpperCamelCase_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' wandb.init(reinit=UpperCamelCase_ , project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: __UpperCAmelCase : List[Any] = Image.open(UpperCamelCase_ ) __UpperCAmelCase : int = image.resize((256, 256) ) wandb.log("""Original Image""" , wandb.Image(UpperCamelCase_ ) ) def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' if not prompts: return [] __UpperCAmelCase : Any = [] __UpperCAmelCase : Optional[int] = [] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : str = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(UpperCamelCase_ , (tuple, list) ): __UpperCAmelCase : List[str] = prompt[0] __UpperCAmelCase : Dict = float(prompt[1] ) elif ":" in prompt: __UpperCAmelCase , __UpperCAmelCase : List[str] = prompt.split(""":""" ) __UpperCAmelCase : Optional[Any] = float(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[Any] = prompt __UpperCAmelCase : Union[str, Any] = 1.0 processed_prompts.append(UpperCamelCase_ ) weights.append(UpperCamelCase_ ) return { "prompts": processed_prompts, "weights": torch.tensor(UpperCamelCase_ , device=self.device ), } def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=None , ) -> str: '''simple docstring''' if image_path: __UpperCAmelCase : Dict = self._get_latent(UpperCamelCase_ ) else: __UpperCAmelCase : str = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) assert pos_prompts, "You must provide at least one positive prompt." __UpperCAmelCase : str = self.process_prompts(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self.process_prompts(UpperCamelCase_ ) if save_final and save_path is None: __UpperCAmelCase : int = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(UpperCamelCase_ ): os.makedirs(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = save_path + """_""" + get_timestamp() os.makedirs(UpperCamelCase_ ) __UpperCAmelCase : Dict = save_path __UpperCAmelCase : str = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(UpperCamelCase_ ) ) __UpperCAmelCase : Tuple = loop_post_process(UpperCamelCase_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ): if show_intermediate: show_pil(UpperCamelCase_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f'iter_{iter:03d}.png' ) ) if self.log: wandb.log({"""Image""": wandb.Image(UpperCamelCase_ )} ) if show_final: show_pil(UpperCamelCase_ ) if save_final: transformed_img.save(os.path.join(self.save_path , f'iter_{iter:03d}_final.png' ) )
356
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _A : _SCREAMING_SNAKE_CASE : List[str] _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ) -> Any: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class _A : _SCREAMING_SNAKE_CASE : Optional[List] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None __UpperCAmelCase : int = len(self.languages ) if self.languages else None def __call__( self ) -> Optional[Any]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = set(self.languages ) if self.languages and set(__UpperCAmelCase ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) ) return {"language": languages, "translation": translations} def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
16
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _UpperCamelCase = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' _UpperCamelCase = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' _UpperCamelCase = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def __A ( self ) -> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = 4 , ) -> Optional[int]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__lowerCAmelCase , hypotheses=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase ) }
357
'''simple docstring''' from statistics import mean import numpy as np def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Tuple = 0 # Number of processes finished __UpperCAmelCase : Optional[int] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __UpperCAmelCase : Tuple = [0] * no_of_process # List to include calculation results __UpperCAmelCase : int = [0] * no_of_process # Sort by arrival time. __UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )] __UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )] arrival_time.sort() while no_of_process > finished_process_count: __UpperCAmelCase : Dict = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __UpperCAmelCase : Any = arrival_time[i] __UpperCAmelCase : Any = 0 # Index showing the location of the process being performed __UpperCAmelCase : Any = 0 # Saves the current response ratio. __UpperCAmelCase : List[str] = 0 for i in range(0 , lowerCAmelCase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __UpperCAmelCase : Tuple = temp __UpperCAmelCase : List[str] = i # Calculate the turn around time __UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __UpperCAmelCase : List[str] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Optional[int] = [0] * no_of_process for i in range(0 , lowerCAmelCase__ ): __UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _UpperCamelCase = 5 _UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E'''] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _UpperCamelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
16
0
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : List[str] = prime_factors(_UpperCamelCase ) if is_square_free(_UpperCamelCase ): return -1 if len(_UpperCamelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Union[str, Any] = seq_length __UpperCAmelCase : int = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : int = scope def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = None if self.use_input_mask: __UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> List[str]: '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_config() __UpperCAmelCase : List[Any] = 300 return config def __A ( self ) -> Dict: '''simple docstring''' ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = self.prepare_config_and_inputs() __UpperCAmelCase : Tuple = True __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : List[str] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Dict = () def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = MraModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Any: '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""MRA does not output attentions""" ) def __A ( self ) -> List[Any]: '''simple docstring''' return @require_torch class _A ( unittest.TestCase ): @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0] __UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : int = model(__UpperCAmelCase )[0] __UpperCAmelCase : Union[str, Any] = 50_265 __UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : Any = model(__UpperCAmelCase )[0] __UpperCAmelCase : Dict = 50_265 __UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : str = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
0
'''simple docstring''' import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = 'microsoft/speecht5_tts' _SCREAMING_SNAKE_CASE : Any = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) _SCREAMING_SNAKE_CASE : str = 'text_reader' _SCREAMING_SNAKE_CASE : Any = SpeechTaProcessor _SCREAMING_SNAKE_CASE : Any = SpeechTaForTextToSpeech _SCREAMING_SNAKE_CASE : int = SpeechTaHifiGan _SCREAMING_SNAKE_CASE : Optional[int] = ['text'] _SCREAMING_SNAKE_CASE : List[Any] = ['audio'] def __A ( self ) -> str: '''simple docstring''' if self.post_processor is None: __UpperCAmelCase : Optional[Any] = """microsoft/speecht5_hifigan""" super().setup() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[str] = self.pre_processor(text=__lowerCAmelCase , return_tensors="""pt""" , truncation=__lowerCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) __UpperCAmelCase : List[str] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) __UpperCAmelCase : Dict = torch.tensor(embeddings_dataset[7_305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**__lowerCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.post_processor(__lowerCAmelCase ).cpu().detach()
359
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : List[Any] = embed_dim __UpperCAmelCase : str = depths __UpperCAmelCase : Dict = num_heads __UpperCAmelCase : str = window_size __UpperCAmelCase : int = mlp_ratio __UpperCAmelCase : Union[str, Any] = qkv_bias __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Optional[int] = use_absolute_embeddings __UpperCAmelCase : Any = patch_norm __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : Any = scope __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : int = encoder_stride def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) __UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = self.type_sequence_label_size __UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = SwinvaModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 ) def __A ( self ) -> Any: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(__UpperCAmelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : str = outputs.attentions __UpperCAmelCase : Any = len(self.model_tester.depths ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : int = config.window_size**2 __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : Dict = len(__UpperCAmelCase ) # Check attention is always last and order is fine __UpperCAmelCase : Any = True __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): __UpperCAmelCase : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : Optional[int] = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) ) __UpperCAmelCase : Tuple = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # Swinv2 has a different seq_length __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : int = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape __UpperCAmelCase : Any = ( reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : int = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Tuple = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> int: '''simple docstring''' return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __UpperCAmelCase ) __UpperCAmelCase : Tuple = self.default_image_processor __UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
0
'''simple docstring''' import operator as op _UpperCamelCase = 'scaler.pt' _UpperCamelCase = 'pytorch_model' _UpperCamelCase = 'random_states' _UpperCamelCase = 'optimizer' _UpperCamelCase = 'scheduler' _UpperCamelCase = 'pytorch_model.bin' _UpperCamelCase = 'pytorch_model.bin.index.json' _UpperCamelCase = 'model.safetensors' _UpperCamelCase = 'model.safetensors.index.json' _UpperCamelCase = '1.10.2' _UpperCamelCase = 'py38' _UpperCamelCase = '4.17.0' _UpperCamelCase = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge'] _UpperCamelCase = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2'] _UpperCamelCase = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP'] _UpperCamelCase = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH'] _UpperCamelCase = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT'] _UpperCamelCase = '2.0.1' _UpperCamelCase = ['pdsh', 'standard', 'openmpi', 'mvapich'] _UpperCamelCase = ['default', 'reduce-overhead', 'max-autotune'] _UpperCamelCase = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 _UpperCamelCase = [ 'nnodes', 'nproc_per_node', 'rdzv_backend', 'rdzv_endpoint', 'rdzv_id', 'rdzv_conf', 'standalone', 'max_restarts', 'monitor_interval', 'start_method', 'role', 'module', 'm', 'no_python', 'run_path', 'log_dir', 'r', 'redirects', 't', 'tee', 'node_rank', 'master_addr', 'master_port', ] _UpperCamelCase = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM'] _UpperCamelCase = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
360
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( lowerCAmelCase__ : List[str] ): """simple docstring""" if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : Any = crop_size __UpperCAmelCase : Optional[Any] = resample __UpperCAmelCase : Dict = do_rescale __UpperCAmelCase : List[str] = rescale_factor __UpperCAmelCase : Dict = offset __UpperCAmelCase : List[str] = do_normalize __UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" in size: __UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: __UpperCAmelCase : Any = (size["""height"""], size["""width"""]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = image.astype(np.floataa ) if offset: __UpperCAmelCase : Tuple = image - (scale / 2) return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase ) if do_resize: __UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) if do_center_crop: __UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase ) if do_rescale: __UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase ) if do_normalize: __UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) return image def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' __UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : List[Any] = resample if resample is not None else self.resample __UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : List[Any] = offset if offset is not None else self.offset __UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : int = image_std if image_std is not None else self.image_std __UpperCAmelCase : Any = size if size is not None else self.size __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __UpperCAmelCase : int = make_batched(__UpperCAmelCase ) __UpperCAmelCase : Tuple = [ [ self._preprocess_image( image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , ) for img in video ] for video in videos ] __UpperCAmelCase : Tuple = {"""pixel_values""": videos} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
16
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class _A ( unittest.TestCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=True , __UpperCAmelCase=1 / 255 , __UpperCAmelCase=True , ) -> Union[str, Any]: '''simple docstring''' # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __UpperCAmelCase : Any = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1_333} __UpperCAmelCase : int = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : int = min_resolution __UpperCAmelCase : Optional[int] = max_resolution __UpperCAmelCase : Any = do_resize __UpperCAmelCase : str = size __UpperCAmelCase : Optional[int] = do_normalize __UpperCAmelCase : Any = image_mean __UpperCAmelCase : str = image_std __UpperCAmelCase : int = do_rescale __UpperCAmelCase : Any = rescale_factor __UpperCAmelCase : Optional[int] = do_pad def __A ( self ) -> Optional[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __A ( self , __UpperCAmelCase , __UpperCAmelCase=False ) -> List[str]: '''simple docstring''' if not batched: __UpperCAmelCase : Any = image_inputs[0] if isinstance(__UpperCAmelCase , Image.Image ): __UpperCAmelCase , __UpperCAmelCase : Dict = image.size else: __UpperCAmelCase , __UpperCAmelCase : Optional[int] = image.shape[1], image.shape[2] if w < h: __UpperCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) __UpperCAmelCase : Any = self.size["""shortest_edge"""] elif w > h: __UpperCAmelCase : str = self.size["""shortest_edge"""] __UpperCAmelCase : Any = int(self.size["""shortest_edge"""] * w / h ) else: __UpperCAmelCase : Optional[int] = self.size["""shortest_edge"""] __UpperCAmelCase : Any = self.size["""shortest_edge"""] else: __UpperCAmelCase : str = [] for image in image_inputs: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCAmelCase : List[Any] = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[0] )[0] __UpperCAmelCase : int = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _A ( __snake_case , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = ConditionalDetrImageProcessor if is_vision_available() else None def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = ConditionalDetrImageProcessingTester(self ) @property def __A ( self ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """size""" ) ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1_333} ) self.assertEqual(image_processor.do_pad , __UpperCAmelCase ) __UpperCAmelCase : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__UpperCAmelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' pass def __A ( self ) -> Any: '''simple docstring''' # Initialize image_processing __UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input __UpperCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase , __UpperCAmelCase : Tuple = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = image_processing(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self ) -> Tuple: '''simple docstring''' # Initialize image_processing __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input __UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __UpperCAmelCase , __UpperCAmelCase : Any = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase : int = image_processing(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self ) -> Optional[Any]: '''simple docstring''' # Initialize image_processing __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input __UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __UpperCAmelCase , __UpperCAmelCase : int = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase : int = image_processing(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __A ( self ) -> Any: '''simple docstring''' # prepare image and target __UpperCAmelCase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __UpperCAmelCase : Optional[Any] = json.loads(f.read() ) __UpperCAmelCase : int = {"""image_id""": 39_769, """annotations""": target} # encode them __UpperCAmelCase : Optional[Any] = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" ) __UpperCAmelCase : List[str] = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , return_tensors="""pt""" ) # verify pixel values __UpperCAmelCase : str = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCAmelCase ) __UpperCAmelCase : List[str] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCAmelCase , atol=1E-4 ) ) # verify area __UpperCAmelCase : Optional[Any] = torch.tensor([5887.9600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCAmelCase ) ) # verify boxes __UpperCAmelCase : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCAmelCase , atol=1E-3 ) ) # verify image_id __UpperCAmelCase : List[Any] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCAmelCase ) ) # verify is_crowd __UpperCAmelCase : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCAmelCase ) ) # verify class_labels __UpperCAmelCase : int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCAmelCase ) ) # verify orig_size __UpperCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCAmelCase ) ) # verify size __UpperCAmelCase : Tuple = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCAmelCase ) ) @slow def __A ( self ) -> Any: '''simple docstring''' # prepare image, target and masks_path __UpperCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __UpperCAmelCase : Optional[Any] = json.loads(f.read() ) __UpperCAmelCase : int = {"""file_name""": """000000039769.png""", """image_id""": 39_769, """segments_info""": target} __UpperCAmelCase : List[Any] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __UpperCAmelCase : Any = ConditionalDetrImageProcessor(format="""coco_panoptic""" ) __UpperCAmelCase : int = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , masks_path=__UpperCAmelCase , return_tensors="""pt""" ) # verify pixel values __UpperCAmelCase : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCAmelCase ) __UpperCAmelCase : str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCAmelCase , atol=1E-4 ) ) # verify area __UpperCAmelCase : Optional[int] = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCAmelCase ) ) # verify boxes __UpperCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCAmelCase ) __UpperCAmelCase : Tuple = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCAmelCase , atol=1E-3 ) ) # verify image_id __UpperCAmelCase : Union[str, Any] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCAmelCase ) ) # verify is_crowd __UpperCAmelCase : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCAmelCase ) ) # verify class_labels __UpperCAmelCase : str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCAmelCase ) ) # verify masks __UpperCAmelCase : Tuple = 822_873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __UpperCAmelCase ) # verify orig_size __UpperCAmelCase : Any = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCAmelCase ) ) # verify size __UpperCAmelCase : Tuple = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCAmelCase ) )
361
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline _SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCAmelCase : Any = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : Dict = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any: '''simple docstring''' if str(__UpperCAmelCase ).startswith("""mps""" ): __UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase ) else: __UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] ) __UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0] __UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __UpperCAmelCase : Dict = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
0
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings( __SCREAMING_SNAKE_CASE , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class _A ( __SCREAMING_SNAKE_CASE ): def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' if self.framework == "tf": __UpperCAmelCase : Any = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __UpperCAmelCase : List[str] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ) else: raise ValueError("""Unsupported framework""" ) return masked_index def __A ( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_masked_index(_a ) __UpperCAmelCase : List[Any] = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f'No mask_token ({self.tokenizer.mask_token}) found on the input' , ) def __A ( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if isinstance(_a , _a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_a ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Dict: '''simple docstring''' if return_tensors is None: __UpperCAmelCase : Optional[Any] = self.framework __UpperCAmelCase : Union[str, Any] = self.tokenizer(_a , return_tensors=_a ) self.ensure_exactly_one_mask_token(_a ) return model_inputs def __A ( self , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = self.model(**_a ) __UpperCAmelCase : List[Any] = model_inputs["""input_ids"""] return model_outputs def __A ( self , __UpperCAmelCase , __UpperCAmelCase=5 , __UpperCAmelCase=None ) -> Any: '''simple docstring''' # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __UpperCAmelCase : List[str] = target_ids.shape[0] __UpperCAmelCase : Union[str, Any] = model_outputs["""input_ids"""][0] __UpperCAmelCase : Any = model_outputs["""logits"""] if self.framework == "tf": __UpperCAmelCase : int = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __UpperCAmelCase : Any = outputs.numpy() __UpperCAmelCase : List[str] = outputs[0, masked_index, :] __UpperCAmelCase : List[Any] = stable_softmax(_a , axis=-1 ) if target_ids is not None: __UpperCAmelCase : Union[str, Any] = tf.gather_nd(tf.squeeze(_a , 0 ) , target_ids.reshape(-1 , 1 ) ) __UpperCAmelCase : int = tf.expand_dims(_a , 0 ) __UpperCAmelCase : Optional[Any] = tf.math.top_k(_a , k=_a ) __UpperCAmelCase , __UpperCAmelCase : Any = topk.values.numpy(), topk.indices.numpy() else: __UpperCAmelCase : Union[str, Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __UpperCAmelCase : Union[str, Any] = outputs[0, masked_index, :] __UpperCAmelCase : Optional[Any] = logits.softmax(dim=-1 ) if target_ids is not None: __UpperCAmelCase : str = probs[..., target_ids] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = probs.topk(_a ) __UpperCAmelCase : List[str] = [] __UpperCAmelCase : List[str] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __UpperCAmelCase : Union[str, Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __UpperCAmelCase : List[str] = input_ids.numpy().copy() if target_ids is not None: __UpperCAmelCase : Union[str, Any] = target_ids[p].tolist() __UpperCAmelCase : Optional[Any] = p # Filter padding out: __UpperCAmelCase : List[str] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __UpperCAmelCase : Tuple = self.tokenizer.decode(_a , skip_special_tokens=_a ) __UpperCAmelCase : Any = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(_a ) result.append(_a ) if single_mask: return result[0] return result def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> int: '''simple docstring''' if isinstance(_a , _a ): __UpperCAmelCase : Any = [targets] try: __UpperCAmelCase : Dict = self.tokenizer.get_vocab() except Exception: __UpperCAmelCase : Any = {} __UpperCAmelCase : List[Any] = [] for target in targets: __UpperCAmelCase : str = vocab.get(_a , _a ) if id_ is None: __UpperCAmelCase : List[str] = self.tokenizer( _a , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , max_length=1 , truncation=_a , )["""input_ids"""] if len(_a ) == 0: logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' """We cannot replace it with anything meaningful, ignoring it""" ) continue __UpperCAmelCase : str = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' f'Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.' ) target_ids.append(id_ ) __UpperCAmelCase : Union[str, Any] = list(set(_a ) ) if len(_a ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) __UpperCAmelCase : str = np.array(_a ) return target_ids def __A ( self , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = {} if targets is not None: __UpperCAmelCase : Optional[int] = self.get_target_ids(_a , _a ) __UpperCAmelCase : Any = target_ids if top_k is not None: __UpperCAmelCase : str = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = super().__call__(_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs
362
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column __UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )] def __str__( self ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier __UpperCAmelCase : Optional[Any] = 0 for row_vector in self.array: for obj in row_vector: __UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) ) __UpperCAmelCase : Optional[int] = f'%{max_element_length}s' # Make string and return def single_line(__UpperCAmelCase ) -> str: nonlocal string_format_identifier __UpperCAmelCase : Any = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array ) return s def __repr__( self ) -> str: '''simple docstring''' return str(self ) def __A ( self , __UpperCAmelCase ) -> bool: '''simple docstring''' if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = value def __add__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add __UpperCAmelCase : Dict = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : Dict = -self[r, c] return result def __sub__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' return self + (-another) def __mul__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication __UpperCAmelCase : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] * another return result elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication assert self.column == another.row __UpperCAmelCase : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})' raise TypeError(__UpperCAmelCase ) def __A ( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Dict = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[str] = self[r, c] return result def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __UpperCAmelCase : Optional[Any] = v.transpose() __UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = Matrix(3 , 3 , 0 ) for i in range(3 ): __UpperCAmelCase : Tuple = 1 print(f'a^(-1) is {ainv}' ) # u, v __UpperCAmelCase : Dict = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3 __UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' ) def lowercase_ ( ): """simple docstring""" import doctest doctest.testmod() testa()
16
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _UpperCamelCase = get_tests_dir('''fixtures''') class _A ( unittest.TestCase ): def __A ( self ) -> List[str]: '''simple docstring''' # A mock response for an HTTP head request to emulate server down __UpperCAmelCase : Optional[Any] = mock.Mock() __UpperCAmelCase : Any = 500 __UpperCAmelCase : Tuple = {} __UpperCAmelCase : int = HTTPError __UpperCAmelCase : Tuple = {} # Download this model to make sure it's in the cache. __UpperCAmelCase : str = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=_SCREAMING_SNAKE_CASE ) as mock_head: __UpperCAmelCase : Any = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def __A ( self ) -> Dict: '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 __UpperCAmelCase : List[Any] = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def __A ( self ) -> str: '''simple docstring''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): # config is in subfolder, the following should not work without specifying the subfolder __UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) __UpperCAmelCase : int = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @is_staging_test class _A ( unittest.TestCase ): @classmethod def __A ( cls ) -> str: '''simple docstring''' __UpperCAmelCase : str = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def __A ( cls ) -> List[str]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = ViTImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) __UpperCAmelCase : str = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id="""test-image-processor""" , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) __UpperCAmelCase : List[str] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = ViTImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) __UpperCAmelCase : Optional[Any] = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) __UpperCAmelCase : Dict = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> Dict: '''simple docstring''' CustomImageProcessor.register_for_auto_class() __UpperCAmelCase : List[Any] = CustomImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) __UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained( f'{USER}/test-dynamic-image-processor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
363
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str]=False ): """simple docstring""" __UpperCAmelCase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __UpperCAmelCase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: __UpperCAmelCase : Optional[int] = "" else: __UpperCAmelCase : List[Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __UpperCAmelCase : Optional[int] = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) __UpperCAmelCase : List[Any] = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : int = in_proj_weight[ : config.hidden_size, : ] __UpperCAmelCase : str = in_proj_bias[: config.hidden_size] __UpperCAmelCase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __UpperCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] __UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :] def lowercase_ ( lowerCAmelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase : Tuple = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = dct.pop(_UpperCAmelCase ) __UpperCAmelCase : Dict = val def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCAmelCase : int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase : int = ViTConfig() __UpperCAmelCase : Tuple = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Union[str, Any] = int(vit_name[-12:-10] ) __UpperCAmelCase : int = int(vit_name[-9:-6] ) else: __UpperCAmelCase : str = 1000 __UpperCAmelCase : List[str] = "huggingface/label-files" __UpperCAmelCase : List[str] = "imagenet-1k-id2label.json" __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Union[str, Any] = idalabel __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : List[str] = int(vit_name[-6:-4] ) __UpperCAmelCase : Dict = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("""tiny""" ): __UpperCAmelCase : Optional[Any] = 192 __UpperCAmelCase : int = 768 __UpperCAmelCase : List[Any] = 12 __UpperCAmelCase : str = 3 elif vit_name[9:].startswith("""small""" ): __UpperCAmelCase : Dict = 384 __UpperCAmelCase : Optional[int] = 1536 __UpperCAmelCase : int = 12 __UpperCAmelCase : str = 6 else: pass else: if vit_name[4:].startswith("""small""" ): __UpperCAmelCase : Any = 768 __UpperCAmelCase : List[Any] = 2304 __UpperCAmelCase : str = 8 __UpperCAmelCase : Tuple = 8 elif vit_name[4:].startswith("""base""" ): pass elif vit_name[4:].startswith("""large""" ): __UpperCAmelCase : Dict = 1024 __UpperCAmelCase : Any = 4096 __UpperCAmelCase : Optional[Any] = 24 __UpperCAmelCase : Optional[int] = 16 elif vit_name[4:].startswith("""huge""" ): __UpperCAmelCase : Optional[Any] = 1280 __UpperCAmelCase : Any = 5120 __UpperCAmelCase : Optional[Any] = 32 __UpperCAmelCase : str = 16 # load original model from timm __UpperCAmelCase : Optional[int] = timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys __UpperCAmelCase : str = timm_model.state_dict() if base_model: remove_classification_head_(_UpperCAmelCase ) __UpperCAmelCase : Any = create_rename_keys(_UpperCAmelCase , _UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": __UpperCAmelCase : Optional[int] = ViTModel(_UpperCAmelCase ).eval() else: __UpperCAmelCase : Tuple = ViTForImageClassification(_UpperCAmelCase ).eval() model.load_state_dict(_UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: __UpperCAmelCase : Tuple = DeiTImageProcessor(size=config.image_size ) else: __UpperCAmelCase : Optional[int] = ViTImageProcessor(size=config.image_size ) __UpperCAmelCase : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" ) __UpperCAmelCase : Any = encoding["pixel_values"] __UpperCAmelCase : Dict = model(_UpperCAmelCase ) if base_model: __UpperCAmelCase : Tuple = timm_model.forward_features(_UpperCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_UpperCAmelCase , outputs.pooler_output , atol=1E-3 ) else: __UpperCAmelCase : Any = timm_model(_UpperCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _UpperCamelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
364
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING _SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def __A ( self ) -> Any: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) __UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() __UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow @require_torch def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(__UpperCAmelCase ) @slow @require_tf def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) __UpperCAmelCase : Tuple = None __UpperCAmelCase : int = None self.run_pipeline_test(__UpperCAmelCase , [] ) @require_tf def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : str = None self.run_pipeline_test(__UpperCAmelCase , [] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) __UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = fill_masker.tokenizer __UpperCAmelCase : Union[str, Any] = fill_masker.model __UpperCAmelCase : Tuple = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , ) with self.assertRaises(__UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__UpperCAmelCase ): fill_masker("""This is""" ) self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = tokenizer.get_vocab() __UpperCAmelCase : Dict = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase ) __UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Any = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Call argument __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Score equivalence __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs] __UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ) == set(__UpperCAmelCase ): __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] ) with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 ) __UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = tokenizer.get_vocab() __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) # top_k=2, ntargets=3 __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__UpperCAmelCase ) , 3 ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Dict = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , )
16
0
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : Any = [] __UpperCAmelCase : Union[str, Any] = set({"""(""", """[""", """{"""} ) __UpperCAmelCase : Optional[int] = set({""")""", """]""", """}"""} ) __UpperCAmelCase : Any = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(SCREAMING_SNAKE_CASE_ ) == 0 or (len(SCREAMING_SNAKE_CASE_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(SCREAMING_SNAKE_CASE_ ) == 0 def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = input("""Enter sequence of brackets: """ ) if is_balanced(SCREAMING_SNAKE_CASE_ ): print(SCREAMING_SNAKE_CASE_ , """is balanced""" ) else: print(SCREAMING_SNAKE_CASE_ , """is not balanced""" ) if __name__ == "__main__": main()
365
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} ) _SCREAMING_SNAKE_CASE : str = "image" _SCREAMING_SNAKE_CASE : str = "labels" def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __UpperCAmelCase ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) __UpperCAmelCase : int = copy.deepcopy(self ) __UpperCAmelCase : str = self.label_schema.copy() __UpperCAmelCase : Optional[Any] = features[self.label_column] __UpperCAmelCase : Optional[int] = label_schema return task_template @property def __A ( self ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
16
0
'''simple docstring''' import os import sys _UpperCamelCase = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _UpperCamelCase = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def lowercase_ ( *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowercase_ ( *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Any ): """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def lowercase_ ( *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Optional[Any] ): """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowercase_ ( *lowerCAmelCase__ : int , **lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowercase_ ( *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowercase_ ( *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Any ): """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowercase_ ( *lowerCAmelCase__ : Any , **lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
366
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : str = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : str = num_choices __UpperCAmelCase : List[Any] = scope def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Tuple = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = True __UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass __UpperCAmelCase : Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : List[str] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = LlamaModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : str = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = 3 __UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : Optional[Any] = """single_label_classification""" __UpperCAmelCase : int = input_dict["""input_ids"""] __UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : str = """multi_label_classification""" __UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size ) __UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() __UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0} __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() __UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) @require_torch class _A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __UpperCAmelCase : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) ) __UpperCAmelCase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """ __UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" ) __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase ) # greedy generation outputs __UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
16
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ): """simple docstring""" __UpperCAmelCase : Dict = original_name.split(""".""" )[0] __UpperCAmelCase : List[Any] = key.split(""".""" ) __UpperCAmelCase : List[Any] = int(key_list[key_list.index(__lowerCamelCase ) - 2] ) __UpperCAmelCase : Any = int(key_list[key_list.index(__lowerCamelCase ) - 1] ) __UpperCAmelCase : str = orig_block_num - offset __UpperCAmelCase : Optional[int] = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def lowercase_ ( lowerCAmelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase : str = OrderedDict() __UpperCAmelCase , __UpperCAmelCase : Tuple = 0, 0 for key, value in state_dict.items(): if key.startswith("""network""" ): __UpperCAmelCase : Optional[Any] = key.replace("""network""" , """poolformer.encoder""" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""" ) and "patch_embed" not in key: patch_emb_offset += 1 __UpperCAmelCase : Optional[Any] = key[: key.find("""proj""" )] __UpperCAmelCase : Any = key.replace(__lowerCamelCase , f'patch_embeddings.{total_embed_found}.' ) __UpperCAmelCase : int = key.replace("""proj""" , """projection""" ) if key.endswith("""bias""" ): total_embed_found += 1 if "patch_embeddings" in key: __UpperCAmelCase : List[str] = """poolformer.encoder.""" + key if "mlp.fc1" in key: __UpperCAmelCase : Dict = replace_key_with_offset(__lowerCamelCase , __lowerCamelCase , """mlp.fc1""" , """output.conv1""" ) if "mlp.fc2" in key: __UpperCAmelCase : Union[str, Any] = replace_key_with_offset(__lowerCamelCase , __lowerCamelCase , """mlp.fc2""" , """output.conv2""" ) if "norm1" in key: __UpperCAmelCase : Optional[Any] = replace_key_with_offset(__lowerCamelCase , __lowerCamelCase , """norm1""" , """before_norm""" ) if "norm2" in key: __UpperCAmelCase : Any = replace_key_with_offset(__lowerCamelCase , __lowerCamelCase , """norm2""" , """after_norm""" ) if "layer_scale_1" in key: __UpperCAmelCase : List[Any] = replace_key_with_offset(__lowerCamelCase , __lowerCamelCase , """layer_scale_1""" , """layer_scale_1""" ) if "layer_scale_2" in key: __UpperCAmelCase : str = replace_key_with_offset(__lowerCamelCase , __lowerCamelCase , """layer_scale_2""" , """layer_scale_2""" ) if "head" in key: __UpperCAmelCase : Optional[Any] = key.replace("""head""" , """classifier""" ) __UpperCAmelCase : Dict = value return new_state_dict def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return image @torch.no_grad() def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase : Tuple = PoolFormerConfig() # set attributes based on model_name __UpperCAmelCase : Any = """huggingface/label-files""" __UpperCAmelCase : List[str] = model_name[-3:] __UpperCAmelCase : Any = 1000 __UpperCAmelCase : str = """imagenet-1k-id2label.json""" __UpperCAmelCase : Optional[int] = (1, 1000) # set config attributes __UpperCAmelCase : Any = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : Dict = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Dict = idalabel __UpperCAmelCase : str = {v: k for k, v in idalabel.items()} if size == "s12": __UpperCAmelCase : str = [2, 2, 6, 2] __UpperCAmelCase : int = [64, 128, 320, 512] __UpperCAmelCase : List[Any] = 4.0 __UpperCAmelCase : Any = 0.9 elif size == "s24": __UpperCAmelCase : Optional[Any] = [4, 4, 12, 4] __UpperCAmelCase : Tuple = [64, 128, 320, 512] __UpperCAmelCase : Any = 4.0 __UpperCAmelCase : List[str] = 0.9 elif size == "s36": __UpperCAmelCase : List[Any] = [6, 6, 18, 6] __UpperCAmelCase : Any = [64, 128, 320, 512] __UpperCAmelCase : Dict = 4.0 __UpperCAmelCase : Union[str, Any] = 1E-6 __UpperCAmelCase : Tuple = 0.9 elif size == "m36": __UpperCAmelCase : Union[str, Any] = [6, 6, 18, 6] __UpperCAmelCase : Union[str, Any] = [96, 192, 384, 768] __UpperCAmelCase : List[Any] = 4.0 __UpperCAmelCase : List[Any] = 1E-6 __UpperCAmelCase : Tuple = 0.95 elif size == "m48": __UpperCAmelCase : str = [8, 8, 24, 8] __UpperCAmelCase : List[str] = [96, 192, 384, 768] __UpperCAmelCase : Optional[int] = 4.0 __UpperCAmelCase : List[str] = 1E-6 __UpperCAmelCase : Tuple = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor __UpperCAmelCase : Optional[Any] = PoolFormerImageProcessor(crop_pct=__lowerCamelCase ) # Prepare image __UpperCAmelCase : int = prepare_img() __UpperCAmelCase : List[Any] = image_processor(images=__lowerCamelCase , return_tensors="""pt""" ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict __UpperCAmelCase : str = torch.load(__lowerCamelCase , map_location=torch.device("""cpu""" ) ) # rename keys __UpperCAmelCase : str = rename_keys(__lowerCamelCase ) # create HuggingFace model and load state dict __UpperCAmelCase : str = PoolFormerForImageClassification(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # Define image processor __UpperCAmelCase : str = PoolFormerImageProcessor(crop_pct=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ).pixel_values # forward pass __UpperCAmelCase : int = model(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = outputs.logits # define expected logit slices for different models if size == "s12": __UpperCAmelCase : str = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": __UpperCAmelCase : List[Any] = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": __UpperCAmelCase : Tuple = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": __UpperCAmelCase : List[str] = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": __UpperCAmelCase : Optional[Any] = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _UpperCamelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
367
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _UpperCamelCase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ): """simple docstring""" return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths ) def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": __UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ ) for answer_list in data[1]: __UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : str = [[reference] for reference in references] __UpperCAmelCase : Optional[int] = 0 for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : int = 100.0 * em / total __UpperCAmelCase : Dict = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = args.k __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = 0 for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] ) __UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __UpperCAmelCase : List[str] = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ): """simple docstring""" def strip_title(lowerCAmelCase__ : Optional[int] ): if title.startswith("""\"""" ): __UpperCAmelCase : List[Any] = title[1:] if title.endswith("""\"""" ): __UpperCAmelCase : int = title[:-1] return title __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device ) __UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ ) __UpperCAmelCase : int = question_enc_outputs[0] __UpperCAmelCase : Dict = rag_model.retriever( lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) __UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __UpperCAmelCase : Union[str, Any] = [] for docs in all_docs: __UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(lowerCAmelCase__ ) ) return provenance_strings def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" with torch.no_grad(): __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) __UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device ) __UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device ) __UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) ) return answers def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) __UpperCAmelCase : str = parser.parse_args() __UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = {} if args.model_type is None: __UpperCAmelCase : str = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration __UpperCAmelCase : Dict = args.n_docs if args.index_name is not None: __UpperCAmelCase : Union[str, Any] = args.index_name if args.index_path is not None: __UpperCAmelCase : Dict = args.index_path else: __UpperCAmelCase : str = BartForConditionalGeneration __UpperCAmelCase : str = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k __UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ ) model.retriever.init_retrieval() else: __UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: __UpperCAmelCase : Union[str, Any] = [] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: __UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" ) preds_file.flush() __UpperCAmelCase : List[str] = [] if len(lowerCAmelCase__ ) > 0: __UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _UpperCamelCase = get_args() main(args)
16
0