code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import torch
from torch import nn
class _A ( nn.Module ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 , __UpperCAmelCase=False ) -> List[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Union[str, Any] = n_token
__UpperCAmelCase : Optional[Any] = d_embed
__UpperCAmelCase : int = d_proj
__UpperCAmelCase : Tuple = cutoffs + [n_token]
__UpperCAmelCase : List[Any] = [0] + self.cutoffs
__UpperCAmelCase : int = div_val
__UpperCAmelCase : Optional[int] = self.cutoffs[0]
__UpperCAmelCase : Union[str, Any] = len(self.cutoffs ) - 1
__UpperCAmelCase : Tuple = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
__UpperCAmelCase : Any = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) )
__UpperCAmelCase : Any = nn.Parameter(torch.zeros(self.n_clusters ) )
__UpperCAmelCase : List[str] = nn.ModuleList()
__UpperCAmelCase : Tuple = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs ) ):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(__UpperCAmelCase , __UpperCAmelCase ) ) )
else:
self.out_projs.append(__UpperCAmelCase )
self.out_layers.append(nn.Linear(__UpperCAmelCase , __UpperCAmelCase ) )
else:
for i in range(len(self.cutoffs ) ):
__UpperCAmelCase , __UpperCAmelCase : str = self.cutoff_ends[i], self.cutoff_ends[i + 1]
__UpperCAmelCase : List[Any] = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(__UpperCAmelCase , __UpperCAmelCase ) ) )
self.out_layers.append(nn.Linear(__UpperCAmelCase , r_idx - l_idx ) )
__UpperCAmelCase : Union[str, Any] = keep_order
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if proj is None:
__UpperCAmelCase : Any = nn.functional.linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase )
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
__UpperCAmelCase : str = nn.functional.linear(__UpperCAmelCase , proj.t().contiguous() )
__UpperCAmelCase : Tuple = nn.functional.linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase )
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
if labels is not None:
# Shift so that tokens < n predict n
__UpperCAmelCase : List[str] = hidden[..., :-1, :].contiguous()
__UpperCAmelCase : int = labels[..., 1:].contiguous()
__UpperCAmelCase : List[str] = hidden.view(-1 , hidden.size(-1 ) )
__UpperCAmelCase : Union[str, Any] = labels.view(-1 )
if hidden.size(0 ) != labels.size(0 ):
raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" )
else:
__UpperCAmelCase : List[Any] = hidden.view(-1 , hidden.size(-1 ) )
if self.n_clusters == 0:
__UpperCAmelCase : Union[str, Any] = self._compute_logit(__UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
if labels is not None:
__UpperCAmelCase : Any = labels != -100
__UpperCAmelCase : Optional[int] = torch.zeros_like(__UpperCAmelCase , dtype=hidden.dtype , device=hidden.device )
__UpperCAmelCase : str = (
-nn.functional.log_softmax(__UpperCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 )
)
else:
__UpperCAmelCase : Optional[int] = nn.functional.log_softmax(__UpperCAmelCase , dim=-1 )
else:
# construct weights and biases
__UpperCAmelCase , __UpperCAmelCase : Tuple = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
__UpperCAmelCase , __UpperCAmelCase : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1]
__UpperCAmelCase : Tuple = self.out_layers[0].weight[l_idx:r_idx]
__UpperCAmelCase : Optional[int] = self.out_layers[0].bias[l_idx:r_idx]
else:
__UpperCAmelCase : Tuple = self.out_layers[i].weight
__UpperCAmelCase : int = self.out_layers[i].bias
if i == 0:
__UpperCAmelCase : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 )
__UpperCAmelCase : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(__UpperCAmelCase )
biases.append(__UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = weights[0], biases[0], self.out_projs[0]
__UpperCAmelCase : List[str] = self._compute_logit(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : str = nn.functional.log_softmax(__UpperCAmelCase , dim=1 )
if labels is None:
__UpperCAmelCase : Optional[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) )
else:
__UpperCAmelCase : List[str] = torch.zeros_like(__UpperCAmelCase , dtype=hidden.dtype , device=hidden.device )
__UpperCAmelCase : Optional[Any] = 0
__UpperCAmelCase : int = [0] + self.cutoffs
for i in range(len(__UpperCAmelCase ) - 1 ):
__UpperCAmelCase , __UpperCAmelCase : int = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
__UpperCAmelCase : Any = (labels >= l_idx) & (labels < r_idx)
__UpperCAmelCase : List[str] = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
__UpperCAmelCase : List[Any] = labels.index_select(0 , __UpperCAmelCase ) - l_idx
__UpperCAmelCase : str = head_logprob.index_select(0 , __UpperCAmelCase )
__UpperCAmelCase : Dict = hidden.index_select(0 , __UpperCAmelCase )
else:
__UpperCAmelCase : List[Any] = hidden
if i == 0:
if labels is not None:
__UpperCAmelCase : int = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 )
else:
__UpperCAmelCase : Union[str, Any] = head_logprob[:, : self.cutoffs[0]]
else:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = weights[i], biases[i], self.out_projs[i]
__UpperCAmelCase : Optional[Any] = self._compute_logit(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = nn.functional.log_softmax(__UpperCAmelCase , dim=1 )
__UpperCAmelCase : Dict = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
__UpperCAmelCase : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 , target_i[:, None] ).squeeze(1 )
else:
__UpperCAmelCase : List[Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
__UpperCAmelCase : int = logprob_i
if labels is not None:
if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order:
out.index_copy_(0 , __UpperCAmelCase , -logprob_i )
else:
out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i )
offset += logprob_i.size(0 )
return out
def __A ( self , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if self.n_clusters == 0:
__UpperCAmelCase : Optional[int] = self._compute_logit(__UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
return nn.functional.log_softmax(__UpperCAmelCase , dim=-1 )
else:
# construct weights and biases
__UpperCAmelCase , __UpperCAmelCase : List[str] = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
__UpperCAmelCase : int = self.out_layers[0].weight[l_idx:r_idx]
__UpperCAmelCase : List[str] = self.out_layers[0].bias[l_idx:r_idx]
else:
__UpperCAmelCase : Optional[Any] = self.out_layers[i].weight
__UpperCAmelCase : Union[str, Any] = self.out_layers[i].bias
if i == 0:
__UpperCAmelCase : int = torch.cat([weight_i, self.cluster_weight] , dim=0 )
__UpperCAmelCase : Any = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(__UpperCAmelCase )
biases.append(__UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = weights[0], biases[0], self.out_projs[0]
__UpperCAmelCase : Optional[int] = self._compute_logit(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : List[str] = hidden.new_empty((head_logit.size(0 ), self.n_token) )
__UpperCAmelCase : List[Any] = nn.functional.log_softmax(__UpperCAmelCase , dim=1 )
__UpperCAmelCase : Any = [0] + self.cutoffs
for i in range(len(__UpperCAmelCase ) - 1 ):
__UpperCAmelCase , __UpperCAmelCase : Dict = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
__UpperCAmelCase : Optional[int] = head_logprob[:, : self.cutoffs[0]]
else:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = weights[i], biases[i], self.out_projs[i]
__UpperCAmelCase : Union[str, Any] = self._compute_logit(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : List[str] = nn.functional.log_softmax(__UpperCAmelCase , dim=1 )
__UpperCAmelCase : str = head_logprob[:, -i] + tail_logprob_i
__UpperCAmelCase : List[str] = logprob_i
return out
| 16 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Tuple = seq_length
__UpperCAmelCase : str = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[Any] = use_token_type_ids
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : str = num_attention_heads
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : Tuple = max_position_embeddings
__UpperCAmelCase : Dict = type_vocab_size
__UpperCAmelCase : List[Any] = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[str] = num_labels
__UpperCAmelCase : str = num_choices
__UpperCAmelCase : List[Any] = scope
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Tuple = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
# first forward pass
__UpperCAmelCase : Optional[int] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCAmelCase : int = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
# select random slice
__UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = config_and_inputs
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : List[str] = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = LlamaModelTester(self )
__UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : str = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Any = 3
__UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[int] = 3
__UpperCAmelCase : Optional[Any] = """single_label_classification"""
__UpperCAmelCase : int = input_dict["""input_ids"""]
__UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = 3
__UpperCAmelCase : str = """multi_label_classification"""
__UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size )
__UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
original_model.to(__UpperCAmelCase )
original_model.eval()
__UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0}
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
scaled_model.to(__UpperCAmelCase )
scaled_model.eval()
__UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
@require_torch
class _A ( unittest.TestCase ):
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" )
__UpperCAmelCase : int = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" )
__UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" )
__UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
@unittest.skip(
"""Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" )
@slow
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" )
__UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) )
__UpperCAmelCase : Dict = torch.tensor(
[[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Model is curently gated""" )
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi"""
__UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """
__UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" )
__UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" )
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained(
"""meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase )
# greedy generation outputs
__UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
_UpperCamelCase = TypeVar('''T''')
_UpperCamelCase = TypeVar('''U''')
class _A ( Generic[T, U] ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = key
__UpperCAmelCase : List[str] = val
__UpperCAmelCase : DoubleLinkedListNode[T, U] | None = None
__UpperCAmelCase : DoubleLinkedListNode[T, U] | None = None
def __repr__( self ) -> str:
'''simple docstring'''
return (
f'Node: key: {self.key}, val: {self.val}, '
f'has next: {bool(self.next )}, has prev: {bool(self.prev )}'
)
class _A ( Generic[T, U] ):
def __init__( self ) -> None:
'''simple docstring'''
__UpperCAmelCase : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.rear, self.head
def __repr__( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[Any] = ["""DoubleLinkedList"""]
__UpperCAmelCase : int = self.head
while node.next is not None:
rep.append(str(__UpperCAmelCase ) )
__UpperCAmelCase : Dict = node.next
rep.append(str(self.rear ) )
return ",\n ".join(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
__UpperCAmelCase : str = node
__UpperCAmelCase : int = previous
__UpperCAmelCase : Any = node
__UpperCAmelCase : Tuple = self.rear
def __A ( self , __UpperCAmelCase ) -> DoubleLinkedListNode[T, U] | None:
'''simple docstring'''
if node.prev is None or node.next is None:
return None
__UpperCAmelCase : str = node.next
__UpperCAmelCase : Optional[int] = node.prev
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : List[str] = None
return node
class _A ( Generic[T, U] ):
_SCREAMING_SNAKE_CASE : dict[Callable[[T], U], LRUCache[T, U]] = {}
def __init__( self , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : DoubleLinkedList[T, U] = DoubleLinkedList()
__UpperCAmelCase : Optional[int] = capacity
__UpperCAmelCase : str = 0
__UpperCAmelCase : Optional[Any] = 0
__UpperCAmelCase : Dict = 0
__UpperCAmelCase : dict[T, DoubleLinkedListNode[T, U]] = {}
def __repr__( self ) -> str:
'''simple docstring'''
return (
f'CacheInfo(hits={self.hits}, misses={self.miss}, '
f'capacity={self.capacity}, current size={self.num_keys})'
)
def __contains__( self , __UpperCAmelCase ) -> bool:
'''simple docstring'''
return key in self.cache
def __A ( self , __UpperCAmelCase ) -> U | None:
'''simple docstring'''
# Note: pythonic interface would throw KeyError rather than return None
if key in self.cache:
self.hits += 1
__UpperCAmelCase : DoubleLinkedListNode[T, U] = self.cache[key]
__UpperCAmelCase : Optional[int] = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(__UpperCAmelCase )
return node.val
self.miss += 1
return None
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
__UpperCAmelCase : Optional[int] = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(__UpperCAmelCase ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
__UpperCAmelCase : Optional[int] = DoubleLinkedListNode(__UpperCAmelCase , __UpperCAmelCase )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
__UpperCAmelCase : Dict = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
__UpperCAmelCase : Optional[int] = value
self.list.add(__UpperCAmelCase )
@classmethod
def __A ( cls , __UpperCAmelCase = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]:
'''simple docstring'''
def cache_decorator_inner(__UpperCAmelCase ) -> Callable[..., U]:
def cache_decorator_wrapper(*__UpperCAmelCase ) -> U:
if func not in cls.decorator_function_to_instance_map:
__UpperCAmelCase : Union[str, Any] = LRUCache(__UpperCAmelCase )
__UpperCAmelCase : int = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
__UpperCAmelCase : Optional[int] = func(*__UpperCAmelCase )
cls.decorator_function_to_instance_map[func].put(args[0] , __UpperCAmelCase )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(__UpperCAmelCase , """cache_info""" , __UpperCAmelCase ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 |
'''simple docstring'''
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
_UpperCamelCase = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ):
"""simple docstring"""
return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths )
def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = []
if args.gold_data_mode == "qa":
__UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ )
for answer_list in data[1]:
__UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ )
answers.append(lowerCAmelCase__ )
else:
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : str = [[reference] for reference in references]
__UpperCAmelCase : Optional[int] = 0
for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
total += 1
em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : int = 100.0 * em / total
__UpperCAmelCase : Dict = 100.0 * fa / total
logger.info(f'F1: {fa:.2f}' )
logger.info(f'EM: {em:.2f}' )
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : Tuple = args.k
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = 0
for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] )
__UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
__UpperCAmelCase : List[str] = 100.0 * em / total
logger.info(f'Precision@{k}: {em: .2f}' )
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ):
"""simple docstring"""
def strip_title(lowerCAmelCase__ : Optional[int] ):
if title.startswith("""\"""" ):
__UpperCAmelCase : List[Any] = title[1:]
if title.endswith("""\"""" ):
__UpperCAmelCase : int = title[:-1]
return title
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device )
__UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ )
__UpperCAmelCase : int = question_enc_outputs[0]
__UpperCAmelCase : Dict = rag_model.retriever(
lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , )
__UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
__UpperCAmelCase : Union[str, Any] = []
for docs in all_docs:
__UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]]
provenance_strings.append("""\t""".join(lowerCAmelCase__ ) )
return provenance_strings
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
with torch.no_grad():
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )
__UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device )
__UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device )
__UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
__UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
if args.print_predictions:
for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) )
return answers
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=(
"""RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the"""
""" model_name_or_path"""
) , )
parser.add_argument(
"""--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , )
parser.add_argument(
"""--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , )
parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" )
parser.add_argument(
"""--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=(
"""Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates"""
""" precision@k."""
) , )
parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" )
parser.add_argument(
"""--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , )
parser.add_argument(
"""--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , )
parser.add_argument(
"""--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=(
"""Format of the gold data file"""
"""qa - a single line in the following format: question [tab] answer_list"""
"""ans - a single line of the gold file contains the expected answer string"""
) , )
parser.add_argument(
"""--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , )
parser.add_argument(
"""--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , )
parser.add_argument(
"""--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , )
parser.add_argument(
"""--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , )
parser.add_argument(
"""--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , )
parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" )
parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" )
parser.add_argument(
"""--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , )
parser.add_argument(
"""--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , )
__UpperCAmelCase : str = parser.parse_args()
__UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
return args
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = {}
if args.model_type is None:
__UpperCAmelCase : str = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration
__UpperCAmelCase : Dict = args.n_docs
if args.index_name is not None:
__UpperCAmelCase : Union[str, Any] = args.index_name
if args.index_path is not None:
__UpperCAmelCase : Dict = args.index_path
else:
__UpperCAmelCase : str = BartForConditionalGeneration
__UpperCAmelCase : str = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k
__UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) )
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
continue
logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) )
logger.info(""" Batch size = %d""" , args.eval_batch_size )
logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) )
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
__UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ )
model.retriever.init_retrieval()
else:
__UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
model.to(args.device )
with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file:
__UpperCAmelCase : Union[str, Any] = []
for line in tqdm(lowerCAmelCase__ ):
questions.append(line.strip() )
if len(lowerCAmelCase__ ) == args.eval_batch_size:
__UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" )
preds_file.flush()
__UpperCAmelCase : List[str] = []
if len(lowerCAmelCase__ ) > 0:
__UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) )
preds_file.flush()
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
_UpperCamelCase = get_args()
main(args)
| 16 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_UpperCamelCase = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''PLBartTokenizer''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PLBartForCausalLM''',
'''PLBartForConditionalGeneration''',
'''PLBartForSequenceClassification''',
'''PLBartModel''',
'''PLBartPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 16 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _A :
@staticmethod
def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = [
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
]
return object_detector, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 )
__UpperCAmelCase : Tuple = len(__UpperCAmelCase )
self.assertGreater(__UpperCAmelCase , 0 )
self.assertEqual(
__UpperCAmelCase , [
{
"""score""": ANY(__UpperCAmelCase ),
"""label""": ANY(__UpperCAmelCase ),
"""box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )},
}
for i in range(__UpperCAmelCase )
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> Tuple:
'''simple docstring'''
pass
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
] , )
__UpperCAmelCase : str = object_detector(
[
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
]
] , )
@require_torch
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
] , )
__UpperCAmelCase : Any = object_detector(
[
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> List[str]:
'''simple docstring'''
pass
@require_torch
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = 0.2
__UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
] , )
@require_torch
@slow
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 2
__UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
] , )
| 16 | 1 |
'''simple docstring'''
from datetime import datetime
import requests
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase : List[str] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url="""
__UpperCAmelCase : Tuple = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""]
return requests.get(lowerCAmelCase__ ).content
if __name__ == "__main__":
_UpperCamelCase = input('''Enter Video/IGTV url: ''').strip()
_UpperCamelCase = F'{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4'
with open(file_name, '''wb''') as fp:
fp.write(download_video(url))
print(F'Done. Video saved to disk as {file_name}.')
| 16 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.txt'''}
_UpperCamelCase = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': 512,
'''YituTech/conv-bert-medium-small''': 512,
'''YituTech/conv-bert-small''': 512,
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION
_SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars
):
__UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) )
__UpperCAmelCase : Union[str, Any] = do_lower_case
__UpperCAmelCase : str = strip_accents
__UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars
__UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase )
__UpperCAmelCase : List[Any] = do_lower_case
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [self.sep_token_id]
__UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
import re
import string
import numpy as np
import datasets
_UpperCamelCase = '''
Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.
'''
_UpperCamelCase = '''
Args:
predictions: List of predicted texts.
references: List of reference texts.
regexes_to_ignore: List, defaults to None. Regex expressions of characters to
ignore when calculating the exact matches. Note: these regexes are removed
from the input data before the changes based on the options below (e.g. ignore_case,
ignore_punctuation, ignore_numbers) are applied.
ignore_case: Boolean, defaults to False. If true, turns everything
to lowercase so that capitalization differences are ignored.
ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
Returns:
exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.
Examples:
>>> exact_match = datasets.load_metric("exact_match")
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
>>> preds = ["cat?", "theater", "yelling", "agent"]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results["exact_match"], 1))
25.0
>>> exact_match = datasets.load_metric("exact_match")
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
>>> preds = ["cat?", "theater", "yelling", "agent"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results["exact_match"], 1))
50.0
>>> exact_match = datasets.load_metric("exact_match")
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
>>> preds = ["cat?", "theater", "yelling", "agent"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results["exact_match"], 1))
75.0
>>> exact_match = datasets.load_metric("exact_match")
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
>>> preds = ["cat?", "theater", "yelling", "agent"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)
>>> print(round(results["exact_match"], 1))
100.0
>>> exact_match = datasets.load_metric("exact_match")
>>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]
>>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results["exact_match"], 1))
33.3
'''
_UpperCamelCase = '''
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _A ( datasets.Metric ):
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , reference_urls=[] , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , ) -> Any:
'''simple docstring'''
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
__UpperCAmelCase : List[Any] = np.array([re.sub(__UpperCAmelCase , """""" , __UpperCAmelCase ) for x in predictions] )
__UpperCAmelCase : int = np.array([re.sub(__UpperCAmelCase , """""" , __UpperCAmelCase ) for x in references] )
else:
__UpperCAmelCase : str = np.asarray(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = np.asarray(__UpperCAmelCase )
if ignore_case:
__UpperCAmelCase : Tuple = np.char.lower(__UpperCAmelCase )
__UpperCAmelCase : str = np.char.lower(__UpperCAmelCase )
if ignore_punctuation:
__UpperCAmelCase : Union[str, Any] = string.punctuation.maketrans("""""" , """""" , string.punctuation )
__UpperCAmelCase : Optional[Any] = np.char.translate(__UpperCAmelCase , table=__UpperCAmelCase )
__UpperCAmelCase : str = np.char.translate(__UpperCAmelCase , table=__UpperCAmelCase )
if ignore_numbers:
__UpperCAmelCase : Union[str, Any] = string.digits.maketrans("""""" , """""" , string.digits )
__UpperCAmelCase : Dict = np.char.translate(__UpperCAmelCase , table=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = np.char.translate(__UpperCAmelCase , table=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = predictions == references
return {"exact_match": np.mean(__UpperCAmelCase ) * 100}
| 16 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_UpperCamelCase = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''OwlViTFeatureExtractor''']
_UpperCamelCase = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 1 |
'''simple docstring'''
import argparse
import re
import requests
import torch
# git clone https://github.com/salesforce/BLIP.git
from models.blip import blip_decoder
from models.blip_itm import blip_itm
from models.blip_vqa import blip_vqa
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import (
BertTokenizer,
BlipConfig,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
)
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase : List[str] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg"""
__UpperCAmelCase : str = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" )
__UpperCAmelCase : Any = transforms.Compose(
[
transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ),
transforms.ToTensor(),
transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ),
] )
__UpperCAmelCase : int = transform(lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ )
return image
def lowercase_ ( lowerCAmelCase__ : Any ):
"""simple docstring"""
if "visual_encoder" in key:
__UpperCAmelCase : Union[str, Any] = re.sub("""visual_encoder*""" , """vision_model.encoder""" , lowerCAmelCase__ )
if "blocks" in key:
__UpperCAmelCase : str = re.sub(r"""blocks""" , """layers""" , lowerCAmelCase__ )
if "attn" in key:
__UpperCAmelCase : Tuple = re.sub(r"""attn""" , """self_attn""" , lowerCAmelCase__ )
if "norm1" in key:
__UpperCAmelCase : Dict = re.sub(r"""norm1""" , """layer_norm1""" , lowerCAmelCase__ )
if "norm2" in key:
__UpperCAmelCase : Optional[Any] = re.sub(r"""norm2""" , """layer_norm2""" , lowerCAmelCase__ )
if "encoder.norm" in key:
__UpperCAmelCase : str = re.sub(r"""encoder.norm""" , """post_layernorm""" , lowerCAmelCase__ )
if "encoder.patch_embed.proj" in key:
__UpperCAmelCase : Optional[Any] = re.sub(r"""encoder.patch_embed.proj""" , """embeddings.patch_embedding""" , lowerCAmelCase__ )
if "encoder.pos_embed" in key:
__UpperCAmelCase : Optional[int] = re.sub(r"""encoder.pos_embed""" , """embeddings.position_embedding""" , lowerCAmelCase__ )
if "encoder.cls_token" in key:
__UpperCAmelCase : str = re.sub(r"""encoder.cls_token""" , """embeddings.class_embedding""" , lowerCAmelCase__ )
if "self_attn" in key:
__UpperCAmelCase : List[str] = re.sub(r"""self_attn.proj""" , """self_attn.projection""" , lowerCAmelCase__ )
return key
@torch.no_grad()
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : int=None ):
"""simple docstring"""
if config_path is not None:
__UpperCAmelCase : List[Any] = BlipConfig.from_pretrained(lowerCAmelCase__ )
else:
__UpperCAmelCase : Optional[int] = BlipConfig(projection_dim=512 , text_config={} , vision_config={} )
__UpperCAmelCase : Optional[int] = BlipForConditionalGeneration(lowerCAmelCase__ ).eval()
__UpperCAmelCase : str = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth"""
__UpperCAmelCase : Optional[int] = blip_decoder(pretrained=lowerCAmelCase__ , image_size=384 , vit="""base""" )
__UpperCAmelCase : List[str] = pt_model.eval()
__UpperCAmelCase : List[str] = pt_model.state_dict()
for key in modified_state_dict.copy():
__UpperCAmelCase : Tuple = modified_state_dict.pop(lowerCAmelCase__ )
__UpperCAmelCase : int = rename_key(lowerCAmelCase__ )
__UpperCAmelCase : List[Any] = value
hf_model.load_state_dict(lowerCAmelCase__ )
__UpperCAmelCase : Tuple = 384
__UpperCAmelCase : Union[str, Any] = load_demo_image(image_size=lowerCAmelCase__ , device="""cpu""" )
__UpperCAmelCase : List[str] = BertTokenizer.from_pretrained("""bert-base-uncased""" )
__UpperCAmelCase : Optional[Any] = tokenizer(["""a picture of"""] ).input_ids
__UpperCAmelCase : str = hf_model.generate(lowerCAmelCase__ , lowerCAmelCase__ )
assert out[0].tolist() == [30522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
__UpperCAmelCase : int = hf_model.generate(lowerCAmelCase__ )
assert out[0].tolist() == [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
if pytorch_dump_folder_path is not None:
hf_model.save_pretrained(lowerCAmelCase__ )
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
__UpperCAmelCase : Union[str, Any] = (
"""https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth"""
)
__UpperCAmelCase : Optional[Any] = blip_vqa(pretrained=lowerCAmelCase__ , image_size=lowerCAmelCase__ , vit="""base""" )
vqa_model.eval()
__UpperCAmelCase : List[Any] = vqa_model.state_dict()
for key in modified_state_dict.copy():
__UpperCAmelCase : List[Any] = modified_state_dict.pop(lowerCAmelCase__ )
__UpperCAmelCase : str = rename_key(lowerCAmelCase__ )
__UpperCAmelCase : Union[str, Any] = value
__UpperCAmelCase : List[str] = BlipForQuestionAnswering(lowerCAmelCase__ )
hf_vqa_model.load_state_dict(lowerCAmelCase__ )
__UpperCAmelCase : List[Any] = ["""How many dogs are in this image?"""]
__UpperCAmelCase : Optional[Any] = tokenizer(lowerCAmelCase__ , return_tensors="""pt""" ).input_ids
__UpperCAmelCase : str = hf_vqa_model.generate(lowerCAmelCase__ , lowerCAmelCase__ )
print(tokenizer.decode(answer[0] ) )
assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]"
if pytorch_dump_folder_path is not None:
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" )
__UpperCAmelCase : Union[str, Any] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth"""
__UpperCAmelCase : List[str] = blip_itm(pretrained=lowerCAmelCase__ , image_size=lowerCAmelCase__ , vit="""base""" )
itm_model.eval()
__UpperCAmelCase : Dict = itm_model.state_dict()
for key in modified_state_dict.copy():
__UpperCAmelCase : int = modified_state_dict.pop(lowerCAmelCase__ )
__UpperCAmelCase : Tuple = rename_key(lowerCAmelCase__ )
__UpperCAmelCase : List[Any] = value
__UpperCAmelCase : Dict = BlipForImageTextRetrieval(lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = ["""A picture of a woman with a dog sitting in a beach"""]
__UpperCAmelCase : List[str] = tokenizer(
lowerCAmelCase__ , return_tensors="""pt""" , padding="""max_length""" , truncation=lowerCAmelCase__ , max_length=35 , ).input_ids
hf_itm_model.load_state_dict(lowerCAmelCase__ )
hf_itm_model.eval()
__UpperCAmelCase : List[Any] = hf_itm_model(lowerCAmelCase__ , lowerCAmelCase__ , use_itm_head=lowerCAmelCase__ )
__UpperCAmelCase : Any = hf_itm_model(lowerCAmelCase__ , lowerCAmelCase__ , use_itm_head=lowerCAmelCase__ )
assert out[0].item() == 0.2_110_687_494_277_954
assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127
if pytorch_dump_folder_path is not None:
hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
_UpperCamelCase = parser.parse_args()
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 16 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
'''simple docstring'''
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column
__UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )]
def __str__( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n'
# Make string identifier
__UpperCAmelCase : Optional[Any] = 0
for row_vector in self.array:
for obj in row_vector:
__UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) )
__UpperCAmelCase : Optional[int] = f'%{max_element_length}s'
# Make string and return
def single_line(__UpperCAmelCase ) -> str:
nonlocal string_format_identifier
__UpperCAmelCase : Any = """["""
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array )
return s
def __repr__( self ) -> str:
'''simple docstring'''
return str(self )
def __A ( self , __UpperCAmelCase ) -> bool:
'''simple docstring'''
if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
return self.array[loc[0]][loc[1]]
def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = value
def __add__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == another.row and self.column == another.column
# Add
__UpperCAmelCase : Dict = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] + another[r, c]
return result
def __neg__( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : Dict = -self[r, c]
return result
def __sub__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
return self + (-another)
def __mul__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication
__UpperCAmelCase : Optional[int] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] * another
return result
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication
assert self.column == another.row
__UpperCAmelCase : Dict = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
__UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})'
raise TypeError(__UpperCAmelCase )
def __A ( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Dict = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[str] = self[r, c]
return result
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
__UpperCAmelCase : Optional[Any] = v.transpose()
__UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Dict = Matrix(3 , 3 , 0 )
for i in range(3 ):
__UpperCAmelCase : Tuple = 1
print(f'a^(-1) is {ainv}' )
# u, v
__UpperCAmelCase : Dict = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3
__UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5
print(f'u is {u}' )
print(f'v is {v}' )
print(f'uv^T is {u * v.transpose()}' )
# Sherman Morrison
print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' )
def lowercase_ ( ):
"""simple docstring"""
import doctest
doctest.testmod()
testa()
| 16 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
_UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
_SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" )
__UpperCAmelCase : List[Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] )
__UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
# Legacy behavior
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] )
__UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""label""": """LABEL_0""", """score""": 0.504},
{"""label""": """LABEL_0""", """score""": 0.504},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
import torch
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@require_tf
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@slow
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = pipeline("""text-classification""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
@slow
@require_tf
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : int = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
__UpperCAmelCase : Union[str, Any] = """HuggingFace is in"""
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
__UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""]
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase )
__UpperCAmelCase : Any = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , )
__UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""}
__UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , )
self.assertTrue(outputs["""label"""] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
__UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]]
with self.assertRaises(__UpperCAmelCase ):
text_classifier(__UpperCAmelCase )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
__UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
| 16 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''',
}
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : int = "focalnet"
def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=96 , __UpperCAmelCase=False , __UpperCAmelCase=[192, 384, 768, 768] , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[2, 2, 2, 2] , __UpperCAmelCase=[3, 3, 3, 3] , __UpperCAmelCase="gelu" , __UpperCAmelCase=4.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=False , __UpperCAmelCase=1E-4 , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = image_size
__UpperCAmelCase : Tuple = patch_size
__UpperCAmelCase : List[Any] = num_channels
__UpperCAmelCase : List[str] = embed_dim
__UpperCAmelCase : int = use_conv_embed
__UpperCAmelCase : Tuple = hidden_sizes
__UpperCAmelCase : int = depths
__UpperCAmelCase : List[str] = focal_levels
__UpperCAmelCase : Dict = focal_windows
__UpperCAmelCase : Optional[int] = hidden_act
__UpperCAmelCase : Union[str, Any] = mlp_ratio
__UpperCAmelCase : List[Any] = hidden_dropout_prob
__UpperCAmelCase : Dict = drop_path_rate
__UpperCAmelCase : Tuple = use_layerscale
__UpperCAmelCase : str = layerscale_value
__UpperCAmelCase : str = use_post_layernorm
__UpperCAmelCase : int = use_post_layernorm_in_modulation
__UpperCAmelCase : List[Any] = normalize_modulator
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : str = layer_norm_eps
__UpperCAmelCase : int = encoder_stride
__UpperCAmelCase : int = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )]
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices(
out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
| 16 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
| 16 | 1 |
'''simple docstring'''
import json
import os
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''vocab_file''': '''vocab.json''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
'''merges_file''': '''merges.txt''',
}
_UpperCamelCase = {
'''vocab_file''': {
'''facebook/s2t-wav2vec2-large-en-de''': (
'''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json'''
),
},
'''tokenizer_config_file''': {
'''facebook/s2t-wav2vec2-large-en-de''': (
'''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json'''
),
},
'''merges_file''': {
'''facebook/s2t-wav2vec2-large-en-de''': (
'''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt'''
),
},
}
_UpperCamelCase = '''</w>'''
_UpperCamelCase = '''@@ '''
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase : str = set()
__UpperCAmelCase : Tuple = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCAmelCase : Optional[Any] = char
return pairs
# Speech2Text2 has no max input length
_UpperCamelCase = {'''facebook/s2t-wav2vec2-large-en-de''': 1024}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : int = ["input_ids", "attention_mask"]
def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase=False , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> List[str]:
'''simple docstring'''
super().__init__(
unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCAmelCase : int = do_lower_case
with open(__UpperCAmelCase , encoding="""utf-8""" ) as vocab_handle:
__UpperCAmelCase : Optional[int] = json.load(__UpperCAmelCase )
__UpperCAmelCase : Tuple = {v: k for k, v in self.encoder.items()}
if merges_file is None:
logger.info(f'No merges files provided. {self.__class__.__name__} can only be used for decoding.' )
__UpperCAmelCase : Dict = None
__UpperCAmelCase : Optional[int] = None
else:
with open(__UpperCAmelCase , encoding="""utf-8""" ) as merges_handle:
__UpperCAmelCase : Optional[Any] = merges_handle.read().split("""\n""" )[:-1]
__UpperCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges]
__UpperCAmelCase : str = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : Any = {}
@property
def __A ( self ) -> int:
'''simple docstring'''
return len(self.decoder )
def __A ( self ) -> Dict:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def __A ( self , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,)
if token in self.cache:
return self.cache[token]
__UpperCAmelCase : Optional[int] = get_pairs(__UpperCAmelCase )
if not pairs:
return token
while True:
__UpperCAmelCase : Optional[Any] = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
__UpperCAmelCase , __UpperCAmelCase : Dict = bigram
__UpperCAmelCase : str = []
__UpperCAmelCase : Union[str, Any] = 0
while i < len(__UpperCAmelCase ):
try:
__UpperCAmelCase : Dict = word.index(__UpperCAmelCase , __UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__UpperCAmelCase : Optional[int] = j
if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__UpperCAmelCase : List[Any] = tuple(__UpperCAmelCase )
__UpperCAmelCase : Any = new_word
if len(__UpperCAmelCase ) == 1:
break
else:
__UpperCAmelCase : Union[str, Any] = get_pairs(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = """ """.join(__UpperCAmelCase )
if word == "\n " + BPE_TOKEN_MERGES:
__UpperCAmelCase : Tuple = """\n""" + BPE_TOKEN_MERGES
if word.endswith(__UpperCAmelCase ):
__UpperCAmelCase : List[str] = word.replace(__UpperCAmelCase , """""" )
__UpperCAmelCase : Optional[int] = word.replace(""" """ , __UpperCAmelCase )
__UpperCAmelCase : Tuple = word
return word
def __A ( self , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if self.bpe_ranks is None:
raise ValueError(
"""This tokenizer was instantiated without a `merges.txt` file, so"""
""" that it can only be used for decoding, not for encoding."""
"""Make sure to provide `merges.txt` file at instantiation to enable """
"""encoding.""" )
if self.do_lower_case:
__UpperCAmelCase : Optional[Any] = text.lower()
__UpperCAmelCase : int = text.split()
__UpperCAmelCase : Any = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(__UpperCAmelCase ).split(""" """ ) ) )
return split_tokens
def __A ( self , __UpperCAmelCase ) -> int:
'''simple docstring'''
return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) )
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.decoder.get(__UpperCAmelCase , self.unk_token )
return result
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = """ """.join(__UpperCAmelCase )
# make sure @@ tokens are concatenated
__UpperCAmelCase : Optional[Any] = """""".join(string.split(__UpperCAmelCase ) )
return string
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
__UpperCAmelCase : Dict = os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
__UpperCAmelCase : Optional[Any] = os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + """\n""" )
__UpperCAmelCase : Union[str, Any] = 0
if self.bpe_ranks is None:
return (vocab_file,)
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.'
""" Please check that the tokenizer is not corrupted!""" )
__UpperCAmelCase : str = token_index
writer.write(""" """.join(__UpperCAmelCase ) + """\n""" )
index += 1
return (vocab_file, merges_file)
| 16 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class _A :
def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase )
__UpperCAmelCase : List[str] = length
__UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa )
__UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ) -> Dict:
'''simple docstring'''
return self.length
def __getitem__( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return {"x": self.x[i], "y": self.y[i]}
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Any = True
def __A ( self , __UpperCAmelCase=None ) -> str:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : Optional[int] = False
return x * self.a[0] + self.b[0]
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : str = True
def __A ( self , __UpperCAmelCase=None ) -> Tuple:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : int = False
return x * self.a + self.b
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
__UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" )
__UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
__UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" )
__UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )}
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCAmelCase : List[Any] = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" )
if "label" in examples:
__UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCAmelCase : Tuple = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCAmelCase__ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 )
__UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 16 | 1 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
_UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
_SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" )
__UpperCAmelCase : List[Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] )
__UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
# Legacy behavior
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] )
__UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""label""": """LABEL_0""", """score""": 0.504},
{"""label""": """LABEL_0""", """score""": 0.504},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
import torch
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@require_tf
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@slow
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = pipeline("""text-classification""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
@slow
@require_tf
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : int = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
__UpperCAmelCase : Union[str, Any] = """HuggingFace is in"""
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
__UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""]
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase )
__UpperCAmelCase : Any = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , )
__UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""}
__UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , )
self.assertTrue(outputs["""label"""] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
__UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]]
with self.assertRaises(__UpperCAmelCase ):
text_classifier(__UpperCAmelCase )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
__UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
| 16 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None
@property
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = (3, 32, 128)
__UpperCAmelCase : Tuple = tempfile.mkdtemp()
# fmt: off
__UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
__UpperCAmelCase : List[Any] = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
__UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) )
return image_input
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.get_tokenizer()
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
__UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.prepare_image_inputs()
__UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" )
__UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Dict = """test"""
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = """test"""
__UpperCAmelCase : int = self.prepare_image_inputs()
__UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase )
__UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = self.get_tokenizer()
__UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : str = None
__UpperCAmelCase : Dict = self.prepare_image_inputs()
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Any = self.get_image_processor()
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 )
__UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 )
__UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 )
__UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
| 16 | 1 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import List, Optional
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self ) -> Dict:
'''simple docstring'''
# test for the above condition
self.test()
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = 0
__UpperCAmelCase : Optional[int] = False
while not completed:
if counter == 1:
self.reset()
__UpperCAmelCase : str = self.advance()
if not self.does_advance(__UpperCAmelCase ):
raise Exception(
"""Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = self.update(__UpperCAmelCase )
counter += 1
if counter > 10_000:
raise Exception("""update() does not fulfill the constraint.""" )
if self.remaining() != 0:
raise Exception("""Custom Constraint is not defined correctly.""" )
@abstractmethod
def __A ( self ) -> Dict:
'''simple docstring'''
raise NotImplementedError(
f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' )
@abstractmethod
def __A ( self , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
raise NotImplementedError(
f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' )
@abstractmethod
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
raise NotImplementedError(
f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' )
@abstractmethod
def __A ( self ) -> str:
'''simple docstring'''
raise NotImplementedError(
f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' )
@abstractmethod
def __A ( self ) -> List[Any]:
'''simple docstring'''
raise NotImplementedError(
f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' )
@abstractmethod
def __A ( self , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
raise NotImplementedError(
f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' )
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
super(__UpperCAmelCase , self ).__init__()
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or len(__UpperCAmelCase ) == 0:
raise ValueError(f'`token_ids` has to be a non-empty list, but is {token_ids}.' )
if any((not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or token_id < 0) for token_id in token_ids ):
raise ValueError(f'Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.' )
__UpperCAmelCase : Tuple = token_ids
__UpperCAmelCase : Dict = len(self.token_ids )
__UpperCAmelCase : Dict = -1 # the index of the currently fulfilled step
__UpperCAmelCase : Optional[int] = False
def __A ( self ) -> str:
'''simple docstring'''
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def __A ( self , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise ValueError(f'`token_id` has to be an `int`, but is {token_id} of type {type(__UpperCAmelCase )}' )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def __A ( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise ValueError(f'`token_id` has to be an `int`, but is {token_id} of type {type(__UpperCAmelCase )}' )
__UpperCAmelCase : str = False
__UpperCAmelCase : Any = False
__UpperCAmelCase : Optional[Any] = False
if self.does_advance(__UpperCAmelCase ):
self.fulfilled_idx += 1
__UpperCAmelCase : Tuple = True
if self.fulfilled_idx == (self.seqlen - 1):
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Tuple = completed
else:
# failed to make progress.
__UpperCAmelCase : Union[str, Any] = True
self.reset()
return stepped, completed, reset
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : int = 0
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
return self.seqlen - (self.fulfilled_idx + 1)
def __A ( self , __UpperCAmelCase=False ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = PhrasalConstraint(self.token_ids )
if stateful:
__UpperCAmelCase : int = self.seqlen
__UpperCAmelCase : List[Any] = self.fulfilled_idx
__UpperCAmelCase : Dict = self.completed
return new_constraint
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=True ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : str = max([len(__UpperCAmelCase ) for one in nested_token_ids] )
__UpperCAmelCase : Optional[int] = {}
for token_ids in nested_token_ids:
__UpperCAmelCase : str = root
for tidx, token_id in enumerate(__UpperCAmelCase ):
if token_id not in level:
__UpperCAmelCase : int = {}
__UpperCAmelCase : List[Any] = level[token_id]
if no_subsets and self.has_subsets(__UpperCAmelCase , __UpperCAmelCase ):
raise ValueError(
"""Each list in `nested_token_ids` can't be a complete subset of another list, but is"""
f' {nested_token_ids}.' )
__UpperCAmelCase : Optional[int] = root
def __A ( self , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : Dict = self.trie
for current_token in current_seq:
__UpperCAmelCase : int = start[current_token]
__UpperCAmelCase : Dict = list(start.keys() )
return next_tokens
def __A ( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.next_tokens(__UpperCAmelCase )
return len(__UpperCAmelCase ) == 0
def __A ( self , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = list(root.values() )
if len(__UpperCAmelCase ) == 0:
return 1
else:
return sum([self.count_leaves(__UpperCAmelCase ) for nn in next_nodes] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = self.count_leaves(__UpperCAmelCase )
return len(__UpperCAmelCase ) != leaf_count
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
super(__UpperCAmelCase , self ).__init__()
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or len(__UpperCAmelCase ) == 0:
raise ValueError(f'`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.' )
if any(not isinstance(__UpperCAmelCase , __UpperCAmelCase ) for token_ids in nested_token_ids ):
raise ValueError(f'`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.' )
if any(
any((not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
f'Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.' )
__UpperCAmelCase : int = DisjunctiveTrie(__UpperCAmelCase )
__UpperCAmelCase : Tuple = nested_token_ids
__UpperCAmelCase : Tuple = self.trie.max_height
__UpperCAmelCase : List[Any] = []
__UpperCAmelCase : Optional[Any] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.trie.next_tokens(self.current_seq )
if len(__UpperCAmelCase ) == 0:
return None
else:
return token_list
def __A ( self , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise ValueError(f'`token_id` is supposed to be type `int`, but is {token_id} of type {type(__UpperCAmelCase )}' )
__UpperCAmelCase : int = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def __A ( self , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise ValueError(f'`token_id` is supposed to be type `int`, but is {token_id} of type {type(__UpperCAmelCase )}' )
__UpperCAmelCase : Dict = False
__UpperCAmelCase : int = False
__UpperCAmelCase : List[Any] = False
if self.does_advance(__UpperCAmelCase ):
self.current_seq.append(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = True
else:
__UpperCAmelCase : List[str] = True
self.reset()
__UpperCAmelCase : List[str] = self.trie.reached_leaf(self.current_seq )
__UpperCAmelCase : int = completed
return stepped, completed, reset
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : Dict = []
def __A ( self ) -> Tuple:
'''simple docstring'''
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def __A ( self , __UpperCAmelCase=False ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = DisjunctiveConstraint(self.token_ids )
if stateful:
__UpperCAmelCase : Any = self.seqlen
__UpperCAmelCase : Optional[Any] = self.current_seq
__UpperCAmelCase : Tuple = self.completed
return new_constraint
class _A :
def __init__( self , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = constraints
# max # of steps required to fulfill a given constraint
__UpperCAmelCase : int = max([c.seqlen for c in constraints] )
__UpperCAmelCase : str = len(__UpperCAmelCase )
__UpperCAmelCase : int = False
self.init_state()
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = []
__UpperCAmelCase : int = None
__UpperCAmelCase : Any = [constraint.copy(stateful=__UpperCAmelCase ) for constraint in self.constraints]
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
__UpperCAmelCase : Union[str, Any] = constraint.advance()
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
token_list.append(__UpperCAmelCase )
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ):
token_list.extend(__UpperCAmelCase )
else:
__UpperCAmelCase : List[Any] = self.inprogress_constraint.advance()
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
token_list.append(__UpperCAmelCase )
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ):
token_list.extend(__UpperCAmelCase )
if len(__UpperCAmelCase ) == 0:
return None
else:
return token_list
def __A ( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.add(__UpperCAmelCase )
# the entire list of constraints are fulfilled
if self.completed:
break
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise ValueError(f'`token_id` should be an `int`, but is `{token_id}`.' )
__UpperCAmelCase , __UpperCAmelCase : Dict = False, False
if self.completed:
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Union[str, Any] = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = self.inprogress_constraint.update(__UpperCAmelCase )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__UpperCAmelCase ) )
__UpperCAmelCase : int = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
__UpperCAmelCase : Dict = None
if len(self.pending_constraints ) == 0:
# we're done!
__UpperCAmelCase : Tuple = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(__UpperCAmelCase ):
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = pending_constraint.update(__UpperCAmelCase )
if not stepped:
raise Exception(
"""`constraint.update(token_id)` is not yielding incremental progress, """
"""even though `constraint.does_advance(token_id)` is true.""" )
if complete:
self.complete_constraints.append(__UpperCAmelCase )
__UpperCAmelCase : Tuple = None
if not complete and stepped:
__UpperCAmelCase : Dict = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
__UpperCAmelCase : Tuple = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
__UpperCAmelCase : Union[str, Any] = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def __A ( self , __UpperCAmelCase=True ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
__UpperCAmelCase : Dict = [
constraint.copy(stateful=__UpperCAmelCase ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
__UpperCAmelCase : Dict = self.inprogress_constraint.copy(stateful=__UpperCAmelCase )
__UpperCAmelCase : Tuple = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 16 |
'''simple docstring'''
from collections.abc import Sequence
def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ):
"""simple docstring"""
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__UpperCAmelCase : Any = nums[0]
for i in range(1 , len(lowerCAmelCase__ ) ):
__UpperCAmelCase : Union[str, Any] = nums[i]
__UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_UpperCamelCase = int(input('''Enter number of elements : ''').strip())
_UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n]
print(max_subsequence_sum(array))
| 16 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
_UpperCamelCase = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = "tapas"
def __init__( self , __UpperCAmelCase=30_522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3_072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1_024 , __UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase=10.0 , __UpperCAmelCase=0 , __UpperCAmelCase=1.0 , __UpperCAmelCase=None , __UpperCAmelCase=1.0 , __UpperCAmelCase=False , __UpperCAmelCase=None , __UpperCAmelCase=1.0 , __UpperCAmelCase=1.0 , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase="ratio" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=64 , __UpperCAmelCase=32 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
__UpperCAmelCase : Optional[int] = vocab_size
__UpperCAmelCase : Optional[Any] = hidden_size
__UpperCAmelCase : Optional[Any] = num_hidden_layers
__UpperCAmelCase : Tuple = num_attention_heads
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : Any = intermediate_size
__UpperCAmelCase : Any = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : Any = max_position_embeddings
__UpperCAmelCase : str = type_vocab_sizes
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : Optional[Any] = layer_norm_eps
# Fine-tuning task hyperparameters
__UpperCAmelCase : Tuple = positive_label_weight
__UpperCAmelCase : Any = num_aggregation_labels
__UpperCAmelCase : int = aggregation_loss_weight
__UpperCAmelCase : Optional[Any] = use_answer_as_supervision
__UpperCAmelCase : str = answer_loss_importance
__UpperCAmelCase : Any = use_normalized_answer_loss
__UpperCAmelCase : Union[str, Any] = huber_loss_delta
__UpperCAmelCase : Union[str, Any] = temperature
__UpperCAmelCase : Optional[Any] = aggregation_temperature
__UpperCAmelCase : Dict = use_gumbel_for_cells
__UpperCAmelCase : List[str] = use_gumbel_for_aggregation
__UpperCAmelCase : Optional[Any] = average_approximation_function
__UpperCAmelCase : Optional[Any] = cell_selection_preference
__UpperCAmelCase : List[Any] = answer_loss_cutoff
__UpperCAmelCase : List[Any] = max_num_rows
__UpperCAmelCase : List[Any] = max_num_columns
__UpperCAmelCase : List[Any] = average_logits_per_cell
__UpperCAmelCase : List[Any] = select_one_column
__UpperCAmelCase : str = allow_empty_column_selection
__UpperCAmelCase : Dict = init_cell_selection_weights_to_zero
__UpperCAmelCase : Tuple = reset_position_index_per_cell
__UpperCAmelCase : int = disable_per_token_loss
# Aggregation hyperparameters
__UpperCAmelCase : Any = aggregation_labels
__UpperCAmelCase : Dict = no_aggregation_label_index
if isinstance(self.aggregation_labels , __UpperCAmelCase ):
__UpperCAmelCase : List[str] = {int(__UpperCAmelCase ): v for k, v in aggregation_labels.items()}
| 16 |
'''simple docstring'''
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = data
__UpperCAmelCase : int = previous
__UpperCAmelCase : Union[str, Any] = next_node
def __str__( self ) -> str:
'''simple docstring'''
return f'{self.data}'
def __A ( self ) -> int:
'''simple docstring'''
return self.data
def __A ( self ) -> List[str]:
'''simple docstring'''
return self.next
def __A ( self ) -> str:
'''simple docstring'''
return self.previous
class _A :
def __init__( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = head
def __iter__( self ) -> str:
'''simple docstring'''
return self
def __A ( self ) -> str:
'''simple docstring'''
if not self.current:
raise StopIteration
else:
__UpperCAmelCase : List[str] = self.current.get_data()
__UpperCAmelCase : int = self.current.get_next()
return value
class _A :
def __init__( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = None # First node in list
__UpperCAmelCase : List[str] = None # Last node in list
def __str__( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.head
__UpperCAmelCase : Optional[int] = []
while current is not None:
nodes.append(current.get_data() )
__UpperCAmelCase : Any = current.get_next()
return " ".join(str(__UpperCAmelCase ) for node in nodes )
def __contains__( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.head
while current:
if current.get_data() == value:
return True
__UpperCAmelCase : Optional[Any] = current.get_next()
return False
def __iter__( self ) -> str:
'''simple docstring'''
return LinkedListIterator(self.head )
def __A ( self ) -> List[Any]:
'''simple docstring'''
if self.head:
return self.head.get_data()
return None
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
if self.tail:
return self.tail.get_data()
return None
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
__UpperCAmelCase : str = node
__UpperCAmelCase : List[str] = node
else:
self.insert_before_node(self.head , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase )
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.set_tail(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Tuple = node
__UpperCAmelCase : List[Any] = node.previous
if node.get_previous() is None:
__UpperCAmelCase : str = node_to_insert
else:
__UpperCAmelCase : Optional[Any] = node_to_insert
__UpperCAmelCase : List[Any] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : List[str] = node
__UpperCAmelCase : Union[str, Any] = node.next
if node.get_next() is None:
__UpperCAmelCase : Dict = node_to_insert
else:
__UpperCAmelCase : Any = node_to_insert
__UpperCAmelCase : List[str] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.head
while node:
if current_position == position:
self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase )
return
current_position += 1
__UpperCAmelCase : int = node.next
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Node:
'''simple docstring'''
__UpperCAmelCase : Dict = self.head
while node:
if node.get_data() == item:
return node
__UpperCAmelCase : List[str] = node.get_next()
raise Exception("""Node not found""" )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
if (node := self.get_node(__UpperCAmelCase )) is not None:
if node == self.head:
__UpperCAmelCase : Optional[int] = self.head.get_next()
if node == self.tail:
__UpperCAmelCase : Union[str, Any] = self.tail.get_previous()
self.remove_node_pointers(__UpperCAmelCase )
@staticmethod
def __A ( __UpperCAmelCase ) -> None:
'''simple docstring'''
if node.get_next():
__UpperCAmelCase : Optional[Any] = node.previous
if node.get_previous():
__UpperCAmelCase : int = node.next
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Union[str, Any] = None
def __A ( self ) -> List[Any]:
'''simple docstring'''
return self.head is None
def lowercase_ ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 1 |
'''simple docstring'''
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
_UpperCamelCase = 4
_UpperCamelCase = 3
class _A ( __SCREAMING_SNAKE_CASE ):
pass
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
for shard in shards:
for i in range(lowerCAmelCase__ ):
yield {"i": i, "shard": shard}
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = int(os.environ["""RANK"""] )
__UpperCAmelCase : Optional[Any] = int(os.environ["""WORLD_SIZE"""] )
__UpperCAmelCase : Tuple = ArgumentParser()
parser.add_argument("""--streaming""" , type=lowerCAmelCase__ )
parser.add_argument("""--local_rank""" , type=lowerCAmelCase__ )
parser.add_argument("""--num_workers""" , type=lowerCAmelCase__ , default=0 )
__UpperCAmelCase : Dict = parser.parse_args()
__UpperCAmelCase : Dict = args.streaming
__UpperCAmelCase : Optional[int] = args.num_workers
__UpperCAmelCase : str = {"""shards""": [f'shard_{shard_idx}' for shard_idx in range(lowerCAmelCase__ )]}
__UpperCAmelCase : Tuple = IterableDataset.from_generator(lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ )
if not streaming:
__UpperCAmelCase : Tuple = Dataset.from_list(list(lowerCAmelCase__ ) )
__UpperCAmelCase : Any = split_dataset_by_node(lowerCAmelCase__ , rank=lowerCAmelCase__ , world_size=lowerCAmelCase__ )
__UpperCAmelCase : str = torch.utils.data.DataLoader(lowerCAmelCase__ , num_workers=lowerCAmelCase__ )
__UpperCAmelCase : List[str] = NUM_SHARDS * NUM_ITEMS_PER_SHARD
__UpperCAmelCase : List[Any] = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
__UpperCAmelCase : List[str] = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' )
if __name__ == "__main__":
main()
| 16 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : List[str]
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __call__( self ) -> Any:
'''simple docstring'''
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : Optional[List] = None
_SCREAMING_SNAKE_CASE : Optional[int] = None
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None
__UpperCAmelCase : int = len(self.languages ) if self.languages else None
def __call__( self ) -> Optional[Any]:
'''simple docstring'''
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def __A ( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = set(self.languages )
if self.languages and set(__UpperCAmelCase ) - lang_set:
raise ValueError(
f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__UpperCAmelCase : Dict = []
for lang, text in translation_dict.items():
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 16 | 1 |
'''simple docstring'''
from statistics import mean
import numpy as np
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Tuple = 0
# Number of processes finished
__UpperCAmelCase : Optional[int] = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
__UpperCAmelCase : Tuple = [0] * no_of_process
# List to include calculation results
__UpperCAmelCase : int = [0] * no_of_process
# Sort by arrival time.
__UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )]
__UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )]
arrival_time.sort()
while no_of_process > finished_process_count:
__UpperCAmelCase : Dict = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
__UpperCAmelCase : Any = arrival_time[i]
__UpperCAmelCase : Any = 0
# Index showing the location of the process being performed
__UpperCAmelCase : Any = 0
# Saves the current response ratio.
__UpperCAmelCase : List[str] = 0
for i in range(0 , lowerCAmelCase__ ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
__UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
__UpperCAmelCase : Tuple = temp
__UpperCAmelCase : List[str] = i
# Calculate the turn around time
__UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
__UpperCAmelCase : List[str] = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [0] * no_of_process
for i in range(0 , lowerCAmelCase__ ):
__UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
_UpperCamelCase = 5
_UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E''']
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
_UpperCamelCase = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''')
for i in range(0, no_of_process):
print(
F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'
F'{turn_around_time[i]}\t\t\t{waiting_time[i]}'
)
print(F'average waiting time : {mean(waiting_time):.5f}')
print(F'average turn around time : {mean(turn_around_time):.5f}')
| 16 |
'''simple docstring'''
from statistics import mean
import numpy as np
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Tuple = 0
# Number of processes finished
__UpperCAmelCase : Optional[int] = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
__UpperCAmelCase : Tuple = [0] * no_of_process
# List to include calculation results
__UpperCAmelCase : int = [0] * no_of_process
# Sort by arrival time.
__UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )]
__UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )]
arrival_time.sort()
while no_of_process > finished_process_count:
__UpperCAmelCase : Dict = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
__UpperCAmelCase : Any = arrival_time[i]
__UpperCAmelCase : Any = 0
# Index showing the location of the process being performed
__UpperCAmelCase : Any = 0
# Saves the current response ratio.
__UpperCAmelCase : List[str] = 0
for i in range(0 , lowerCAmelCase__ ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
__UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
__UpperCAmelCase : Tuple = temp
__UpperCAmelCase : List[str] = i
# Calculate the turn around time
__UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
__UpperCAmelCase : List[str] = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [0] * no_of_process
for i in range(0 , lowerCAmelCase__ ):
__UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
_UpperCamelCase = 5
_UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E''']
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
_UpperCamelCase = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''')
for i in range(0, no_of_process):
print(
F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'
F'{turn_around_time[i]}\t\t\t{waiting_time[i]}'
)
print(F'average waiting time : {mean(waiting_time):.5f}')
print(F'average turn around time : {mean(turn_around_time):.5f}')
| 16 | 1 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
_UpperCamelCase = logging.get_logger(__name__)
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self , __UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return super().__call__(__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = {}
if "candidate_labels" in kwargs:
__UpperCAmelCase : Dict = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
__UpperCAmelCase : Union[str, Any] = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." ) -> int:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = load_image(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = self.image_processor(images=[image] , return_tensors=self.framework )
__UpperCAmelCase : str = candidate_labels
__UpperCAmelCase : Dict = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels]
__UpperCAmelCase : Optional[int] = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase )
__UpperCAmelCase : int = [text_inputs]
return inputs
def __A ( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = model_inputs.pop("""candidate_labels""" )
__UpperCAmelCase : List[str] = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , __UpperCAmelCase ):
__UpperCAmelCase : Tuple = text_inputs[0]
else:
# Batching case.
__UpperCAmelCase : Union[str, Any] = text_inputs[0][0]
__UpperCAmelCase : Optional[int] = self.model(**__UpperCAmelCase , **__UpperCAmelCase )
__UpperCAmelCase : int = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_image,
}
return model_outputs
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = model_outputs.pop("""candidate_labels""" )
__UpperCAmelCase : Optional[Any] = model_outputs["""logits"""][0]
if self.framework == "pt":
__UpperCAmelCase : Optional[Any] = logits.softmax(dim=-1 ).squeeze(-1 )
__UpperCAmelCase : List[Any] = probs.tolist()
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
__UpperCAmelCase : List[str] = [scores]
elif self.framework == "tf":
__UpperCAmelCase : str = stable_softmax(__UpperCAmelCase , axis=-1 )
__UpperCAmelCase : Any = probs.numpy().tolist()
else:
raise ValueError(f'Unsupported framework: {self.framework}' )
__UpperCAmelCase : List[str] = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] )
]
return result
| 16 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = parent
__UpperCAmelCase : Any = batch_size
__UpperCAmelCase : Union[str, Any] = seq_length
__UpperCAmelCase : int = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[str] = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Union[str, Any] = num_hidden_layers
__UpperCAmelCase : Optional[int] = num_attention_heads
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_size
__UpperCAmelCase : Dict = type_sequence_label_size
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : Optional[Any] = num_choices
__UpperCAmelCase : int = scope
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : List[Any] = None
if self.use_input_mask:
__UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Any = None
if self.use_token_type_ids:
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Optional[int] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> List[str]:
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_config()
__UpperCAmelCase : List[Any] = 300
return config
def __A ( self ) -> Dict:
'''simple docstring'''
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = self.prepare_config_and_inputs()
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : List[str] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.num_labels
__UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_choices
__UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : List[str] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
__UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Any = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : int = False
_SCREAMING_SNAKE_CASE : List[str] = False
_SCREAMING_SNAKE_CASE : Dict = ()
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = MraModelTester(self )
__UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : List[Any] = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""MRA does not output attentions""" )
def __A ( self ) -> List[Any]:
'''simple docstring'''
return
@require_torch
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : int = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Union[str, Any] = 50_265
__UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" )
__UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : Any = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Dict = 50_265
__UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : str = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class _A :
_SCREAMING_SNAKE_CASE : Optional[int] = MBartConfig
_SCREAMING_SNAKE_CASE : List[Any] = {}
_SCREAMING_SNAKE_CASE : int = "gelu"
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=20 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = parent
__UpperCAmelCase : Tuple = batch_size
__UpperCAmelCase : Any = seq_length
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : Any = use_labels
__UpperCAmelCase : List[Any] = vocab_size
__UpperCAmelCase : Optional[Any] = hidden_size
__UpperCAmelCase : Any = num_hidden_layers
__UpperCAmelCase : str = num_attention_heads
__UpperCAmelCase : Tuple = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_dropout_prob
__UpperCAmelCase : Dict = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : Union[str, Any] = eos_token_id
__UpperCAmelCase : Any = pad_token_id
__UpperCAmelCase : Any = bos_token_id
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__UpperCAmelCase : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__UpperCAmelCase : Optional[Any] = tf.concat([input_ids, eos_tensor] , axis=1 )
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Any = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return config, inputs_dict
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : Dict = TFMBartModel(config=__UpperCAmelCase ).get_decoder()
__UpperCAmelCase : Dict = inputs_dict["""input_ids"""]
__UpperCAmelCase : List[str] = input_ids[:1, :]
__UpperCAmelCase : Any = inputs_dict["""attention_mask"""][:1, :]
__UpperCAmelCase : Tuple = inputs_dict["""head_mask"""]
__UpperCAmelCase : Tuple = 1
# first forward pass
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = outputs.to_tuple()
__UpperCAmelCase : str = past_key_values[1]
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : str=None , ):
"""simple docstring"""
if attention_mask is None:
__UpperCAmelCase : Any = tf.cast(tf.math.not_equal(lowerCAmelCase__ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
__UpperCAmelCase : Optional[int] = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
__UpperCAmelCase : Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__UpperCAmelCase : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__UpperCAmelCase : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : int = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
_SCREAMING_SNAKE_CASE : Union[str, Any] = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
_SCREAMING_SNAKE_CASE : List[Any] = (
{
"conversational": TFMBartForConditionalGeneration,
"feature-extraction": TFMBartModel,
"summarization": TFMBartForConditionalGeneration,
"text2text-generation": TFMBartForConditionalGeneration,
"translation": TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
_SCREAMING_SNAKE_CASE : Tuple = True
_SCREAMING_SNAKE_CASE : Dict = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = TFMBartModelTester(self )
__UpperCAmelCase : int = ConfigTester(self , config_class=__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : int = [
" UN Chief Says There Is No Military Solution in Syria",
]
_SCREAMING_SNAKE_CASE : Dict = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
]
_SCREAMING_SNAKE_CASE : Any = "facebook/mbart-large-en-ro"
@cached_property
def __A ( self ) -> int:
'''simple docstring'''
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def __A ( self , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.translate_src_text(**__UpperCAmelCase )
self.assertListEqual(self.expected_text , __UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = self.tokenizer(self.src_text , **__UpperCAmelCase , return_tensors="""tf""" )
__UpperCAmelCase : Any = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
__UpperCAmelCase : Dict = self.tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
return generated_words
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
self._assert_generated_batch_equal_expected()
| 16 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Any = image_size
__UpperCAmelCase : Dict = patch_size
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : List[Any] = embed_dim
__UpperCAmelCase : str = depths
__UpperCAmelCase : Dict = num_heads
__UpperCAmelCase : str = window_size
__UpperCAmelCase : int = mlp_ratio
__UpperCAmelCase : Union[str, Any] = qkv_bias
__UpperCAmelCase : Dict = hidden_dropout_prob
__UpperCAmelCase : str = attention_probs_dropout_prob
__UpperCAmelCase : Optional[int] = drop_path_rate
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Optional[int] = use_absolute_embeddings
__UpperCAmelCase : Any = patch_norm
__UpperCAmelCase : Union[str, Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : Any = scope
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : Optional[int] = type_sequence_label_size
__UpperCAmelCase : int = encoder_stride
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : Tuple = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def __A ( self ) -> Dict:
'''simple docstring'''
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
__UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : str = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = self.type_sequence_label_size
__UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs
__UpperCAmelCase : Dict = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
_SCREAMING_SNAKE_CASE : List[str] = (
{"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Dict = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[str] = SwinvaModelTester(self )
__UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 )
def __A ( self ) -> Any:
'''simple docstring'''
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
@unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason="""Swinv2 does not use inputs_embeds""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCAmelCase : List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Tuple = model_class(__UpperCAmelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : str = [*signature.parameters.keys()]
__UpperCAmelCase : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = True
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : int = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : str = outputs.attentions
__UpperCAmelCase : Any = len(self.model_tester.depths )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__UpperCAmelCase : Dict = True
__UpperCAmelCase : int = config.window_size**2
__UpperCAmelCase : Any = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : Dict = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
__UpperCAmelCase : Dict = len(__UpperCAmelCase )
# Check attention is always last and order is fine
__UpperCAmelCase : Any = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
if hasattr(self.model_tester , """num_hidden_states_types""" ):
__UpperCAmelCase : Any = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
__UpperCAmelCase : Optional[int] = 2
self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) )
__UpperCAmelCase : Tuple = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : List[Any] = outputs.hidden_states
__UpperCAmelCase : List[Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# Swinv2 has a different seq_length
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__UpperCAmelCase : int = outputs.reshaped_hidden_states
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape
__UpperCAmelCase : Any = (
reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = 3
__UpperCAmelCase : str = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__UpperCAmelCase : int = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Tuple = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase )
for model_class in self.all_model_classes:
__UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class _A ( unittest.TestCase ):
@cached_property
def __A ( self ) -> int:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" )
if is_vision_available()
else None
)
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to(
__UpperCAmelCase )
__UpperCAmelCase : Tuple = self.default_image_processor
__UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase )
# verify the logits
__UpperCAmelCase : int = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_UpperCamelCase = {
'''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''],
'''processing_layoutlmv2''': ['''LayoutLMv2Processor'''],
'''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''LayoutLMv2TokenizerFast''']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''LayoutLMv2FeatureExtractor''']
_UpperCamelCase = ['''LayoutLMv2ImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''LayoutLMv2ForQuestionAnswering''',
'''LayoutLMv2ForSequenceClassification''',
'''LayoutLMv2ForTokenClassification''',
'''LayoutLMv2Layer''',
'''LayoutLMv2Model''',
'''LayoutLMv2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
_UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f'Could not make batched video from {videos}' )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
__UpperCAmelCase : int = do_resize
__UpperCAmelCase : List[str] = size
__UpperCAmelCase : Any = do_center_crop
__UpperCAmelCase : Any = crop_size
__UpperCAmelCase : Optional[Any] = resample
__UpperCAmelCase : Dict = do_rescale
__UpperCAmelCase : List[str] = rescale_factor
__UpperCAmelCase : Dict = offset
__UpperCAmelCase : List[str] = do_normalize
__UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" in size:
__UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase )
elif "height" in size and "width" in size:
__UpperCAmelCase : Any = (size["""height"""], size["""width"""])
else:
raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = image.astype(np.floataa )
if offset:
__UpperCAmelCase : Tuple = image - (scale / 2)
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
if offset and not do_rescale:
raise ValueError("""For offset, do_rescale must also be set to True.""" )
# All transformations expect numpy arrays.
__UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase )
if do_resize:
__UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase )
if do_center_crop:
__UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase )
if do_rescale:
__UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase )
if do_normalize:
__UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase )
return image
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : List[Any] = resample if resample is not None else self.resample
__UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : List[Any] = offset if offset is not None else self.offset
__UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : int = image_std if image_std is not None else self.image_std
__UpperCAmelCase : Any = size if size is not None else self.size
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
__UpperCAmelCase : int = make_batched(__UpperCAmelCase )
__UpperCAmelCase : Tuple = [
[
self._preprocess_image(
image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , )
for img in video
]
for video in videos
]
__UpperCAmelCase : Tuple = {"""pixel_values""": videos}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : int = 100 ):
"""simple docstring"""
__UpperCAmelCase : str = n * (n + 1) * (2 * n + 1) / 6
__UpperCAmelCase : int = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(F'{solution() = }')
| 16 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline
_SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
_SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
_SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : Dict = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
__UpperCAmelCase : List[Any] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
__UpperCAmelCase : Any = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__UpperCAmelCase : Dict = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vqvae""": vae,
"""bert""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any:
'''simple docstring'''
if str(__UpperCAmelCase ).startswith("""mps""" ):
__UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : Dict = self.get_dummy_components()
__UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
__UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> List[str]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Tuple = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
__UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] )
__UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 50,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0]
__UpperCAmelCase : Tuple = load_numpy(
"""https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" )
__UpperCAmelCase : Dict = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 16 | 1 |
'''simple docstring'''
from collections.abc import Sequence
def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ):
"""simple docstring"""
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__UpperCAmelCase : Any = nums[0]
for i in range(1 , len(lowerCAmelCase__ ) ):
__UpperCAmelCase : Union[str, Any] = nums[i]
__UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_UpperCamelCase = int(input('''Enter number of elements : ''').strip())
_UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n]
print(max_subsequence_sum(array))
| 16 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column
__UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )]
def __str__( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n'
# Make string identifier
__UpperCAmelCase : Optional[Any] = 0
for row_vector in self.array:
for obj in row_vector:
__UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) )
__UpperCAmelCase : Optional[int] = f'%{max_element_length}s'
# Make string and return
def single_line(__UpperCAmelCase ) -> str:
nonlocal string_format_identifier
__UpperCAmelCase : Any = """["""
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array )
return s
def __repr__( self ) -> str:
'''simple docstring'''
return str(self )
def __A ( self , __UpperCAmelCase ) -> bool:
'''simple docstring'''
if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
return self.array[loc[0]][loc[1]]
def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = value
def __add__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == another.row and self.column == another.column
# Add
__UpperCAmelCase : Dict = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] + another[r, c]
return result
def __neg__( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : Dict = -self[r, c]
return result
def __sub__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
return self + (-another)
def __mul__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication
__UpperCAmelCase : Optional[int] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] * another
return result
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication
assert self.column == another.row
__UpperCAmelCase : Dict = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
__UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})'
raise TypeError(__UpperCAmelCase )
def __A ( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Dict = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[str] = self[r, c]
return result
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
__UpperCAmelCase : Optional[Any] = v.transpose()
__UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Dict = Matrix(3 , 3 , 0 )
for i in range(3 ):
__UpperCAmelCase : Tuple = 1
print(f'a^(-1) is {ainv}' )
# u, v
__UpperCAmelCase : Dict = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3
__UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5
print(f'u is {u}' )
print(f'v is {v}' )
print(f'uv^T is {u * v.transpose()}' )
# Sherman Morrison
print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' )
def lowercase_ ( ):
"""simple docstring"""
import doctest
doctest.testmod()
testa()
| 16 | 1 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ):
"""simple docstring"""
while b:
__UpperCAmelCase , __UpperCAmelCase : List[Any] = b, a % b
return a
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ):
"""simple docstring"""
return a if b == 0 else euclidean_gcd_recursive(lowerCAmelCase__ , a % b )
def lowercase_ ( ):
"""simple docstring"""
print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' )
print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' )
print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' )
print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' )
print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' )
print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' )
print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' )
print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' )
print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' )
print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' )
if __name__ == "__main__":
main()
| 16 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''],
'''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''],
'''processing_wav2vec2''': ['''Wav2Vec2Processor'''],
'''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Wav2Vec2ForAudioFrameClassification''',
'''Wav2Vec2ForCTC''',
'''Wav2Vec2ForMaskedLM''',
'''Wav2Vec2ForPreTraining''',
'''Wav2Vec2ForSequenceClassification''',
'''Wav2Vec2ForXVector''',
'''Wav2Vec2Model''',
'''Wav2Vec2PreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWav2Vec2ForCTC''',
'''TFWav2Vec2Model''',
'''TFWav2Vec2PreTrainedModel''',
'''TFWav2Vec2ForSequenceClassification''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FlaxWav2Vec2ForCTC''',
'''FlaxWav2Vec2ForPreTraining''',
'''FlaxWav2Vec2Model''',
'''FlaxWav2Vec2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : List[str]=False ):
"""simple docstring"""
__UpperCAmelCase : Any = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'transformer.blocks.{i}.norm1.weight', f'vilt.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'transformer.blocks.{i}.norm1.bias', f'vilt.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append(
(f'transformer.blocks.{i}.attn.proj.weight', f'vilt.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append(
(f'transformer.blocks.{i}.attn.proj.bias', f'vilt.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'transformer.blocks.{i}.norm2.weight', f'vilt.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'transformer.blocks.{i}.norm2.bias', f'vilt.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append(
(f'transformer.blocks.{i}.mlp.fc1.weight', f'vilt.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'transformer.blocks.{i}.mlp.fc1.bias', f'vilt.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'transformer.blocks.{i}.mlp.fc2.weight', f'vilt.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'transformer.blocks.{i}.mlp.fc2.bias', f'vilt.encoder.layer.{i}.output.dense.bias') )
# embeddings
rename_keys.extend(
[
# text embeddings
("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""),
(
"""text_embeddings.position_embeddings.weight""",
"""vilt.embeddings.text_embeddings.position_embeddings.weight""",
),
("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""),
(
"""text_embeddings.token_type_embeddings.weight""",
"""vilt.embeddings.text_embeddings.token_type_embeddings.weight""",
),
("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""),
("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""),
# patch embeddings
("""transformer.cls_token""", """vilt.embeddings.cls_token"""),
("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""),
("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""),
("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""),
# token type embeddings
("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""),
] )
# final layernorm + pooler
rename_keys.extend(
[
("""transformer.norm.weight""", """vilt.layernorm.weight"""),
("""transformer.norm.bias""", """vilt.layernorm.bias"""),
("""pooler.dense.weight""", """vilt.pooler.dense.weight"""),
("""pooler.dense.bias""", """vilt.pooler.dense.bias"""),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
("""vqa_classifier.0.weight""", """classifier.0.weight"""),
("""vqa_classifier.0.bias""", """classifier.0.bias"""),
("""vqa_classifier.1.weight""", """classifier.1.weight"""),
("""vqa_classifier.1.bias""", """classifier.1.bias"""),
("""vqa_classifier.3.weight""", """classifier.3.weight"""),
("""vqa_classifier.3.bias""", """classifier.3.bias"""),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
("""nlvr2_classifier.0.weight""", """classifier.0.weight"""),
("""nlvr2_classifier.0.bias""", """classifier.0.bias"""),
("""nlvr2_classifier.1.weight""", """classifier.1.weight"""),
("""nlvr2_classifier.1.bias""", """classifier.1.bias"""),
("""nlvr2_classifier.3.weight""", """classifier.3.weight"""),
("""nlvr2_classifier.3.bias""", """classifier.3.bias"""),
] )
else:
pass
return rename_keys
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
for i in range(config.num_hidden_layers ):
__UpperCAmelCase : Optional[int] = """vilt."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__UpperCAmelCase : Tuple = state_dict.pop(f'transformer.blocks.{i}.attn.qkv.weight' )
__UpperCAmelCase : List[str] = state_dict.pop(f'transformer.blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
__UpperCAmelCase : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
__UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size]
__UpperCAmelCase : List[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__UpperCAmelCase : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__UpperCAmelCase : List[str] = in_proj_weight[
-config.hidden_size :, :
]
__UpperCAmelCase : List[str] = in_proj_bias[-config.hidden_size :]
def lowercase_ ( lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : int = dct.pop(lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = val
@torch.no_grad()
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Any = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = False
__UpperCAmelCase : str = False
__UpperCAmelCase : str = False
__UpperCAmelCase : Union[str, Any] = False
if "vqa" in checkpoint_url:
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Optional[Any] = 3129
__UpperCAmelCase : Tuple = """huggingface/label-files"""
__UpperCAmelCase : int = """vqa2-id2label.json"""
__UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) , """r""" ) )
__UpperCAmelCase : Union[str, Any] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : Optional[Any] = idalabel
__UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()}
__UpperCAmelCase : str = ViltForQuestionAnswering(lowerCAmelCase__ )
elif "nlvr" in checkpoint_url:
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Union[str, Any] = 2
__UpperCAmelCase : Union[str, Any] = {0: """False""", 1: """True"""}
__UpperCAmelCase : Optional[Any] = {v: k for k, v in config.idalabel.items()}
__UpperCAmelCase : str = 3
__UpperCAmelCase : List[Any] = ViltForImagesAndTextClassification(lowerCAmelCase__ )
elif "irtr" in checkpoint_url:
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[str] = ViltForImageAndTextRetrieval(lowerCAmelCase__ )
elif "mlm_itm" in checkpoint_url:
__UpperCAmelCase : List[Any] = True
__UpperCAmelCase : Optional[Any] = ViltForMaskedLM(lowerCAmelCase__ )
else:
raise ValueError("""Unknown model type""" )
# load state_dict of original model, remove and rename some keys
__UpperCAmelCase : str = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" )["""state_dict"""]
__UpperCAmelCase : Dict = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ )
if mlm_model or irtr_model:
__UpperCAmelCase : List[str] = ["""itm_score.fc.weight""", """itm_score.fc.bias"""]
for k in ignore_keys:
state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(lowerCAmelCase__ )
# Define processor
__UpperCAmelCase : Dict = ViltImageProcessor(size=384 )
__UpperCAmelCase : Optional[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" )
__UpperCAmelCase : Tuple = ViltProcessor(lowerCAmelCase__ , lowerCAmelCase__ )
# Forward pass on example inputs (image + text)
if nlvr_model:
__UpperCAmelCase : Optional[int] = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=lowerCAmelCase__ ).raw )
__UpperCAmelCase : Any = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=lowerCAmelCase__ ).raw )
__UpperCAmelCase : Tuple = (
"""The left image contains twice the number of dogs as the right image, and at least two dogs in total are"""
""" standing."""
)
__UpperCAmelCase : Any = processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors="""pt""" )
__UpperCAmelCase : List[str] = processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors="""pt""" )
__UpperCAmelCase : Union[str, Any] = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
__UpperCAmelCase : Optional[int] = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" , stream=lowerCAmelCase__ ).raw )
if mlm_model:
__UpperCAmelCase : str = """a bunch of [MASK] laying on a [MASK]."""
else:
__UpperCAmelCase : str = """How many cats are there?"""
__UpperCAmelCase : List[Any] = processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors="""pt""" )
__UpperCAmelCase : Tuple = model(**lowerCAmelCase__ )
# Verify outputs
if mlm_model:
__UpperCAmelCase : List[Any] = torch.Size([1, 11, 30522] )
__UpperCAmelCase : List[str] = torch.tensor([-12.5_061, -12.5_123, -12.5_174] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , lowerCAmelCase__ , atol=1E-4 )
# verify masked token prediction equals "cats"
__UpperCAmelCase : Dict = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
__UpperCAmelCase : int = torch.Size([1, 3129] )
__UpperCAmelCase : Tuple = torch.tensor([-15.9_495, -18.1_472, -10.3_041] )
assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , lowerCAmelCase__ , atol=1E-4 )
# verify vqa prediction equals "2"
__UpperCAmelCase : Optional[int] = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
__UpperCAmelCase : Optional[int] = torch.Size([1, 2] )
__UpperCAmelCase : Optional[int] = torch.tensor([-2.8_721, 2.1_291] )
assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 )
assert outputs.logits.shape == expected_shape
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
print(f'Saving model and processor to {pytorch_dump_folder_path}' )
model.save_pretrained(lowerCAmelCase__ )
processor.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
_UpperCamelCase = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 16 |
'''simple docstring'''
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING
_SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING
def __A ( self ) -> Any:
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""},
{"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""},
] , )
__UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is grouped""",
"""score""": 2.1E-05,
"""token""": 38_015,
"""token_str""": """ grouped""",
},
{
"""sequence""": """The largest city in France is accuser""",
"""score""": 2.1E-05,
"""token""": 25_506,
"""token_str""": """ accuser""",
},
] , )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""},
{"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is Maul""",
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
},
{"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""},
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is Maul<mask></s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""},
],
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is<mask> Maul</s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""},
],
] , )
@require_torch_gpu
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" )
# convert model to fp16
pipe.model.half()
__UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
@require_torch
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" )
self.run_large_test(__UpperCAmelCase )
@slow
@require_tf
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" )
self.run_large_test(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""},
{"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{
"""sequence""": """The largest city in France is Paris""",
"""score""": 0.251,
"""token""": 2_201,
"""token_str""": """ Paris""",
},
{
"""sequence""": """The largest city in France is Lyon""",
"""score""": 0.214,
"""token""": 12_790,
"""token_str""": """ Lyon""",
},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" )
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : int = None
self.run_pipeline_test(__UpperCAmelCase , [] )
@require_tf
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : str = None
self.run_pipeline_test(__UpperCAmelCase , [] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" )
__UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = [
f'This is another {tokenizer.mask_token} test',
]
return fill_masker, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = fill_masker.tokenizer
__UpperCAmelCase : Union[str, Any] = fill_masker.model
__UpperCAmelCase : Tuple = fill_masker(
f'This is a {tokenizer.mask_token}' , )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
with self.assertRaises(__UpperCAmelCase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(__UpperCAmelCase ):
fill_masker("""This is""" )
self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Dict = tokenizer.get_vocab()
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:2]
# Pipeline argument
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase )
__UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Any = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Call argument
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Score equivalence
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs]
__UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ) == set(__UpperCAmelCase ):
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
# Raises with invalid
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] )
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 )
__UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : int = tokenizer.get_vocab()
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
# top_k=2, ntargets=3
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
__UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = tokenizer.get_vocab()
# String duplicates + id duplicates
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]]
__UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(__UpperCAmelCase ) , 3 )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Dict = fill_masker(
f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
| 16 | 1 |
'''simple docstring'''
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
def is_in_circle(lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> bool:
__UpperCAmelCase : Optional[int] = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
__UpperCAmelCase : Optional[Any] = mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(lowerCAmelCase__ ) )
# The ratio of the area for circle to square is pi/4.
__UpperCAmelCase : Union[str, Any] = proportion * 4
print(f'The estimated value of pi is {pi_estimate}' )
print(f'The numpy value of pi is {pi}' )
print(f'The total error is {abs(pi - pi_estimate )}' )
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Callable[[float], float] , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : float = 1.0 , ):
"""simple docstring"""
return mean(
function_to_integrate(uniform(lowerCAmelCase__ , lowerCAmelCase__ ) ) for _ in range(lowerCAmelCase__ ) ) * (max_value - min_value)
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : float = 1.0 ):
"""simple docstring"""
def identity_function(lowerCAmelCase__ : float ) -> float:
return x
__UpperCAmelCase : int = area_under_curve_estimator(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = (max_value * max_value - min_value * min_value) / 2
print("""******************""" )
print(f'Estimating area under y=x where x varies from {min_value} to {max_value}' )
print(f'Estimated value is {estimated_value}' )
print(f'Expected value is {expected_value}' )
print(f'Total error is {abs(estimated_value - expected_value )}' )
print("""******************""" )
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
def function_to_integrate(lowerCAmelCase__ : float ) -> float:
return sqrt(4.0 - x * x )
__UpperCAmelCase : List[str] = area_under_curve_estimator(
lowerCAmelCase__ , lowerCAmelCase__ , 0.0 , 2.0 )
print("""******************""" )
print("""Estimating pi using area_under_curve_estimator""" )
print(f'Estimated value is {estimated_value}' )
print(f'Expected value is {pi}' )
print(f'Total error is {abs(estimated_value - pi )}' )
print("""******************""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} )
_SCREAMING_SNAKE_CASE : str = "image"
_SCREAMING_SNAKE_CASE : str = "labels"
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(f'Column {self.label_column} is not present in features.' )
if not isinstance(features[self.label_column] , __UpperCAmelCase ):
raise ValueError(f'Column {self.label_column} is not a ClassLabel.' )
__UpperCAmelCase : int = copy.deepcopy(self )
__UpperCAmelCase : str = self.label_schema.copy()
__UpperCAmelCase : Optional[Any] = features[self.label_column]
__UpperCAmelCase : Optional[int] = label_schema
return task_template
@property
def __A ( self ) -> Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 16 | 1 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _A :
@staticmethod
def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = [
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
]
return object_detector, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 )
__UpperCAmelCase : Tuple = len(__UpperCAmelCase )
self.assertGreater(__UpperCAmelCase , 0 )
self.assertEqual(
__UpperCAmelCase , [
{
"""score""": ANY(__UpperCAmelCase ),
"""label""": ANY(__UpperCAmelCase ),
"""box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )},
}
for i in range(__UpperCAmelCase )
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> Tuple:
'''simple docstring'''
pass
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
] , )
__UpperCAmelCase : str = object_detector(
[
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
]
] , )
@require_torch
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
] , )
__UpperCAmelCase : Any = object_detector(
[
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> List[str]:
'''simple docstring'''
pass
@require_torch
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = 0.2
__UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
] , )
@require_torch
@slow
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 2
__UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
] , )
| 16 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Tuple = seq_length
__UpperCAmelCase : str = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[Any] = use_token_type_ids
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : str = num_attention_heads
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : Tuple = max_position_embeddings
__UpperCAmelCase : Dict = type_vocab_size
__UpperCAmelCase : List[Any] = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[str] = num_labels
__UpperCAmelCase : str = num_choices
__UpperCAmelCase : List[Any] = scope
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Tuple = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
# first forward pass
__UpperCAmelCase : Optional[int] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCAmelCase : int = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
# select random slice
__UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = config_and_inputs
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : List[str] = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = LlamaModelTester(self )
__UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : str = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Any = 3
__UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[int] = 3
__UpperCAmelCase : Optional[Any] = """single_label_classification"""
__UpperCAmelCase : int = input_dict["""input_ids"""]
__UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = 3
__UpperCAmelCase : str = """multi_label_classification"""
__UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size )
__UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
original_model.to(__UpperCAmelCase )
original_model.eval()
__UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0}
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
scaled_model.to(__UpperCAmelCase )
scaled_model.eval()
__UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
@require_torch
class _A ( unittest.TestCase ):
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" )
__UpperCAmelCase : int = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" )
__UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" )
__UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
@unittest.skip(
"""Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" )
@slow
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" )
__UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) )
__UpperCAmelCase : Dict = torch.tensor(
[[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Model is curently gated""" )
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi"""
__UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """
__UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" )
__UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" )
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained(
"""meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase )
# greedy generation outputs
__UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
_UpperCamelCase = logging.getLogger(__name__)
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , __UpperCAmelCase=-1 ) -> List[str]:
'''simple docstring'''
# in NER datasets, the last column is usually reserved for NER label
__UpperCAmelCase : Optional[Any] = label_idx
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[InputExample]:
'''simple docstring'''
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = mode.value
__UpperCAmelCase : List[Any] = os.path.join(__UpperCAmelCase , f'{mode}.txt' )
__UpperCAmelCase : Optional[int] = 1
__UpperCAmelCase : Tuple = []
with open(__UpperCAmelCase , encoding="""utf-8""" ) as f:
__UpperCAmelCase : List[str] = []
__UpperCAmelCase : Dict = []
for line in f:
if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=__UpperCAmelCase , labels=__UpperCAmelCase ) )
guid_index += 1
__UpperCAmelCase : str = []
__UpperCAmelCase : Any = []
else:
__UpperCAmelCase : int = line.split(""" """ )
words.append(splits[0] )
if len(__UpperCAmelCase ) > 1:
labels.append(splits[self.label_idx].replace("""\n""" , """""" ) )
else:
# Examples could have no label for mode = "test"
labels.append("""O""" )
if words:
examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=__UpperCAmelCase , labels=__UpperCAmelCase ) )
return examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = 0
for line in test_input_reader:
if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n":
writer.write(__UpperCAmelCase )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
__UpperCAmelCase : Tuple = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n"""
writer.write(__UpperCAmelCase )
else:
logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] )
def __A ( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
if path:
with open(__UpperCAmelCase , """r""" ) as f:
__UpperCAmelCase : Any = f.read().splitlines()
if "O" not in labels:
__UpperCAmelCase : Tuple = ["""O"""] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self ) -> Any:
'''simple docstring'''
# in CONLL2003 dataset chunk column is second-to-last
super().__init__(label_idx=-2 )
def __A ( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
if path:
with open(__UpperCAmelCase , """r""" ) as f:
__UpperCAmelCase : List[Any] = f.read().splitlines()
if "O" not in labels:
__UpperCAmelCase : Tuple = ["""O"""] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class _A ( __SCREAMING_SNAKE_CASE ):
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[InputExample]:
'''simple docstring'''
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
__UpperCAmelCase : Optional[Any] = mode.value
__UpperCAmelCase : Union[str, Any] = os.path.join(__UpperCAmelCase , f'{mode}.txt' )
__UpperCAmelCase : int = 1
__UpperCAmelCase : str = []
with open(__UpperCAmelCase , encoding="""utf-8""" ) as f:
for sentence in parse_incr(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = []
__UpperCAmelCase : List[str] = []
for token in sentence:
words.append(token["""form"""] )
labels.append(token["""upos"""] )
assert len(__UpperCAmelCase ) == len(__UpperCAmelCase )
if words:
examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=__UpperCAmelCase , labels=__UpperCAmelCase ) )
guid_index += 1
return examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[Any] = 0
for sentence in parse_incr(__UpperCAmelCase ):
__UpperCAmelCase : Any = preds_list[example_id]
__UpperCAmelCase : Optional[int] = """"""
for token in sentence:
out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) '
out += "\n"
writer.write(__UpperCAmelCase )
example_id += 1
def __A ( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
if path:
with open(__UpperCAmelCase , """r""" ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 16 |
'''simple docstring'''
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
_UpperCamelCase = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ):
"""simple docstring"""
return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths )
def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = []
if args.gold_data_mode == "qa":
__UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ )
for answer_list in data[1]:
__UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ )
answers.append(lowerCAmelCase__ )
else:
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : str = [[reference] for reference in references]
__UpperCAmelCase : Optional[int] = 0
for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
total += 1
em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : int = 100.0 * em / total
__UpperCAmelCase : Dict = 100.0 * fa / total
logger.info(f'F1: {fa:.2f}' )
logger.info(f'EM: {em:.2f}' )
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : Tuple = args.k
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = 0
for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] )
__UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
__UpperCAmelCase : List[str] = 100.0 * em / total
logger.info(f'Precision@{k}: {em: .2f}' )
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ):
"""simple docstring"""
def strip_title(lowerCAmelCase__ : Optional[int] ):
if title.startswith("""\"""" ):
__UpperCAmelCase : List[Any] = title[1:]
if title.endswith("""\"""" ):
__UpperCAmelCase : int = title[:-1]
return title
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device )
__UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ )
__UpperCAmelCase : int = question_enc_outputs[0]
__UpperCAmelCase : Dict = rag_model.retriever(
lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , )
__UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
__UpperCAmelCase : Union[str, Any] = []
for docs in all_docs:
__UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]]
provenance_strings.append("""\t""".join(lowerCAmelCase__ ) )
return provenance_strings
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
with torch.no_grad():
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )
__UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device )
__UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device )
__UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
__UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
if args.print_predictions:
for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) )
return answers
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=(
"""RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the"""
""" model_name_or_path"""
) , )
parser.add_argument(
"""--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , )
parser.add_argument(
"""--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , )
parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" )
parser.add_argument(
"""--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=(
"""Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates"""
""" precision@k."""
) , )
parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" )
parser.add_argument(
"""--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , )
parser.add_argument(
"""--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , )
parser.add_argument(
"""--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=(
"""Format of the gold data file"""
"""qa - a single line in the following format: question [tab] answer_list"""
"""ans - a single line of the gold file contains the expected answer string"""
) , )
parser.add_argument(
"""--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , )
parser.add_argument(
"""--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , )
parser.add_argument(
"""--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , )
parser.add_argument(
"""--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , )
parser.add_argument(
"""--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , )
parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" )
parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" )
parser.add_argument(
"""--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , )
parser.add_argument(
"""--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , )
__UpperCAmelCase : str = parser.parse_args()
__UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
return args
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = {}
if args.model_type is None:
__UpperCAmelCase : str = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration
__UpperCAmelCase : Dict = args.n_docs
if args.index_name is not None:
__UpperCAmelCase : Union[str, Any] = args.index_name
if args.index_path is not None:
__UpperCAmelCase : Dict = args.index_path
else:
__UpperCAmelCase : str = BartForConditionalGeneration
__UpperCAmelCase : str = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k
__UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) )
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
continue
logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) )
logger.info(""" Batch size = %d""" , args.eval_batch_size )
logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) )
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
__UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ )
model.retriever.init_retrieval()
else:
__UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
model.to(args.device )
with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file:
__UpperCAmelCase : Union[str, Any] = []
for line in tqdm(lowerCAmelCase__ ):
questions.append(line.strip() )
if len(lowerCAmelCase__ ) == args.eval_batch_size:
__UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" )
preds_file.flush()
__UpperCAmelCase : List[str] = []
if len(lowerCAmelCase__ ) > 0:
__UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) )
preds_file.flush()
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
_UpperCamelCase = get_args()
main(args)
| 16 | 1 |
'''simple docstring'''
from __future__ import annotations
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import is_tf_available, is_vision_available
from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_tf_bert import TFBertModelTester
from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester
from ..deit.test_modeling_tf_deit import TFDeiTModelTester
from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester
from ..vit.test_modeling_tf_vit import TFViTModelTester
if is_tf_available():
from transformers import (
TFBertModel,
TFCLIPVisionModel,
TFDeiTModel,
TFRobertaModel,
TFVisionTextDualEncoderModel,
TFViTModel,
VisionTextDualEncoderConfig,
)
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
if isinstance(lowerCAmelCase__ , collections.abc.Iterable ):
return x
return (x, x)
@require_tf
class _A :
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
pass
def __A ( self ) -> List[str]:
'''simple docstring'''
pass
def __A ( self ) -> Any:
'''simple docstring'''
pass
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = TFVisionTextDualEncoderModel(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_vision_text_model(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Optional[int] = TFVisionTextDualEncoderModel(vision_model=__UpperCAmelCase , text_model=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : List[str] = self.get_vision_text_model(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : str = {"""vision_model""": vision_model, """text_model""": text_model}
__UpperCAmelCase : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.get_vision_text_model(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=__UpperCAmelCase , text_model=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCAmelCase : Dict = output[0].numpy()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = TFVisionTextDualEncoderModel.from_pretrained(__UpperCAmelCase )
__UpperCAmelCase : Dict = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = after_output[0].numpy()
__UpperCAmelCase : List[str] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__UpperCAmelCase , 1E-5 )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : int = self.get_vision_text_model(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Optional[int] = TFVisionTextDualEncoderModel(vision_model=__UpperCAmelCase , text_model=__UpperCAmelCase )
__UpperCAmelCase : Any = model(
input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , output_attentions=__UpperCAmelCase )
__UpperCAmelCase : Tuple = output.vision_model_output.attentions
self.assertEqual(len(__UpperCAmelCase ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
__UpperCAmelCase : Any = to_atuple(vision_model.config.image_size )
__UpperCAmelCase : List[str] = to_atuple(vision_model.config.patch_size )
__UpperCAmelCase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
__UpperCAmelCase : Union[str, Any] = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
__UpperCAmelCase : Union[str, Any] = output.text_model_output.attentions
self.assertEqual(len(__UpperCAmelCase ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = np.abs((a - b) ).max()
self.assertLessEqual(__UpperCAmelCase , __UpperCAmelCase , f'Difference between torch and flax is {diff} (>= {tol}).' )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_model(**__UpperCAmelCase )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**__UpperCAmelCase )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**__UpperCAmelCase )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : int = self.prepare_config_and_inputs()
self.check_save_load(**__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**__UpperCAmelCase )
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.get_pretrained_model_and_inputs()
__UpperCAmelCase : List[Any] = model_a(**__UpperCAmelCase )
__UpperCAmelCase : str = outputs[0].numpy()
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(__UpperCAmelCase )
__UpperCAmelCase : List[str] = TFVisionTextDualEncoderModel.from_pretrained(__UpperCAmelCase )
__UpperCAmelCase : List[str] = model_a(**__UpperCAmelCase )
__UpperCAmelCase : Dict = after_outputs[0].numpy()
__UpperCAmelCase : Tuple = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__UpperCAmelCase , 1E-5 )
@require_tf
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"""hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" )
__UpperCAmelCase : Any = 13
__UpperCAmelCase : List[Any] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
__UpperCAmelCase : List[str] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
__UpperCAmelCase : Optional[Any] = random_attention_mask([batch_size, 4] )
__UpperCAmelCase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = TFViTModel(__UpperCAmelCase , name="""vision_model""" )
__UpperCAmelCase : Any = TFBertModel(__UpperCAmelCase , name="""text_model""" )
return vision_model, text_model
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Dict = TFViTModelTester(self )
__UpperCAmelCase : Dict = TFBertModelTester(self )
__UpperCAmelCase : Optional[int] = vit_model_tester.prepare_config_and_inputs()
__UpperCAmelCase : str = bert_model_tester.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = vision_config_and_inputs
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : int = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
def __A ( self ) -> str:
'''simple docstring'''
# DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's
# just reinitialize it.
__UpperCAmelCase : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"""Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" )
__UpperCAmelCase : Optional[int] = 13
__UpperCAmelCase : Union[str, Any] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
__UpperCAmelCase : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
__UpperCAmelCase : Union[str, Any] = random_attention_mask([batch_size, 4] )
__UpperCAmelCase : Optional[Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : int = self.get_vision_text_model(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : List[str] = TFVisionTextDualEncoderModel(vision_model=__UpperCAmelCase , text_model=__UpperCAmelCase )
__UpperCAmelCase : List[str] = model(
input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , output_attentions=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = output.vision_model_output.attentions
self.assertEqual(len(__UpperCAmelCase ) , vision_config.num_hidden_layers )
# in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
__UpperCAmelCase : str = to_atuple(vision_model.config.image_size )
__UpperCAmelCase : List[str] = to_atuple(vision_model.config.patch_size )
__UpperCAmelCase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
__UpperCAmelCase : Optional[int] = num_patches + 2
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
__UpperCAmelCase : Union[str, Any] = output.text_model_output.attentions
self.assertEqual(len(__UpperCAmelCase ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = TFDeiTModel(__UpperCAmelCase , name="""vision_model""" )
__UpperCAmelCase : Optional[Any] = TFRobertaModel(__UpperCAmelCase , name="""text_model""" )
return vision_model, text_model
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = TFDeiTModelTester(self )
__UpperCAmelCase : Any = TFRobertaModelTester(self )
__UpperCAmelCase : Tuple = vit_model_tester.prepare_config_and_inputs()
__UpperCAmelCase : List[Any] = bert_model_tester.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = vision_config_and_inputs
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Tuple = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"""Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" )
__UpperCAmelCase : Tuple = 13
__UpperCAmelCase : Dict = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
__UpperCAmelCase : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
__UpperCAmelCase : Tuple = random_attention_mask([batch_size, 4] )
__UpperCAmelCase : Optional[Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : str = TFCLIPVisionModel(__UpperCAmelCase , name="""vision_model""" )
__UpperCAmelCase : Optional[Any] = TFBertModel(__UpperCAmelCase , name="""text_model""" )
return vision_model, text_model
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = TFCLIPVisionModelTester(self )
__UpperCAmelCase : Optional[Any] = TFBertModelTester(self )
__UpperCAmelCase : List[Any] = clip_model_tester.prepare_config_and_inputs()
__UpperCAmelCase : List[Any] = bert_model_tester.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = vision_config_and_inputs
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : int = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_vision
@require_tf
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : str = TFVisionTextDualEncoderModel.from_pretrained(
"""clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=__UpperCAmelCase )
__UpperCAmelCase : str = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" )
__UpperCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__UpperCAmelCase : str = processor(
text=["""una foto di un gatto""", """una foto di un cane"""] , images=__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="""np""" )
__UpperCAmelCase : List[Any] = model(**__UpperCAmelCase )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
__UpperCAmelCase : Optional[int] = np.array([[1.228_4727, 0.310_4122]] )
self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __UpperCAmelCase , atol=1E-3 ) )
| 16 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _A :
@staticmethod
def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = [
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
]
return object_detector, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 )
__UpperCAmelCase : Tuple = len(__UpperCAmelCase )
self.assertGreater(__UpperCAmelCase , 0 )
self.assertEqual(
__UpperCAmelCase , [
{
"""score""": ANY(__UpperCAmelCase ),
"""label""": ANY(__UpperCAmelCase ),
"""box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )},
}
for i in range(__UpperCAmelCase )
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> Tuple:
'''simple docstring'''
pass
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
] , )
__UpperCAmelCase : str = object_detector(
[
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
]
] , )
@require_torch
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
] , )
__UpperCAmelCase : Any = object_detector(
[
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> List[str]:
'''simple docstring'''
pass
@require_torch
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = 0.2
__UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
] , )
@require_torch
@slow
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 2
__UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
] , )
| 16 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCamelCase = {
'''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GraphormerForGraphClassification''',
'''GraphormerModel''',
'''GraphormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.txt'''}
_UpperCamelCase = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': 512,
'''YituTech/conv-bert-medium-small''': 512,
'''YituTech/conv-bert-small''': 512,
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION
_SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars
):
__UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) )
__UpperCAmelCase : Union[str, Any] = do_lower_case
__UpperCAmelCase : str = strip_accents
__UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars
__UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase )
__UpperCAmelCase : List[Any] = do_lower_case
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [self.sep_token_id]
__UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
import itertools
import random
import unittest
import numpy as np
from transformers import is_speech_available
from transformers.testing_utils import require_torch, require_torchaudio
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import SpeechaTextFeatureExtractor
_UpperCamelCase = random.Random()
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str]=1.0 , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=None ):
"""simple docstring"""
if rng is None:
__UpperCAmelCase : Dict = global_rng
__UpperCAmelCase : Tuple = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class _A ( unittest.TestCase ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=400 , __UpperCAmelCase=2_000 , __UpperCAmelCase=24 , __UpperCAmelCase=24 , __UpperCAmelCase=0.0 , __UpperCAmelCase=16_000 , __UpperCAmelCase=True , __UpperCAmelCase=True , ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Dict = batch_size
__UpperCAmelCase : List[str] = min_seq_length
__UpperCAmelCase : str = max_seq_length
__UpperCAmelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
__UpperCAmelCase : Optional[Any] = feature_size
__UpperCAmelCase : Tuple = num_mel_bins
__UpperCAmelCase : Union[str, Any] = padding_value
__UpperCAmelCase : str = sampling_rate
__UpperCAmelCase : Tuple = return_attention_mask
__UpperCAmelCase : List[Any] = do_normalize
def __A ( self ) -> int:
'''simple docstring'''
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def __A ( self , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
def _flatten(__UpperCAmelCase ):
return list(itertools.chain(*__UpperCAmelCase ) )
if equal_length:
__UpperCAmelCase : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
__UpperCAmelCase : Optional[int] = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
__UpperCAmelCase : str = [np.asarray(__UpperCAmelCase ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = SpeechaTextFeatureExtractionTester(self )
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
self.assertTrue(np.all(np.mean(__UpperCAmelCase , axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(__UpperCAmelCase , axis=0 ) - 1 ) < 1E-3 ) )
def __A ( self ) -> List[str]:
'''simple docstring'''
# Tests that all call wrap to encode_plus and batch_encode_plus
__UpperCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
__UpperCAmelCase : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__UpperCAmelCase : List[str] = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs]
# Test feature size
__UpperCAmelCase : Dict = feature_extractor(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="""np""" ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size )
# Test not batched input
__UpperCAmelCase : Optional[Any] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features
__UpperCAmelCase : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features
self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
# Test batched
__UpperCAmelCase : Union[str, Any] = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_features
__UpperCAmelCase : List[Any] = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ):
self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
__UpperCAmelCase : Any = [floats_list((1, x) )[0] for x in (800, 800, 800)]
__UpperCAmelCase : Dict = np.asarray(__UpperCAmelCase )
__UpperCAmelCase : Any = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_features
__UpperCAmelCase : List[Any] = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ):
self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__UpperCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__UpperCAmelCase : Tuple = ["""longest""", """max_length""", """do_not_pad"""]
__UpperCAmelCase : Tuple = [None, 16, None]
for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ):
__UpperCAmelCase : Optional[int] = feature_extractor(
__UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase )
__UpperCAmelCase : int = inputs.input_features
__UpperCAmelCase : int = inputs.attention_mask
__UpperCAmelCase : str = [np.sum(__UpperCAmelCase ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__UpperCAmelCase : Any = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__UpperCAmelCase : int = ["""longest""", """max_length""", """do_not_pad"""]
__UpperCAmelCase : str = [None, 16, None]
for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ):
__UpperCAmelCase : List[str] = feature_extractor(
__UpperCAmelCase , max_length=__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="""np""" , return_attention_mask=__UpperCAmelCase )
__UpperCAmelCase : Tuple = inputs.input_features
__UpperCAmelCase : str = inputs.attention_mask
__UpperCAmelCase : Any = [np.sum(__UpperCAmelCase ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__UpperCAmelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__UpperCAmelCase : Any = feature_extractor(
__UpperCAmelCase , padding="""max_length""" , max_length=4 , truncation=__UpperCAmelCase , return_tensors="""np""" , return_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : List[Any] = inputs.input_features
__UpperCAmelCase : Any = inputs.attention_mask
__UpperCAmelCase : str = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1] )
self._check_zero_mean_unit_variance(input_features[2] )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__UpperCAmelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__UpperCAmelCase : Dict = feature_extractor(
__UpperCAmelCase , padding="""longest""" , max_length=4 , truncation=__UpperCAmelCase , return_tensors="""np""" , return_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Dict = inputs.input_features
__UpperCAmelCase : List[str] = inputs.attention_mask
__UpperCAmelCase : str = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 4, 24) )
__UpperCAmelCase : str = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__UpperCAmelCase : Any = feature_extractor(
__UpperCAmelCase , padding="""longest""" , max_length=16 , truncation=__UpperCAmelCase , return_tensors="""np""" , return_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : List[str] = inputs.input_features
__UpperCAmelCase : Tuple = inputs.attention_mask
__UpperCAmelCase : List[Any] = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 6, 24) )
def __A ( self ) -> Any:
'''simple docstring'''
import torch
__UpperCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__UpperCAmelCase : List[str] = np.random.rand(100 , 32 ).astype(np.floataa )
__UpperCAmelCase : Optional[Any] = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
__UpperCAmelCase : Any = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
__UpperCAmelCase : List[str] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def __A ( self , __UpperCAmelCase ) -> int:
'''simple docstring'''
from datasets import load_dataset
__UpperCAmelCase : Optional[int] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" )
# automatic decoding with librispeech
__UpperCAmelCase : List[Any] = ds.sort("""id""" ).select(range(__UpperCAmelCase ) )[:num_samples]["""audio"""]
return [x["array"] for x in speech_samples]
def __A ( self ) -> Tuple:
'''simple docstring'''
# fmt: off
__UpperCAmelCase : Any = np.array([
-1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241,
-1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128,
-1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625,
] )
# fmt: on
__UpperCAmelCase : Tuple = self._load_datasamples(1 )
__UpperCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__UpperCAmelCase : Union[str, Any] = feature_extractor(__UpperCAmelCase , return_tensors="""pt""" ).input_features
self.assertEquals(input_features.shape , (1, 584, 24) )
self.assertTrue(np.allclose(input_features[0, 0, :30] , __UpperCAmelCase , atol=1E-4 ) )
| 16 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_UpperCamelCase = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''OwlViTFeatureExtractor''']
_UpperCamelCase = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 1 |
'''simple docstring'''
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse('''0.8.3'''):
raise Exception('''requires gluonnlp == 0.8.3''')
if version.parse(mx.__version__) != version.parse('''1.5.0'''):
raise Exception('''requires mxnet == 1.5.0''')
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = '''The Nymphenburg Palace is a beautiful palace in Munich!'''
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase : Dict = {
"""attention_cell""": """multi_head""",
"""num_layers""": 4,
"""units""": 1024,
"""hidden_size""": 768,
"""max_length""": 512,
"""num_heads""": 8,
"""scaled""": True,
"""dropout""": 0.1,
"""use_residual""": True,
"""embed_size""": 1024,
"""embed_dropout""": 0.1,
"""word_embed""": None,
"""layer_norm_eps""": 1E-5,
"""token_type_vocab_size""": 2,
}
__UpperCAmelCase : Union[str, Any] = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
__UpperCAmelCase : List[Any] = BERTEncoder(
attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCAmelCase__ , output_all_encodings=lowerCAmelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCAmelCase__ ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
__UpperCAmelCase : Any = """openwebtext_ccnews_stories_books_cased"""
# Specify download folder to Gluonnlp's vocab
__UpperCAmelCase : List[str] = os.path.join(get_home_dir() , """models""" )
__UpperCAmelCase : Union[str, Any] = _load_vocab(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , cls=lowerCAmelCase__ )
__UpperCAmelCase : List[str] = nlp.model.BERTModel(
lowerCAmelCase__ , len(lowerCAmelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCAmelCase__ , use_token_type_embed=lowerCAmelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCAmelCase__ , use_decoder=lowerCAmelCase__ , )
original_bort.load_parameters(lowerCAmelCase__ , cast_dtype=lowerCAmelCase__ , ignore_extra=lowerCAmelCase__ )
__UpperCAmelCase : Union[str, Any] = original_bort._collect_params_with_prefix()
# Build our config 🤗
__UpperCAmelCase : str = {
"""architectures""": ["""BertForMaskedLM"""],
"""attention_probs_dropout_prob""": predefined_args["""dropout"""],
"""hidden_act""": """gelu""",
"""hidden_dropout_prob""": predefined_args["""dropout"""],
"""hidden_size""": predefined_args["""embed_size"""],
"""initializer_range""": 0.02,
"""intermediate_size""": predefined_args["""hidden_size"""],
"""layer_norm_eps""": predefined_args["""layer_norm_eps"""],
"""max_position_embeddings""": predefined_args["""max_length"""],
"""model_type""": """bort""",
"""num_attention_heads""": predefined_args["""num_heads"""],
"""num_hidden_layers""": predefined_args["""num_layers"""],
"""pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa
"""type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa
"""vocab_size""": len(lowerCAmelCase__ ),
}
__UpperCAmelCase : Tuple = BertConfig.from_dict(lowerCAmelCase__ )
__UpperCAmelCase : str = BertForMaskedLM(lowerCAmelCase__ )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(lowerCAmelCase__ : List[str] ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] ):
__UpperCAmelCase : Union[str, Any] = hf_param.shape
__UpperCAmelCase : Optional[int] = to_torch(params[gluon_param] )
__UpperCAmelCase : List[Any] = gluon_param.shape
assert (
shape_hf == shape_gluon
), f'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers'
return gluon_param
__UpperCAmelCase : List[str] = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" )
__UpperCAmelCase : Any = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" )
__UpperCAmelCase : List[str] = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" )
__UpperCAmelCase : List[Any] = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
__UpperCAmelCase : List[Any] = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
__UpperCAmelCase : BertLayer = hf_bort_model.bert.encoder.layer[i]
# self attention
__UpperCAmelCase : BertSelfAttention = layer.attention.self
__UpperCAmelCase : Any = check_and_map_params(
self_attn.key.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' )
__UpperCAmelCase : Any = check_and_map_params(
self_attn.key.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' )
__UpperCAmelCase : Optional[int] = check_and_map_params(
self_attn.query.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' )
__UpperCAmelCase : Dict = check_and_map_params(
self_attn.query.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' )
__UpperCAmelCase : Optional[Any] = check_and_map_params(
self_attn.value.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' )
__UpperCAmelCase : List[Any] = check_and_map_params(
self_attn.value.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' )
# self attention output
__UpperCAmelCase : BertSelfOutput = layer.attention.output
__UpperCAmelCase : str = check_and_map_params(
self_output.dense.bias , f'encoder.transformer_cells.{i}.proj.bias' )
__UpperCAmelCase : List[str] = check_and_map_params(
self_output.dense.weight , f'encoder.transformer_cells.{i}.proj.weight' )
__UpperCAmelCase : Optional[int] = check_and_map_params(
self_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.layer_norm.beta' )
__UpperCAmelCase : str = check_and_map_params(
self_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.layer_norm.gamma' )
# intermediate
__UpperCAmelCase : BertIntermediate = layer.intermediate
__UpperCAmelCase : Union[str, Any] = check_and_map_params(
intermediate.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_1.bias' )
__UpperCAmelCase : List[str] = check_and_map_params(
intermediate.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_1.weight' )
# output
__UpperCAmelCase : BertOutput = layer.output
__UpperCAmelCase : List[Any] = check_and_map_params(
bert_output.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_2.bias' )
__UpperCAmelCase : Any = check_and_map_params(
bert_output.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_2.weight' )
__UpperCAmelCase : Tuple = check_and_map_params(
bert_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.ffn.layer_norm.beta' )
__UpperCAmelCase : Tuple = check_and_map_params(
bert_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
__UpperCAmelCase : List[str] = RobertaTokenizer.from_pretrained("""roberta-base""" )
__UpperCAmelCase : Dict = tokenizer.encode_plus(lowerCAmelCase__ )["""input_ids"""]
# Get gluon output
__UpperCAmelCase : int = mx.nd.array([input_ids] )
__UpperCAmelCase : int = original_bort(inputs=lowerCAmelCase__ , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = BertModel.from_pretrained(lowerCAmelCase__ )
hf_bort_model.eval()
__UpperCAmelCase : Optional[int] = tokenizer.encode_plus(lowerCAmelCase__ , return_tensors="""pt""" )
__UpperCAmelCase : Dict = hf_bort_model(**lowerCAmelCase__ )[0]
__UpperCAmelCase : int = output_gluon[0].asnumpy()
__UpperCAmelCase : str = output_hf[0].detach().numpy()
__UpperCAmelCase : Optional[Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item()
__UpperCAmelCase : Any = np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 )
if success:
print("""✔️ Both model do output the same tensors""" )
else:
print("""❌ Both model do **NOT** output the same tensors""" )
print("""Absolute difference is:""" , lowerCAmelCase__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_UpperCamelCase = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 16 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
'''simple docstring'''
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
import os
from typing import Dict, List, Tuple, TypeVar, Union
_UpperCamelCase = TypeVar('''T''')
_UpperCamelCase = Union[List[T], Tuple[T, ...]]
_UpperCamelCase = Union[T, List[T], Dict[str, T]]
_UpperCamelCase = Union[str, bytes, os.PathLike]
| 16 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
_UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
_SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" )
__UpperCAmelCase : List[Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] )
__UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
# Legacy behavior
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] )
__UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""label""": """LABEL_0""", """score""": 0.504},
{"""label""": """LABEL_0""", """score""": 0.504},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
import torch
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@require_tf
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@slow
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = pipeline("""text-classification""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
@slow
@require_tf
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : int = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
__UpperCAmelCase : Union[str, Any] = """HuggingFace is in"""
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
__UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""]
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase )
__UpperCAmelCase : Any = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , )
__UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""}
__UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , )
self.assertTrue(outputs["""label"""] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
__UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]]
with self.assertRaises(__UpperCAmelCase ):
text_classifier(__UpperCAmelCase )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
__UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
| 16 | 1 |
'''simple docstring'''
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.17.0.dev0''')
require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''')
_UpperCamelCase = logging.getLogger(__name__)
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : Optional[str] = field(
default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} )
_SCREAMING_SNAKE_CASE : Optional[str] = field(
default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , )
_SCREAMING_SNAKE_CASE : int = field(
default=1024 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
_SCREAMING_SNAKE_CASE : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
_SCREAMING_SNAKE_CASE : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
} , )
_SCREAMING_SNAKE_CASE : Optional[int] = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
_SCREAMING_SNAKE_CASE : Optional[int] = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
_SCREAMING_SNAKE_CASE : Optional[int] = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
} , )
_SCREAMING_SNAKE_CASE : Optional[str] = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "A csv or a json file containing the training data."} )
_SCREAMING_SNAKE_CASE : Optional[str] = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "A csv or a json file containing the validation data."} )
_SCREAMING_SNAKE_CASE : Optional[str] = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "A csv or a json file containing the test data."} )
def __A ( self ) -> List[Any]:
'''simple docstring'''
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" )
else:
__UpperCAmelCase : int = self.train_file.split(""".""" )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
__UpperCAmelCase : Union[str, Any] = self.validation_file.split(""".""" )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : str = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
_SCREAMING_SNAKE_CASE : Optional[str] = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
_SCREAMING_SNAKE_CASE : Optional[str] = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
_SCREAMING_SNAKE_CASE : Optional[str] = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
_SCREAMING_SNAKE_CASE : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
_SCREAMING_SNAKE_CASE : str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
_SCREAMING_SNAKE_CASE : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
__UpperCAmelCase : List[Any] = training_args.get_process_log_level()
logger.setLevel(lowerCAmelCase__ )
datasets.utils.logging.set_verbosity(lowerCAmelCase__ )
transformers.utils.logging.set_verbosity(lowerCAmelCase__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(f'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
__UpperCAmelCase : str = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__UpperCAmelCase : Optional[int] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. '
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__UpperCAmelCase : List[str] = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
__UpperCAmelCase : Union[str, Any] = {"""train""": data_args.train_file, """validation""": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
__UpperCAmelCase : Union[str, Any] = data_args.train_file.split(""".""" )[-1]
__UpperCAmelCase : int = data_args.test_file.split(""".""" )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
__UpperCAmelCase : Union[str, Any] = data_args.test_file
else:
raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" )
for key in data_files.keys():
logger.info(f'load a local file for {key}: {data_files[key]}' )
if data_args.train_file.endswith(""".csv""" ):
# Loading a dataset from local csv files
__UpperCAmelCase : List[str] = load_dataset("""csv""" , data_files=lowerCAmelCase__ , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
__UpperCAmelCase : Dict = load_dataset("""json""" , data_files=lowerCAmelCase__ , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
__UpperCAmelCase : Union[str, Any] = raw_datasets["""train"""].features["""label"""].names
__UpperCAmelCase : Optional[Any] = len(lowerCAmelCase__ )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCAmelCase : str = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
__UpperCAmelCase : List[Any] = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCAmelCase__ , )
__UpperCAmelCase : str = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
__UpperCAmelCase : Dict = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
__UpperCAmelCase : int = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
__UpperCAmelCase : Optional[int] = {"""Refused""": 0, """Entailed""": 1}
__UpperCAmelCase : Optional[Any] = {0: """Refused""", 1: """Entailed"""}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the'
f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' )
__UpperCAmelCase : Any = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(lowerCAmelCase__ : Dict ):
# Tokenize the texts
def _convert_table_text_to_pandas(lowerCAmelCase__ : int ):
__UpperCAmelCase : Union[str, Any] = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )]
__UpperCAmelCase : str = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
__UpperCAmelCase : Tuple = examples["""statement"""]
__UpperCAmelCase : Dict = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) )
__UpperCAmelCase : List[str] = tokenizer(lowerCAmelCase__ , lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ )
__UpperCAmelCase : Union[str, Any] = examples["""label"""]
return result
with training_args.main_process_first(desc="""dataset map pre-processing""" ):
__UpperCAmelCase : str = raw_datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("""--do_train requires a train dataset""" )
__UpperCAmelCase : Optional[Any] = raw_datasets["""train"""]
if data_args.max_train_samples is not None:
__UpperCAmelCase : Tuple = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("""--do_eval requires a validation dataset""" )
__UpperCAmelCase : Tuple = raw_datasets["""validation"""]
if data_args.max_eval_samples is not None:
__UpperCAmelCase : List[str] = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("""--do_predict requires a test dataset""" )
__UpperCAmelCase : Optional[int] = raw_datasets["""test"""]
if data_args.max_predict_samples is not None:
__UpperCAmelCase : List[str] = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(lowerCAmelCase__ ) ) , 3 ):
logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(lowerCAmelCase__ : EvalPrediction ):
__UpperCAmelCase : List[str] = p.predictions[0] if isinstance(p.predictions , lowerCAmelCase__ ) else p.predictions
__UpperCAmelCase : Optional[int] = np.argmax(lowerCAmelCase__ , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
__UpperCAmelCase : Union[str, Any] = default_data_collator
elif training_args.fpaa:
__UpperCAmelCase : Dict = DataCollatorWithPadding(lowerCAmelCase__ , pad_to_multiple_of=8 )
else:
__UpperCAmelCase : List[Any] = None
# Initialize our Trainer
__UpperCAmelCase : Optional[Any] = Trainer(
model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , )
# Training
if training_args.do_train:
__UpperCAmelCase : List[str] = None
if training_args.resume_from_checkpoint is not None:
__UpperCAmelCase : Optional[int] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__UpperCAmelCase : Union[str, Any] = last_checkpoint
__UpperCAmelCase : Optional[Any] = trainer.train(resume_from_checkpoint=lowerCAmelCase__ )
__UpperCAmelCase : str = train_result.metrics
__UpperCAmelCase : Optional[int] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ )
)
__UpperCAmelCase : Optional[int] = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , lowerCAmelCase__ )
trainer.save_metrics("""train""" , lowerCAmelCase__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__UpperCAmelCase : Optional[int] = trainer.evaluate(eval_dataset=lowerCAmelCase__ )
__UpperCAmelCase : Union[str, Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ )
__UpperCAmelCase : int = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) )
trainer.log_metrics("""eval""" , lowerCAmelCase__ )
trainer.save_metrics("""eval""" , lowerCAmelCase__ )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
__UpperCAmelCase : str = predict_dataset.remove_columns("""label""" )
__UpperCAmelCase : Union[str, Any] = trainer.predict(lowerCAmelCase__ , metric_key_prefix="""predict""" ).predictions
__UpperCAmelCase : Tuple = np.argmax(lowerCAmelCase__ , axis=1 )
__UpperCAmelCase : int = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" )
if trainer.is_world_process_zero():
with open(lowerCAmelCase__ , """w""" ) as writer:
logger.info("""***** Predict Results *****""" )
writer.write("""index\tprediction\n""" )
for index, item in enumerate(lowerCAmelCase__ ):
__UpperCAmelCase : List[str] = label_list[item]
writer.write(f'{index}\t{item}\n' )
__UpperCAmelCase : Optional[int] = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""}
if training_args.push_to_hub:
trainer.push_to_hub(**lowerCAmelCase__ )
else:
trainer.create_model_card(**lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 16 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
| 16 | 1 |
'''simple docstring'''
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["image_processor", "tokenizer"]
_SCREAMING_SNAKE_CASE : Union[str, Any] = "OwlViTImageProcessor"
_SCREAMING_SNAKE_CASE : Tuple = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCAmelCase , )
__UpperCAmelCase : Dict = kwargs.pop("""feature_extractor""" )
__UpperCAmelCase : List[str] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ) -> str:
'''simple docstring'''
if text is None and query_images is None and images is None:
raise ValueError(
"""You have to specify at least one text or query image or image. All three cannot be none.""" )
if text is not None:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )):
__UpperCAmelCase : List[Any] = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )]
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ):
__UpperCAmelCase : Optional[int] = []
# Maximum number of queries across batch
__UpperCAmelCase : Dict = max([len(__UpperCAmelCase ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__UpperCAmelCase ) != max_num_queries:
__UpperCAmelCase : int = t + [""" """] * (max_num_queries - len(__UpperCAmelCase ))
__UpperCAmelCase : Optional[Any] = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
encodings.append(__UpperCAmelCase )
else:
raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" )
if return_tensors == "np":
__UpperCAmelCase : List[str] = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
__UpperCAmelCase : Any = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
__UpperCAmelCase : Any = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
__UpperCAmelCase : int = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
__UpperCAmelCase : List[Any] = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 )
__UpperCAmelCase : int = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
__UpperCAmelCase : Any = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
__UpperCAmelCase : List[str] = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
else:
raise ValueError("""Target return tensor type could not be returned""" )
__UpperCAmelCase : Any = BatchEncoding()
__UpperCAmelCase : Tuple = input_ids
__UpperCAmelCase : List[Any] = attention_mask
if query_images is not None:
__UpperCAmelCase : List[str] = BatchEncoding()
__UpperCAmelCase : str = self.image_processor(
__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values
__UpperCAmelCase : List[Any] = query_pixel_values
if images is not None:
__UpperCAmelCase : Tuple = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None and images is not None:
__UpperCAmelCase : List[Any] = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
__UpperCAmelCase : int = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase )
def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCAmelCase , )
return self.image_processor_class
@property
def __A ( self ) -> int:
'''simple docstring'''
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCAmelCase , )
return self.image_processor
| 16 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class _A :
def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase )
__UpperCAmelCase : List[str] = length
__UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa )
__UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ) -> Dict:
'''simple docstring'''
return self.length
def __getitem__( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return {"x": self.x[i], "y": self.y[i]}
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Any = True
def __A ( self , __UpperCAmelCase=None ) -> str:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : Optional[int] = False
return x * self.a[0] + self.b[0]
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : str = True
def __A ( self , __UpperCAmelCase=None ) -> Tuple:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : int = False
return x * self.a + self.b
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
__UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" )
__UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
__UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" )
__UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )}
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCAmelCase : List[Any] = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" )
if "label" in examples:
__UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCAmelCase : Tuple = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCAmelCase__ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 )
__UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 16 | 1 |
'''simple docstring'''
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def lowercase_ ( ):
"""simple docstring"""
print("""Making key files...""" )
make_key_files("""rsa""" , 1024 )
print("""Key files generation successful.""" )
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
print("""Generating prime p...""" )
__UpperCAmelCase : str = rabinMiller.generate_large_prime(lowerCAmelCase__ )
print("""Generating prime q...""" )
__UpperCAmelCase : int = rabinMiller.generate_large_prime(lowerCAmelCase__ )
__UpperCAmelCase : str = p * q
print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" )
while True:
__UpperCAmelCase : List[Any] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(lowerCAmelCase__ , (p - 1) * (q - 1) ) == 1:
break
print("""Calculating d that is mod inverse of e...""" )
__UpperCAmelCase : Dict = cryptoMath.find_mod_inverse(lowerCAmelCase__ , (p - 1) * (q - 1) )
__UpperCAmelCase : List[str] = (n, e)
__UpperCAmelCase : List[Any] = (n, d)
return (public_key, private_key)
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : int ):
"""simple docstring"""
if os.path.exists(f'{name}_pubkey.txt' ) or os.path.exists(f'{name}_privkey.txt' ):
print("""\nWARNING:""" )
print(
f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'
"""Use a different name or delete these files and re-run this program.""" )
sys.exit()
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = generate_key(lowerCAmelCase__ )
print(f'\nWriting public key to file {name}_pubkey.txt...' )
with open(f'{name}_pubkey.txt' , """w""" ) as out_file:
out_file.write(f'{key_size},{public_key[0]},{public_key[1]}' )
print(f'Writing private key to file {name}_privkey.txt...' )
with open(f'{name}_privkey.txt' , """w""" ) as out_file:
out_file.write(f'{key_size},{private_key[0]},{private_key[1]}' )
if __name__ == "__main__":
main()
| 16 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None
@property
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = (3, 32, 128)
__UpperCAmelCase : Tuple = tempfile.mkdtemp()
# fmt: off
__UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
__UpperCAmelCase : List[Any] = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
__UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) )
return image_input
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.get_tokenizer()
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
__UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.prepare_image_inputs()
__UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" )
__UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Dict = """test"""
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = """test"""
__UpperCAmelCase : int = self.prepare_image_inputs()
__UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase )
__UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = self.get_tokenizer()
__UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : str = None
__UpperCAmelCase : Dict = self.prepare_image_inputs()
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Any = self.get_image_processor()
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 )
__UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 )
__UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 )
__UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
| 16 | 1 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ):
"""simple docstring"""
if exponent == 1:
return base
if exponent % 2 == 0:
__UpperCAmelCase : List[str] = _modexpt(lowerCAmelCase__ , exponent // 2 , lowerCAmelCase__ ) % modulo_value
return (x * x) % modulo_value
else:
return (base * _modexpt(lowerCAmelCase__ , exponent - 1 , lowerCAmelCase__ )) % modulo_value
def lowercase_ ( lowerCAmelCase__ : int = 1777 , lowerCAmelCase__ : int = 1855 , lowerCAmelCase__ : int = 8 ):
"""simple docstring"""
__UpperCAmelCase : List[str] = base
for _ in range(1 , lowerCAmelCase__ ):
__UpperCAmelCase : Any = _modexpt(lowerCAmelCase__ , lowerCAmelCase__ , 10**digits )
return result
if __name__ == "__main__":
print(F'{solution() = }')
| 16 |
'''simple docstring'''
from collections.abc import Sequence
def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ):
"""simple docstring"""
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__UpperCAmelCase : Any = nums[0]
for i in range(1 , len(lowerCAmelCase__ ) ):
__UpperCAmelCase : Union[str, Any] = nums[i]
__UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_UpperCamelCase = int(input('''Enter number of elements : ''').strip())
_UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n]
print(max_subsequence_sum(array))
| 16 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_speecht5''': [
'''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''',
'''SpeechT5Config''',
'''SpeechT5HifiGanConfig''',
],
'''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''],
'''processing_speecht5''': ['''SpeechT5Processor'''],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''SpeechT5Tokenizer''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SpeechT5ForSpeechToText''',
'''SpeechT5ForSpeechToSpeech''',
'''SpeechT5ForTextToSpeech''',
'''SpeechT5Model''',
'''SpeechT5PreTrainedModel''',
'''SpeechT5HifiGan''',
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 |
'''simple docstring'''
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = data
__UpperCAmelCase : int = previous
__UpperCAmelCase : Union[str, Any] = next_node
def __str__( self ) -> str:
'''simple docstring'''
return f'{self.data}'
def __A ( self ) -> int:
'''simple docstring'''
return self.data
def __A ( self ) -> List[str]:
'''simple docstring'''
return self.next
def __A ( self ) -> str:
'''simple docstring'''
return self.previous
class _A :
def __init__( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = head
def __iter__( self ) -> str:
'''simple docstring'''
return self
def __A ( self ) -> str:
'''simple docstring'''
if not self.current:
raise StopIteration
else:
__UpperCAmelCase : List[str] = self.current.get_data()
__UpperCAmelCase : int = self.current.get_next()
return value
class _A :
def __init__( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = None # First node in list
__UpperCAmelCase : List[str] = None # Last node in list
def __str__( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.head
__UpperCAmelCase : Optional[int] = []
while current is not None:
nodes.append(current.get_data() )
__UpperCAmelCase : Any = current.get_next()
return " ".join(str(__UpperCAmelCase ) for node in nodes )
def __contains__( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.head
while current:
if current.get_data() == value:
return True
__UpperCAmelCase : Optional[Any] = current.get_next()
return False
def __iter__( self ) -> str:
'''simple docstring'''
return LinkedListIterator(self.head )
def __A ( self ) -> List[Any]:
'''simple docstring'''
if self.head:
return self.head.get_data()
return None
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
if self.tail:
return self.tail.get_data()
return None
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
__UpperCAmelCase : str = node
__UpperCAmelCase : List[str] = node
else:
self.insert_before_node(self.head , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase )
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.set_tail(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Tuple = node
__UpperCAmelCase : List[Any] = node.previous
if node.get_previous() is None:
__UpperCAmelCase : str = node_to_insert
else:
__UpperCAmelCase : Optional[Any] = node_to_insert
__UpperCAmelCase : List[Any] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : List[str] = node
__UpperCAmelCase : Union[str, Any] = node.next
if node.get_next() is None:
__UpperCAmelCase : Dict = node_to_insert
else:
__UpperCAmelCase : Any = node_to_insert
__UpperCAmelCase : List[str] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.head
while node:
if current_position == position:
self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase )
return
current_position += 1
__UpperCAmelCase : int = node.next
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Node:
'''simple docstring'''
__UpperCAmelCase : Dict = self.head
while node:
if node.get_data() == item:
return node
__UpperCAmelCase : List[str] = node.get_next()
raise Exception("""Node not found""" )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
if (node := self.get_node(__UpperCAmelCase )) is not None:
if node == self.head:
__UpperCAmelCase : Optional[int] = self.head.get_next()
if node == self.tail:
__UpperCAmelCase : Union[str, Any] = self.tail.get_previous()
self.remove_node_pointers(__UpperCAmelCase )
@staticmethod
def __A ( __UpperCAmelCase ) -> None:
'''simple docstring'''
if node.get_next():
__UpperCAmelCase : Optional[Any] = node.previous
if node.get_previous():
__UpperCAmelCase : int = node.next
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Union[str, Any] = None
def __A ( self ) -> List[Any]:
'''simple docstring'''
return self.head is None
def lowercase_ ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 1 |
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_tensorflow_text_available():
from transformers.models.bert import TFBertTokenizer
_UpperCamelCase = ['''bert-base-uncased''', '''bert-base-cased''']
_UpperCamelCase = '''hf-internal-testing/tiny-bert-tf-only'''
if is_tf_available():
class _A ( tf.keras.Model ):
def __init__( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Dict = tokenizer
__UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(__UpperCAmelCase )
__UpperCAmelCase : str = TFAutoModel.from_config(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.tokenizer(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = self.bert(**__UpperCAmelCase )
return out["pooler_output"]
@require_tf
@require_tensorflow_text
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
super().setUp()
__UpperCAmelCase : List[Any] = [
BertTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2)
] # repeat for when fast_bert_tokenizer=false
__UpperCAmelCase : Optional[int] = [TFBertTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [
TFBertTokenizer.from_pretrained(__UpperCAmelCase , use_fast_bert_tokenizer=__UpperCAmelCase )
for checkpoint in TOKENIZER_CHECKPOINTS
]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
__UpperCAmelCase : Any = [
"""This is a straightforward English test sentence.""",
"""This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""",
"""Now we're going to add some Chinese: 一 二 三 一二三""",
"""And some much more rare Chinese: 齉 堃 齉堃""",
"""Je vais aussi écrire en français pour tester les accents""",
"""Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""",
]
__UpperCAmelCase : Any = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def __A ( self ) -> Dict:
'''simple docstring'''
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in (self.test_sentences, self.paired_sentences):
__UpperCAmelCase : List[str] = tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding="""longest""" )
__UpperCAmelCase : Optional[Any] = tf_tokenizer(__UpperCAmelCase )
for key in python_outputs.keys():
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) )
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
__UpperCAmelCase : Union[str, Any] = tf_tokenizer(self.paired_sentences )
__UpperCAmelCase : List[Any] = tf_tokenizer(
text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , )
for key in merged_outputs.keys():
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) )
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
__UpperCAmelCase : Dict = tf.function(__UpperCAmelCase )
for test_inputs in (self.test_sentences, self.paired_sentences):
__UpperCAmelCase : Tuple = tf.constant(__UpperCAmelCase )
__UpperCAmelCase : Any = compiled_tokenizer(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = tf_tokenizer(__UpperCAmelCase )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
__UpperCAmelCase : Optional[int] = ModelToSave(tokenizer=__UpperCAmelCase )
__UpperCAmelCase : List[str] = tf.convert_to_tensor(self.test_sentences )
__UpperCAmelCase : str = model(__UpperCAmelCase ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
__UpperCAmelCase : Dict = Path(__UpperCAmelCase ) / """saved.model"""
model.save(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = tf.keras.models.load_model(__UpperCAmelCase )
__UpperCAmelCase : Any = loaded_model(__UpperCAmelCase )
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
| 16 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : List[str]
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __call__( self ) -> Any:
'''simple docstring'''
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : Optional[List] = None
_SCREAMING_SNAKE_CASE : Optional[int] = None
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None
__UpperCAmelCase : int = len(self.languages ) if self.languages else None
def __call__( self ) -> Optional[Any]:
'''simple docstring'''
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def __A ( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = set(self.languages )
if self.languages and set(__UpperCAmelCase ) - lang_set:
raise ValueError(
f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__UpperCAmelCase : Dict = []
for lang, text in translation_dict.items():
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 16 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCamelCase = {
'''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''],
'''tokenization_roc_bert''': ['''RoCBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''RoCBertForCausalLM''',
'''RoCBertForMaskedLM''',
'''RoCBertForMultipleChoice''',
'''RoCBertForPreTraining''',
'''RoCBertForQuestionAnswering''',
'''RoCBertForSequenceClassification''',
'''RoCBertForTokenClassification''',
'''RoCBertLayer''',
'''RoCBertModel''',
'''RoCBertPreTrainedModel''',
'''load_tf_weights_in_roc_bert''',
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 |
'''simple docstring'''
from statistics import mean
import numpy as np
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Tuple = 0
# Number of processes finished
__UpperCAmelCase : Optional[int] = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
__UpperCAmelCase : Tuple = [0] * no_of_process
# List to include calculation results
__UpperCAmelCase : int = [0] * no_of_process
# Sort by arrival time.
__UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )]
__UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )]
arrival_time.sort()
while no_of_process > finished_process_count:
__UpperCAmelCase : Dict = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
__UpperCAmelCase : Any = arrival_time[i]
__UpperCAmelCase : Any = 0
# Index showing the location of the process being performed
__UpperCAmelCase : Any = 0
# Saves the current response ratio.
__UpperCAmelCase : List[str] = 0
for i in range(0 , lowerCAmelCase__ ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
__UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
__UpperCAmelCase : Tuple = temp
__UpperCAmelCase : List[str] = i
# Calculate the turn around time
__UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
__UpperCAmelCase : List[str] = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [0] * no_of_process
for i in range(0 , lowerCAmelCase__ ):
__UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
_UpperCamelCase = 5
_UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E''']
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
_UpperCamelCase = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''')
for i in range(0, no_of_process):
print(
F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'
F'{turn_around_time[i]}\t\t\t{waiting_time[i]}'
)
print(F'average waiting time : {mean(waiting_time):.5f}')
print(F'average turn around time : {mean(turn_around_time):.5f}')
| 16 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {
'''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''LiltForQuestionAnswering''',
'''LiltForSequenceClassification''',
'''LiltForTokenClassification''',
'''LiltModel''',
'''LiltPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lilt import (
LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
LiltPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = parent
__UpperCAmelCase : Any = batch_size
__UpperCAmelCase : Union[str, Any] = seq_length
__UpperCAmelCase : int = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[str] = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Union[str, Any] = num_hidden_layers
__UpperCAmelCase : Optional[int] = num_attention_heads
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_size
__UpperCAmelCase : Dict = type_sequence_label_size
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : Optional[Any] = num_choices
__UpperCAmelCase : int = scope
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : List[Any] = None
if self.use_input_mask:
__UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Any = None
if self.use_token_type_ids:
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Optional[int] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> List[str]:
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_config()
__UpperCAmelCase : List[Any] = 300
return config
def __A ( self ) -> Dict:
'''simple docstring'''
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = self.prepare_config_and_inputs()
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : List[str] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.num_labels
__UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_choices
__UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : List[str] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
__UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Any = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : int = False
_SCREAMING_SNAKE_CASE : List[str] = False
_SCREAMING_SNAKE_CASE : Dict = ()
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = MraModelTester(self )
__UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : List[Any] = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""MRA does not output attentions""" )
def __A ( self ) -> List[Any]:
'''simple docstring'''
return
@require_torch
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : int = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Union[str, Any] = 50_265
__UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" )
__UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : Any = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Dict = 50_265
__UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : str = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 1 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''w2v_encoder.proj''': '''lm_head''',
'''mask_emb''': '''masked_spec_embed''',
}
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int ):
"""simple docstring"""
for attribute in key.split(""".""" ):
__UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
if weight_type is not None:
__UpperCAmelCase : Dict = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape
else:
__UpperCAmelCase : List[Any] = hf_pointer.shape
assert hf_shape == value.shape, (
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}'
)
if weight_type == "weight":
__UpperCAmelCase : Tuple = value
elif weight_type == "weight_g":
__UpperCAmelCase : int = value
elif weight_type == "weight_v":
__UpperCAmelCase : Dict = value
elif weight_type == "bias":
__UpperCAmelCase : Union[str, Any] = value
else:
__UpperCAmelCase : Union[str, Any] = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any ):
"""simple docstring"""
__UpperCAmelCase : Dict = []
__UpperCAmelCase : Tuple = fairseq_model.state_dict()
__UpperCAmelCase : Any = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
__UpperCAmelCase : Tuple = False
if "conv_layers" in name:
load_conv_layer(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == """group""" , )
__UpperCAmelCase : Union[str, Any] = True
else:
for key, mapped_key in MAPPING.items():
__UpperCAmelCase : List[str] = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned):
__UpperCAmelCase : Optional[int] = True
if "*" in mapped_key:
__UpperCAmelCase : Dict = name.split(lowerCAmelCase__ )[0].split(""".""" )[-2]
__UpperCAmelCase : List[Any] = mapped_key.replace("""*""" , lowerCAmelCase__ )
if "weight_g" in name:
__UpperCAmelCase : str = """weight_g"""
elif "weight_v" in name:
__UpperCAmelCase : str = """weight_v"""
elif "weight" in name:
__UpperCAmelCase : Optional[int] = """weight"""
elif "bias" in name:
__UpperCAmelCase : Optional[int] = """bias"""
else:
__UpperCAmelCase : Optional[int] = None
set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
continue
if not is_used:
unused_weights.append(lowerCAmelCase__ )
logger.warning(f'Unused weights: {unused_weights}' )
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = full_name.split("""conv_layers.""" )[-1]
__UpperCAmelCase : Dict = name.split(""".""" )
__UpperCAmelCase : Union[str, Any] = int(items[0] )
__UpperCAmelCase : Optional[int] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'
)
__UpperCAmelCase : Optional[Any] = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'
)
__UpperCAmelCase : Dict = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'
" found."
)
__UpperCAmelCase : int = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'
)
__UpperCAmelCase : Optional[int] = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(lowerCAmelCase__ )
@torch.no_grad()
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : List[str]=True ):
"""simple docstring"""
if config_path is not None:
__UpperCAmelCase : Dict = HubertConfig.from_pretrained(lowerCAmelCase__ )
else:
__UpperCAmelCase : Dict = HubertConfig()
if is_finetuned:
if dict_path:
__UpperCAmelCase : Optional[Any] = Dictionary.load(lowerCAmelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__UpperCAmelCase : List[str] = target_dict.pad_index
__UpperCAmelCase : Tuple = target_dict.bos_index
__UpperCAmelCase : str = target_dict.eos_index
__UpperCAmelCase : int = len(target_dict.symbols )
__UpperCAmelCase : Dict = os.path.join(lowerCAmelCase__ , """vocab.json""" )
if not os.path.isdir(lowerCAmelCase__ ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase__ ) )
return
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , lowerCAmelCase__ )
__UpperCAmelCase : List[str] = WavaVecaCTCTokenizer(
lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase__ , )
__UpperCAmelCase : Optional[Any] = True if config.feat_extract_norm == """layer""" else False
__UpperCAmelCase : Union[str, Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , )
__UpperCAmelCase : int = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ )
processor.save_pretrained(lowerCAmelCase__ )
__UpperCAmelCase : Dict = HubertForCTC(lowerCAmelCase__ )
else:
__UpperCAmelCase : int = HubertModel(lowerCAmelCase__ )
if is_finetuned:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
__UpperCAmelCase : List[str] = model[0].eval()
recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
hf_wavavec.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
_UpperCamelCase = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 16 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Any = image_size
__UpperCAmelCase : Dict = patch_size
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : List[Any] = embed_dim
__UpperCAmelCase : str = depths
__UpperCAmelCase : Dict = num_heads
__UpperCAmelCase : str = window_size
__UpperCAmelCase : int = mlp_ratio
__UpperCAmelCase : Union[str, Any] = qkv_bias
__UpperCAmelCase : Dict = hidden_dropout_prob
__UpperCAmelCase : str = attention_probs_dropout_prob
__UpperCAmelCase : Optional[int] = drop_path_rate
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Optional[int] = use_absolute_embeddings
__UpperCAmelCase : Any = patch_norm
__UpperCAmelCase : Union[str, Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : Any = scope
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : Optional[int] = type_sequence_label_size
__UpperCAmelCase : int = encoder_stride
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : Tuple = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def __A ( self ) -> Dict:
'''simple docstring'''
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
__UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : str = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = self.type_sequence_label_size
__UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs
__UpperCAmelCase : Dict = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
_SCREAMING_SNAKE_CASE : List[str] = (
{"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Dict = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[str] = SwinvaModelTester(self )
__UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 )
def __A ( self ) -> Any:
'''simple docstring'''
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
@unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason="""Swinv2 does not use inputs_embeds""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCAmelCase : List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Tuple = model_class(__UpperCAmelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : str = [*signature.parameters.keys()]
__UpperCAmelCase : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = True
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : int = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : str = outputs.attentions
__UpperCAmelCase : Any = len(self.model_tester.depths )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__UpperCAmelCase : Dict = True
__UpperCAmelCase : int = config.window_size**2
__UpperCAmelCase : Any = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : Dict = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
__UpperCAmelCase : Dict = len(__UpperCAmelCase )
# Check attention is always last and order is fine
__UpperCAmelCase : Any = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
if hasattr(self.model_tester , """num_hidden_states_types""" ):
__UpperCAmelCase : Any = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
__UpperCAmelCase : Optional[int] = 2
self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) )
__UpperCAmelCase : Tuple = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : List[Any] = outputs.hidden_states
__UpperCAmelCase : List[Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# Swinv2 has a different seq_length
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__UpperCAmelCase : int = outputs.reshaped_hidden_states
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape
__UpperCAmelCase : Any = (
reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = 3
__UpperCAmelCase : str = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__UpperCAmelCase : int = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Tuple = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase )
for model_class in self.all_model_classes:
__UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class _A ( unittest.TestCase ):
@cached_property
def __A ( self ) -> int:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" )
if is_vision_available()
else None
)
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to(
__UpperCAmelCase )
__UpperCAmelCase : Tuple = self.default_image_processor
__UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase )
# verify the logits
__UpperCAmelCase : int = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 1 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''',
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = "blip_2_vision_model"
def __init__( self , __UpperCAmelCase=1_408 , __UpperCAmelCase=6_144 , __UpperCAmelCase=39 , __UpperCAmelCase=16 , __UpperCAmelCase=224 , __UpperCAmelCase=14 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0_0001 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1E-10 , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> Dict:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Any = intermediate_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : List[Any] = patch_size
__UpperCAmelCase : Tuple = image_size
__UpperCAmelCase : Tuple = initializer_range
__UpperCAmelCase : Optional[int] = attention_dropout
__UpperCAmelCase : Any = layer_norm_eps
__UpperCAmelCase : Dict = hidden_act
__UpperCAmelCase : List[Any] = qkv_bias
@classmethod
def __A ( cls , __UpperCAmelCase , **__UpperCAmelCase ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(__UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase : int = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get("""model_type""" ) == "blip-2":
__UpperCAmelCase : List[str] = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = "blip_2_qformer"
def __init__( self , __UpperCAmelCase=30_522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3_072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=2 , __UpperCAmelCase=1_408 , **__UpperCAmelCase , ) -> int:
'''simple docstring'''
super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase )
__UpperCAmelCase : Dict = vocab_size
__UpperCAmelCase : int = hidden_size
__UpperCAmelCase : Tuple = num_hidden_layers
__UpperCAmelCase : Optional[int] = num_attention_heads
__UpperCAmelCase : Any = hidden_act
__UpperCAmelCase : Dict = intermediate_size
__UpperCAmelCase : Union[str, Any] = hidden_dropout_prob
__UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob
__UpperCAmelCase : Optional[int] = max_position_embeddings
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Dict = layer_norm_eps
__UpperCAmelCase : Tuple = position_embedding_type
__UpperCAmelCase : List[str] = cross_attention_frequency
__UpperCAmelCase : Tuple = encoder_hidden_size
@classmethod
def __A ( cls , __UpperCAmelCase , **__UpperCAmelCase ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(__UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase : Any = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get("""model_type""" ) == "blip-2":
__UpperCAmelCase : int = config_dict["""qformer_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = "blip-2"
_SCREAMING_SNAKE_CASE : str = True
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=32 , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
if vision_config is None:
__UpperCAmelCase : Dict = {}
logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" )
if qformer_config is None:
__UpperCAmelCase : Dict = {}
logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" )
if text_config is None:
__UpperCAmelCase : Tuple = {}
logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" )
__UpperCAmelCase : Dict = BlipaVisionConfig(**__UpperCAmelCase )
__UpperCAmelCase : str = BlipaQFormerConfig(**__UpperCAmelCase )
__UpperCAmelCase : Tuple = text_config["""model_type"""] if """model_type""" in text_config else """opt"""
__UpperCAmelCase : str = CONFIG_MAPPING[text_model_type](**__UpperCAmelCase )
__UpperCAmelCase : str = self.text_config.tie_word_embeddings
__UpperCAmelCase : Any = self.text_config.is_encoder_decoder
__UpperCAmelCase : Dict = num_query_tokens
__UpperCAmelCase : str = self.vision_config.hidden_size
__UpperCAmelCase : Optional[int] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
__UpperCAmelCase : List[Any] = 1.0
__UpperCAmelCase : Optional[Any] = 0.02
@classmethod
def __A ( cls , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__UpperCAmelCase , )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : str = copy.deepcopy(self.__dict__ )
__UpperCAmelCase : str = self.vision_config.to_dict()
__UpperCAmelCase : Tuple = self.qformer_config.to_dict()
__UpperCAmelCase : str = self.text_config.to_dict()
__UpperCAmelCase : Tuple = self.__class__.model_type
return output
| 16 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
_UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f'Could not make batched video from {videos}' )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
__UpperCAmelCase : int = do_resize
__UpperCAmelCase : List[str] = size
__UpperCAmelCase : Any = do_center_crop
__UpperCAmelCase : Any = crop_size
__UpperCAmelCase : Optional[Any] = resample
__UpperCAmelCase : Dict = do_rescale
__UpperCAmelCase : List[str] = rescale_factor
__UpperCAmelCase : Dict = offset
__UpperCAmelCase : List[str] = do_normalize
__UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" in size:
__UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase )
elif "height" in size and "width" in size:
__UpperCAmelCase : Any = (size["""height"""], size["""width"""])
else:
raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = image.astype(np.floataa )
if offset:
__UpperCAmelCase : Tuple = image - (scale / 2)
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
if offset and not do_rescale:
raise ValueError("""For offset, do_rescale must also be set to True.""" )
# All transformations expect numpy arrays.
__UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase )
if do_resize:
__UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase )
if do_center_crop:
__UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase )
if do_rescale:
__UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase )
if do_normalize:
__UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase )
return image
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : List[Any] = resample if resample is not None else self.resample
__UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : List[Any] = offset if offset is not None else self.offset
__UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : int = image_std if image_std is not None else self.image_std
__UpperCAmelCase : Any = size if size is not None else self.size
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
__UpperCAmelCase : int = make_batched(__UpperCAmelCase )
__UpperCAmelCase : Tuple = [
[
self._preprocess_image(
image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , )
for img in video
]
for video in videos
]
__UpperCAmelCase : Tuple = {"""pixel_values""": videos}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , **lowerCAmelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase : Any = AutoConfig.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
__UpperCAmelCase : List[str] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
AutoTokenizer.from_pretrained(lowerCAmelCase__ ).save_pretrained(lowerCAmelCase__ )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version)
| 16 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline
_SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
_SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
_SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : Dict = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
__UpperCAmelCase : List[Any] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
__UpperCAmelCase : Any = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__UpperCAmelCase : Dict = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vqvae""": vae,
"""bert""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any:
'''simple docstring'''
if str(__UpperCAmelCase ).startswith("""mps""" ):
__UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : Dict = self.get_dummy_components()
__UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
__UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> List[str]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Tuple = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
__UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] )
__UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 50,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0]
__UpperCAmelCase : Tuple = load_numpy(
"""https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" )
__UpperCAmelCase : Dict = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 16 | 1 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''spiece.model'''}
_UpperCamelCase = {
'''vocab_file''': {
'''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''',
}
}
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
__UpperCAmelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
__UpperCAmelCase : int = 3
__UpperCAmelCase : str = do_lower_case
__UpperCAmelCase : Optional[int] = remove_space
__UpperCAmelCase : List[Any] = keep_accents
__UpperCAmelCase : Optional[int] = vocab_file
__UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__UpperCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"""You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """
"""See https://pypi.org/project/jieba/ for installation.""" )
__UpperCAmelCase : List[str] = jieba
__UpperCAmelCase : Any = str.maketrans(""" \n""" , """\u2582\u2583""" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def __A ( self ) -> Any:
'''simple docstring'''
return len(self.sp_model )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : str = self.__dict__.copy()
__UpperCAmelCase : Any = None
return state
def __setstate__( self , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__UpperCAmelCase : Union[str, Any] = {}
__UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if self.remove_space:
__UpperCAmelCase : Optional[int] = """ """.join(inputs.strip().split() )
else:
__UpperCAmelCase : str = inputs
__UpperCAmelCase : int = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
__UpperCAmelCase : Optional[int] = unicodedata.normalize("""NFKD""" , __UpperCAmelCase )
__UpperCAmelCase : List[str] = """""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] )
if self.do_lower_case:
__UpperCAmelCase : Tuple = outputs.lower()
return outputs
def __A ( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.preprocess_text(__UpperCAmelCase )
__UpperCAmelCase : int = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = []
for piece in pieces:
if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
__UpperCAmelCase : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
__UpperCAmelCase : Optional[Any] = cur_pieces[1:]
else:
__UpperCAmelCase : Optional[Any] = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__UpperCAmelCase )
else:
new_pieces.append(__UpperCAmelCase )
return new_pieces
def __A ( self , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return self.sp_model.PieceToId(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return self.sp_model.IdToPiece(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = """""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = [self.sep_token_id]
__UpperCAmelCase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1]
return ([0] * len(__UpperCAmelCase )) + [1, 1]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = [self.sep_token_id]
__UpperCAmelCase : Any = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
__UpperCAmelCase : List[str] = os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
__UpperCAmelCase : Dict = self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (out_vocab_file,)
def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = super()._decode(*__UpperCAmelCase , **__UpperCAmelCase )
__UpperCAmelCase : Any = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" )
return text
| 16 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column
__UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )]
def __str__( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n'
# Make string identifier
__UpperCAmelCase : Optional[Any] = 0
for row_vector in self.array:
for obj in row_vector:
__UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) )
__UpperCAmelCase : Optional[int] = f'%{max_element_length}s'
# Make string and return
def single_line(__UpperCAmelCase ) -> str:
nonlocal string_format_identifier
__UpperCAmelCase : Any = """["""
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array )
return s
def __repr__( self ) -> str:
'''simple docstring'''
return str(self )
def __A ( self , __UpperCAmelCase ) -> bool:
'''simple docstring'''
if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
return self.array[loc[0]][loc[1]]
def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = value
def __add__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == another.row and self.column == another.column
# Add
__UpperCAmelCase : Dict = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] + another[r, c]
return result
def __neg__( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : Dict = -self[r, c]
return result
def __sub__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
return self + (-another)
def __mul__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication
__UpperCAmelCase : Optional[int] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] * another
return result
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication
assert self.column == another.row
__UpperCAmelCase : Dict = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
__UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})'
raise TypeError(__UpperCAmelCase )
def __A ( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Dict = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[str] = self[r, c]
return result
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
__UpperCAmelCase : Optional[Any] = v.transpose()
__UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Dict = Matrix(3 , 3 , 0 )
for i in range(3 ):
__UpperCAmelCase : Tuple = 1
print(f'a^(-1) is {ainv}' )
# u, v
__UpperCAmelCase : Dict = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3
__UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5
print(f'u is {u}' )
print(f'v is {v}' )
print(f'uv^T is {u * v.transpose()}' )
# Sherman Morrison
print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' )
def lowercase_ ( ):
"""simple docstring"""
import doctest
doctest.testmod()
testa()
| 16 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_UpperCamelCase = logging.get_logger(__name__)
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : int = ["pixel_values"]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = 0.9 , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCAmelCase : List[str] = size if size is not None else {"""shortest_edge""": 224}
__UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : Union[str, Any] = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
__UpperCAmelCase : Dict = do_resize
__UpperCAmelCase : int = size
__UpperCAmelCase : Optional[int] = crop_pct
__UpperCAmelCase : int = resample
__UpperCAmelCase : int = do_center_crop
__UpperCAmelCase : int = crop_size
__UpperCAmelCase : List[Any] = do_rescale
__UpperCAmelCase : int = rescale_factor
__UpperCAmelCase : Dict = do_normalize
__UpperCAmelCase : Any = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__UpperCAmelCase : Optional[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
if crop_pct is not None:
if "shortest_edge" in size:
__UpperCAmelCase : Tuple = int(size["""shortest_edge"""] / crop_pct )
elif "height" in size and "width" in size:
if size["height"] == size["width"]:
__UpperCAmelCase : List[Any] = int(size["""height"""] / crop_pct )
else:
__UpperCAmelCase : str = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct ))
else:
raise ValueError("""Invalid size for resize: {}""".format(__UpperCAmelCase ) )
__UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size=__UpperCAmelCase , default_to_square=__UpperCAmelCase )
else:
if "shortest_edge" in size:
__UpperCAmelCase : Tuple = get_resize_output_image_size(__UpperCAmelCase , size=size["""shortest_edge"""] , default_to_square=__UpperCAmelCase )
elif "height" in size and "width" in size:
__UpperCAmelCase : int = (size["""height"""], size["""width"""])
else:
raise ValueError("""Invalid size for resize: {}""".format(__UpperCAmelCase ) )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Union[str, Any]:
'''simple docstring'''
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : int = crop_pct if crop_pct is not None else self.crop_pct
__UpperCAmelCase : Tuple = resample if resample is not None else self.resample
__UpperCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : List[Any] = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : Dict = image_std if image_std is not None else self.image_std
__UpperCAmelCase : Any = size if size is not None else self.size
__UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : int = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : Optional[Any] = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
__UpperCAmelCase : List[Any] = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_pct is None:
raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
__UpperCAmelCase : Union[str, Any] = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
__UpperCAmelCase : int = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , crop_pct=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_center_crop:
__UpperCAmelCase : Union[str, Any] = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
if do_rescale:
__UpperCAmelCase : List[str] = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
__UpperCAmelCase : Optional[int] = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
__UpperCAmelCase : Union[str, Any] = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
__UpperCAmelCase : Dict = {"""pixel_values""": images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 16 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''],
'''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''],
'''processing_wav2vec2''': ['''Wav2Vec2Processor'''],
'''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Wav2Vec2ForAudioFrameClassification''',
'''Wav2Vec2ForCTC''',
'''Wav2Vec2ForMaskedLM''',
'''Wav2Vec2ForPreTraining''',
'''Wav2Vec2ForSequenceClassification''',
'''Wav2Vec2ForXVector''',
'''Wav2Vec2Model''',
'''Wav2Vec2PreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWav2Vec2ForCTC''',
'''TFWav2Vec2Model''',
'''TFWav2Vec2PreTrainedModel''',
'''TFWav2Vec2ForSequenceClassification''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FlaxWav2Vec2ForCTC''',
'''FlaxWav2Vec2ForPreTraining''',
'''FlaxWav2Vec2Model''',
'''FlaxWav2Vec2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 1 |
'''simple docstring'''
from __future__ import annotations
from random import random
class _A :
def __init__( self , __UpperCAmelCase = None ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = value
__UpperCAmelCase : Optional[Any] = random()
__UpperCAmelCase : Node | None = None
__UpperCAmelCase : Node | None = None
def __repr__( self ) -> str:
'''simple docstring'''
from pprint import pformat
if self.left is None and self.right is None:
return f'\'{self.value}: {self.prior:.5}\''
else:
return pformat(
{f'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 )
def __str__( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = str(self.value ) + """ """
__UpperCAmelCase : List[str] = str(self.left or """""" )
__UpperCAmelCase : Optional[Any] = str(self.right or """""" )
return value + left + right
def lowercase_ ( lowerCAmelCase__ : Node | None , lowerCAmelCase__ : int ):
"""simple docstring"""
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
__UpperCAmelCase , __UpperCAmelCase : List[str] = split(root.left , lowerCAmelCase__ )
return left, root
else:
__UpperCAmelCase , __UpperCAmelCase : Tuple = split(root.right , lowerCAmelCase__ )
return root, right
def lowercase_ ( lowerCAmelCase__ : Node | None , lowerCAmelCase__ : Node | None ):
"""simple docstring"""
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
__UpperCAmelCase : Optional[Any] = merge(left.right , lowerCAmelCase__ )
return left
else:
__UpperCAmelCase : int = merge(lowerCAmelCase__ , right.left )
return right
def lowercase_ ( lowerCAmelCase__ : Node | None , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : str = Node(lowerCAmelCase__ )
__UpperCAmelCase , __UpperCAmelCase : int = split(lowerCAmelCase__ , lowerCAmelCase__ )
return merge(merge(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : Node | None , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : List[Any] = split(lowerCAmelCase__ , value - 1 )
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = split(lowerCAmelCase__ , lowerCAmelCase__ )
return merge(lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : Node | None ):
"""simple docstring"""
if not root: # None
return
else:
inorder(root.left )
print(root.value , end=""",""" )
inorder(root.right )
def lowercase_ ( lowerCAmelCase__ : Node | None , lowerCAmelCase__ : str ):
"""simple docstring"""
for arg in args.split():
if arg[0] == "+":
__UpperCAmelCase : Dict = insert(lowerCAmelCase__ , int(arg[1:] ) )
elif arg[0] == "-":
__UpperCAmelCase : Dict = erase(lowerCAmelCase__ , int(arg[1:] ) )
else:
print("""Unknown command""" )
return root
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Any = None
print(
"""enter numbers to create a tree, + value to add value into treap, """
"""- value to erase all nodes with value. 'q' to quit. """ )
__UpperCAmelCase : Tuple = input()
while args != "q":
__UpperCAmelCase : int = interact_treap(lowerCAmelCase__ , lowerCAmelCase__ )
print(lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = input()
print("""good by!""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 16 |
'''simple docstring'''
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING
_SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING
def __A ( self ) -> Any:
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""},
{"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""},
] , )
__UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is grouped""",
"""score""": 2.1E-05,
"""token""": 38_015,
"""token_str""": """ grouped""",
},
{
"""sequence""": """The largest city in France is accuser""",
"""score""": 2.1E-05,
"""token""": 25_506,
"""token_str""": """ accuser""",
},
] , )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""},
{"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is Maul""",
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
},
{"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""},
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is Maul<mask></s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""},
],
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is<mask> Maul</s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""},
],
] , )
@require_torch_gpu
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" )
# convert model to fp16
pipe.model.half()
__UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
@require_torch
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" )
self.run_large_test(__UpperCAmelCase )
@slow
@require_tf
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" )
self.run_large_test(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""},
{"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{
"""sequence""": """The largest city in France is Paris""",
"""score""": 0.251,
"""token""": 2_201,
"""token_str""": """ Paris""",
},
{
"""sequence""": """The largest city in France is Lyon""",
"""score""": 0.214,
"""token""": 12_790,
"""token_str""": """ Lyon""",
},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" )
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : int = None
self.run_pipeline_test(__UpperCAmelCase , [] )
@require_tf
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : str = None
self.run_pipeline_test(__UpperCAmelCase , [] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" )
__UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = [
f'This is another {tokenizer.mask_token} test',
]
return fill_masker, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = fill_masker.tokenizer
__UpperCAmelCase : Union[str, Any] = fill_masker.model
__UpperCAmelCase : Tuple = fill_masker(
f'This is a {tokenizer.mask_token}' , )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
with self.assertRaises(__UpperCAmelCase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(__UpperCAmelCase ):
fill_masker("""This is""" )
self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Dict = tokenizer.get_vocab()
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:2]
# Pipeline argument
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase )
__UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Any = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Call argument
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Score equivalence
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs]
__UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ) == set(__UpperCAmelCase ):
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
# Raises with invalid
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] )
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 )
__UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : int = tokenizer.get_vocab()
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
# top_k=2, ntargets=3
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
__UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = tokenizer.get_vocab()
# String duplicates + id duplicates
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]]
__UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(__UpperCAmelCase ) , 3 )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Dict = fill_masker(
f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
| 16 | 1 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
}
_UpperCamelCase = {
'''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''},
'''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''},
}
_UpperCamelCase = {
'''ctrl''': 256,
}
_UpperCamelCase = {
'''Pregnancy''': 16_8629,
'''Christianity''': 7675,
'''Explain''': 10_6423,
'''Fitness''': 6_3440,
'''Saving''': 6_3163,
'''Ask''': 2_7171,
'''Ass''': 9_5985,
'''Joke''': 16_3509,
'''Questions''': 4_5622,
'''Thoughts''': 4_9605,
'''Retail''': 5_2342,
'''Feminism''': 16_4338,
'''Writing''': 1_1992,
'''Atheism''': 19_2263,
'''Netflix''': 4_8616,
'''Computing''': 3_9639,
'''Opinion''': 4_3213,
'''Alone''': 4_4967,
'''Funny''': 5_8917,
'''Gaming''': 4_0358,
'''Human''': 4088,
'''India''': 1331,
'''Joker''': 7_7138,
'''Diet''': 3_6206,
'''Legal''': 1_1859,
'''Norman''': 4939,
'''Tip''': 7_2689,
'''Weight''': 5_2343,
'''Movies''': 4_6273,
'''Running''': 2_3425,
'''Science''': 2090,
'''Horror''': 3_7793,
'''Confession''': 6_0572,
'''Finance''': 1_2250,
'''Politics''': 1_6360,
'''Scary''': 19_1985,
'''Support''': 1_2654,
'''Technologies''': 3_2516,
'''Teenage''': 6_6160,
'''Event''': 3_2769,
'''Learned''': 6_7460,
'''Notion''': 18_2770,
'''Wikipedia''': 3_7583,
'''Books''': 6665,
'''Extract''': 7_6050,
'''Confessions''': 10_2701,
'''Conspiracy''': 7_5932,
'''Links''': 6_3674,
'''Narcissus''': 15_0425,
'''Relationship''': 5_4766,
'''Relationships''': 13_4796,
'''Reviews''': 4_1671,
'''News''': 4256,
'''Translation''': 2_6820,
'''multilingual''': 12_8406,
}
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : List[str] = set()
__UpperCAmelCase : Union[str, Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCAmelCase : List[str] = char
__UpperCAmelCase : int = set(lowerCAmelCase__ )
return pairs
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : Tuple = CONTROL_CODES
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<unk>" , **__UpperCAmelCase ) -> str:
'''simple docstring'''
super().__init__(unk_token=__UpperCAmelCase , **__UpperCAmelCase )
with open(__UpperCAmelCase , encoding="""utf-8""" ) as vocab_handle:
__UpperCAmelCase : Any = json.load(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = {v: k for k, v in self.encoder.items()}
with open(__UpperCAmelCase , encoding="""utf-8""" ) as merges_handle:
__UpperCAmelCase : Dict = merges_handle.read().split("""\n""" )[1:-1]
__UpperCAmelCase : List[Any] = [tuple(merge.split() ) for merge in merges]
__UpperCAmelCase : Union[str, Any] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : Optional[Any] = {}
@property
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return len(self.encoder )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def __A ( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
__UpperCAmelCase : str = tuple(__UpperCAmelCase )
__UpperCAmelCase : Tuple = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] )
__UpperCAmelCase : Dict = get_pairs(__UpperCAmelCase )
if not pairs:
return token
while True:
__UpperCAmelCase : Dict = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
__UpperCAmelCase , __UpperCAmelCase : Any = bigram
__UpperCAmelCase : List[str] = []
__UpperCAmelCase : Optional[int] = 0
while i < len(__UpperCAmelCase ):
try:
__UpperCAmelCase : Tuple = word.index(__UpperCAmelCase , __UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__UpperCAmelCase : str = j
if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__UpperCAmelCase : List[Any] = tuple(__UpperCAmelCase )
__UpperCAmelCase : Any = new_word
if len(__UpperCAmelCase ) == 1:
break
else:
__UpperCAmelCase : Dict = get_pairs(__UpperCAmelCase )
__UpperCAmelCase : Any = """@@ """.join(__UpperCAmelCase )
__UpperCAmelCase : Tuple = word[:-4]
__UpperCAmelCase : Optional[int] = word
return word
def __A ( self , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = []
__UpperCAmelCase : Union[str, Any] = re.findall(r"""\S+\n?""" , __UpperCAmelCase )
for token in words:
split_tokens.extend(list(self.bpe(__UpperCAmelCase ).split(""" """ ) ) )
return split_tokens
def __A ( self , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) )
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
return self.decoder.get(__UpperCAmelCase , self.unk_token )
def __A ( self , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = """ """.join(__UpperCAmelCase ).replace("""@@ """ , """""" ).strip()
return out_string
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
__UpperCAmelCase : List[Any] = os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
__UpperCAmelCase : Optional[Any] = os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + """\n""" )
__UpperCAmelCase : Tuple = 0
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
""" Please check that the tokenizer is not corrupted!""" )
__UpperCAmelCase : Optional[int] = token_index
writer.write(""" """.join(__UpperCAmelCase ) + """\n""" )
index += 1
return vocab_file, merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
| 16 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} )
_SCREAMING_SNAKE_CASE : str = "image"
_SCREAMING_SNAKE_CASE : str = "labels"
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(f'Column {self.label_column} is not present in features.' )
if not isinstance(features[self.label_column] , __UpperCAmelCase ):
raise ValueError(f'Column {self.label_column} is not a ClassLabel.' )
__UpperCAmelCase : int = copy.deepcopy(self )
__UpperCAmelCase : str = self.label_schema.copy()
__UpperCAmelCase : Optional[Any] = features[self.label_column]
__UpperCAmelCase : Optional[int] = label_schema
return task_template
@property
def __A ( self ) -> Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 16 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=12 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0 , __UpperCAmelCase=None , ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : List[str] = batch_size
__UpperCAmelCase : Union[str, Any] = seq_length
__UpperCAmelCase : Any = is_training
__UpperCAmelCase : Any = use_input_mask
__UpperCAmelCase : Union[str, Any] = use_labels
__UpperCAmelCase : Union[str, Any] = vocab_size
__UpperCAmelCase : Optional[int] = hidden_size
__UpperCAmelCase : Union[str, Any] = projection_dim
__UpperCAmelCase : List[str] = num_hidden_layers
__UpperCAmelCase : Optional[int] = num_attention_heads
__UpperCAmelCase : Union[str, Any] = intermediate_size
__UpperCAmelCase : List[Any] = dropout
__UpperCAmelCase : Dict = attention_dropout
__UpperCAmelCase : Optional[int] = max_position_embeddings
__UpperCAmelCase : Any = initializer_range
__UpperCAmelCase : int = scope
__UpperCAmelCase : Optional[Any] = bos_token_id
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
__UpperCAmelCase : int = input_mask.numpy()
__UpperCAmelCase , __UpperCAmelCase : int = input_mask.shape
__UpperCAmelCase : Any = np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = 1
__UpperCAmelCase : str = 0
__UpperCAmelCase : Tuple = self.get_config()
return config, input_ids, tf.convert_to_tensor(__UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = TFBlipTextModel(config=__UpperCAmelCase )
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , training=__UpperCAmelCase )
__UpperCAmelCase : int = model(__UpperCAmelCase , training=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = config_and_inputs
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = (TFBlipTextModel,) if is_tf_available() else ()
_SCREAMING_SNAKE_CASE : List[Any] = False
_SCREAMING_SNAKE_CASE : Any = False
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = BlipTextModelTester(self )
__UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
pass
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason="""Blip does not use inputs_embeds""" )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" )
def __A ( self ) -> List[Any]:
'''simple docstring'''
pass
@unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
pass
@slow
def __A ( self ) -> int:
'''simple docstring'''
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : List[str] = TFBlipTextModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase=True ) -> List[Any]:
'''simple docstring'''
super().test_pt_tf_model_equivalence(allow_missing_keys=__UpperCAmelCase )
| 16 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Tuple = seq_length
__UpperCAmelCase : str = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[Any] = use_token_type_ids
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : str = num_attention_heads
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : Tuple = max_position_embeddings
__UpperCAmelCase : Dict = type_vocab_size
__UpperCAmelCase : List[Any] = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[str] = num_labels
__UpperCAmelCase : str = num_choices
__UpperCAmelCase : List[Any] = scope
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Tuple = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
# first forward pass
__UpperCAmelCase : Optional[int] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCAmelCase : int = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
# select random slice
__UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = config_and_inputs
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : List[str] = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = LlamaModelTester(self )
__UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : str = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Any = 3
__UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[int] = 3
__UpperCAmelCase : Optional[Any] = """single_label_classification"""
__UpperCAmelCase : int = input_dict["""input_ids"""]
__UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = 3
__UpperCAmelCase : str = """multi_label_classification"""
__UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size )
__UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
original_model.to(__UpperCAmelCase )
original_model.eval()
__UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0}
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
scaled_model.to(__UpperCAmelCase )
scaled_model.eval()
__UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
@require_torch
class _A ( unittest.TestCase ):
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" )
__UpperCAmelCase : int = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" )
__UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" )
__UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
@unittest.skip(
"""Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" )
@slow
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" )
__UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) )
__UpperCAmelCase : Dict = torch.tensor(
[[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Model is curently gated""" )
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi"""
__UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """
__UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" )
__UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" )
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained(
"""meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase )
# greedy generation outputs
__UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING
_SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING
def __A ( self ) -> Any:
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""},
{"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""},
] , )
__UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is grouped""",
"""score""": 2.1E-05,
"""token""": 38_015,
"""token_str""": """ grouped""",
},
{
"""sequence""": """The largest city in France is accuser""",
"""score""": 2.1E-05,
"""token""": 25_506,
"""token_str""": """ accuser""",
},
] , )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""},
{"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is Maul""",
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
},
{"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""},
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is Maul<mask></s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""},
],
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is<mask> Maul</s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""},
],
] , )
@require_torch_gpu
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" )
# convert model to fp16
pipe.model.half()
__UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
@require_torch
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" )
self.run_large_test(__UpperCAmelCase )
@slow
@require_tf
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" )
self.run_large_test(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""},
{"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{
"""sequence""": """The largest city in France is Paris""",
"""score""": 0.251,
"""token""": 2_201,
"""token_str""": """ Paris""",
},
{
"""sequence""": """The largest city in France is Lyon""",
"""score""": 0.214,
"""token""": 12_790,
"""token_str""": """ Lyon""",
},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" )
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : int = None
self.run_pipeline_test(__UpperCAmelCase , [] )
@require_tf
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : str = None
self.run_pipeline_test(__UpperCAmelCase , [] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" )
__UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = [
f'This is another {tokenizer.mask_token} test',
]
return fill_masker, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = fill_masker.tokenizer
__UpperCAmelCase : Union[str, Any] = fill_masker.model
__UpperCAmelCase : Tuple = fill_masker(
f'This is a {tokenizer.mask_token}' , )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
with self.assertRaises(__UpperCAmelCase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(__UpperCAmelCase ):
fill_masker("""This is""" )
self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Dict = tokenizer.get_vocab()
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:2]
# Pipeline argument
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase )
__UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Any = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Call argument
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Score equivalence
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs]
__UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ) == set(__UpperCAmelCase ):
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
# Raises with invalid
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] )
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 )
__UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : int = tokenizer.get_vocab()
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
# top_k=2, ntargets=3
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
__UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = tokenizer.get_vocab()
# String duplicates + id duplicates
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]]
__UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(__UpperCAmelCase ) , 3 )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Dict = fill_masker(
f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
| 16 |
'''simple docstring'''
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
_UpperCamelCase = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ):
"""simple docstring"""
return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths )
def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = []
if args.gold_data_mode == "qa":
__UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ )
for answer_list in data[1]:
__UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ )
answers.append(lowerCAmelCase__ )
else:
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : str = [[reference] for reference in references]
__UpperCAmelCase : Optional[int] = 0
for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
total += 1
em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : int = 100.0 * em / total
__UpperCAmelCase : Dict = 100.0 * fa / total
logger.info(f'F1: {fa:.2f}' )
logger.info(f'EM: {em:.2f}' )
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : Tuple = args.k
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = 0
for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] )
__UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
__UpperCAmelCase : List[str] = 100.0 * em / total
logger.info(f'Precision@{k}: {em: .2f}' )
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ):
"""simple docstring"""
def strip_title(lowerCAmelCase__ : Optional[int] ):
if title.startswith("""\"""" ):
__UpperCAmelCase : List[Any] = title[1:]
if title.endswith("""\"""" ):
__UpperCAmelCase : int = title[:-1]
return title
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device )
__UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ )
__UpperCAmelCase : int = question_enc_outputs[0]
__UpperCAmelCase : Dict = rag_model.retriever(
lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , )
__UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
__UpperCAmelCase : Union[str, Any] = []
for docs in all_docs:
__UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]]
provenance_strings.append("""\t""".join(lowerCAmelCase__ ) )
return provenance_strings
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
with torch.no_grad():
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )
__UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device )
__UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device )
__UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
__UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
if args.print_predictions:
for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) )
return answers
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=(
"""RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the"""
""" model_name_or_path"""
) , )
parser.add_argument(
"""--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , )
parser.add_argument(
"""--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , )
parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" )
parser.add_argument(
"""--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=(
"""Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates"""
""" precision@k."""
) , )
parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" )
parser.add_argument(
"""--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , )
parser.add_argument(
"""--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , )
parser.add_argument(
"""--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=(
"""Format of the gold data file"""
"""qa - a single line in the following format: question [tab] answer_list"""
"""ans - a single line of the gold file contains the expected answer string"""
) , )
parser.add_argument(
"""--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , )
parser.add_argument(
"""--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , )
parser.add_argument(
"""--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , )
parser.add_argument(
"""--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , )
parser.add_argument(
"""--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , )
parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" )
parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" )
parser.add_argument(
"""--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , )
parser.add_argument(
"""--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , )
__UpperCAmelCase : str = parser.parse_args()
__UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
return args
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = {}
if args.model_type is None:
__UpperCAmelCase : str = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration
__UpperCAmelCase : Dict = args.n_docs
if args.index_name is not None:
__UpperCAmelCase : Union[str, Any] = args.index_name
if args.index_path is not None:
__UpperCAmelCase : Dict = args.index_path
else:
__UpperCAmelCase : str = BartForConditionalGeneration
__UpperCAmelCase : str = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k
__UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) )
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
continue
logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) )
logger.info(""" Batch size = %d""" , args.eval_batch_size )
logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) )
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
__UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ )
model.retriever.init_retrieval()
else:
__UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
model.to(args.device )
with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file:
__UpperCAmelCase : Union[str, Any] = []
for line in tqdm(lowerCAmelCase__ ):
questions.append(line.strip() )
if len(lowerCAmelCase__ ) == args.eval_batch_size:
__UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" )
preds_file.flush()
__UpperCAmelCase : List[str] = []
if len(lowerCAmelCase__ ) > 0:
__UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) )
preds_file.flush()
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
_UpperCamelCase = get_args()
main(args)
| 16 | 1 |
'''simple docstring'''
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_UpperCamelCase = 16
_UpperCamelCase = 32
def lowercase_ ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 ):
"""simple docstring"""
__UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" )
__UpperCAmelCase : Any = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(lowerCAmelCase__ : List[str] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCAmelCase : Tuple = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
__UpperCAmelCase : Tuple = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__UpperCAmelCase : Optional[Any] = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(lowerCAmelCase__ : Dict ):
# On TPU it's best to pad everything to the same length or training will be very slow.
__UpperCAmelCase : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
__UpperCAmelCase : Optional[int] = 16
elif accelerator.mixed_precision != "no":
__UpperCAmelCase : Optional[int] = 8
else:
__UpperCAmelCase : List[Any] = None
return tokenizer.pad(
lowerCAmelCase__ , padding="""longest""" , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors="""pt""" , )
# Instantiate dataloaders.
__UpperCAmelCase : Dict = DataLoader(
tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
__UpperCAmelCase : int = DataLoader(
tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_UpperCamelCase = mocked_dataloaders # noqa: F811
def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowerCAmelCase__ ) == "1":
__UpperCAmelCase : Optional[int] = 2
# Initialize accelerator
__UpperCAmelCase : List[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__UpperCAmelCase : Tuple = config["""lr"""]
__UpperCAmelCase : Optional[Any] = int(config["""num_epochs"""] )
__UpperCAmelCase : Optional[Any] = int(config["""seed"""] )
__UpperCAmelCase : List[Any] = int(config["""batch_size"""] )
__UpperCAmelCase : List[Any] = evaluate.load("""glue""" , """mrpc""" )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=lowerCAmelCase__ )
def inner_training_loop(lowerCAmelCase__ : Dict ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(lowerCAmelCase__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__UpperCAmelCase : Dict = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase__ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__UpperCAmelCase : List[str] = model.to(accelerator.device )
# Instantiate optimizer
__UpperCAmelCase : Union[str, Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ )
__UpperCAmelCase , __UpperCAmelCase : List[str] = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ )
# Instantiate scheduler
__UpperCAmelCase : Optional[int] = get_linear_schedule_with_warmup(
optimizer=lowerCAmelCase__ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = accelerator.prepare(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Now we train the model
for epoch in range(lowerCAmelCase__ ):
model.train()
for step, batch in enumerate(lowerCAmelCase__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
__UpperCAmelCase : List[str] = model(**lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = outputs.loss
accelerator.backward(lowerCAmelCase__ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowerCAmelCase__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__UpperCAmelCase : Dict = model(**lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = outputs.logits.argmax(dim=-1 )
__UpperCAmelCase , __UpperCAmelCase : Tuple = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , )
__UpperCAmelCase : str = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'epoch {epoch}:' , lowerCAmelCase__ )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
__UpperCAmelCase : Tuple = parser.parse_args()
__UpperCAmelCase : Optional[Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 16 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _A :
@staticmethod
def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = [
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
]
return object_detector, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 )
__UpperCAmelCase : Tuple = len(__UpperCAmelCase )
self.assertGreater(__UpperCAmelCase , 0 )
self.assertEqual(
__UpperCAmelCase , [
{
"""score""": ANY(__UpperCAmelCase ),
"""label""": ANY(__UpperCAmelCase ),
"""box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )},
}
for i in range(__UpperCAmelCase )
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> Tuple:
'''simple docstring'''
pass
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
] , )
__UpperCAmelCase : str = object_detector(
[
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
]
] , )
@require_torch
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
] , )
__UpperCAmelCase : Any = object_detector(
[
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> List[str]:
'''simple docstring'''
pass
@require_torch
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = 0.2
__UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
] , )
@require_torch
@slow
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 2
__UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
] , )
| 16 | 1 |
'''simple docstring'''
import unittest
from transformers import AutoTokenizer, FalconConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
)
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : str = parent
__UpperCAmelCase : List[Any] = batch_size
__UpperCAmelCase : List[Any] = seq_length
__UpperCAmelCase : List[str] = is_training
__UpperCAmelCase : List[Any] = use_input_mask
__UpperCAmelCase : Any = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : int = vocab_size
__UpperCAmelCase : Dict = hidden_size
__UpperCAmelCase : Tuple = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : List[str] = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : int = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : int = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_size
__UpperCAmelCase : Optional[Any] = type_sequence_label_size
__UpperCAmelCase : Union[str, Any] = initializer_range
__UpperCAmelCase : List[str] = num_labels
__UpperCAmelCase : Optional[int] = num_choices
__UpperCAmelCase : str = scope
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Tuple = None
if self.use_input_mask:
__UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Dict = None
__UpperCAmelCase : Optional[Any] = None
__UpperCAmelCase : Dict = None
__UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
__UpperCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> int:
'''simple docstring'''
return FalconConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__UpperCAmelCase , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : str = FalconModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCAmelCase : List[str] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Any = True
__UpperCAmelCase : Optional[int] = FalconModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Optional[int] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = FalconForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> int:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = True
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : Optional[Any] = FalconForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
# first forward pass
__UpperCAmelCase : Any = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , )
__UpperCAmelCase : Optional[int] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCAmelCase : int = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCAmelCase : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCAmelCase : Optional[int] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
__UpperCAmelCase : Optional[int] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
# select random slice
__UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCAmelCase : int = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : List[str] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : int = config_and_inputs
__UpperCAmelCase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = (
(
FalconModel,
FalconForCausalLM,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconForQuestionAnswering,
)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE : List[Any] = (FalconForCausalLM,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : List[Any] = (
{
"feature-extraction": FalconModel,
"text-classification": FalconForSequenceClassification,
"text-generation": FalconForCausalLM,
"question-answering": FalconForQuestionAnswering,
"token-classification": FalconForTokenClassification,
"zero-shot": FalconForSequenceClassification,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : Optional[int] = False
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Tuple = FalconModelTester(self )
__UpperCAmelCase : str = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase , *__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
for alibi in [True, False]:
__UpperCAmelCase : int = alibi
self.model_tester.create_and_check_model(__UpperCAmelCase , *__UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[str] = 3
__UpperCAmelCase : Optional[int] = input_dict["""input_ids"""]
__UpperCAmelCase : Optional[int] = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : str = FalconForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = 3
__UpperCAmelCase : List[Any] = """single_label_classification"""
__UpperCAmelCase : List[Any] = input_dict["""input_ids"""]
__UpperCAmelCase : Optional[int] = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : List[str] = FalconForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : str = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Dict = input_dict["""input_ids"""]
__UpperCAmelCase : Optional[Any] = FalconForCausalLM(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : str = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
__UpperCAmelCase : int = input_ids.shape[0]
__UpperCAmelCase : Optional[int] = model._convert_to_rw_cache(result.past_key_values )
__UpperCAmelCase : Any = model._convert_cache_to_standard_format(__UpperCAmelCase , __UpperCAmelCase )
for layer in range(len(__UpperCAmelCase ) ):
for tensor_idx in range(2 ):
self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 )
self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 )
self.assertTrue(
torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[str] = 3
__UpperCAmelCase : Tuple = """multi_label_classification"""
__UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
__UpperCAmelCase : List[str] = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCAmelCase : Any = FalconForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> List[Any]:
'''simple docstring'''
# Falcon can have different numbers of KV-heads than the number of query heads, so we need
# to override this test to use the right head counts.
for model_class in self.all_generative_model_classes:
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
# If it doesn't support cache, pass the test
if not hasattr(__UpperCAmelCase , """use_cache""" ):
return
__UpperCAmelCase : Tuple = model_class(__UpperCAmelCase ).to(__UpperCAmelCase )
if "use_cache" not in inputs:
__UpperCAmelCase : Optional[Any] = True
__UpperCAmelCase : int = model(**__UpperCAmelCase )
# If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format)
if "past_key_values" not in outputs:
return
__UpperCAmelCase : List[Any] = (
getattr(__UpperCAmelCase , """decoder_layers""" , __UpperCAmelCase )
or getattr(__UpperCAmelCase , """num_decoder_layers""" , __UpperCAmelCase )
or config.num_hidden_layers
)
__UpperCAmelCase : str = getattr(__UpperCAmelCase , """num_kv_heads""" , config.num_attention_heads )
__UpperCAmelCase : Optional[Any] = getattr(__UpperCAmelCase , """d_model""" , config.hidden_size )
__UpperCAmelCase : List[Any] = embed_dim // num_attention_heads
__UpperCAmelCase : List[str] = outputs["""past_key_values"""]
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = inputs["""input_ids"""].shape
for i in range(__UpperCAmelCase ):
if config.new_decoder_architecture:
__UpperCAmelCase : str = config.num_attention_heads
elif config.multi_query:
__UpperCAmelCase : Dict = 1
self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2
self.assertEqual(
past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) )
self.assertEqual(
past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) )
@require_torch
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained("""Rocketknight1/falcon-rw-1b""" )
__UpperCAmelCase : Optional[Any] = FalconForCausalLM.from_pretrained("""Rocketknight1/falcon-rw-1b""" )
model.eval()
model.to(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__UpperCAmelCase )
__UpperCAmelCase : List[str] = (
"""My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday."""
)
__UpperCAmelCase : List[Any] = model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=19 )
__UpperCAmelCase : Tuple = tokenizer.batch_decode(__UpperCAmelCase )[0]
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
# The big models are way too big for the CI, so we use tiny random models that resemble their
# architectures but with much smaller and fewer layers
for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]:
__UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__UpperCAmelCase )
__UpperCAmelCase : Tuple = FalconForCausalLM.from_pretrained(__UpperCAmelCase )
model.eval()
model.to(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__UpperCAmelCase )
# We just test that these run without errors - the models are randomly initialized
# and so the actual text outputs will be garbage
model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=4 )
model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=4 )
model.generate(**__UpperCAmelCase , num_beams=2 , max_new_tokens=4 )
@slow
def __A ( self ) -> int:
'''simple docstring'''
# The big models are way too big for the CI, so we use tiny random models that resemble their
# architectures but with much smaller and fewer layers
with torch.no_grad():
for repo in [
"Rocketknight1/falcon-rw-1b",
"Rocketknight1/tiny-random-falcon-7b",
"Rocketknight1/tiny-random-falcon-40b",
]:
__UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__UpperCAmelCase )
__UpperCAmelCase : int = FalconForCausalLM.from_pretrained(__UpperCAmelCase )
model.eval()
model.to(device=__UpperCAmelCase )
__UpperCAmelCase : int = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__UpperCAmelCase )
# Test results are the same with and without cache
__UpperCAmelCase : List[str] = model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=20 , use_cache=__UpperCAmelCase )
__UpperCAmelCase : int = model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=20 , use_cache=__UpperCAmelCase )
self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
| 16 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.txt'''}
_UpperCamelCase = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': 512,
'''YituTech/conv-bert-medium-small''': 512,
'''YituTech/conv-bert-small''': 512,
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION
_SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars
):
__UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) )
__UpperCAmelCase : Union[str, Any] = do_lower_case
__UpperCAmelCase : str = strip_accents
__UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars
__UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase )
__UpperCAmelCase : List[Any] = do_lower_case
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [self.sep_token_id]
__UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''],
'''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''],
'''processing_whisper''': ['''WhisperProcessor'''],
'''tokenization_whisper''': ['''WhisperTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''WhisperTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''WhisperForConditionalGeneration''',
'''WhisperModel''',
'''WhisperPreTrainedModel''',
'''WhisperForAudioClassification''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWhisperForConditionalGeneration''',
'''TFWhisperModel''',
'''TFWhisperPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FlaxWhisperForConditionalGeneration''',
'''FlaxWhisperModel''',
'''FlaxWhisperPreTrainedModel''',
'''FlaxWhisperForAudioClassification''',
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_UpperCamelCase = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''OwlViTFeatureExtractor''']
_UpperCamelCase = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 1 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} )
_SCREAMING_SNAKE_CASE : str = "image"
_SCREAMING_SNAKE_CASE : str = "labels"
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(f'Column {self.label_column} is not present in features.' )
if not isinstance(features[self.label_column] , __UpperCAmelCase ):
raise ValueError(f'Column {self.label_column} is not a ClassLabel.' )
__UpperCAmelCase : int = copy.deepcopy(self )
__UpperCAmelCase : str = self.label_schema.copy()
__UpperCAmelCase : Optional[Any] = features[self.label_column]
__UpperCAmelCase : Optional[int] = label_schema
return task_template
@property
def __A ( self ) -> Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 16 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
'''simple docstring'''
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(lowerCAmelCase__ , """_dynamo""" ):
return False
return isinstance(lowerCAmelCase__ , torch._dynamo.eval_frame.OptimizedModule )
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : bool = True ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
__UpperCAmelCase : Any = is_compiled_module(lowerCAmelCase__ )
if is_compiled:
__UpperCAmelCase : Optional[Any] = model
__UpperCAmelCase : List[Any] = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase : str = model.module
if not keep_fpaa_wrapper:
__UpperCAmelCase : Union[str, Any] = getattr(lowerCAmelCase__ , """forward""" )
__UpperCAmelCase : Optional[Any] = model.__dict__.pop("""_original_forward""" , lowerCAmelCase__ )
if original_forward is not None:
while hasattr(lowerCAmelCase__ , """__wrapped__""" ):
__UpperCAmelCase : Dict = forward.__wrapped__
if forward == original_forward:
break
__UpperCAmelCase : str = forward
if getattr(lowerCAmelCase__ , """_converted_to_transformer_engine""" , lowerCAmelCase__ ):
convert_model(lowerCAmelCase__ , to_transformer_engine=lowerCAmelCase__ )
if is_compiled:
__UpperCAmelCase : Optional[Any] = model
__UpperCAmelCase : Tuple = compiled_model
return model
def lowercase_ ( ):
"""simple docstring"""
PartialState().wait_for_everyone()
def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
if PartialState().distributed_type == DistributedType.TPU:
xm.save(lowerCAmelCase__ , lowerCAmelCase__ )
elif PartialState().local_process_index == 0:
torch.save(lowerCAmelCase__ , lowerCAmelCase__ )
@contextmanager
def lowercase_ ( **lowerCAmelCase__ : int ):
"""simple docstring"""
for key, value in kwargs.items():
__UpperCAmelCase : Any = str(lowerCAmelCase__ )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] ):
"""simple docstring"""
if not hasattr(lowerCAmelCase__ , """__qualname__""" ) and not hasattr(lowerCAmelCase__ , """__name__""" ):
__UpperCAmelCase : Union[str, Any] = getattr(lowerCAmelCase__ , """__class__""" , lowerCAmelCase__ )
if hasattr(lowerCAmelCase__ , """__qualname__""" ):
return obj.__qualname__
if hasattr(lowerCAmelCase__ , """__name__""" ):
return obj.__name__
return str(lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ):
"""simple docstring"""
for key, value in source.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase : Any = destination.setdefault(lowerCAmelCase__ , {} )
merge_dicts(lowerCAmelCase__ , lowerCAmelCase__ )
else:
__UpperCAmelCase : Optional[Any] = value
return destination
def lowercase_ ( lowerCAmelCase__ : int = None ):
"""simple docstring"""
if port is None:
__UpperCAmelCase : List[Any] = 29500
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(("""localhost""", port) ) == 0
| 16 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
_UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
_SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" )
__UpperCAmelCase : List[Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] )
__UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
# Legacy behavior
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] )
__UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""label""": """LABEL_0""", """score""": 0.504},
{"""label""": """LABEL_0""", """score""": 0.504},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
import torch
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@require_tf
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@slow
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = pipeline("""text-classification""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
@slow
@require_tf
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : int = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
__UpperCAmelCase : Union[str, Any] = """HuggingFace is in"""
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
__UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""]
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase )
__UpperCAmelCase : Any = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , )
__UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""}
__UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , )
self.assertTrue(outputs["""label"""] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
__UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]]
with self.assertRaises(__UpperCAmelCase ):
text_classifier(__UpperCAmelCase )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
__UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
| 16 | 1 |
'''simple docstring'''
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
_UpperCamelCase = '''\
Text data.
Second line of data.'''
_UpperCamelCase = '''file'''
@pytest.fixture(scope="""session""" )
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : str = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""")
__UpperCAmelCase : Optional[int] = bytes(lowerCAmelCase__ , """utf-8""" )
with zstd.open(lowerCAmelCase__ , """wb""" ) as f:
f.write(lowerCAmelCase__ )
return path
@pytest.fixture
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] ):
"""simple docstring"""
with open(os.path.join(tmpfs.local_root_dir , lowerCAmelCase__ ) , """w""" ) as f:
f.write(lowerCAmelCase__ )
return FILE_PATH
@pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] )
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : str = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path}
__UpperCAmelCase : Any = input_paths[compression_format]
__UpperCAmelCase : int = tmp_path / """cache"""
__UpperCAmelCase : int = DownloadConfig(cache_dir=lowerCAmelCase__ , extract_compressed_file=lowerCAmelCase__ )
__UpperCAmelCase : str = cached_path(lowerCAmelCase__ , download_config=lowerCAmelCase__ )
with open(lowerCAmelCase__ ) as f:
__UpperCAmelCase : Optional[int] = f.read()
with open(lowerCAmelCase__ ) as f:
__UpperCAmelCase : str = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize("""default_extracted""" , [True, False] )
@pytest.mark.parametrize("""default_cache_dir""" , [True, False] )
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = """custom_cache"""
__UpperCAmelCase : List[str] = """custom_extracted_dir"""
__UpperCAmelCase : int = tmp_path / """custom_extracted_path"""
if default_extracted:
__UpperCAmelCase : str = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""")
else:
monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , lowerCAmelCase__ )
monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(lowerCAmelCase__ ) )
__UpperCAmelCase : Optional[Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
__UpperCAmelCase : Any = xz_file
__UpperCAmelCase : Optional[Any] = (
DownloadConfig(extract_compressed_file=lowerCAmelCase__ )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowerCAmelCase__ )
)
__UpperCAmelCase : List[str] = cached_path(lowerCAmelCase__ , download_config=lowerCAmelCase__ )
assert Path(lowerCAmelCase__ ).parent.parts[-2:] == expected
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = str(Path(lowerCAmelCase__ ).resolve() )
assert cached_path(lowerCAmelCase__ ) == text_file
# relative path
__UpperCAmelCase : Tuple = str(Path(lowerCAmelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(lowerCAmelCase__ ) == text_file
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = str(tmp_path.resolve() / """__missing_file__.txt""" )
with pytest.raises(lowerCAmelCase__ ):
cached_path(lowerCAmelCase__ )
# relative path
__UpperCAmelCase : Union[str, Any] = """./__missing_file__.txt"""
with pytest.raises(lowerCAmelCase__ ):
cached_path(lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : int = get_from_cache(f'tmp://{tmpfs_file}' )
with open(lowerCAmelCase__ ) as f:
__UpperCAmelCase : Dict = f.read()
assert output_file_content == FILE_CONTENT
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowerCAmelCase__ )
def lowercase_ ( ):
"""simple docstring"""
with pytest.raises(lowerCAmelCase__ ):
cached_path("""https://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(lowerCAmelCase__ ):
http_get("""https://huggingface.co""" , temp_file=lowerCAmelCase__ )
with pytest.raises(lowerCAmelCase__ ):
http_head("""https://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(lowerCAmelCase__ ):
ftp_get("""ftp://huggingface.co""" , temp_file=lowerCAmelCase__ )
with pytest.raises(lowerCAmelCase__ ):
ftp_head("""ftp://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : Optional[int] ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(lowerCAmelCase__ ):
fsspec_get("""s3://huggingface.co""" , temp_file=lowerCAmelCase__ )
with pytest.raises(lowerCAmelCase__ ):
fsspec_head("""s3://huggingface.co""" )
| 16 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
| 16 | 1 |
'''simple docstring'''
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : List[str] = FileLock(str(tmpdir / """foo.lock""" ) )
__UpperCAmelCase : Any = FileLock(str(tmpdir / """foo.lock""" ) )
__UpperCAmelCase : int = 0.01
with locka.acquire():
with pytest.raises(lowerCAmelCase__ ):
__UpperCAmelCase : Dict = time.time()
locka.acquire(lowerCAmelCase__ )
assert time.time() - _start > timeout
def lowercase_ ( lowerCAmelCase__ : Any ):
"""simple docstring"""
__UpperCAmelCase : int = """a""" * 1000 + """.lock"""
__UpperCAmelCase : int = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith(""".lock""" )
assert not locka._lock_file.endswith(lowerCAmelCase__ )
assert len(os.path.basename(locka._lock_file ) ) <= 255
__UpperCAmelCase : Optional[int] = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(lowerCAmelCase__ ):
locka.acquire(0 )
| 16 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class _A :
def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase )
__UpperCAmelCase : List[str] = length
__UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa )
__UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ) -> Dict:
'''simple docstring'''
return self.length
def __getitem__( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return {"x": self.x[i], "y": self.y[i]}
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Any = True
def __A ( self , __UpperCAmelCase=None ) -> str:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : Optional[int] = False
return x * self.a[0] + self.b[0]
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : str = True
def __A ( self , __UpperCAmelCase=None ) -> Tuple:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : int = False
return x * self.a + self.b
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
__UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" )
__UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
__UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" )
__UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )}
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCAmelCase : List[Any] = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" )
if "label" in examples:
__UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCAmelCase : Tuple = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCAmelCase__ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 )
__UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 16 | 1 |
'''simple docstring'''
import argparse
import hashlib
import os
import urllib
import warnings
import torch
from torch import nn
from tqdm import tqdm
from transformers import WhisperConfig, WhisperForConditionalGeneration
_UpperCamelCase = {
'''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''',
'''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''',
'''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''',
'''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''',
'''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''',
'''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''',
'''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''',
'''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''',
'''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''',
'''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''',
}
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : int = ["""layers""", """blocks"""]
for k in ignore_keys:
state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {
'''blocks''': '''layers''',
'''mlp.0''': '''fc1''',
'''mlp.2''': '''fc2''',
'''mlp_ln''': '''final_layer_norm''',
'''.attn.query''': '''.self_attn.q_proj''',
'''.attn.key''': '''.self_attn.k_proj''',
'''.attn.value''': '''.self_attn.v_proj''',
'''.attn_ln''': '''.self_attn_layer_norm''',
'''.attn.out''': '''.self_attn.out_proj''',
'''.cross_attn.query''': '''.encoder_attn.q_proj''',
'''.cross_attn.key''': '''.encoder_attn.k_proj''',
'''.cross_attn.value''': '''.encoder_attn.v_proj''',
'''.cross_attn_ln''': '''.encoder_attn_layer_norm''',
'''.cross_attn.out''': '''.encoder_attn.out_proj''',
'''decoder.ln.''': '''decoder.layer_norm.''',
'''encoder.ln.''': '''encoder.layer_norm.''',
'''token_embedding''': '''embed_tokens''',
'''encoder.positional_embedding''': '''encoder.embed_positions.weight''',
'''decoder.positional_embedding''': '''decoder.embed_positions.weight''',
'''ln_post''': '''layer_norm''',
}
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = list(s_dict.keys() )
for key in keys:
__UpperCAmelCase : List[str] = key
for k, v in WHISPER_MAPPING.items():
if k in key:
__UpperCAmelCase : Any = new_key.replace(lowerCAmelCase__ , lowerCAmelCase__ )
print(f'{key} -> {new_key}' )
__UpperCAmelCase : List[str] = s_dict.pop(lowerCAmelCase__ )
return s_dict
def lowercase_ ( lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : List[str] = emb.weight.shape
__UpperCAmelCase : Optional[Any] = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ )
__UpperCAmelCase : int = emb.weight.data
return lin_layer
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ):
"""simple docstring"""
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
__UpperCAmelCase : List[str] = os.path.basename(lowerCAmelCase__ )
__UpperCAmelCase : Any = url.split("""/""" )[-2]
__UpperCAmelCase : List[str] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
if os.path.exists(lowerCAmelCase__ ) and not os.path.isfile(lowerCAmelCase__ ):
raise RuntimeError(f'{download_target} exists and is not a regular file' )
if os.path.isfile(lowerCAmelCase__ ):
__UpperCAmelCase : List[Any] = open(lowerCAmelCase__ , """rb""" ).read()
if hashlib.shaaaa(lowerCAmelCase__ ).hexdigest() == expected_shaaaa:
return model_bytes
else:
warnings.warn(f'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file' )
with urllib.request.urlopen(lowerCAmelCase__ ) as source, open(lowerCAmelCase__ , """wb""" ) as output:
with tqdm(
total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=lowerCAmelCase__ , unit_divisor=1024 ) as loop:
while True:
__UpperCAmelCase : Optional[Any] = source.read(8192 )
if not buffer:
break
output.write(lowerCAmelCase__ )
loop.update(len(lowerCAmelCase__ ) )
__UpperCAmelCase : Optional[Any] = open(lowerCAmelCase__ , """rb""" ).read()
if hashlib.shaaaa(lowerCAmelCase__ ).hexdigest() != expected_shaaaa:
raise RuntimeError(
"""Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" )
return model_bytes
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ):
"""simple docstring"""
if ".pt" not in checkpoint_path:
__UpperCAmelCase : Union[str, Any] = _download(_MODELS[checkpoint_path] )
else:
__UpperCAmelCase : List[str] = torch.load(lowerCAmelCase__ , map_location="""cpu""" )
__UpperCAmelCase : Any = original_checkpoint["""dims"""]
__UpperCAmelCase : Any = original_checkpoint["""model_state_dict"""]
__UpperCAmelCase : Union[str, Any] = state_dict["""decoder.token_embedding.weight"""]
remove_ignore_keys_(lowerCAmelCase__ )
rename_keys(lowerCAmelCase__ )
__UpperCAmelCase : Dict = True
__UpperCAmelCase : Union[str, Any] = state_dict["""decoder.layers.0.fc1.weight"""].shape[0]
__UpperCAmelCase : Tuple = WhisperConfig(
vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=lowerCAmelCase__ , decoder_ffn_dim=lowerCAmelCase__ , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , )
__UpperCAmelCase : Optional[int] = WhisperForConditionalGeneration(lowerCAmelCase__ )
__UpperCAmelCase , __UpperCAmelCase : Tuple = model.model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
if len(lowerCAmelCase__ ) > 0 and not set(lowerCAmelCase__ ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
"""Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,"""
f' but all the following weights are missing {missing}' )
if tie_embeds:
__UpperCAmelCase : Optional[Any] = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
__UpperCAmelCase : str = proj_out_weights
model.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# # Required parameters
parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''')
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
| 16 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None
@property
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = (3, 32, 128)
__UpperCAmelCase : Tuple = tempfile.mkdtemp()
# fmt: off
__UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
__UpperCAmelCase : List[Any] = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
__UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) )
return image_input
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.get_tokenizer()
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
__UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.prepare_image_inputs()
__UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" )
__UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Dict = """test"""
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = """test"""
__UpperCAmelCase : int = self.prepare_image_inputs()
__UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase )
__UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = self.get_tokenizer()
__UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : str = None
__UpperCAmelCase : Dict = self.prepare_image_inputs()
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Any = self.get_image_processor()
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 )
__UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 )
__UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 )
__UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
| 16 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.txt'''}
_UpperCamelCase = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': 512,
'''YituTech/conv-bert-medium-small''': 512,
'''YituTech/conv-bert-small''': 512,
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION
_SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars
):
__UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) )
__UpperCAmelCase : Union[str, Any] = do_lower_case
__UpperCAmelCase : str = strip_accents
__UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars
__UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase )
__UpperCAmelCase : List[Any] = do_lower_case
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [self.sep_token_id]
__UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 16 |
'''simple docstring'''
from collections.abc import Sequence
def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ):
"""simple docstring"""
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__UpperCAmelCase : Any = nums[0]
for i in range(1 , len(lowerCAmelCase__ ) ):
__UpperCAmelCase : Union[str, Any] = nums[i]
__UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_UpperCamelCase = int(input('''Enter number of elements : ''').strip())
_UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n]
print(max_subsequence_sum(array))
| 16 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ):
"""simple docstring"""
__UpperCAmelCase : List[str] = RemBertConfig.from_json_file(lowerCAmelCase__ )
print("""Building PyTorch model from configuration: {}""".format(str(lowerCAmelCase__ ) ) )
__UpperCAmelCase : Optional[int] = RemBertModel(lowerCAmelCase__ )
# Load weights from tf checkpoint
load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model
print("""Save PyTorch model to {}""".format(lowerCAmelCase__ ) )
torch.save(model.state_dict() , lowerCAmelCase__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--rembert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained RemBERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_UpperCamelCase = parser.parse_args()
convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
| 16 |
'''simple docstring'''
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = data
__UpperCAmelCase : int = previous
__UpperCAmelCase : Union[str, Any] = next_node
def __str__( self ) -> str:
'''simple docstring'''
return f'{self.data}'
def __A ( self ) -> int:
'''simple docstring'''
return self.data
def __A ( self ) -> List[str]:
'''simple docstring'''
return self.next
def __A ( self ) -> str:
'''simple docstring'''
return self.previous
class _A :
def __init__( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = head
def __iter__( self ) -> str:
'''simple docstring'''
return self
def __A ( self ) -> str:
'''simple docstring'''
if not self.current:
raise StopIteration
else:
__UpperCAmelCase : List[str] = self.current.get_data()
__UpperCAmelCase : int = self.current.get_next()
return value
class _A :
def __init__( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = None # First node in list
__UpperCAmelCase : List[str] = None # Last node in list
def __str__( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.head
__UpperCAmelCase : Optional[int] = []
while current is not None:
nodes.append(current.get_data() )
__UpperCAmelCase : Any = current.get_next()
return " ".join(str(__UpperCAmelCase ) for node in nodes )
def __contains__( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.head
while current:
if current.get_data() == value:
return True
__UpperCAmelCase : Optional[Any] = current.get_next()
return False
def __iter__( self ) -> str:
'''simple docstring'''
return LinkedListIterator(self.head )
def __A ( self ) -> List[Any]:
'''simple docstring'''
if self.head:
return self.head.get_data()
return None
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
if self.tail:
return self.tail.get_data()
return None
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
__UpperCAmelCase : str = node
__UpperCAmelCase : List[str] = node
else:
self.insert_before_node(self.head , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase )
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.set_tail(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Tuple = node
__UpperCAmelCase : List[Any] = node.previous
if node.get_previous() is None:
__UpperCAmelCase : str = node_to_insert
else:
__UpperCAmelCase : Optional[Any] = node_to_insert
__UpperCAmelCase : List[Any] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : List[str] = node
__UpperCAmelCase : Union[str, Any] = node.next
if node.get_next() is None:
__UpperCAmelCase : Dict = node_to_insert
else:
__UpperCAmelCase : Any = node_to_insert
__UpperCAmelCase : List[str] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.head
while node:
if current_position == position:
self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase )
return
current_position += 1
__UpperCAmelCase : int = node.next
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Node:
'''simple docstring'''
__UpperCAmelCase : Dict = self.head
while node:
if node.get_data() == item:
return node
__UpperCAmelCase : List[str] = node.get_next()
raise Exception("""Node not found""" )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
if (node := self.get_node(__UpperCAmelCase )) is not None:
if node == self.head:
__UpperCAmelCase : Optional[int] = self.head.get_next()
if node == self.tail:
__UpperCAmelCase : Union[str, Any] = self.tail.get_previous()
self.remove_node_pointers(__UpperCAmelCase )
@staticmethod
def __A ( __UpperCAmelCase ) -> None:
'''simple docstring'''
if node.get_next():
__UpperCAmelCase : Optional[Any] = node.previous
if node.get_previous():
__UpperCAmelCase : int = node.next
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Union[str, Any] = None
def __A ( self ) -> List[Any]:
'''simple docstring'''
return self.head is None
def lowercase_ ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_UpperCamelCase = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''MLukeTokenizer''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : List[str]
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __call__( self ) -> Any:
'''simple docstring'''
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : Optional[List] = None
_SCREAMING_SNAKE_CASE : Optional[int] = None
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None
__UpperCAmelCase : int = len(self.languages ) if self.languages else None
def __call__( self ) -> Optional[Any]:
'''simple docstring'''
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def __A ( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = set(self.languages )
if self.languages and set(__UpperCAmelCase ) - lang_set:
raise ValueError(
f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__UpperCAmelCase : Dict = []
for lang, text in translation_dict.items():
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 16 | 1 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class _A :
def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase )
__UpperCAmelCase : List[str] = length
__UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa )
__UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ) -> Dict:
'''simple docstring'''
return self.length
def __getitem__( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return {"x": self.x[i], "y": self.y[i]}
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Any = True
def __A ( self , __UpperCAmelCase=None ) -> str:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : Optional[int] = False
return x * self.a[0] + self.b[0]
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : str = True
def __A ( self , __UpperCAmelCase=None ) -> Tuple:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : int = False
return x * self.a + self.b
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
__UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" )
__UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
__UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" )
__UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )}
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCAmelCase : List[Any] = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" )
if "label" in examples:
__UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCAmelCase : Tuple = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCAmelCase__ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 )
__UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 16 |
'''simple docstring'''
from statistics import mean
import numpy as np
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Tuple = 0
# Number of processes finished
__UpperCAmelCase : Optional[int] = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
__UpperCAmelCase : Tuple = [0] * no_of_process
# List to include calculation results
__UpperCAmelCase : int = [0] * no_of_process
# Sort by arrival time.
__UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )]
__UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )]
arrival_time.sort()
while no_of_process > finished_process_count:
__UpperCAmelCase : Dict = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
__UpperCAmelCase : Any = arrival_time[i]
__UpperCAmelCase : Any = 0
# Index showing the location of the process being performed
__UpperCAmelCase : Any = 0
# Saves the current response ratio.
__UpperCAmelCase : List[str] = 0
for i in range(0 , lowerCAmelCase__ ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
__UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
__UpperCAmelCase : Tuple = temp
__UpperCAmelCase : List[str] = i
# Calculate the turn around time
__UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
__UpperCAmelCase : List[str] = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [0] * no_of_process
for i in range(0 , lowerCAmelCase__ ):
__UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
_UpperCamelCase = 5
_UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E''']
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
_UpperCamelCase = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''')
for i in range(0, no_of_process):
print(
F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'
F'{turn_around_time[i]}\t\t\t{waiting_time[i]}'
)
print(F'average waiting time : {mean(waiting_time):.5f}')
print(F'average turn around time : {mean(turn_around_time):.5f}')
| 16 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase )
__UpperCAmelCase : int = AutoTokenizer.from_pretrained("""google/mt5-small""" )
__UpperCAmelCase : Any = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids
__UpperCAmelCase : Union[str, Any] = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids
__UpperCAmelCase : str = model(input_ids.to(__UpperCAmelCase ) , labels=labels.to(__UpperCAmelCase ) ).loss
__UpperCAmelCase : int = -(labels.shape[-1] * loss.item())
__UpperCAmelCase : Any = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 16 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = parent
__UpperCAmelCase : Any = batch_size
__UpperCAmelCase : Union[str, Any] = seq_length
__UpperCAmelCase : int = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[str] = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Union[str, Any] = num_hidden_layers
__UpperCAmelCase : Optional[int] = num_attention_heads
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_size
__UpperCAmelCase : Dict = type_sequence_label_size
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : Optional[Any] = num_choices
__UpperCAmelCase : int = scope
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : List[Any] = None
if self.use_input_mask:
__UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Any = None
if self.use_token_type_ids:
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Optional[int] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> List[str]:
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_config()
__UpperCAmelCase : List[Any] = 300
return config
def __A ( self ) -> Dict:
'''simple docstring'''
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = self.prepare_config_and_inputs()
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : List[str] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.num_labels
__UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_choices
__UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : List[str] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
__UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Any = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : int = False
_SCREAMING_SNAKE_CASE : List[str] = False
_SCREAMING_SNAKE_CASE : Dict = ()
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = MraModelTester(self )
__UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : List[Any] = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""MRA does not output attentions""" )
def __A ( self ) -> List[Any]:
'''simple docstring'''
return
@require_torch
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : int = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Union[str, Any] = 50_265
__UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" )
__UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : Any = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Dict = 50_265
__UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : str = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 1 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase : str = hex_num.strip()
if not hex_num:
raise ValueError("""No value was passed to the function""" )
__UpperCAmelCase : Tuple = hex_num[0] == """-"""
if is_negative:
__UpperCAmelCase : Union[str, Any] = hex_num[1:]
try:
__UpperCAmelCase : Optional[Any] = int(lowerCAmelCase__ , 16 )
except ValueError:
raise ValueError("""Invalid value was passed to the function""" )
__UpperCAmelCase : Union[str, Any] = """"""
while int_num > 0:
__UpperCAmelCase : int = str(int_num % 2 ) + bin_str
int_num >>= 1
return int(("""-""" + bin_str) if is_negative else bin_str )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Any = image_size
__UpperCAmelCase : Dict = patch_size
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : List[Any] = embed_dim
__UpperCAmelCase : str = depths
__UpperCAmelCase : Dict = num_heads
__UpperCAmelCase : str = window_size
__UpperCAmelCase : int = mlp_ratio
__UpperCAmelCase : Union[str, Any] = qkv_bias
__UpperCAmelCase : Dict = hidden_dropout_prob
__UpperCAmelCase : str = attention_probs_dropout_prob
__UpperCAmelCase : Optional[int] = drop_path_rate
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Optional[int] = use_absolute_embeddings
__UpperCAmelCase : Any = patch_norm
__UpperCAmelCase : Union[str, Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : Any = scope
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : Optional[int] = type_sequence_label_size
__UpperCAmelCase : int = encoder_stride
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : Tuple = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def __A ( self ) -> Dict:
'''simple docstring'''
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
__UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : str = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = self.type_sequence_label_size
__UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs
__UpperCAmelCase : Dict = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
_SCREAMING_SNAKE_CASE : List[str] = (
{"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Dict = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[str] = SwinvaModelTester(self )
__UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 )
def __A ( self ) -> Any:
'''simple docstring'''
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
@unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason="""Swinv2 does not use inputs_embeds""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCAmelCase : List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Tuple = model_class(__UpperCAmelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : str = [*signature.parameters.keys()]
__UpperCAmelCase : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = True
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : int = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : str = outputs.attentions
__UpperCAmelCase : Any = len(self.model_tester.depths )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__UpperCAmelCase : Dict = True
__UpperCAmelCase : int = config.window_size**2
__UpperCAmelCase : Any = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : Dict = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
__UpperCAmelCase : Dict = len(__UpperCAmelCase )
# Check attention is always last and order is fine
__UpperCAmelCase : Any = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
if hasattr(self.model_tester , """num_hidden_states_types""" ):
__UpperCAmelCase : Any = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
__UpperCAmelCase : Optional[int] = 2
self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) )
__UpperCAmelCase : Tuple = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : List[Any] = outputs.hidden_states
__UpperCAmelCase : List[Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# Swinv2 has a different seq_length
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__UpperCAmelCase : int = outputs.reshaped_hidden_states
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape
__UpperCAmelCase : Any = (
reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = 3
__UpperCAmelCase : str = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__UpperCAmelCase : int = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Tuple = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase )
for model_class in self.all_model_classes:
__UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class _A ( unittest.TestCase ):
@cached_property
def __A ( self ) -> int:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" )
if is_vision_available()
else None
)
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to(
__UpperCAmelCase )
__UpperCAmelCase : Tuple = self.default_image_processor
__UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase )
# verify the logits
__UpperCAmelCase : int = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 1 |
'''simple docstring'''
_UpperCamelCase = [
'''Audio''',
'''Array2D''',
'''Array3D''',
'''Array4D''',
'''Array5D''',
'''ClassLabel''',
'''Features''',
'''Sequence''',
'''Value''',
'''Image''',
'''Translation''',
'''TranslationVariableLanguages''',
]
from .audio import Audio
from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value
from .image import Image
from .translation import Translation, TranslationVariableLanguages
| 16 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
_UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f'Could not make batched video from {videos}' )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
__UpperCAmelCase : int = do_resize
__UpperCAmelCase : List[str] = size
__UpperCAmelCase : Any = do_center_crop
__UpperCAmelCase : Any = crop_size
__UpperCAmelCase : Optional[Any] = resample
__UpperCAmelCase : Dict = do_rescale
__UpperCAmelCase : List[str] = rescale_factor
__UpperCAmelCase : Dict = offset
__UpperCAmelCase : List[str] = do_normalize
__UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" in size:
__UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase )
elif "height" in size and "width" in size:
__UpperCAmelCase : Any = (size["""height"""], size["""width"""])
else:
raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = image.astype(np.floataa )
if offset:
__UpperCAmelCase : Tuple = image - (scale / 2)
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
if offset and not do_rescale:
raise ValueError("""For offset, do_rescale must also be set to True.""" )
# All transformations expect numpy arrays.
__UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase )
if do_resize:
__UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase )
if do_center_crop:
__UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase )
if do_rescale:
__UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase )
if do_normalize:
__UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase )
return image
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : List[Any] = resample if resample is not None else self.resample
__UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : List[Any] = offset if offset is not None else self.offset
__UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : int = image_std if image_std is not None else self.image_std
__UpperCAmelCase : Any = size if size is not None else self.size
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
__UpperCAmelCase : int = make_batched(__UpperCAmelCase )
__UpperCAmelCase : Tuple = [
[
self._preprocess_image(
image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , )
for img in video
]
for video in videos
]
__UpperCAmelCase : Tuple = {"""pixel_values""": videos}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] ):
"""simple docstring"""
print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" )
for i in range(lowerCAmelCase__ ):
for j in range(lowerCAmelCase__ ):
if dist[i][j] != float("""inf""" ):
print(int(dist[i][j] ) , end="""\t""" )
else:
print("""INF""" , end="""\t""" )
print()
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : Dict = [[float("""inf""" ) for _ in range(lowerCAmelCase__ )] for _ in range(lowerCAmelCase__ )]
for i in range(lowerCAmelCase__ ):
for j in range(lowerCAmelCase__ ):
__UpperCAmelCase : List[Any] = graph[i][j]
# check vertex k against all other vertices (i, j)
for k in range(lowerCAmelCase__ ):
# looping through rows of graph array
for i in range(lowerCAmelCase__ ):
# looping through columns of graph array
for j in range(lowerCAmelCase__ ):
if (
dist[i][k] != float("""inf""" )
and dist[k][j] != float("""inf""" )
and dist[i][k] + dist[k][j] < dist[i][j]
):
__UpperCAmelCase : Union[str, Any] = dist[i][k] + dist[k][j]
_print_dist(lowerCAmelCase__ , lowerCAmelCase__ )
return dist, v
if __name__ == "__main__":
_UpperCamelCase = int(input('''Enter number of vertices: '''))
_UpperCamelCase = int(input('''Enter number of edges: '''))
_UpperCamelCase = [[float('''inf''') for i in range(v)] for j in range(v)]
for i in range(v):
_UpperCamelCase = 0.0
# src and dst are indices that must be within the array size graph[e][v]
# failure to follow this will result in an error
for i in range(e):
print('''\nEdge ''', i + 1)
_UpperCamelCase = int(input('''Enter source:'''))
_UpperCamelCase = int(input('''Enter destination:'''))
_UpperCamelCase = float(input('''Enter weight:'''))
_UpperCamelCase = weight
floyd_warshall(graph, v)
# Example Input
# Enter number of vertices: 3
# Enter number of edges: 2
# # generated graph from vertex and edge inputs
# [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]]
# [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]]
# specify source, destination and weight for edge #1
# Edge 1
# Enter source:1
# Enter destination:2
# Enter weight:2
# specify source, destination and weight for edge #2
# Edge 2
# Enter source:2
# Enter destination:1
# Enter weight:1
# # Expected Output from the vertice, edge and src, dst, weight inputs!!
# 0 INF INF
# INF 0 2
# INF 1 0
| 16 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline
_SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
_SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
_SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : Dict = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
__UpperCAmelCase : List[Any] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
__UpperCAmelCase : Any = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__UpperCAmelCase : Dict = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vqvae""": vae,
"""bert""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any:
'''simple docstring'''
if str(__UpperCAmelCase ).startswith("""mps""" ):
__UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : Dict = self.get_dummy_components()
__UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
__UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> List[str]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Tuple = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
__UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] )
__UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 50,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0]
__UpperCAmelCase : Tuple = load_numpy(
"""https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" )
__UpperCAmelCase : Dict = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 16 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {
'''configuration_xlm_roberta_xl''': [
'''XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''XLMRobertaXLConfig''',
'''XLMRobertaXLOnnxConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XLMRobertaXLForCausalLM''',
'''XLMRobertaXLForMaskedLM''',
'''XLMRobertaXLForMultipleChoice''',
'''XLMRobertaXLForQuestionAnswering''',
'''XLMRobertaXLForSequenceClassification''',
'''XLMRobertaXLForTokenClassification''',
'''XLMRobertaXLModel''',
'''XLMRobertaXLPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xlm_roberta_xl import (
XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaXLConfig,
XLMRobertaXLOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta_xl import (
XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaXLForCausalLM,
XLMRobertaXLForMaskedLM,
XLMRobertaXLForMultipleChoice,
XLMRobertaXLForQuestionAnswering,
XLMRobertaXLForSequenceClassification,
XLMRobertaXLForTokenClassification,
XLMRobertaXLModel,
XLMRobertaXLPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 16 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column
__UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )]
def __str__( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n'
# Make string identifier
__UpperCAmelCase : Optional[Any] = 0
for row_vector in self.array:
for obj in row_vector:
__UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) )
__UpperCAmelCase : Optional[int] = f'%{max_element_length}s'
# Make string and return
def single_line(__UpperCAmelCase ) -> str:
nonlocal string_format_identifier
__UpperCAmelCase : Any = """["""
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array )
return s
def __repr__( self ) -> str:
'''simple docstring'''
return str(self )
def __A ( self , __UpperCAmelCase ) -> bool:
'''simple docstring'''
if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
return self.array[loc[0]][loc[1]]
def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = value
def __add__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == another.row and self.column == another.column
# Add
__UpperCAmelCase : Dict = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] + another[r, c]
return result
def __neg__( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : Dict = -self[r, c]
return result
def __sub__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
return self + (-another)
def __mul__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication
__UpperCAmelCase : Optional[int] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] * another
return result
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication
assert self.column == another.row
__UpperCAmelCase : Dict = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
__UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})'
raise TypeError(__UpperCAmelCase )
def __A ( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Dict = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[str] = self[r, c]
return result
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
__UpperCAmelCase : Optional[Any] = v.transpose()
__UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Dict = Matrix(3 , 3 , 0 )
for i in range(3 ):
__UpperCAmelCase : Tuple = 1
print(f'a^(-1) is {ainv}' )
# u, v
__UpperCAmelCase : Dict = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3
__UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5
print(f'u is {u}' )
print(f'v is {v}' )
print(f'uv^T is {u * v.transpose()}' )
# Sherman Morrison
print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' )
def lowercase_ ( ):
"""simple docstring"""
import doctest
doctest.testmod()
testa()
| 16 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
'''simple docstring'''
warnings.warn(
"""The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use PoolFormerImageProcessor instead.""" , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 16 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''],
'''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''],
'''processing_wav2vec2''': ['''Wav2Vec2Processor'''],
'''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Wav2Vec2ForAudioFrameClassification''',
'''Wav2Vec2ForCTC''',
'''Wav2Vec2ForMaskedLM''',
'''Wav2Vec2ForPreTraining''',
'''Wav2Vec2ForSequenceClassification''',
'''Wav2Vec2ForXVector''',
'''Wav2Vec2Model''',
'''Wav2Vec2PreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWav2Vec2ForCTC''',
'''TFWav2Vec2Model''',
'''TFWav2Vec2PreTrainedModel''',
'''TFWav2Vec2ForSequenceClassification''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FlaxWav2Vec2ForCTC''',
'''FlaxWav2Vec2ForPreTraining''',
'''FlaxWav2Vec2Model''',
'''FlaxWav2Vec2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 1 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError("""Input value must be an 'int' type""" )
__UpperCAmelCase : int = 0
while number:
position += 1
number >>= 1
return position
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 |
'''simple docstring'''
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING
_SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING
def __A ( self ) -> Any:
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""},
{"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""},
] , )
__UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is grouped""",
"""score""": 2.1E-05,
"""token""": 38_015,
"""token_str""": """ grouped""",
},
{
"""sequence""": """The largest city in France is accuser""",
"""score""": 2.1E-05,
"""token""": 25_506,
"""token_str""": """ accuser""",
},
] , )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""},
{"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is Maul""",
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
},
{"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""},
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is Maul<mask></s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""},
],
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is<mask> Maul</s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""},
],
] , )
@require_torch_gpu
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" )
# convert model to fp16
pipe.model.half()
__UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
@require_torch
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" )
self.run_large_test(__UpperCAmelCase )
@slow
@require_tf
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" )
self.run_large_test(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""},
{"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{
"""sequence""": """The largest city in France is Paris""",
"""score""": 0.251,
"""token""": 2_201,
"""token_str""": """ Paris""",
},
{
"""sequence""": """The largest city in France is Lyon""",
"""score""": 0.214,
"""token""": 12_790,
"""token_str""": """ Lyon""",
},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" )
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : int = None
self.run_pipeline_test(__UpperCAmelCase , [] )
@require_tf
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : str = None
self.run_pipeline_test(__UpperCAmelCase , [] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" )
__UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = [
f'This is another {tokenizer.mask_token} test',
]
return fill_masker, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = fill_masker.tokenizer
__UpperCAmelCase : Union[str, Any] = fill_masker.model
__UpperCAmelCase : Tuple = fill_masker(
f'This is a {tokenizer.mask_token}' , )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
with self.assertRaises(__UpperCAmelCase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(__UpperCAmelCase ):
fill_masker("""This is""" )
self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Dict = tokenizer.get_vocab()
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:2]
# Pipeline argument
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase )
__UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Any = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Call argument
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Score equivalence
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs]
__UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ) == set(__UpperCAmelCase ):
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
# Raises with invalid
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] )
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 )
__UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : int = tokenizer.get_vocab()
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
# top_k=2, ntargets=3
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
__UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = tokenizer.get_vocab()
# String duplicates + id duplicates
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]]
__UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(__UpperCAmelCase ) , 3 )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Dict = fill_masker(
f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
| 16 | 1 |
'''simple docstring'''
_UpperCamelCase = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
_UpperCamelCase = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
_UpperCamelCase = {
0: '''Sunday''',
1: '''Monday''',
2: '''Tuesday''',
3: '''Wednesday''',
4: '''Thursday''',
5: '''Friday''',
6: '''Saturday''',
}
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ):
"""simple docstring"""
assert len(str(lowerCAmelCase__ ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 12, "month should be between 1 to 12"
assert 1 <= day <= 31, "day should be between 1 to 31"
# Doomsday algorithm:
__UpperCAmelCase : List[str] = year // 100
__UpperCAmelCase : int = (5 * (century % 4) + 2) % 7
__UpperCAmelCase : Optional[Any] = year % 100
__UpperCAmelCase : Optional[int] = centurian % 12
__UpperCAmelCase : str = (
(centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
__UpperCAmelCase : List[str] = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0)
else DOOMSDAY_LEAP[month - 1]
)
__UpperCAmelCase : int = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} )
_SCREAMING_SNAKE_CASE : str = "image"
_SCREAMING_SNAKE_CASE : str = "labels"
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(f'Column {self.label_column} is not present in features.' )
if not isinstance(features[self.label_column] , __UpperCAmelCase ):
raise ValueError(f'Column {self.label_column} is not a ClassLabel.' )
__UpperCAmelCase : int = copy.deepcopy(self )
__UpperCAmelCase : str = self.label_schema.copy()
__UpperCAmelCase : Optional[Any] = features[self.label_column]
__UpperCAmelCase : Optional[int] = label_schema
return task_template
@property
def __A ( self ) -> Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 16 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''],
'''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''],
'''processing_wav2vec2''': ['''Wav2Vec2Processor'''],
'''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Wav2Vec2ForAudioFrameClassification''',
'''Wav2Vec2ForCTC''',
'''Wav2Vec2ForMaskedLM''',
'''Wav2Vec2ForPreTraining''',
'''Wav2Vec2ForSequenceClassification''',
'''Wav2Vec2ForXVector''',
'''Wav2Vec2Model''',
'''Wav2Vec2PreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWav2Vec2ForCTC''',
'''TFWav2Vec2Model''',
'''TFWav2Vec2PreTrainedModel''',
'''TFWav2Vec2ForSequenceClassification''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FlaxWav2Vec2ForCTC''',
'''FlaxWav2Vec2ForPreTraining''',
'''FlaxWav2Vec2Model''',
'''FlaxWav2Vec2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Tuple = seq_length
__UpperCAmelCase : str = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[Any] = use_token_type_ids
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : str = num_attention_heads
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : Tuple = max_position_embeddings
__UpperCAmelCase : Dict = type_vocab_size
__UpperCAmelCase : List[Any] = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[str] = num_labels
__UpperCAmelCase : str = num_choices
__UpperCAmelCase : List[Any] = scope
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Tuple = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
# first forward pass
__UpperCAmelCase : Optional[int] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCAmelCase : int = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
# select random slice
__UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = config_and_inputs
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : List[str] = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = LlamaModelTester(self )
__UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : str = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Any = 3
__UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[int] = 3
__UpperCAmelCase : Optional[Any] = """single_label_classification"""
__UpperCAmelCase : int = input_dict["""input_ids"""]
__UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = 3
__UpperCAmelCase : str = """multi_label_classification"""
__UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size )
__UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
original_model.to(__UpperCAmelCase )
original_model.eval()
__UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0}
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
scaled_model.to(__UpperCAmelCase )
scaled_model.eval()
__UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
@require_torch
class _A ( unittest.TestCase ):
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" )
__UpperCAmelCase : int = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" )
__UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" )
__UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
@unittest.skip(
"""Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" )
@slow
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" )
__UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) )
__UpperCAmelCase : Dict = torch.tensor(
[[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Model is curently gated""" )
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi"""
__UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """
__UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" )
__UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" )
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained(
"""meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase )
# greedy generation outputs
__UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = parent
__UpperCAmelCase : Any = batch_size
__UpperCAmelCase : Union[str, Any] = seq_length
__UpperCAmelCase : int = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[str] = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Union[str, Any] = num_hidden_layers
__UpperCAmelCase : Optional[int] = num_attention_heads
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_size
__UpperCAmelCase : Dict = type_sequence_label_size
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : Optional[Any] = num_choices
__UpperCAmelCase : int = scope
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : List[Any] = None
if self.use_input_mask:
__UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Any = None
if self.use_token_type_ids:
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Optional[int] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> List[str]:
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_config()
__UpperCAmelCase : List[Any] = 300
return config
def __A ( self ) -> Dict:
'''simple docstring'''
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = self.prepare_config_and_inputs()
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : List[str] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.num_labels
__UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_choices
__UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : List[str] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
__UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Any = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : int = False
_SCREAMING_SNAKE_CASE : List[str] = False
_SCREAMING_SNAKE_CASE : Dict = ()
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = MraModelTester(self )
__UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : List[Any] = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""MRA does not output attentions""" )
def __A ( self ) -> List[Any]:
'''simple docstring'''
return
@require_torch
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : int = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Union[str, Any] = 50_265
__UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" )
__UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : Any = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Dict = 50_265
__UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : str = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 |
'''simple docstring'''
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
_UpperCamelCase = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ):
"""simple docstring"""
return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths )
def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = []
if args.gold_data_mode == "qa":
__UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ )
for answer_list in data[1]:
__UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ )
answers.append(lowerCAmelCase__ )
else:
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : str = [[reference] for reference in references]
__UpperCAmelCase : Optional[int] = 0
for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
total += 1
em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : int = 100.0 * em / total
__UpperCAmelCase : Dict = 100.0 * fa / total
logger.info(f'F1: {fa:.2f}' )
logger.info(f'EM: {em:.2f}' )
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : Tuple = args.k
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = 0
for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] )
__UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
__UpperCAmelCase : List[str] = 100.0 * em / total
logger.info(f'Precision@{k}: {em: .2f}' )
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ):
"""simple docstring"""
def strip_title(lowerCAmelCase__ : Optional[int] ):
if title.startswith("""\"""" ):
__UpperCAmelCase : List[Any] = title[1:]
if title.endswith("""\"""" ):
__UpperCAmelCase : int = title[:-1]
return title
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device )
__UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ )
__UpperCAmelCase : int = question_enc_outputs[0]
__UpperCAmelCase : Dict = rag_model.retriever(
lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , )
__UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
__UpperCAmelCase : Union[str, Any] = []
for docs in all_docs:
__UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]]
provenance_strings.append("""\t""".join(lowerCAmelCase__ ) )
return provenance_strings
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
with torch.no_grad():
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )
__UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device )
__UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device )
__UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
__UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
if args.print_predictions:
for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) )
return answers
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=(
"""RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the"""
""" model_name_or_path"""
) , )
parser.add_argument(
"""--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , )
parser.add_argument(
"""--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , )
parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" )
parser.add_argument(
"""--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=(
"""Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates"""
""" precision@k."""
) , )
parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" )
parser.add_argument(
"""--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , )
parser.add_argument(
"""--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , )
parser.add_argument(
"""--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=(
"""Format of the gold data file"""
"""qa - a single line in the following format: question [tab] answer_list"""
"""ans - a single line of the gold file contains the expected answer string"""
) , )
parser.add_argument(
"""--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , )
parser.add_argument(
"""--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , )
parser.add_argument(
"""--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , )
parser.add_argument(
"""--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , )
parser.add_argument(
"""--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , )
parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" )
parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" )
parser.add_argument(
"""--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , )
parser.add_argument(
"""--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , )
__UpperCAmelCase : str = parser.parse_args()
__UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
return args
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = {}
if args.model_type is None:
__UpperCAmelCase : str = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration
__UpperCAmelCase : Dict = args.n_docs
if args.index_name is not None:
__UpperCAmelCase : Union[str, Any] = args.index_name
if args.index_path is not None:
__UpperCAmelCase : Dict = args.index_path
else:
__UpperCAmelCase : str = BartForConditionalGeneration
__UpperCAmelCase : str = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k
__UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) )
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
continue
logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) )
logger.info(""" Batch size = %d""" , args.eval_batch_size )
logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) )
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
__UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ )
model.retriever.init_retrieval()
else:
__UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
model.to(args.device )
with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file:
__UpperCAmelCase : Union[str, Any] = []
for line in tqdm(lowerCAmelCase__ ):
questions.append(line.strip() )
if len(lowerCAmelCase__ ) == args.eval_batch_size:
__UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" )
preds_file.flush()
__UpperCAmelCase : List[str] = []
if len(lowerCAmelCase__ ) > 0:
__UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) )
preds_file.flush()
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
_UpperCamelCase = get_args()
main(args)
| 16 | 1 |
'''simple docstring'''
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.g4dn.xlarge",
"results": {"train_runtime": 650, "eval_accuracy": 0.6, "eval_loss": 0.9},
},
{
"framework": "tensorflow",
"script": "run_tf.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.g4dn.xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.3, "eval_loss": 0.9},
},
] )
class _A ( unittest.TestCase ):
def __A ( self ) -> str:
'''simple docstring'''
if self.framework == "pytorch":
subprocess.run(
f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding="""utf-8""" , check=__UpperCAmelCase , )
assert hasattr(self , """env""" )
def __A ( self , __UpperCAmelCase=1 ) -> Optional[Any]:
'''simple docstring'''
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'{self.env.base_job_name}-single' , instance_count=__UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=__UpperCAmelCase , hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="""py36""" , )
def __A ( self , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
TrainingJobAnalytics(__UpperCAmelCase ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' )
def __A ( self ) -> Tuple:
'''simple docstring'''
# create estimator
__UpperCAmelCase : str = self.create_estimator()
# run training
estimator.fit()
# result dataframe
__UpperCAmelCase : Dict = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__UpperCAmelCase : Any = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] )
__UpperCAmelCase : List[str] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__UpperCAmelCase : int = (
Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999_999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy )
assert all(t <= self.results["""eval_loss"""] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f'{estimator.latest_training_job.name}.json' , """w""" ) as outfile:
json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , __UpperCAmelCase )
| 16 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _A :
@staticmethod
def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = [
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
]
return object_detector, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 )
__UpperCAmelCase : Tuple = len(__UpperCAmelCase )
self.assertGreater(__UpperCAmelCase , 0 )
self.assertEqual(
__UpperCAmelCase , [
{
"""score""": ANY(__UpperCAmelCase ),
"""label""": ANY(__UpperCAmelCase ),
"""box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )},
}
for i in range(__UpperCAmelCase )
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> Tuple:
'''simple docstring'''
pass
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
] , )
__UpperCAmelCase : str = object_detector(
[
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
]
] , )
@require_torch
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
] , )
__UpperCAmelCase : Any = object_detector(
[
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> List[str]:
'''simple docstring'''
pass
@require_torch
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = 0.2
__UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
] , )
@require_torch
@slow
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 2
__UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
] , )
| 16 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SEWForCTC''',
'''SEWForSequenceClassification''',
'''SEWModel''',
'''SEWPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_sew import (
SEW_PRETRAINED_MODEL_ARCHIVE_LIST,
SEWForCTC,
SEWForSequenceClassification,
SEWModel,
SEWPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.txt'''}
_UpperCamelCase = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': 512,
'''YituTech/conv-bert-medium-small''': 512,
'''YituTech/conv-bert-small''': 512,
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION
_SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars
):
__UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) )
__UpperCAmelCase : Union[str, Any] = do_lower_case
__UpperCAmelCase : str = strip_accents
__UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars
__UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase )
__UpperCAmelCase : List[Any] = do_lower_case
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [self.sep_token_id]
__UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
import unittest
from transformers import BigBirdTokenizer, BigBirdTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_UpperCamelCase = '''▁'''
_UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[Any] = BigBirdTokenizer
_SCREAMING_SNAKE_CASE : Optional[Any] = BigBirdTokenizerFast
_SCREAMING_SNAKE_CASE : int = True
_SCREAMING_SNAKE_CASE : int = True
def __A ( self ) -> int:
'''simple docstring'''
super().setUp()
__UpperCAmelCase : List[Any] = self.tokenizer_class(__UpperCAmelCase , keep_accents=__UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Dict = """<s>"""
__UpperCAmelCase : Any = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<unk>""" )
self.assertEqual(vocab_keys[1] , """<s>""" )
self.assertEqual(vocab_keys[-1] , """[MASK]""" )
self.assertEqual(len(__UpperCAmelCase ) , 1_004 )
def __A ( self ) -> Any:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1_000 )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : Dict = self.get_rust_tokenizer()
__UpperCAmelCase : int = """I was born in 92000, and this is falsé."""
__UpperCAmelCase : Tuple = tokenizer.tokenize(__UpperCAmelCase )
__UpperCAmelCase : Dict = rust_tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : str = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
__UpperCAmelCase : List[str] = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Optional[int] = self.get_rust_tokenizer()
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__UpperCAmelCase )
__UpperCAmelCase : str = rust_tokenizer.encode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = BigBirdTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(__UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [285, 46, 10, 170, 382] , )
__UpperCAmelCase : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__UpperCAmelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
__UpperCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(__UpperCAmelCase )
self.assertListEqual(
__UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
__UpperCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(__UpperCAmelCase )
self.assertListEqual(
__UpperCAmelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
@cached_property
def __A ( self ) -> Any:
'''simple docstring'''
return BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" )
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = """Hello World!"""
__UpperCAmelCase : str = [65, 18_536, 2_260, 101, 66]
self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) )
@slow
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = (
"""This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"""
""" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth"""
)
# fmt: off
__UpperCAmelCase : List[Any] = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231
# fmt: on
self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) )
@require_torch
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
import torch
from transformers import BigBirdConfig, BigBirdModel
# Build sequence
__UpperCAmelCase : Optional[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10]
__UpperCAmelCase : Optional[int] = """ """.join(__UpperCAmelCase )
__UpperCAmelCase : Tuple = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors="""pt""" , return_token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : Tuple = self.big_tokenizer.batch_encode_plus(
[sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : Dict = BigBirdConfig(attention_type="""original_full""" )
__UpperCAmelCase : Optional[int] = BigBirdModel(__UpperCAmelCase )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**__UpperCAmelCase )
model(**__UpperCAmelCase )
@slow
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" )
__UpperCAmelCase : List[str] = tokenizer.decode(tokenizer("""Paris is the [MASK].""" ).input_ids )
self.assertTrue(decoded_text == """[CLS] Paris is the[MASK].[SEP]""" )
@slow
def __A ( self ) -> str:
'''simple docstring'''
# fmt: off
__UpperCAmelCase : Optional[Any] = {"""input_ids""": [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__UpperCAmelCase , model_name="""google/bigbird-roberta-base""" , revision="""215c99f1600e06f83acce68422f2035b2b5c3510""" , )
| 16 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_UpperCamelCase = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''OwlViTFeatureExtractor''']
_UpperCamelCase = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_albert import AlbertTokenizer
else:
_UpperCamelCase = None
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
_UpperCamelCase = {
'''vocab_file''': {
'''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''',
'''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''',
'''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''',
'''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''',
'''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''',
'''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''',
'''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''',
'''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''',
},
'''tokenizer_file''': {
'''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''',
'''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''',
'''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''',
'''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''',
'''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''',
'''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''',
'''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''',
'''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''',
},
}
_UpperCamelCase = {
'''albert-base-v1''': 512,
'''albert-large-v1''': 512,
'''albert-xlarge-v1''': 512,
'''albert-xxlarge-v1''': 512,
'''albert-base-v2''': 512,
'''albert-large-v2''': 512,
'''albert-xlarge-v2''': 512,
'''albert-xxlarge-v2''': 512,
}
_UpperCamelCase = '''▁'''
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : List[str] = AlbertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> Tuple:
'''simple docstring'''
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__UpperCAmelCase : Optional[Any] = (
AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase , normalized=__UpperCAmelCase )
if isinstance(__UpperCAmelCase , __UpperCAmelCase )
else mask_token
)
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCAmelCase : Any = do_lower_case
__UpperCAmelCase : Any = remove_space
__UpperCAmelCase : Optional[int] = keep_accents
__UpperCAmelCase : List[str] = vocab_file
__UpperCAmelCase : Dict = False if not self.vocab_file else True
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = [self.sep_token_id]
__UpperCAmelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [self.sep_token_id]
__UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
__UpperCAmelCase : Union[str, Any] = os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
return (out_vocab_file,)
| 16 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
'''simple docstring'''
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
from functools import lru_cache
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Tuple = 2
__UpperCAmelCase : int = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(lowerCAmelCase__ )
if n > 1:
factors.add(lowerCAmelCase__ )
return factors
@lru_cache
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
return len(unique_prime_factors(lowerCAmelCase__ ) )
def lowercase_ ( lowerCAmelCase__ : list ):
"""simple docstring"""
return len(set(lowerCAmelCase__ ) ) in (0, 1)
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = 2
while True:
# Increment each value of a generated range
__UpperCAmelCase : List[str] = [base + i for i in range(lowerCAmelCase__ )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
__UpperCAmelCase : Dict = [upf_len(lowerCAmelCase__ ) for x in group]
checker.append(lowerCAmelCase__ )
# If all numbers in the list are equal, return the group variable.
if equality(lowerCAmelCase__ ):
return group
# Increment our base variable by 1
base += 1
def lowercase_ ( lowerCAmelCase__ : int = 4 ):
"""simple docstring"""
__UpperCAmelCase : int = run(lowerCAmelCase__ )
return results[0] if len(lowerCAmelCase__ ) else None
if __name__ == "__main__":
print(solution())
| 16 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
_UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
_SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" )
__UpperCAmelCase : List[Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] )
__UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
# Legacy behavior
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] )
__UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""label""": """LABEL_0""", """score""": 0.504},
{"""label""": """LABEL_0""", """score""": 0.504},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
import torch
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@require_tf
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@slow
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = pipeline("""text-classification""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
@slow
@require_tf
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : int = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
__UpperCAmelCase : Union[str, Any] = """HuggingFace is in"""
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
__UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""]
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase )
__UpperCAmelCase : Any = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , )
__UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""}
__UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , )
self.assertTrue(outputs["""label"""] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
__UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]]
with self.assertRaises(__UpperCAmelCase ):
text_classifier(__UpperCAmelCase )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
__UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
| 16 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : int = KandinskyVaaPriorPipeline
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["prompt"]
_SCREAMING_SNAKE_CASE : Any = ["prompt", "negative_prompt"]
_SCREAMING_SNAKE_CASE : Optional[Any] = [
"num_images_per_prompt",
"generator",
"num_inference_steps",
"latents",
"negative_prompt",
"guidance_scale",
"output_type",
"return_dict",
]
_SCREAMING_SNAKE_CASE : Dict = False
@property
def __A ( self ) -> Any:
'''simple docstring'''
return 32
@property
def __A ( self ) -> List[str]:
'''simple docstring'''
return 32
@property
def __A ( self ) -> List[Any]:
'''simple docstring'''
return self.time_input_dim
@property
def __A ( self ) -> Optional[int]:
'''simple docstring'''
return self.time_input_dim * 4
@property
def __A ( self ) -> Dict:
'''simple docstring'''
return 100
@property
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : int = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 12,
"""embedding_dim""": self.text_embedder_hidden_size,
"""num_layers""": 1,
}
__UpperCAmelCase : Tuple = PriorTransformer(**__UpperCAmelCase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
__UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def __A ( self ) -> Tuple:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : List[str] = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
__UpperCAmelCase : str = CLIPVisionModelWithProjection(__UpperCAmelCase )
return model
@property
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[str] = CLIPImageProcessor(
crop_size=224 , do_center_crop=__UpperCAmelCase , do_normalize=__UpperCAmelCase , do_resize=__UpperCAmelCase , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , )
return image_processor
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = self.dummy_prior
__UpperCAmelCase : List[str] = self.dummy_image_encoder
__UpperCAmelCase : int = self.dummy_text_encoder
__UpperCAmelCase : Dict = self.dummy_tokenizer
__UpperCAmelCase : Any = self.dummy_image_processor
__UpperCAmelCase : Optional[Any] = UnCLIPScheduler(
variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1_000 , clip_sample=__UpperCAmelCase , clip_sample_range=10.0 , )
__UpperCAmelCase : Tuple = {
"""prior""": prior,
"""image_encoder""": image_encoder,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""scheduler""": scheduler,
"""image_processor""": image_processor,
}
return components
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> int:
'''simple docstring'''
if str(__UpperCAmelCase ).startswith("""mps""" ):
__UpperCAmelCase : Union[str, Any] = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCAmelCase : str = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Any = {
"""prompt""": """horse""",
"""generator""": generator,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = """cpu"""
__UpperCAmelCase : str = self.get_dummy_components()
__UpperCAmelCase : Any = self.pipeline_class(**__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
__UpperCAmelCase : Tuple = output.image_embeds
__UpperCAmelCase : Any = pipe(
**self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0]
__UpperCAmelCase : str = image[0, -10:]
__UpperCAmelCase : Dict = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
__UpperCAmelCase : Union[str, Any] = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = torch_device == """cpu"""
__UpperCAmelCase : Optional[Any] = True
__UpperCAmelCase : str = False
self._test_inference_batch_single_identical(
test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
@skip_mps
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = torch_device == """cpu"""
__UpperCAmelCase : int = False
self._test_attention_slicing_forward_pass(
test_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
| 16 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
| 16 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = '''▁'''
_UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''}
_UpperCamelCase = {
'''vocab_file''': {
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''',
}
}
_UpperCamelCase = {
'''facebook/xglm-564M''': 2048,
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : Optional[int] = ["input_ids", "attention_mask"]
def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
'''simple docstring'''
__UpperCAmelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
__UpperCAmelCase : str = 7
__UpperCAmelCase : List[Any] = [f'<madeupword{i}>' for i in range(self.num_madeup_words )]
__UpperCAmelCase : Any = kwargs.get("""additional_special_tokens""" , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
__UpperCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__UpperCAmelCase ) )
__UpperCAmelCase : List[Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__UpperCAmelCase : List[str] = 1
# Mimic fairseq token-to-id alignment for the first 4 token
__UpperCAmelCase : Dict = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
__UpperCAmelCase : List[Any] = len(self.sp_model )
__UpperCAmelCase : Optional[Any] = {f'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(__UpperCAmelCase )
__UpperCAmelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.__dict__.copy()
__UpperCAmelCase : Dict = None
__UpperCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__UpperCAmelCase : int = {}
__UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
__UpperCAmelCase : Optional[int] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase ))
return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase ))
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def __A ( self ) -> Any:
'''simple docstring'''
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __A ( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__UpperCAmelCase : List[Any] = self.sp_model.PieceToId(__UpperCAmelCase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __A ( self , __UpperCAmelCase ) -> int:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
__UpperCAmelCase : int = os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
__UpperCAmelCase : Dict = self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (out_vocab_file,)
| 16 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class _A :
def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase )
__UpperCAmelCase : List[str] = length
__UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa )
__UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ) -> Dict:
'''simple docstring'''
return self.length
def __getitem__( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return {"x": self.x[i], "y": self.y[i]}
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Any = True
def __A ( self , __UpperCAmelCase=None ) -> str:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : Optional[int] = False
return x * self.a[0] + self.b[0]
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : str = True
def __A ( self , __UpperCAmelCase=None ) -> Tuple:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : int = False
return x * self.a + self.b
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
__UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" )
__UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
__UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" )
__UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )}
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCAmelCase : List[Any] = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" )
if "label" in examples:
__UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCAmelCase : Tuple = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCAmelCase__ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 )
__UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 16 | 1 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Tuple = seq_length
__UpperCAmelCase : str = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[Any] = use_token_type_ids
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : str = num_attention_heads
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : Tuple = max_position_embeddings
__UpperCAmelCase : Dict = type_vocab_size
__UpperCAmelCase : List[Any] = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[str] = num_labels
__UpperCAmelCase : str = num_choices
__UpperCAmelCase : List[Any] = scope
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Tuple = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
# first forward pass
__UpperCAmelCase : Optional[int] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCAmelCase : int = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
# select random slice
__UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = config_and_inputs
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : List[str] = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = LlamaModelTester(self )
__UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : str = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Any = 3
__UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[int] = 3
__UpperCAmelCase : Optional[Any] = """single_label_classification"""
__UpperCAmelCase : int = input_dict["""input_ids"""]
__UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = 3
__UpperCAmelCase : str = """multi_label_classification"""
__UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size )
__UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
original_model.to(__UpperCAmelCase )
original_model.eval()
__UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0}
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
scaled_model.to(__UpperCAmelCase )
scaled_model.eval()
__UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
@require_torch
class _A ( unittest.TestCase ):
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" )
__UpperCAmelCase : int = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" )
__UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" )
__UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
@unittest.skip(
"""Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" )
@slow
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" )
__UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) )
__UpperCAmelCase : Dict = torch.tensor(
[[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Model is curently gated""" )
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi"""
__UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """
__UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" )
__UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" )
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained(
"""meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase )
# greedy generation outputs
__UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 16 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None
@property
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = (3, 32, 128)
__UpperCAmelCase : Tuple = tempfile.mkdtemp()
# fmt: off
__UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
__UpperCAmelCase : List[Any] = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
__UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) )
return image_input
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.get_tokenizer()
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
__UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.prepare_image_inputs()
__UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" )
__UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Dict = """test"""
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = """test"""
__UpperCAmelCase : int = self.prepare_image_inputs()
__UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase )
__UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = self.get_tokenizer()
__UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : str = None
__UpperCAmelCase : Dict = self.prepare_image_inputs()
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Any = self.get_image_processor()
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 )
__UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 )
__UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 )
__UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
| 16 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import YosoConfig, YosoForMaskedLM
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
if "model" in orig_key:
__UpperCAmelCase : int = orig_key.replace("""model.""" , """""" )
if "norm1" in orig_key:
__UpperCAmelCase : Optional[int] = orig_key.replace("""norm1""" , """attention.output.LayerNorm""" )
if "norm2" in orig_key:
__UpperCAmelCase : List[str] = orig_key.replace("""norm2""" , """output.LayerNorm""" )
if "norm" in orig_key:
__UpperCAmelCase : Any = orig_key.replace("""norm""" , """LayerNorm""" )
if "transformer" in orig_key:
__UpperCAmelCase : int = orig_key.split(""".""" )[0].split("""_""" )[-1]
__UpperCAmelCase : List[str] = orig_key.replace(f'transformer_{layer_num}' , f'encoder.layer.{layer_num}' )
if "mha.attn" in orig_key:
__UpperCAmelCase : List[Any] = orig_key.replace("""mha.attn""" , """attention.self""" )
if "mha" in orig_key:
__UpperCAmelCase : Tuple = orig_key.replace("""mha""" , """attention""" )
if "W_q" in orig_key:
__UpperCAmelCase : Tuple = orig_key.replace("""W_q""" , """self.query""" )
if "W_k" in orig_key:
__UpperCAmelCase : List[str] = orig_key.replace("""W_k""" , """self.key""" )
if "W_v" in orig_key:
__UpperCAmelCase : Union[str, Any] = orig_key.replace("""W_v""" , """self.value""" )
if "ff1" in orig_key:
__UpperCAmelCase : Any = orig_key.replace("""ff1""" , """intermediate.dense""" )
if "ff2" in orig_key:
__UpperCAmelCase : Optional[int] = orig_key.replace("""ff2""" , """output.dense""" )
if "ff" in orig_key:
__UpperCAmelCase : Optional[Any] = orig_key.replace("""ff""" , """output.dense""" )
if "mlm_class" in orig_key:
__UpperCAmelCase : int = orig_key.replace("""mlm.mlm_class""" , """cls.predictions.decoder""" )
if "mlm" in orig_key:
__UpperCAmelCase : List[Any] = orig_key.replace("""mlm""" , """cls.predictions.transform""" )
if "cls" not in orig_key:
__UpperCAmelCase : Optional[int] = """yoso.""" + orig_key
return orig_key
def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
__UpperCAmelCase : str = orig_state_dict.pop(lowerCAmelCase__ )
if ("pooler" in key) or ("sen_class" in key):
continue
else:
__UpperCAmelCase : List[Any] = val
__UpperCAmelCase : Optional[Any] = orig_state_dict["""cls.predictions.decoder.bias"""]
__UpperCAmelCase : str = torch.arange(lowerCAmelCase__ ).expand((1, -1) ) + 2
return orig_state_dict
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model_state_dict"""]
__UpperCAmelCase : List[str] = YosoConfig.from_json_file(lowerCAmelCase__ )
__UpperCAmelCase : str = YosoForMaskedLM(lowerCAmelCase__ )
__UpperCAmelCase : Dict = convert_checkpoint_helper(config.max_position_embeddings , lowerCAmelCase__ )
print(model.load_state_dict(lowerCAmelCase__ ) )
model.eval()
model.save_pretrained(lowerCAmelCase__ )
print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The json file for YOSO model config.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_UpperCamelCase = parser.parse_args()
convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
| 16 |
'''simple docstring'''
from collections.abc import Sequence
def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ):
"""simple docstring"""
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__UpperCAmelCase : Any = nums[0]
for i in range(1 , len(lowerCAmelCase__ ) ):
__UpperCAmelCase : Union[str, Any] = nums[i]
__UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_UpperCamelCase = int(input('''Enter number of elements : ''').strip())
_UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n]
print(max_subsequence_sum(array))
| 16 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_UpperCamelCase = {'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''FNetTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''FNetTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FNetForMaskedLM''',
'''FNetForMultipleChoice''',
'''FNetForNextSentencePrediction''',
'''FNetForPreTraining''',
'''FNetForQuestionAnswering''',
'''FNetForSequenceClassification''',
'''FNetForTokenClassification''',
'''FNetLayer''',
'''FNetModel''',
'''FNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 |
'''simple docstring'''
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = data
__UpperCAmelCase : int = previous
__UpperCAmelCase : Union[str, Any] = next_node
def __str__( self ) -> str:
'''simple docstring'''
return f'{self.data}'
def __A ( self ) -> int:
'''simple docstring'''
return self.data
def __A ( self ) -> List[str]:
'''simple docstring'''
return self.next
def __A ( self ) -> str:
'''simple docstring'''
return self.previous
class _A :
def __init__( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = head
def __iter__( self ) -> str:
'''simple docstring'''
return self
def __A ( self ) -> str:
'''simple docstring'''
if not self.current:
raise StopIteration
else:
__UpperCAmelCase : List[str] = self.current.get_data()
__UpperCAmelCase : int = self.current.get_next()
return value
class _A :
def __init__( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = None # First node in list
__UpperCAmelCase : List[str] = None # Last node in list
def __str__( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.head
__UpperCAmelCase : Optional[int] = []
while current is not None:
nodes.append(current.get_data() )
__UpperCAmelCase : Any = current.get_next()
return " ".join(str(__UpperCAmelCase ) for node in nodes )
def __contains__( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.head
while current:
if current.get_data() == value:
return True
__UpperCAmelCase : Optional[Any] = current.get_next()
return False
def __iter__( self ) -> str:
'''simple docstring'''
return LinkedListIterator(self.head )
def __A ( self ) -> List[Any]:
'''simple docstring'''
if self.head:
return self.head.get_data()
return None
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
if self.tail:
return self.tail.get_data()
return None
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
__UpperCAmelCase : str = node
__UpperCAmelCase : List[str] = node
else:
self.insert_before_node(self.head , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase )
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.set_tail(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Tuple = node
__UpperCAmelCase : List[Any] = node.previous
if node.get_previous() is None:
__UpperCAmelCase : str = node_to_insert
else:
__UpperCAmelCase : Optional[Any] = node_to_insert
__UpperCAmelCase : List[Any] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : List[str] = node
__UpperCAmelCase : Union[str, Any] = node.next
if node.get_next() is None:
__UpperCAmelCase : Dict = node_to_insert
else:
__UpperCAmelCase : Any = node_to_insert
__UpperCAmelCase : List[str] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.head
while node:
if current_position == position:
self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase )
return
current_position += 1
__UpperCAmelCase : int = node.next
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Node:
'''simple docstring'''
__UpperCAmelCase : Dict = self.head
while node:
if node.get_data() == item:
return node
__UpperCAmelCase : List[str] = node.get_next()
raise Exception("""Node not found""" )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
if (node := self.get_node(__UpperCAmelCase )) is not None:
if node == self.head:
__UpperCAmelCase : Optional[int] = self.head.get_next()
if node == self.tail:
__UpperCAmelCase : Union[str, Any] = self.tail.get_previous()
self.remove_node_pointers(__UpperCAmelCase )
@staticmethod
def __A ( __UpperCAmelCase ) -> None:
'''simple docstring'''
if node.get_next():
__UpperCAmelCase : Optional[Any] = node.previous
if node.get_previous():
__UpperCAmelCase : int = node.next
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Union[str, Any] = None
def __A ( self ) -> List[Any]:
'''simple docstring'''
return self.head is None
def lowercase_ ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 1 |
'''simple docstring'''
from math import isclose, sqrt
def lowercase_ ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ):
"""simple docstring"""
__UpperCAmelCase : Any = point_y / 4 / point_x
__UpperCAmelCase : int = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
__UpperCAmelCase : Any = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
__UpperCAmelCase : Optional[int] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
__UpperCAmelCase : Optional[int] = outgoing_gradient**2 + 4
__UpperCAmelCase : Tuple = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
__UpperCAmelCase : Tuple = (point_y - outgoing_gradient * point_x) ** 2 - 100
__UpperCAmelCase : Optional[int] = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
__UpperCAmelCase : int = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
__UpperCAmelCase : str = x_minus if isclose(lowerCAmelCase__ , lowerCAmelCase__ ) else x_plus
__UpperCAmelCase : Tuple = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def lowercase_ ( lowerCAmelCase__ : float = 1.4 , lowerCAmelCase__ : float = -9.6 ):
"""simple docstring"""
__UpperCAmelCase : int = 0
__UpperCAmelCase : float = first_x_coord
__UpperCAmelCase : float = first_y_coord
__UpperCAmelCase : float = (10.1 - point_y) / (0.0 - point_x)
while not (-0.01 <= point_x <= 0.01 and point_y > 0):
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = next_point(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(F'{solution() = }')
| 16 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : List[str]
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __call__( self ) -> Any:
'''simple docstring'''
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : Optional[List] = None
_SCREAMING_SNAKE_CASE : Optional[int] = None
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None
__UpperCAmelCase : int = len(self.languages ) if self.languages else None
def __call__( self ) -> Optional[Any]:
'''simple docstring'''
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def __A ( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = set(self.languages )
if self.languages and set(__UpperCAmelCase ) - lang_set:
raise ValueError(
f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__UpperCAmelCase : Dict = []
for lang, text in translation_dict.items():
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 16 | 1 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ):
"""simple docstring"""
return "\n".join(
f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=10))
| 16 |
'''simple docstring'''
from statistics import mean
import numpy as np
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Tuple = 0
# Number of processes finished
__UpperCAmelCase : Optional[int] = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
__UpperCAmelCase : Tuple = [0] * no_of_process
# List to include calculation results
__UpperCAmelCase : int = [0] * no_of_process
# Sort by arrival time.
__UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )]
__UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )]
arrival_time.sort()
while no_of_process > finished_process_count:
__UpperCAmelCase : Dict = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
__UpperCAmelCase : Any = arrival_time[i]
__UpperCAmelCase : Any = 0
# Index showing the location of the process being performed
__UpperCAmelCase : Any = 0
# Saves the current response ratio.
__UpperCAmelCase : List[str] = 0
for i in range(0 , lowerCAmelCase__ ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
__UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
__UpperCAmelCase : Tuple = temp
__UpperCAmelCase : List[str] = i
# Calculate the turn around time
__UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
__UpperCAmelCase : List[str] = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [0] * no_of_process
for i in range(0 , lowerCAmelCase__ ):
__UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
_UpperCamelCase = 5
_UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E''']
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
_UpperCamelCase = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''')
for i in range(0, no_of_process):
print(
F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'
F'{turn_around_time[i]}\t\t\t{waiting_time[i]}'
)
print(F'average waiting time : {mean(waiting_time):.5f}')
print(F'average turn around time : {mean(turn_around_time):.5f}')
| 16 | 1 |
'''simple docstring'''
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCamelCase = {
'''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''],
'''tokenization_cpmant''': ['''CpmAntTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CpmAntForCausalLM''',
'''CpmAntModel''',
'''CpmAntPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = parent
__UpperCAmelCase : Any = batch_size
__UpperCAmelCase : Union[str, Any] = seq_length
__UpperCAmelCase : int = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[str] = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Union[str, Any] = num_hidden_layers
__UpperCAmelCase : Optional[int] = num_attention_heads
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_size
__UpperCAmelCase : Dict = type_sequence_label_size
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : Optional[Any] = num_choices
__UpperCAmelCase : int = scope
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : List[Any] = None
if self.use_input_mask:
__UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Any = None
if self.use_token_type_ids:
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Optional[int] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> List[str]:
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_config()
__UpperCAmelCase : List[Any] = 300
return config
def __A ( self ) -> Dict:
'''simple docstring'''
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = self.prepare_config_and_inputs()
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : List[str] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.num_labels
__UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_choices
__UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : List[str] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
__UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Any = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : int = False
_SCREAMING_SNAKE_CASE : List[str] = False
_SCREAMING_SNAKE_CASE : Dict = ()
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = MraModelTester(self )
__UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : List[Any] = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""MRA does not output attentions""" )
def __A ( self ) -> List[Any]:
'''simple docstring'''
return
@require_torch
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : int = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Union[str, Any] = 50_265
__UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" )
__UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : Any = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Dict = 50_265
__UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : str = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=3 , __UpperCAmelCase=32 , __UpperCAmelCase=3 , __UpperCAmelCase=10 , __UpperCAmelCase=[8, 16, 32, 64] , __UpperCAmelCase=[1, 1, 2, 1] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=["stage2", "stage3", "stage4"] , __UpperCAmelCase=[2, 3, 4] , __UpperCAmelCase=1 , ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = parent
__UpperCAmelCase : List[Any] = batch_size
__UpperCAmelCase : int = image_size
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : int = embeddings_size
__UpperCAmelCase : List[Any] = hidden_sizes
__UpperCAmelCase : Union[str, Any] = depths
__UpperCAmelCase : str = is_training
__UpperCAmelCase : Union[str, Any] = use_labels
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Dict = num_labels
__UpperCAmelCase : int = scope
__UpperCAmelCase : Optional[Any] = len(__UpperCAmelCase )
__UpperCAmelCase : List[str] = out_features
__UpperCAmelCase : List[str] = out_indices
__UpperCAmelCase : Any = num_groups
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : List[Any] = None
if self.use_labels:
__UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_labels )
__UpperCAmelCase : Optional[Any] = self.get_config()
return config, pixel_values, labels
def __A ( self ) -> Optional[int]:
'''simple docstring'''
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = BitModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.num_labels
__UpperCAmelCase : Optional[Any] = BitForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = BitBackbone(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Any = BitBackbone(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Any = model(__UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = config_and_inputs
__UpperCAmelCase : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : List[Any] = (
{"feature-extraction": BitModel, "image-classification": BitForImageClassification}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : str = False
_SCREAMING_SNAKE_CASE : Tuple = False
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
_SCREAMING_SNAKE_CASE : Optional[int] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Dict = BitModelTester(self )
__UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __A ( self ) -> List[str]:
'''simple docstring'''
return
@unittest.skip(reason="""Bit does not output attentions""" )
def __A ( self ) -> str:
'''simple docstring'''
pass
@unittest.skip(reason="""Bit does not use inputs_embeds""" )
def __A ( self ) -> str:
'''simple docstring'''
pass
@unittest.skip(reason="""Bit does not support input and output embeddings""" )
def __A ( self ) -> List[Any]:
'''simple docstring'''
pass
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Optional[Any] = model_class(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()]
__UpperCAmelCase : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Optional[Any] = model_class(config=__UpperCAmelCase )
for name, module in model.named_modules():
if isinstance(__UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
def __A ( self ) -> int:
'''simple docstring'''
def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
__UpperCAmelCase : Dict = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__UpperCAmelCase : List[Any] = self.model_tester.num_stages
self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = ["""preactivation""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
__UpperCAmelCase : Any = layer_type
__UpperCAmelCase : Dict = True
check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : List[str] = True
check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
@unittest.skip(reason="""Bit does not use feedforward chunking""" )
def __A ( self ) -> str:
'''simple docstring'''
pass
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : int = BitModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def __A ( self ) -> Optional[int]:
'''simple docstring'''
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = self.default_image_processor
__UpperCAmelCase : int = prepare_img()
__UpperCAmelCase : int = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase )
# verify the logits
__UpperCAmelCase : Dict = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
__UpperCAmelCase : Dict = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = (BitBackbone,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : Dict = BitConfig
_SCREAMING_SNAKE_CASE : Optional[int] = False
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = BitModelTester(self )
| 16 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Any = image_size
__UpperCAmelCase : Dict = patch_size
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : List[Any] = embed_dim
__UpperCAmelCase : str = depths
__UpperCAmelCase : Dict = num_heads
__UpperCAmelCase : str = window_size
__UpperCAmelCase : int = mlp_ratio
__UpperCAmelCase : Union[str, Any] = qkv_bias
__UpperCAmelCase : Dict = hidden_dropout_prob
__UpperCAmelCase : str = attention_probs_dropout_prob
__UpperCAmelCase : Optional[int] = drop_path_rate
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Optional[int] = use_absolute_embeddings
__UpperCAmelCase : Any = patch_norm
__UpperCAmelCase : Union[str, Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : Any = scope
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : Optional[int] = type_sequence_label_size
__UpperCAmelCase : int = encoder_stride
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : Tuple = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def __A ( self ) -> Dict:
'''simple docstring'''
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
__UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : str = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = self.type_sequence_label_size
__UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs
__UpperCAmelCase : Dict = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
_SCREAMING_SNAKE_CASE : List[str] = (
{"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Dict = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[str] = SwinvaModelTester(self )
__UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 )
def __A ( self ) -> Any:
'''simple docstring'''
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
@unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason="""Swinv2 does not use inputs_embeds""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCAmelCase : List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Tuple = model_class(__UpperCAmelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : str = [*signature.parameters.keys()]
__UpperCAmelCase : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = True
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : int = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : str = outputs.attentions
__UpperCAmelCase : Any = len(self.model_tester.depths )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__UpperCAmelCase : Dict = True
__UpperCAmelCase : int = config.window_size**2
__UpperCAmelCase : Any = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : Dict = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
__UpperCAmelCase : Dict = len(__UpperCAmelCase )
# Check attention is always last and order is fine
__UpperCAmelCase : Any = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
if hasattr(self.model_tester , """num_hidden_states_types""" ):
__UpperCAmelCase : Any = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
__UpperCAmelCase : Optional[int] = 2
self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) )
__UpperCAmelCase : Tuple = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : List[Any] = outputs.hidden_states
__UpperCAmelCase : List[Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# Swinv2 has a different seq_length
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__UpperCAmelCase : int = outputs.reshaped_hidden_states
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape
__UpperCAmelCase : Any = (
reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = 3
__UpperCAmelCase : str = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__UpperCAmelCase : int = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Tuple = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase )
for model_class in self.all_model_classes:
__UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class _A ( unittest.TestCase ):
@cached_property
def __A ( self ) -> int:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" )
if is_vision_available()
else None
)
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to(
__UpperCAmelCase )
__UpperCAmelCase : Tuple = self.default_image_processor
__UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase )
# verify the logits
__UpperCAmelCase : int = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 1 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
_UpperCamelCase = logging.get_logger(__name__)
# TODO: upload to AWS
_UpperCamelCase = {
'''yjernite/retribert-base-uncased''': (
'''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json'''
),
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = "retribert"
def __init__( self , __UpperCAmelCase=30_522 , __UpperCAmelCase=768 , __UpperCAmelCase=8 , __UpperCAmelCase=12 , __UpperCAmelCase=3_072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=128 , __UpperCAmelCase=0 , **__UpperCAmelCase , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase )
__UpperCAmelCase : List[str] = vocab_size
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Dict = num_hidden_layers
__UpperCAmelCase : Any = num_attention_heads
__UpperCAmelCase : int = hidden_act
__UpperCAmelCase : Union[str, Any] = intermediate_size
__UpperCAmelCase : int = hidden_dropout_prob
__UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
__UpperCAmelCase : Dict = max_position_embeddings
__UpperCAmelCase : List[str] = type_vocab_size
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : List[str] = layer_norm_eps
__UpperCAmelCase : Dict = share_encoders
__UpperCAmelCase : int = projection_dim
| 16 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
_UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f'Could not make batched video from {videos}' )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
__UpperCAmelCase : int = do_resize
__UpperCAmelCase : List[str] = size
__UpperCAmelCase : Any = do_center_crop
__UpperCAmelCase : Any = crop_size
__UpperCAmelCase : Optional[Any] = resample
__UpperCAmelCase : Dict = do_rescale
__UpperCAmelCase : List[str] = rescale_factor
__UpperCAmelCase : Dict = offset
__UpperCAmelCase : List[str] = do_normalize
__UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" in size:
__UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase )
elif "height" in size and "width" in size:
__UpperCAmelCase : Any = (size["""height"""], size["""width"""])
else:
raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = image.astype(np.floataa )
if offset:
__UpperCAmelCase : Tuple = image - (scale / 2)
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
if offset and not do_rescale:
raise ValueError("""For offset, do_rescale must also be set to True.""" )
# All transformations expect numpy arrays.
__UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase )
if do_resize:
__UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase )
if do_center_crop:
__UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase )
if do_rescale:
__UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase )
if do_normalize:
__UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase )
return image
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : List[Any] = resample if resample is not None else self.resample
__UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : List[Any] = offset if offset is not None else self.offset
__UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : int = image_std if image_std is not None else self.image_std
__UpperCAmelCase : Any = size if size is not None else self.size
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
__UpperCAmelCase : int = make_batched(__UpperCAmelCase )
__UpperCAmelCase : Tuple = [
[
self._preprocess_image(
image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , )
for img in video
]
for video in videos
]
__UpperCAmelCase : Tuple = {"""pixel_values""": videos}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["image_processor", "tokenizer"]
_SCREAMING_SNAKE_CASE : List[str] = "FlavaImageProcessor"
_SCREAMING_SNAKE_CASE : Dict = ("BertTokenizer", "BertTokenizerFast")
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Dict = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCAmelCase , )
__UpperCAmelCase : List[Any] = kwargs.pop("""feature_extractor""" )
__UpperCAmelCase : List[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Dict = self.image_processor
def __call__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
__UpperCAmelCase : Optional[Any] = self.tokenizer(
text=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , )
if images is not None:
__UpperCAmelCase : List[Any] = self.image_processor(
__UpperCAmelCase , return_image_mask=__UpperCAmelCase , return_codebook_pixels=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , )
if text is not None and images is not None:
encoding.update(__UpperCAmelCase )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase )
def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.tokenizer.model_input_names
__UpperCAmelCase : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __A ( self ) -> List[str]:
'''simple docstring'''
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCAmelCase , )
return self.image_processor_class
@property
def __A ( self ) -> int:
'''simple docstring'''
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCAmelCase , )
return self.image_processor
| 16 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline
_SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
_SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
_SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : Dict = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
__UpperCAmelCase : List[Any] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
__UpperCAmelCase : Any = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__UpperCAmelCase : Dict = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vqvae""": vae,
"""bert""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any:
'''simple docstring'''
if str(__UpperCAmelCase ).startswith("""mps""" ):
__UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : Dict = self.get_dummy_components()
__UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
__UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> List[str]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Tuple = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
__UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] )
__UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 50,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0]
__UpperCAmelCase : Tuple = load_numpy(
"""https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" )
__UpperCAmelCase : Dict = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 16 | 1 |
'''simple docstring'''
import inspect
import os
import unittest
from pathlib import Path
import torch
import accelerate
from accelerate.test_utils import execute_subprocess_async
from accelerate.test_utils.testing import run_command
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : str = inspect.getfile(accelerate.test_utils )
_SCREAMING_SNAKE_CASE : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] )
_SCREAMING_SNAKE_CASE : List[str] = ["accelerate", "launch"]
_SCREAMING_SNAKE_CASE : Any = Path.home() / ".cache/huggingface/accelerate"
_SCREAMING_SNAKE_CASE : List[str] = "default_config.yaml"
_SCREAMING_SNAKE_CASE : int = config_folder / config_file
_SCREAMING_SNAKE_CASE : Dict = config_folder / "_default_config.yaml"
_SCREAMING_SNAKE_CASE : Optional[int] = Path("tests/test_configs" )
@classmethod
def __A ( cls ) -> Optional[Any]:
'''simple docstring'''
if cls.config_path.is_file():
cls.config_path.rename(cls.changed_path )
@classmethod
def __A ( cls ) -> Optional[int]:
'''simple docstring'''
if cls.changed_path.is_file():
cls.changed_path.rename(cls.config_path )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.base_cmd
if torch.cuda.is_available() and (torch.cuda.device_count() > 1):
cmd += ["--multi_gpu"]
execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
for config in sorted(self.test_config_path.glob("""**/*.yaml""" ) ):
with self.subTest(config_file=__UpperCAmelCase ):
execute_subprocess_async(
self.base_cmd + ["""--config_file""", str(__UpperCAmelCase ), self.test_file_path] , env=os.environ.copy() )
def __A ( self ) -> List[str]:
'''simple docstring'''
execute_subprocess_async(["""accelerate""", """test"""] , env=os.environ.copy() )
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[Any] = "test-tpu"
_SCREAMING_SNAKE_CASE : Union[str, Any] = "us-central1-a"
_SCREAMING_SNAKE_CASE : int = "ls"
_SCREAMING_SNAKE_CASE : Optional[Any] = ["accelerate", "tpu-config"]
_SCREAMING_SNAKE_CASE : List[Any] = "cd /usr/share"
_SCREAMING_SNAKE_CASE : Optional[Any] = "tests/test_samples/test_command_file.sh"
_SCREAMING_SNAKE_CASE : int = "Running gcloud compute tpus tpu-vm ssh"
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = run_command(
self.cmd
+ ["""--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug"""] , return_stdout=__UpperCAmelCase , )
self.assertIn(
f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , __UpperCAmelCase , )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = run_command(
self.cmd
+ [
"""--config_file""",
"""tests/test_configs/0_12_0.yaml""",
"""--command""",
self.command,
"""--tpu_zone""",
self.tpu_zone,
"""--tpu_name""",
self.tpu_name,
"""--debug""",
] , return_stdout=__UpperCAmelCase , )
self.assertIn(
f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , __UpperCAmelCase , )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = run_command(
self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--debug"""] , return_stdout=__UpperCAmelCase )
self.assertIn(
f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , __UpperCAmelCase , )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = run_command(
self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--debug"""] , return_stdout=__UpperCAmelCase , )
self.assertIn(
f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , __UpperCAmelCase , )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = run_command(
self.cmd
+ [
"""--config_file""",
"""tests/test_configs/latest.yaml""",
"""--command""",
self.command,
"""--command""",
"""echo \"Hello World\"""",
"""--debug""",
] , return_stdout=__UpperCAmelCase , )
self.assertIn(
f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all' , __UpperCAmelCase , )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = run_command(
self.cmd
+ ["""--config_file""", """tests/test_configs/latest.yaml""", """--command_file""", self.command_file, """--debug"""] , return_stdout=__UpperCAmelCase , )
self.assertIn(
f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , __UpperCAmelCase , )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : str = run_command(
self.cmd
+ [
"""--config_file""",
"""tests/test_configs/0_12_0.yaml""",
"""--command_file""",
self.command_file,
"""--tpu_zone""",
self.tpu_zone,
"""--tpu_name""",
self.tpu_name,
"""--debug""",
] , return_stdout=__UpperCAmelCase , )
self.assertIn(
f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , __UpperCAmelCase , )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = run_command(
self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--debug"""] , return_stdout=__UpperCAmelCase , )
self.assertIn(
f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all' , __UpperCAmelCase , )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Dict = run_command(
self.cmd
+ [
"""--config_file""",
"""tests/test_configs/latest.yaml""",
"""--install_accelerate""",
"""--accelerate_version""",
"""12.0.0""",
"""--debug""",
] , return_stdout=__UpperCAmelCase , )
self.assertIn(
f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all' , __UpperCAmelCase , )
| 16 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column
__UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )]
def __str__( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n'
# Make string identifier
__UpperCAmelCase : Optional[Any] = 0
for row_vector in self.array:
for obj in row_vector:
__UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) )
__UpperCAmelCase : Optional[int] = f'%{max_element_length}s'
# Make string and return
def single_line(__UpperCAmelCase ) -> str:
nonlocal string_format_identifier
__UpperCAmelCase : Any = """["""
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array )
return s
def __repr__( self ) -> str:
'''simple docstring'''
return str(self )
def __A ( self , __UpperCAmelCase ) -> bool:
'''simple docstring'''
if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
return self.array[loc[0]][loc[1]]
def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = value
def __add__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == another.row and self.column == another.column
# Add
__UpperCAmelCase : Dict = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] + another[r, c]
return result
def __neg__( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : Dict = -self[r, c]
return result
def __sub__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
return self + (-another)
def __mul__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication
__UpperCAmelCase : Optional[int] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] * another
return result
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication
assert self.column == another.row
__UpperCAmelCase : Dict = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
__UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})'
raise TypeError(__UpperCAmelCase )
def __A ( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Dict = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[str] = self[r, c]
return result
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
__UpperCAmelCase : Optional[Any] = v.transpose()
__UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Dict = Matrix(3 , 3 , 0 )
for i in range(3 ):
__UpperCAmelCase : Tuple = 1
print(f'a^(-1) is {ainv}' )
# u, v
__UpperCAmelCase : Dict = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3
__UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5
print(f'u is {u}' )
print(f'v is {v}' )
print(f'uv^T is {u * v.transpose()}' )
# Sherman Morrison
print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' )
def lowercase_ ( ):
"""simple docstring"""
import doctest
doctest.testmod()
testa()
| 16 | 1 |
'''simple docstring'''
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version('''>=''', FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
_UpperCamelCase = get_logger(__name__)
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=0 ):
"""simple docstring"""
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
with FSDP.state_dict_type(
lowerCAmelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
__UpperCAmelCase : Any = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
__UpperCAmelCase : Optional[int] = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin'
__UpperCAmelCase : List[str] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
if accelerator.process_index == 0:
logger.info(f'Saving model to {output_model_file}' )
torch.save(lowerCAmelCase__ , lowerCAmelCase__ )
logger.info(f'Model saved to {output_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
__UpperCAmelCase : Union[str, Any] = (
f'{MODEL_NAME}_rank{accelerator.process_index}.bin'
if model_index == 0
else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'
)
__UpperCAmelCase : int = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
logger.info(f'Saving model to {output_model_file}' )
torch.save(lowerCAmelCase__ , lowerCAmelCase__ )
logger.info(f'Model saved to {output_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
__UpperCAmelCase : Optional[int] = os.path.join(lowerCAmelCase__ , f'{MODEL_NAME}_{model_index}' )
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
logger.info(f'Saving model to {ckpt_dir}' )
__UpperCAmelCase : str = {"""model""": state_dict}
dist_cp.save_state_dict(
state_dict=lowerCAmelCase__ , storage_writer=dist_cp.FileSystemWriter(lowerCAmelCase__ ) , planner=DefaultSavePlanner() , )
logger.info(f'Model saved to {ckpt_dir}' )
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=0 ):
"""simple docstring"""
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
lowerCAmelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(lowerCAmelCase__ ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
"""Set the `sync_module_states` flag to `True` so that model states are synced across processes when """
"""initializing FSDP object""" )
return
__UpperCAmelCase : Dict = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin'
__UpperCAmelCase : Optional[int] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
logger.info(f'Loading model from {input_model_file}' )
__UpperCAmelCase : Any = torch.load(lowerCAmelCase__ )
logger.info(f'Model loaded from {input_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
__UpperCAmelCase : Optional[Any] = (
f'{MODEL_NAME}_rank{accelerator.process_index}.bin'
if model_index == 0
else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'
)
__UpperCAmelCase : List[Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
logger.info(f'Loading model from {input_model_file}' )
__UpperCAmelCase : Tuple = torch.load(lowerCAmelCase__ )
logger.info(f'Model loaded from {input_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
__UpperCAmelCase : str = (
os.path.join(lowerCAmelCase__ , f'{MODEL_NAME}_{model_index}' )
if f'{MODEL_NAME}' not in input_dir
else input_dir
)
logger.info(f'Loading model from {ckpt_dir}' )
__UpperCAmelCase : Tuple = {"""model""": model.state_dict()}
dist_cp.load_state_dict(
state_dict=lowerCAmelCase__ , storage_reader=dist_cp.FileSystemReader(lowerCAmelCase__ ) , planner=DefaultLoadPlanner() , )
__UpperCAmelCase : Optional[Any] = state_dict["""model"""]
logger.info(f'Model loaded from {ckpt_dir}' )
model.load_state_dict(lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple=0 ):
"""simple docstring"""
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
with FSDP.state_dict_type(
lowerCAmelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
__UpperCAmelCase : List[Any] = FSDP.optim_state_dict(lowerCAmelCase__ , lowerCAmelCase__ )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
__UpperCAmelCase : List[str] = (
f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin'
)
__UpperCAmelCase : Dict = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
logger.info(f'Saving Optimizer state to {output_optimizer_file}' )
torch.save(lowerCAmelCase__ , lowerCAmelCase__ )
logger.info(f'Optimizer state saved in {output_optimizer_file}' )
else:
__UpperCAmelCase : Optional[Any] = os.path.join(lowerCAmelCase__ , f'{OPTIMIZER_NAME}_{optimizer_index}' )
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
logger.info(f'Saving Optimizer state to {ckpt_dir}' )
dist_cp.save_state_dict(
state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(lowerCAmelCase__ ) , planner=DefaultSavePlanner() , )
logger.info(f'Optimizer state saved in {ckpt_dir}' )
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]=0 ):
"""simple docstring"""
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
lowerCAmelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
__UpperCAmelCase : List[str] = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
__UpperCAmelCase : str = (
f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin'
)
__UpperCAmelCase : Union[str, Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
logger.info(f'Loading Optimizer state from {input_optimizer_file}' )
__UpperCAmelCase : Dict = torch.load(lowerCAmelCase__ )
logger.info(f'Optimizer state loaded from {input_optimizer_file}' )
else:
__UpperCAmelCase : Tuple = (
os.path.join(lowerCAmelCase__ , f'{OPTIMIZER_NAME}_{optimizer_index}' )
if f'{OPTIMIZER_NAME}' not in input_dir
else input_dir
)
logger.info(f'Loading Optimizer from {ckpt_dir}' )
__UpperCAmelCase : int = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(lowerCAmelCase__ ) , )
__UpperCAmelCase : Tuple = optim_state["""optimizer"""]
logger.info(f'Optimizer loaded from {ckpt_dir}' )
__UpperCAmelCase : str = FSDP.optim_state_dict_to_load(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
optimizer.load_state_dict(lowerCAmelCase__ )
| 16 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''],
'''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''],
'''processing_wav2vec2''': ['''Wav2Vec2Processor'''],
'''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Wav2Vec2ForAudioFrameClassification''',
'''Wav2Vec2ForCTC''',
'''Wav2Vec2ForMaskedLM''',
'''Wav2Vec2ForPreTraining''',
'''Wav2Vec2ForSequenceClassification''',
'''Wav2Vec2ForXVector''',
'''Wav2Vec2Model''',
'''Wav2Vec2PreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWav2Vec2ForCTC''',
'''TFWav2Vec2Model''',
'''TFWav2Vec2PreTrainedModel''',
'''TFWav2Vec2ForSequenceClassification''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FlaxWav2Vec2ForCTC''',
'''FlaxWav2Vec2ForPreTraining''',
'''FlaxWav2Vec2Model''',
'''FlaxWav2Vec2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''],
'''tokenization_electra''': ['''ElectraTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''ElectraTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ElectraForCausalLM''',
'''ElectraForMaskedLM''',
'''ElectraForMultipleChoice''',
'''ElectraForPreTraining''',
'''ElectraForQuestionAnswering''',
'''ElectraForSequenceClassification''',
'''ElectraForTokenClassification''',
'''ElectraModel''',
'''ElectraPreTrainedModel''',
'''load_tf_weights_in_electra''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFElectraForMaskedLM''',
'''TFElectraForMultipleChoice''',
'''TFElectraForPreTraining''',
'''TFElectraForQuestionAnswering''',
'''TFElectraForSequenceClassification''',
'''TFElectraForTokenClassification''',
'''TFElectraModel''',
'''TFElectraPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FlaxElectraForCausalLM''',
'''FlaxElectraForMaskedLM''',
'''FlaxElectraForMultipleChoice''',
'''FlaxElectraForPreTraining''',
'''FlaxElectraForQuestionAnswering''',
'''FlaxElectraForSequenceClassification''',
'''FlaxElectraForTokenClassification''',
'''FlaxElectraModel''',
'''FlaxElectraPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 |
'''simple docstring'''
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING
_SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING
def __A ( self ) -> Any:
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""},
{"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""},
] , )
__UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is grouped""",
"""score""": 2.1E-05,
"""token""": 38_015,
"""token_str""": """ grouped""",
},
{
"""sequence""": """The largest city in France is accuser""",
"""score""": 2.1E-05,
"""token""": 25_506,
"""token_str""": """ accuser""",
},
] , )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""},
{"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is Maul""",
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
},
{"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""},
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is Maul<mask></s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""},
],
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is<mask> Maul</s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""},
],
] , )
@require_torch_gpu
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" )
# convert model to fp16
pipe.model.half()
__UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
@require_torch
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" )
self.run_large_test(__UpperCAmelCase )
@slow
@require_tf
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" )
self.run_large_test(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""},
{"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{
"""sequence""": """The largest city in France is Paris""",
"""score""": 0.251,
"""token""": 2_201,
"""token_str""": """ Paris""",
},
{
"""sequence""": """The largest city in France is Lyon""",
"""score""": 0.214,
"""token""": 12_790,
"""token_str""": """ Lyon""",
},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" )
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : int = None
self.run_pipeline_test(__UpperCAmelCase , [] )
@require_tf
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : str = None
self.run_pipeline_test(__UpperCAmelCase , [] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" )
__UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = [
f'This is another {tokenizer.mask_token} test',
]
return fill_masker, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = fill_masker.tokenizer
__UpperCAmelCase : Union[str, Any] = fill_masker.model
__UpperCAmelCase : Tuple = fill_masker(
f'This is a {tokenizer.mask_token}' , )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
with self.assertRaises(__UpperCAmelCase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(__UpperCAmelCase ):
fill_masker("""This is""" )
self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Dict = tokenizer.get_vocab()
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:2]
# Pipeline argument
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase )
__UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Any = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Call argument
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Score equivalence
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs]
__UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ) == set(__UpperCAmelCase ):
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
# Raises with invalid
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] )
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 )
__UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : int = tokenizer.get_vocab()
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
# top_k=2, ntargets=3
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
__UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = tokenizer.get_vocab()
# String duplicates + id duplicates
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]]
__UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(__UpperCAmelCase ) , 3 )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Dict = fill_masker(
f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
| 16 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
'''simple docstring'''
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 16 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} )
_SCREAMING_SNAKE_CASE : str = "image"
_SCREAMING_SNAKE_CASE : str = "labels"
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(f'Column {self.label_column} is not present in features.' )
if not isinstance(features[self.label_column] , __UpperCAmelCase ):
raise ValueError(f'Column {self.label_column} is not a ClassLabel.' )
__UpperCAmelCase : int = copy.deepcopy(self )
__UpperCAmelCase : str = self.label_schema.copy()
__UpperCAmelCase : Optional[Any] = features[self.label_column]
__UpperCAmelCase : Optional[int] = label_schema
return task_template
@property
def __A ( self ) -> Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 16 | 1 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["image_processor", "tokenizer"]
_SCREAMING_SNAKE_CASE : List[str] = "CLIPImageProcessor"
_SCREAMING_SNAKE_CASE : Dict = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCAmelCase , )
__UpperCAmelCase : Optional[int] = kwargs.pop("""feature_extractor""" )
__UpperCAmelCase : int = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
__UpperCAmelCase : List[Any] = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if images is not None:
__UpperCAmelCase : str = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None and images is not None:
__UpperCAmelCase : List[Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase )
def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.tokenizer.model_input_names
__UpperCAmelCase : Optional[int] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 16 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Tuple = seq_length
__UpperCAmelCase : str = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[Any] = use_token_type_ids
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : str = num_attention_heads
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : Tuple = max_position_embeddings
__UpperCAmelCase : Dict = type_vocab_size
__UpperCAmelCase : List[Any] = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[str] = num_labels
__UpperCAmelCase : str = num_choices
__UpperCAmelCase : List[Any] = scope
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Tuple = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
# first forward pass
__UpperCAmelCase : Optional[int] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCAmelCase : int = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
# select random slice
__UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = config_and_inputs
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : List[str] = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = LlamaModelTester(self )
__UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : str = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Any = 3
__UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[int] = 3
__UpperCAmelCase : Optional[Any] = """single_label_classification"""
__UpperCAmelCase : int = input_dict["""input_ids"""]
__UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = 3
__UpperCAmelCase : str = """multi_label_classification"""
__UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size )
__UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
original_model.to(__UpperCAmelCase )
original_model.eval()
__UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0}
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
scaled_model.to(__UpperCAmelCase )
scaled_model.eval()
__UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
@require_torch
class _A ( unittest.TestCase ):
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" )
__UpperCAmelCase : int = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" )
__UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" )
__UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
@unittest.skip(
"""Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" )
@slow
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" )
__UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) )
__UpperCAmelCase : Dict = torch.tensor(
[[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Model is curently gated""" )
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi"""
__UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """
__UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" )
__UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" )
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained(
"""meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase )
# greedy generation outputs
__UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
_UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Any=None ):
"""simple docstring"""
if "." in tensor_name:
__UpperCAmelCase : Union[str, Any] = tensor_name.split(""".""" )
for split in splits[:-1]:
__UpperCAmelCase : Tuple = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
if new_module is None:
raise ValueError(f'{module} has no attribute {split}.' )
__UpperCAmelCase : Tuple = new_module
__UpperCAmelCase : List[Any] = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' )
__UpperCAmelCase : Tuple = tensor_name in module._buffers
__UpperCAmelCase : Tuple = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
if old_value.device == torch.device("""meta""" ) and device not in ["meta", torch.device("""meta""" )] and value is None:
raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' )
__UpperCAmelCase : Any = False
__UpperCAmelCase : Tuple = False
if is_buffer or not is_bitsandbytes_available():
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : Dict = False
else:
__UpperCAmelCase : Optional[Any] = hasattr(bnb.nn , """Params4bit""" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit )
__UpperCAmelCase : Tuple = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams )
if is_abit or is_abit:
__UpperCAmelCase : List[str] = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
__UpperCAmelCase : str = old_value.to(lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ , torch.Tensor ):
__UpperCAmelCase : Tuple = value.to("""cpu""" )
if value.dtype == torch.inta:
__UpperCAmelCase : List[str] = version.parse(importlib.metadata.version("""bitsandbytes""" ) ) > version.parse(
"""0.37.2""" )
if not is_abit_serializable:
raise ValueError(
"""Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. """
"""Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.""" )
else:
__UpperCAmelCase : Optional[Any] = torch.tensor(lowerCAmelCase__ , device="""cpu""" )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls , lowerCAmelCase__ ) and fpaa_statistics is None:
__UpperCAmelCase : Union[str, Any] = new_value.T
__UpperCAmelCase : List[str] = old_value.__dict__
if is_abit:
__UpperCAmelCase : int = bnb.nn.IntaParams(lowerCAmelCase__ , requires_grad=lowerCAmelCase__ , **lowerCAmelCase__ ).to(lowerCAmelCase__ )
elif is_abit:
__UpperCAmelCase : Union[str, Any] = bnb.nn.Paramsabit(lowerCAmelCase__ , requires_grad=lowerCAmelCase__ , **lowerCAmelCase__ ).to(lowerCAmelCase__ )
__UpperCAmelCase : List[str] = new_value
if fpaa_statistics is not None:
setattr(module.weight , """SCB""" , fpaa_statistics.to(lowerCAmelCase__ ) )
else:
if value is None:
__UpperCAmelCase : Optional[Any] = old_value.to(lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ , torch.Tensor ):
__UpperCAmelCase : Tuple = value.to(lowerCAmelCase__ )
else:
__UpperCAmelCase : Optional[int] = torch.tensor(lowerCAmelCase__ , device=lowerCAmelCase__ )
if is_buffer:
__UpperCAmelCase : Any = new_value
else:
__UpperCAmelCase : Union[str, Any] = nn.Parameter(lowerCAmelCase__ , requires_grad=old_value.requires_grad )
__UpperCAmelCase : Dict = new_value
def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : int=False ):
"""simple docstring"""
for name, module in model.named_children():
if current_key_name is None:
__UpperCAmelCase : Any = []
current_key_name.append(lowerCAmelCase__ )
if (isinstance(lowerCAmelCase__ , nn.Linear ) or isinstance(lowerCAmelCase__ , lowerCAmelCase__ )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in """.""".join(lowerCAmelCase__ ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase , __UpperCAmelCase : str = module.weight.shape
else:
__UpperCAmelCase : Optional[int] = module.in_features
__UpperCAmelCase : Tuple = module.out_features
if quantization_config.quantization_method() == "llm_int8":
__UpperCAmelCase : Optional[Any] = bnb.nn.LinearabitLt(
lowerCAmelCase__ , lowerCAmelCase__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , )
__UpperCAmelCase : int = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
__UpperCAmelCase : Optional[Any] = bnb.nn.Linearabit(
lowerCAmelCase__ , lowerCAmelCase__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , )
__UpperCAmelCase : str = True
# Store the module class in case we need to transpose the weight later
__UpperCAmelCase : Optional[Any] = type(lowerCAmelCase__ )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(lowerCAmelCase__ )
if len(list(module.children() ) ) > 0:
__UpperCAmelCase , __UpperCAmelCase : Dict = _replace_with_bnb_linear(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , has_been_replaced=lowerCAmelCase__ , )
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Union[str, Any]=None ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = ["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert
__UpperCAmelCase , __UpperCAmelCase : Any = _replace_with_bnb_linear(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if not has_been_replaced:
logger.warning(
"""You are loading your model in 8bit or 4bit but no linear modules were found in your model."""
""" Please double check your model architecture, or submit an issue on github if you think this is"""
""" a bug.""" )
return model
def lowercase_ ( *lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
warnings.warn(
"""`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead""" , lowerCAmelCase__ , )
return replace_with_bnb_linear(*lowerCAmelCase__ , **lowerCAmelCase__ )
def lowercase_ ( *lowerCAmelCase__ : int , **lowerCAmelCase__ : Tuple ):
"""simple docstring"""
warnings.warn(
"""`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead""" , lowerCAmelCase__ , )
return set_module_quantized_tensor_to_device(*lowerCAmelCase__ , **lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase : str = deepcopy(lowerCAmelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
__UpperCAmelCase : Optional[int] = find_tied_parameters(lowerCAmelCase__ )
# For compatibility with Accelerate < 0.18
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
__UpperCAmelCase : List[str] = sum(lowerCAmelCase__ , [] )
__UpperCAmelCase : Union[str, Any] = len(lowerCAmelCase__ ) > 0
# Check if it is a base model
__UpperCAmelCase : Optional[Any] = not hasattr(lowerCAmelCase__ , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
__UpperCAmelCase : Tuple = list(model.named_children() )
__UpperCAmelCase : Dict = [list_modules[-1][0]]
# add last module together with tied weights
__UpperCAmelCase : str = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = list(set(lowerCAmelCase__ ) ) + list(lowerCAmelCase__ )
# remove ".weight" from the keys
__UpperCAmelCase : Any = [""".weight""", """.bias"""]
__UpperCAmelCase : Dict = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
__UpperCAmelCase : List[str] = name.replace(lowerCAmelCase__ , """""" )
filtered_module_names.append(lowerCAmelCase__ )
return filtered_module_names
| 16 |
'''simple docstring'''
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
_UpperCamelCase = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ):
"""simple docstring"""
return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths )
def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = []
if args.gold_data_mode == "qa":
__UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ )
for answer_list in data[1]:
__UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ )
answers.append(lowerCAmelCase__ )
else:
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : str = [[reference] for reference in references]
__UpperCAmelCase : Optional[int] = 0
for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
total += 1
em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : int = 100.0 * em / total
__UpperCAmelCase : Dict = 100.0 * fa / total
logger.info(f'F1: {fa:.2f}' )
logger.info(f'EM: {em:.2f}' )
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : Tuple = args.k
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = 0
for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] )
__UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
__UpperCAmelCase : List[str] = 100.0 * em / total
logger.info(f'Precision@{k}: {em: .2f}' )
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ):
"""simple docstring"""
def strip_title(lowerCAmelCase__ : Optional[int] ):
if title.startswith("""\"""" ):
__UpperCAmelCase : List[Any] = title[1:]
if title.endswith("""\"""" ):
__UpperCAmelCase : int = title[:-1]
return title
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device )
__UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ )
__UpperCAmelCase : int = question_enc_outputs[0]
__UpperCAmelCase : Dict = rag_model.retriever(
lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , )
__UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
__UpperCAmelCase : Union[str, Any] = []
for docs in all_docs:
__UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]]
provenance_strings.append("""\t""".join(lowerCAmelCase__ ) )
return provenance_strings
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
with torch.no_grad():
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )
__UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device )
__UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device )
__UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
__UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
if args.print_predictions:
for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) )
return answers
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=(
"""RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the"""
""" model_name_or_path"""
) , )
parser.add_argument(
"""--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , )
parser.add_argument(
"""--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , )
parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" )
parser.add_argument(
"""--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=(
"""Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates"""
""" precision@k."""
) , )
parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" )
parser.add_argument(
"""--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , )
parser.add_argument(
"""--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , )
parser.add_argument(
"""--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=(
"""Format of the gold data file"""
"""qa - a single line in the following format: question [tab] answer_list"""
"""ans - a single line of the gold file contains the expected answer string"""
) , )
parser.add_argument(
"""--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , )
parser.add_argument(
"""--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , )
parser.add_argument(
"""--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , )
parser.add_argument(
"""--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , )
parser.add_argument(
"""--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , )
parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" )
parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" )
parser.add_argument(
"""--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , )
parser.add_argument(
"""--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , )
__UpperCAmelCase : str = parser.parse_args()
__UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
return args
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = {}
if args.model_type is None:
__UpperCAmelCase : str = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration
__UpperCAmelCase : Dict = args.n_docs
if args.index_name is not None:
__UpperCAmelCase : Union[str, Any] = args.index_name
if args.index_path is not None:
__UpperCAmelCase : Dict = args.index_path
else:
__UpperCAmelCase : str = BartForConditionalGeneration
__UpperCAmelCase : str = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k
__UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) )
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
continue
logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) )
logger.info(""" Batch size = %d""" , args.eval_batch_size )
logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) )
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
__UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ )
model.retriever.init_retrieval()
else:
__UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
model.to(args.device )
with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file:
__UpperCAmelCase : Union[str, Any] = []
for line in tqdm(lowerCAmelCase__ ):
questions.append(line.strip() )
if len(lowerCAmelCase__ ) == args.eval_batch_size:
__UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" )
preds_file.flush()
__UpperCAmelCase : List[str] = []
if len(lowerCAmelCase__ ) > 0:
__UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) )
preds_file.flush()
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
_UpperCamelCase = get_args()
main(args)
| 16 | 1 |
'''simple docstring'''
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch("""socket.socket""" )
@patch("""builtins.open""" )
def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : List[str] = Mock()
__UpperCAmelCase : Tuple = conn, Mock()
__UpperCAmelCase : List[str] = iter([1, None] )
__UpperCAmelCase : Tuple = lambda lowerCAmelCase__ : next(lowerCAmelCase__ )
# ===== invoke =====
send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 16 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _A :
@staticmethod
def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = [
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
]
return object_detector, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 )
__UpperCAmelCase : Tuple = len(__UpperCAmelCase )
self.assertGreater(__UpperCAmelCase , 0 )
self.assertEqual(
__UpperCAmelCase , [
{
"""score""": ANY(__UpperCAmelCase ),
"""label""": ANY(__UpperCAmelCase ),
"""box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )},
}
for i in range(__UpperCAmelCase )
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> Tuple:
'''simple docstring'''
pass
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
] , )
__UpperCAmelCase : str = object_detector(
[
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
]
] , )
@require_torch
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
] , )
__UpperCAmelCase : Any = object_detector(
[
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> List[str]:
'''simple docstring'''
pass
@require_torch
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = 0.2
__UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
] , )
@require_torch
@slow
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 2
__UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
] , )
| 16 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = XLMTokenizer
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__UpperCAmelCase : int = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""w</w>""",
"""r</w>""",
"""t</w>""",
"""lo""",
"""low""",
"""er</w>""",
"""low</w>""",
"""lowest</w>""",
"""newer</w>""",
"""wider</w>""",
"""<unk>""",
]
__UpperCAmelCase : Optional[Any] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : int = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""]
__UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) )
with open(self.merges_file , """w""" ) as fp:
fp.write("""\n""".join(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = """lower newer"""
__UpperCAmelCase : str = """lower newer"""
return input_text, output_text
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = XLMTokenizer(self.vocab_file , self.merges_file )
__UpperCAmelCase : Dict = """lower"""
__UpperCAmelCase : Dict = ["""low""", """er</w>"""]
__UpperCAmelCase : Union[str, Any] = tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : List[Any] = tokens + ["""<unk>"""]
__UpperCAmelCase : Any = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : str = XLMTokenizer.from_pretrained("""xlm-mlm-en-2048""" )
__UpperCAmelCase : Optional[int] = tokenizer.encode("""sequence builders""" , add_special_tokens=__UpperCAmelCase )
__UpperCAmelCase : Any = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase )
__UpperCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase )
assert encoded_sentence == [0] + text + [1]
assert encoded_pair == [0] + text + [1] + text_a + [1]
| 16 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.txt'''}
_UpperCamelCase = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': 512,
'''YituTech/conv-bert-medium-small''': 512,
'''YituTech/conv-bert-small''': 512,
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION
_SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars
):
__UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) )
__UpperCAmelCase : Union[str, Any] = do_lower_case
__UpperCAmelCase : str = strip_accents
__UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars
__UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase )
__UpperCAmelCase : List[Any] = do_lower_case
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [self.sep_token_id]
__UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
_UpperCamelCase = False
class _A ( unittest.TestCase ):
pass
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" )
__UpperCAmelCase : str = torch.manual_seed(0 )
__UpperCAmelCase : Tuple = pipe(
image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images
__UpperCAmelCase : Dict = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
__UpperCAmelCase : str = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 16 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_UpperCamelCase = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''OwlViTFeatureExtractor''']
_UpperCamelCase = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 1 |
'''simple docstring'''
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
_UpperCamelCase = pd.read_csv(
'''https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/'''
'''position_salaries.csv'''
)
_UpperCamelCase = dataset.iloc[:, 1:2].values
_UpperCamelCase = dataset.iloc[:, 2].values
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = train_test_split(X, y, test_size=0.2, random_state=0)
_UpperCamelCase = PolynomialFeatures(degree=4)
_UpperCamelCase = poly_reg.fit_transform(X)
_UpperCamelCase = LinearRegression()
pol_reg.fit(X_poly, y)
def lowercase_ ( ):
"""simple docstring"""
plt.scatter(lowerCAmelCase__ , lowerCAmelCase__ , color="""red""" )
plt.plot(lowerCAmelCase__ , pol_reg.predict(poly_reg.fit_transform(lowerCAmelCase__ ) ) , color="""blue""" )
plt.title("""Truth or Bluff (Linear Regression)""" )
plt.xlabel("""Position level""" )
plt.ylabel("""Salary""" )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 16 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
'''simple docstring'''
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 16 | 1 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ):
"""simple docstring"""
return int((input_a, input_a).count(0 ) != 0 )
def lowercase_ ( ):
"""simple docstring"""
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 16 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
_UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
_SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" )
__UpperCAmelCase : List[Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] )
__UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
# Legacy behavior
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] )
__UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""label""": """LABEL_0""", """score""": 0.504},
{"""label""": """LABEL_0""", """score""": 0.504},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
import torch
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@require_tf
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@slow
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = pipeline("""text-classification""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
@slow
@require_tf
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : int = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
__UpperCAmelCase : Union[str, Any] = """HuggingFace is in"""
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
__UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""]
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase )
__UpperCAmelCase : Any = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , )
__UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""}
__UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , )
self.assertTrue(outputs["""label"""] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
__UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]]
with self.assertRaises(__UpperCAmelCase ):
text_classifier(__UpperCAmelCase )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
__UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
| 16 | 1 |
'''simple docstring'''
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
_UpperCamelCase = Path(__file__).resolve().parents[3] / '''src'''
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
_UpperCamelCase = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''}
_UpperCamelCase = '''zero2'''
_UpperCamelCase = '''zero3'''
_UpperCamelCase = [ZEROa, ZEROa]
def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : str = parameterized.to_safe_name("""_""".join(str(lowerCAmelCase__ ) for x in param.args ) )
return f'{func.__name__}_{param_based_name}'
# Cartesian-product of zero stages with models to test
_UpperCamelCase = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class _A ( __SCREAMING_SNAKE_CASE ):
@parameterized.expand(__UpperCAmelCase , name_func=__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
self.run_and_check(
stage=__UpperCAmelCase , model=__UpperCAmelCase , distributed=__UpperCAmelCase , fpaa=__UpperCAmelCase , )
@require_torch_multi_gpu
@parameterized.expand(__UpperCAmelCase , name_func=__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
self.run_and_check(
stage=__UpperCAmelCase , model=__UpperCAmelCase , distributed=__UpperCAmelCase , fpaa=__UpperCAmelCase , )
@parameterized.expand(__UpperCAmelCase , name_func=__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
self.run_and_check(
stage=__UpperCAmelCase , model=__UpperCAmelCase , distributed=__UpperCAmelCase , fpaa=__UpperCAmelCase , )
@require_torch_multi_gpu
@parameterized.expand(__UpperCAmelCase , name_func=__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
self.run_and_check(
stage=__UpperCAmelCase , model=__UpperCAmelCase , distributed=__UpperCAmelCase , fpaa=__UpperCAmelCase , )
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
# XXX: run_asr is premature and doesn't save any results
# so all we check for now is that the process didn't fail
pass
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 10 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = True , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = models[model]
__UpperCAmelCase : Dict = self.run_trainer(
stage=__UpperCAmelCase , model_name=__UpperCAmelCase , eval_steps=__UpperCAmelCase , num_train_epochs=1 , distributed=__UpperCAmelCase , fpaa=__UpperCAmelCase , )
self.do_checks(__UpperCAmelCase )
return output_dir
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 10 , __UpperCAmelCase = 1 , __UpperCAmelCase = True , __UpperCAmelCase = True , ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_auto_remove_tmp_dir("""./xxx""" , after=__UpperCAmelCase )
__UpperCAmelCase : str = f'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(__UpperCAmelCase )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
__UpperCAmelCase : List[Any] = f'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split()
__UpperCAmelCase : Optional[Any] = [f'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py']
__UpperCAmelCase : List[Any] = self.get_launcher(__UpperCAmelCase )
__UpperCAmelCase : Tuple = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(__UpperCAmelCase , env=self.get_env() )
return output_dir
def __A ( self , __UpperCAmelCase=False ) -> Any:
'''simple docstring'''
# 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
# - it won't be able to handle that
# 2. for now testing with just 2 gpus max (since some quality tests may give different
# results with mode gpus because we use very little data)
__UpperCAmelCase : int = min(2 , get_gpu_count() ) if distributed else 1
return f'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
| 16 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
| 16 | 1 |
'''simple docstring'''
import gc
import unittest
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class _A ( unittest.TestCase ):
def __A ( self ) -> Any:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = FlaxControlNetModel.from_pretrained(
"""lllyasviel/sd-controlnet-canny""" , from_pt=__UpperCAmelCase , dtype=jnp.bfloataa )
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , controlnet=__UpperCAmelCase , from_pt=__UpperCAmelCase , dtype=jnp.bfloataa )
__UpperCAmelCase : str = controlnet_params
__UpperCAmelCase : str = """bird"""
__UpperCAmelCase : str = jax.device_count()
__UpperCAmelCase : List[Any] = pipe.prepare_text_inputs([prompts] * num_samples )
__UpperCAmelCase : Union[str, Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" )
__UpperCAmelCase : str = pipe.prepare_image_inputs([canny_image] * num_samples )
__UpperCAmelCase : List[str] = jax.random.PRNGKey(0 )
__UpperCAmelCase : Dict = jax.random.split(__UpperCAmelCase , jax.device_count() )
__UpperCAmelCase : Optional[int] = replicate(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = shard(__UpperCAmelCase )
__UpperCAmelCase : Dict = shard(__UpperCAmelCase )
__UpperCAmelCase : Any = pipe(
prompt_ids=__UpperCAmelCase , image=__UpperCAmelCase , params=__UpperCAmelCase , prng_seed=__UpperCAmelCase , num_inference_steps=50 , jit=__UpperCAmelCase , ).images
assert images.shape == (jax.device_count(), 1, 768, 512, 3)
__UpperCAmelCase : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__UpperCAmelCase : int = images[0, 253:256, 253:256, -1]
__UpperCAmelCase : str = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__UpperCAmelCase : List[str] = jnp.array(
[0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] )
print(f'output_slice: {output_slice}' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = FlaxControlNetModel.from_pretrained(
"""lllyasviel/sd-controlnet-openpose""" , from_pt=__UpperCAmelCase , dtype=jnp.bfloataa )
__UpperCAmelCase , __UpperCAmelCase : List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , controlnet=__UpperCAmelCase , from_pt=__UpperCAmelCase , dtype=jnp.bfloataa )
__UpperCAmelCase : Any = controlnet_params
__UpperCAmelCase : int = """Chef in the kitchen"""
__UpperCAmelCase : Optional[Any] = jax.device_count()
__UpperCAmelCase : int = pipe.prepare_text_inputs([prompts] * num_samples )
__UpperCAmelCase : Optional[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" )
__UpperCAmelCase : Optional[Any] = pipe.prepare_image_inputs([pose_image] * num_samples )
__UpperCAmelCase : int = jax.random.PRNGKey(0 )
__UpperCAmelCase : str = jax.random.split(__UpperCAmelCase , jax.device_count() )
__UpperCAmelCase : Tuple = replicate(__UpperCAmelCase )
__UpperCAmelCase : int = shard(__UpperCAmelCase )
__UpperCAmelCase : int = shard(__UpperCAmelCase )
__UpperCAmelCase : Any = pipe(
prompt_ids=__UpperCAmelCase , image=__UpperCAmelCase , params=__UpperCAmelCase , prng_seed=__UpperCAmelCase , num_inference_steps=50 , jit=__UpperCAmelCase , ).images
assert images.shape == (jax.device_count(), 1, 768, 512, 3)
__UpperCAmelCase : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__UpperCAmelCase : Tuple = images[0, 253:256, 253:256, -1]
__UpperCAmelCase : List[str] = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__UpperCAmelCase : List[str] = jnp.array(
[[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] )
print(f'output_slice: {output_slice}' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 16 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class _A :
def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase )
__UpperCAmelCase : List[str] = length
__UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa )
__UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ) -> Dict:
'''simple docstring'''
return self.length
def __getitem__( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return {"x": self.x[i], "y": self.y[i]}
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Any = True
def __A ( self , __UpperCAmelCase=None ) -> str:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : Optional[int] = False
return x * self.a[0] + self.b[0]
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : str = True
def __A ( self , __UpperCAmelCase=None ) -> Tuple:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : int = False
return x * self.a + self.b
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
__UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" )
__UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
__UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" )
__UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )}
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCAmelCase : List[Any] = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" )
if "label" in examples:
__UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCAmelCase : Tuple = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCAmelCase__ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 )
__UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 16 | 1 |
'''simple docstring'''
import gc
import inspect
import unittest
import torch
from parameterized import parameterized
from diffusers import PriorTransformer
from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin
enable_full_determinism()
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Any = PriorTransformer
_SCREAMING_SNAKE_CASE : Dict = "hidden_states"
@property
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Dict = 4
__UpperCAmelCase : Optional[int] = 8
__UpperCAmelCase : Tuple = 7
__UpperCAmelCase : Optional[Any] = floats_tensor((batch_size, embedding_dim) ).to(__UpperCAmelCase )
__UpperCAmelCase : Any = floats_tensor((batch_size, embedding_dim) ).to(__UpperCAmelCase )
__UpperCAmelCase : str = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(__UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def __A ( self , __UpperCAmelCase=0 ) -> Dict:
'''simple docstring'''
torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = 4
__UpperCAmelCase : List[Any] = 8
__UpperCAmelCase : Dict = 7
__UpperCAmelCase : Optional[Any] = torch.randn((batch_size, embedding_dim) ).to(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = torch.randn((batch_size, embedding_dim) ).to(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(__UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
@property
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return (4, 8)
@property
def __A ( self ) -> Tuple:
'''simple docstring'''
return (4, 8)
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 4,
"""num_layers""": 2,
"""embedding_dim""": 8,
"""num_embeddings""": 7,
"""additional_embeddings""": 4,
}
__UpperCAmelCase : str = self.dummy_input
return init_dict, inputs_dict
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = PriorTransformer.from_pretrained(
"""hf-internal-testing/prior-dummy""" , output_loading_info=__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = model(**self.dummy_input )[0]
assert hidden_states is not None, "Make sure output is not None"
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.prepare_init_args_and_inputs_for_common()
__UpperCAmelCase : Any = self.model_class(**__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : int = [*signature.parameters.keys()]
__UpperCAmelCase : Optional[int] = ["""hidden_states""", """timestep"""]
self.assertListEqual(arg_names[:2] , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = PriorTransformer.from_pretrained("""hf-internal-testing/prior-dummy""" )
__UpperCAmelCase : Optional[Any] = model.to(__UpperCAmelCase )
if hasattr(__UpperCAmelCase , """set_default_attn_processor""" ):
model.set_default_attn_processor()
__UpperCAmelCase : List[str] = self.get_dummy_seed_input()
with torch.no_grad():
__UpperCAmelCase : Dict = model(**__UpperCAmelCase )[0]
__UpperCAmelCase : Union[str, Any] = output[0, :5].flatten().cpu()
print(__UpperCAmelCase )
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
__UpperCAmelCase : Optional[int] = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] )
self.assertTrue(torch_all_close(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-2 ) )
@slow
class _A ( unittest.TestCase ):
def __A ( self , __UpperCAmelCase=1 , __UpperCAmelCase=768 , __UpperCAmelCase=77 , __UpperCAmelCase=0 ) -> Optional[Any]:
'''simple docstring'''
torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Any = batch_size
__UpperCAmelCase : str = embedding_dim
__UpperCAmelCase : str = num_embeddings
__UpperCAmelCase : List[str] = torch.randn((batch_size, embedding_dim) ).to(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = torch.randn((batch_size, embedding_dim) ).to(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(__UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def __A ( self ) -> List[str]:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@parameterized.expand(
[
# fmt: off
[13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]],
[37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]],
# fmt: on
] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = PriorTransformer.from_pretrained("""kandinsky-community/kandinsky-2-1-prior""" , subfolder="""prior""" )
model.to(__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.get_dummy_seed_input(seed=__UpperCAmelCase )
with torch.no_grad():
__UpperCAmelCase : List[str] = model(**__UpperCAmelCase )[0]
assert list(sample.shape ) == [1, 768]
__UpperCAmelCase : str = sample[0, :8].flatten().cpu()
print(__UpperCAmelCase )
__UpperCAmelCase : Tuple = torch.tensor(__UpperCAmelCase )
assert torch_all_close(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 )
| 16 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None
@property
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = (3, 32, 128)
__UpperCAmelCase : Tuple = tempfile.mkdtemp()
# fmt: off
__UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
__UpperCAmelCase : List[Any] = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
__UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) )
return image_input
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.get_tokenizer()
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
__UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.prepare_image_inputs()
__UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" )
__UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Dict = """test"""
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = """test"""
__UpperCAmelCase : int = self.prepare_image_inputs()
__UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase )
__UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = self.get_tokenizer()
__UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : str = None
__UpperCAmelCase : Dict = self.prepare_image_inputs()
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Any = self.get_image_processor()
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 )
__UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 )
__UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 )
__UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
| 16 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_UpperCamelCase = {
'''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''MobileViTFeatureExtractor''']
_UpperCamelCase = ['''MobileViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MobileViTForImageClassification''',
'''MobileViTForSemanticSegmentation''',
'''MobileViTModel''',
'''MobileViTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFMobileViTForImageClassification''',
'''TFMobileViTForSemanticSegmentation''',
'''TFMobileViTModel''',
'''TFMobileViTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 |
'''simple docstring'''
from collections.abc import Sequence
def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ):
"""simple docstring"""
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__UpperCAmelCase : Any = nums[0]
for i in range(1 , len(lowerCAmelCase__ ) ):
__UpperCAmelCase : Union[str, Any] = nums[i]
__UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_UpperCamelCase = int(input('''Enter number of elements : ''').strip())
_UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n]
print(max_subsequence_sum(array))
| 16 | 1 |
'''simple docstring'''
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class _A ( __SCREAMING_SNAKE_CASE ):
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type , pa.intaa() )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : List[Any] = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() )
def __A ( self ) -> Any:
'''simple docstring'''
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def __A ( self ) -> Tuple:
'''simple docstring'''
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
__UpperCAmelCase : List[Any] = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) )
self.assertEqual(arr.type , pa.string() )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) )
def __A ( self ) -> Tuple:
'''simple docstring'''
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
__UpperCAmelCase : Union[str, Any] = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , pa.string() )
@require_pil
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
import PIL.Image
__UpperCAmelCase : Union[str, Any] = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) )
with patch(
"""datasets.arrow_writer.cast_to_python_objects""" , side_effect=__UpperCAmelCase ) as mock_cast_to_python_objects:
__UpperCAmelCase : str = pa.array(TypedSequence([{"""path""": None, """bytes""": B"""image_bytes"""}, pil_image] , type=Image() ) )
__UpperCAmelCase , __UpperCAmelCase : int = mock_cast_to_python_objects.call_args_list[-1]
self.assertIn("""optimize_list_casting""" , __UpperCAmelCase )
self.assertFalse(kwargs["""optimize_list_casting"""] )
def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = pa.BufferReader(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , pa.Buffer ) else pa.memory_map(lowerCAmelCase__ )
__UpperCAmelCase : str = pa.ipc.open_stream(lowerCAmelCase__ )
__UpperCAmelCase : pa.Table = f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : Tuple = pa.BufferOutputStream()
__UpperCAmelCase : List[Any] = pa.schema(lowerCAmelCase__ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase__ , schema=lowerCAmelCase__ , writer_batch_size=lowerCAmelCase__ ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
__UpperCAmelCase , __UpperCAmelCase : List[Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
__UpperCAmelCase : Union[str, Any] = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase__ , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : List[str] = pa.BufferOutputStream()
__UpperCAmelCase : Tuple = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} )
with ArrowWriter(stream=lowerCAmelCase__ , features=lowerCAmelCase__ ) as writer:
writer.write({"""labels""": 0} )
writer.write({"""labels""": 1} )
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
__UpperCAmelCase : str = pa.BufferReader(output.getvalue() )
__UpperCAmelCase : List[str] = pa.ipc.open_stream(lowerCAmelCase__ )
__UpperCAmelCase : pa.Table = f.read_all()
__UpperCAmelCase : List[Any] = pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(lowerCAmelCase__ )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] )
def lowercase_ ( lowerCAmelCase__ : Tuple ):
"""simple docstring"""
__UpperCAmelCase : int = pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase__ , writer_batch_size=lowerCAmelCase__ , hash_salt="""split_name""" , check_duplicates=lowerCAmelCase__ , ) as writer:
with pytest.raises(lowerCAmelCase__ ):
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] )
__UpperCAmelCase , __UpperCAmelCase : int = writer.finalize()
@pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] )
def lowercase_ ( lowerCAmelCase__ : Tuple ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase__ , writer_batch_size=lowerCAmelCase__ , hash_salt="""split_name""" , check_duplicates=lowerCAmelCase__ , ) as writer:
with pytest.raises(lowerCAmelCase__ ):
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=10 )
writer.write({"""col_1""": """bar""", """col_2""": 2} , key=10 )
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = writer.finalize()
@pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] )
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase : str = pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase__ , writer_batch_size=lowerCAmelCase__ , hash_salt="""split_name""" , check_duplicates=lowerCAmelCase__ , ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 )
writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 )
__UpperCAmelCase , __UpperCAmelCase : str = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Dict = pa.BufferOutputStream()
__UpperCAmelCase : Dict = pa.schema(lowerCAmelCase__ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase__ , schema=lowerCAmelCase__ , writer_batch_size=lowerCAmelCase__ ) as writer:
writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} )
writer.write_batch({"""col_1""": [], """col_2""": []} )
__UpperCAmelCase , __UpperCAmelCase : Any = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
__UpperCAmelCase : Union[str, Any] = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase__ , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any ):
"""simple docstring"""
__UpperCAmelCase : str = pa.BufferOutputStream()
__UpperCAmelCase : List[str] = pa.schema(lowerCAmelCase__ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase__ , schema=lowerCAmelCase__ , writer_batch_size=lowerCAmelCase__ ) as writer:
writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) )
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
__UpperCAmelCase : str = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase__ , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = pa.BufferOutputStream()
__UpperCAmelCase : Union[str, Any] = pa.schema(lowerCAmelCase__ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase__ , schema=lowerCAmelCase__ , writer_batch_size=lowerCAmelCase__ ) as writer:
writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) )
writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
__UpperCAmelCase : int = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase__ , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def lowercase_ ( ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase : Union[str, Any] = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
__UpperCAmelCase : List[Any] = os.path.join(lowerCAmelCase__ , """test.arrow""" )
with ArrowWriter(path=lowerCAmelCase__ , schema=pa.schema(lowerCAmelCase__ ) ) as writer:
writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} )
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(lowerCAmelCase__ , metadata=writer._schema.metadata )
_check_output(lowerCAmelCase__ , 1 )
def lowercase_ ( lowerCAmelCase__ : Dict ):
"""simple docstring"""
if pa.types.is_list(lowerCAmelCase__ ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any ):
"""simple docstring"""
if isinstance(lst[0] , lowerCAmelCase__ ):
change_first_primitive_element_in_list(lst[0] , lowerCAmelCase__ )
else:
__UpperCAmelCase : Optional[Any] = value
@pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] )
@pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = pa.array(TypedSequence(lowerCAmelCase__ , optimized_int_type=lowerCAmelCase__ ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
"""col, expected_dtype""" , [
("""attention_mask""", pa.inta()),
("""special_tokens_mask""", pa.inta()),
("""token_type_ids""", pa.inta()),
("""input_ids""", pa.intaa()),
("""other""", pa.intaa()),
] , )
@pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ):
"""simple docstring"""
__UpperCAmelCase : Dict = pa.array(OptimizedTypedSequence(lowerCAmelCase__ , col=lowerCAmelCase__ ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
__UpperCAmelCase : Union[str, Any] = copy.deepcopy(lowerCAmelCase__ )
__UpperCAmelCase : Tuple = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : Any = pa.array(OptimizedTypedSequence(lowerCAmelCase__ , col=lowerCAmelCase__ ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize("""raise_exception""" , [False, True] )
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : List[str] = str(tmp_path / """dataset-train.arrow""" )
try:
with ArrowWriter(path=lowerCAmelCase__ ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase : int = """mock://dataset-train.arrow"""
with ArrowWriter(path=lowerCAmelCase__ , storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs , type(lowerCAmelCase__ ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
__UpperCAmelCase , __UpperCAmelCase : str = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(lowerCAmelCase__ )
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = pa.BufferOutputStream()
with ParquetWriter(stream=lowerCAmelCase__ ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
__UpperCAmelCase , __UpperCAmelCase : Any = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
__UpperCAmelCase : Union[str, Any] = pa.BufferReader(output.getvalue() )
__UpperCAmelCase : pa.Table = pq.read_table(lowerCAmelCase__ )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize("""embed_local_files""" , [False, True] )
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Any ):
"""simple docstring"""
import PIL.Image
__UpperCAmelCase : Tuple = str(tmp_path / """test_image_rgb.jpg""" )
PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(lowerCAmelCase__ , format="""png""" )
__UpperCAmelCase : List[str] = pa.BufferOutputStream()
with ParquetWriter(
stream=lowerCAmelCase__ , features=Features({"""image""": Image()} ) , embed_local_files=lowerCAmelCase__ ) as writer:
writer.write({"""image""": image_path} )
writer.finalize()
__UpperCAmelCase : Union[str, Any] = pa.BufferReader(output.getvalue() )
__UpperCAmelCase : pa.Table = pq.read_table(lowerCAmelCase__ )
__UpperCAmelCase : Tuple = pa_table.to_pydict()
if embed_local_files:
assert isinstance(out["""image"""][0]["""path"""] , lowerCAmelCase__ )
with open(lowerCAmelCase__ , """rb""" ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = pa.schema([pa.field("""col_1""" , pa.string() , nullable=lowerCAmelCase__ )] )
__UpperCAmelCase : Optional[int] = pa.BufferOutputStream()
with ArrowWriter(stream=lowerCAmelCase__ ) as writer:
writer._build_writer(inferred_schema=lowerCAmelCase__ )
assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] )
| 16 |
'''simple docstring'''
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = data
__UpperCAmelCase : int = previous
__UpperCAmelCase : Union[str, Any] = next_node
def __str__( self ) -> str:
'''simple docstring'''
return f'{self.data}'
def __A ( self ) -> int:
'''simple docstring'''
return self.data
def __A ( self ) -> List[str]:
'''simple docstring'''
return self.next
def __A ( self ) -> str:
'''simple docstring'''
return self.previous
class _A :
def __init__( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = head
def __iter__( self ) -> str:
'''simple docstring'''
return self
def __A ( self ) -> str:
'''simple docstring'''
if not self.current:
raise StopIteration
else:
__UpperCAmelCase : List[str] = self.current.get_data()
__UpperCAmelCase : int = self.current.get_next()
return value
class _A :
def __init__( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = None # First node in list
__UpperCAmelCase : List[str] = None # Last node in list
def __str__( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.head
__UpperCAmelCase : Optional[int] = []
while current is not None:
nodes.append(current.get_data() )
__UpperCAmelCase : Any = current.get_next()
return " ".join(str(__UpperCAmelCase ) for node in nodes )
def __contains__( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.head
while current:
if current.get_data() == value:
return True
__UpperCAmelCase : Optional[Any] = current.get_next()
return False
def __iter__( self ) -> str:
'''simple docstring'''
return LinkedListIterator(self.head )
def __A ( self ) -> List[Any]:
'''simple docstring'''
if self.head:
return self.head.get_data()
return None
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
if self.tail:
return self.tail.get_data()
return None
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
__UpperCAmelCase : str = node
__UpperCAmelCase : List[str] = node
else:
self.insert_before_node(self.head , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase )
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.set_tail(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Tuple = node
__UpperCAmelCase : List[Any] = node.previous
if node.get_previous() is None:
__UpperCAmelCase : str = node_to_insert
else:
__UpperCAmelCase : Optional[Any] = node_to_insert
__UpperCAmelCase : List[Any] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : List[str] = node
__UpperCAmelCase : Union[str, Any] = node.next
if node.get_next() is None:
__UpperCAmelCase : Dict = node_to_insert
else:
__UpperCAmelCase : Any = node_to_insert
__UpperCAmelCase : List[str] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.head
while node:
if current_position == position:
self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase )
return
current_position += 1
__UpperCAmelCase : int = node.next
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Node:
'''simple docstring'''
__UpperCAmelCase : Dict = self.head
while node:
if node.get_data() == item:
return node
__UpperCAmelCase : List[str] = node.get_next()
raise Exception("""Node not found""" )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
if (node := self.get_node(__UpperCAmelCase )) is not None:
if node == self.head:
__UpperCAmelCase : Optional[int] = self.head.get_next()
if node == self.tail:
__UpperCAmelCase : Union[str, Any] = self.tail.get_previous()
self.remove_node_pointers(__UpperCAmelCase )
@staticmethod
def __A ( __UpperCAmelCase ) -> None:
'''simple docstring'''
if node.get_next():
__UpperCAmelCase : Optional[Any] = node.previous
if node.get_previous():
__UpperCAmelCase : int = node.next
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Union[str, Any] = None
def __A ( self ) -> List[Any]:
'''simple docstring'''
return self.head is None
def lowercase_ ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.