code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_UpperCamelCase = {
"configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
"GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTBigCodeForSequenceClassification",
"GPTBigCodeForTokenClassification",
"GPTBigCodeForCausalLM",
"GPTBigCodeModel",
"GPTBigCodePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 368 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _A :
@staticmethod
def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = [
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
]
return object_detector, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 )
__UpperCAmelCase : Tuple = len(__UpperCAmelCase )
self.assertGreater(__UpperCAmelCase , 0 )
self.assertEqual(
__UpperCAmelCase , [
{
"""score""": ANY(__UpperCAmelCase ),
"""label""": ANY(__UpperCAmelCase ),
"""box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )},
}
for i in range(__UpperCAmelCase )
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> Tuple:
'''simple docstring'''
pass
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
] , )
__UpperCAmelCase : str = object_detector(
[
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
]
] , )
@require_torch
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
] , )
__UpperCAmelCase : Any = object_detector(
[
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> List[str]:
'''simple docstring'''
pass
@require_torch
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = 0.2
__UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
] , )
@require_torch
@slow
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 2
__UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
] , )
| 16 | 0 |
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = []
__UpperCAmelCase : Optional[int] = []
__UpperCAmelCase : int = {
"^": 3,
"*": 2,
"/": 2,
"%": 2,
"+": 1,
"-": 1,
} # Priority of each operator
__UpperCAmelCase : Dict = len(lowerCAmelCase__ ) if (len(lowerCAmelCase__ ) > 7) else 7
# Print table header for output
print(
"""Symbol""".center(8 ) , """Stack""".center(lowerCAmelCase__ ) , """Postfix""".center(lowerCAmelCase__ ) , sep=""" | """ , )
print("""-""" * (print_width * 3 + 7) )
for x in infix:
if x.isalpha() or x.isdigit():
post_fix.append(lowerCAmelCase__ ) # if x is Alphabet / Digit, add it to Postfix
elif x == "(":
stack.append(lowerCAmelCase__ ) # if x is "(" push to Stack
elif x == ")": # if x is ")" pop stack until "(" is encountered
while stack[-1] != "(":
post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix
stack.pop()
else:
if len(lowerCAmelCase__ ) == 0:
stack.append(lowerCAmelCase__ ) # If stack is empty, push x to stack
else: # while priority of x is not > priority of element in the stack
while len(lowerCAmelCase__ ) > 0 and priority[x] <= priority[stack[-1]]:
post_fix.append(stack.pop() ) # pop stack & add to Postfix
stack.append(lowerCAmelCase__ ) # push x to stack
print(
x.center(8 ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , sep=""" | """ , ) # Output in tabular format
while len(lowerCAmelCase__ ) > 0: # while stack is not empty
post_fix.append(stack.pop() ) # pop stack & add to Postfix
print(
""" """.center(8 ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , sep=""" | """ , ) # Output in tabular format
return "".join(lowerCAmelCase__ ) # return Postfix as str
def lowercase_ ( lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : Any = list(infix[::-1] ) # reverse the infix equation
for i in range(len(lowerCAmelCase__ ) ):
if infix[i] == "(":
__UpperCAmelCase : List[Any] = ")" # change "(" to ")"
elif infix[i] == ")":
__UpperCAmelCase : Optional[int] = "(" # change ")" to "("
return (infix_2_postfix("""""".join(lowerCAmelCase__ ) ))[
::-1
] # call infix_2_postfix on Infix, return reverse of Postfix
if __name__ == "__main__":
_UpperCamelCase = input('''\nEnter an Infix Equation = ''') # Input an Infix equation
_UpperCamelCase = ''''''.join(Infix.split()) # Remove spaces from the input
print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
| 369 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.txt'''}
_UpperCamelCase = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': 512,
'''YituTech/conv-bert-medium-small''': 512,
'''YituTech/conv-bert-small''': 512,
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION
_SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars
):
__UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) )
__UpperCAmelCase : Union[str, Any] = do_lower_case
__UpperCAmelCase : str = strip_accents
__UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars
__UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase )
__UpperCAmelCase : List[Any] = do_lower_case
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [self.sep_token_id]
__UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 16 | 0 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class _A ( _a , _a , _a , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Any = StableUnCLIPImgaImgPipeline
_SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
_SCREAMING_SNAKE_CASE : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
_SCREAMING_SNAKE_CASE : Optional[Any] = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
_SCREAMING_SNAKE_CASE : Tuple = frozenset([] )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = 32
__UpperCAmelCase : int = embedder_hidden_size
# image encoding components
__UpperCAmelCase : Tuple = CLIPImageProcessor(crop_size=32 , size=32 )
torch.manual_seed(0 )
__UpperCAmelCase : List[Any] = CLIPVisionModelWithProjection(
CLIPVisionConfig(
hidden_size=snake_case_ , projection_dim=snake_case_ , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) )
# regular denoising components
torch.manual_seed(0 )
__UpperCAmelCase : Any = StableUnCLIPImageNormalizer(embedding_dim=snake_case_ )
__UpperCAmelCase : Optional[Any] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" )
torch.manual_seed(0 )
__UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
torch.manual_seed(0 )
__UpperCAmelCase : List[str] = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=snake_case_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) )
torch.manual_seed(0 )
__UpperCAmelCase : Dict = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=snake_case_ , layers_per_block=1 , upcast_attention=snake_case_ , use_linear_projection=snake_case_ , )
torch.manual_seed(0 )
__UpperCAmelCase : Optional[int] = DDIMScheduler(
beta_schedule="""scaled_linear""" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=snake_case_ , steps_offset=1 , )
torch.manual_seed(0 )
__UpperCAmelCase : List[str] = AutoencoderKL()
__UpperCAmelCase : List[Any] = {
# image encoding components
"""feature_extractor""": feature_extractor,
"""image_encoder""": image_encoder.eval(),
# image noising components
"""image_normalizer""": image_normalizer.eval(),
"""image_noising_scheduler""": image_noising_scheduler,
# regular denoising components
"""tokenizer""": tokenizer,
"""text_encoder""": text_encoder.eval(),
"""unet""": unet.eval(),
"""scheduler""": scheduler,
"""vae""": vae.eval(),
}
return components
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=True ) -> str:
'''simple docstring'''
if str(snake_case_ ).startswith("""mps""" ):
__UpperCAmelCase : int = torch.manual_seed(snake_case_ )
else:
__UpperCAmelCase : Tuple = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ )
__UpperCAmelCase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ )
if pil_image:
__UpperCAmelCase : Tuple = input_image * 0.5 + 0.5
__UpperCAmelCase : Tuple = input_image.clamp(0 , 1 )
__UpperCAmelCase : Tuple = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__UpperCAmelCase : Any = DiffusionPipeline.numpy_to_pil(snake_case_ )[0]
return {
"prompt": "An anime racoon running a marathon",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
@skip_mps
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : Any = self.get_dummy_components()
__UpperCAmelCase : int = StableUnCLIPImgaImgPipeline(**snake_case_ )
__UpperCAmelCase : Any = sd_pipe.to(snake_case_ )
sd_pipe.set_progress_bar_config(disable=snake_case_ )
__UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(snake_case_ )
inputs.update({"""image_embeds""": None} )
__UpperCAmelCase : Dict = sd_pipe(**snake_case_ ).images
__UpperCAmelCase : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__UpperCAmelCase : Union[str, Any] = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = torch_device in ["""cpu""", """mps"""]
self._test_attention_slicing_forward_pass(test_max_difference=snake_case_ )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = torch_device in ["""cpu""", """mps"""]
self._test_inference_batch_single_identical(test_max_difference=snake_case_ )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def __A ( self ) -> str:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=snake_case_ )
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Dict:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" )
__UpperCAmelCase : Optional[int] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" )
__UpperCAmelCase : Dict = StableUnCLIPImgaImgPipeline.from_pretrained(
"""fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa )
pipe.to(snake_case_ )
pipe.set_progress_bar_config(disable=snake_case_ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase : Any = torch.Generator(device="""cpu""" ).manual_seed(0 )
__UpperCAmelCase : str = pipe(snake_case_ , """anime turle""" , generator=snake_case_ , output_type="""np""" )
__UpperCAmelCase : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(snake_case_ , snake_case_ )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" )
__UpperCAmelCase : str = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" )
__UpperCAmelCase : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained(
"""fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa )
pipe.to(snake_case_ )
pipe.set_progress_bar_config(disable=snake_case_ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 )
__UpperCAmelCase : str = pipe(snake_case_ , """anime turle""" , generator=snake_case_ , output_type="""np""" )
__UpperCAmelCase : int = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(snake_case_ , snake_case_ )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" )
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__UpperCAmelCase : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained(
"""fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa )
__UpperCAmelCase : List[Any] = pipe.to(snake_case_ )
pipe.set_progress_bar_config(disable=snake_case_ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase : Any = pipe(
snake_case_ , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , )
__UpperCAmelCase : Optional[int] = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 370 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_UpperCamelCase = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''OwlViTFeatureExtractor''']
_UpperCamelCase = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 0 |
from itertools import product
from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey
from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = k_size // 2
__UpperCAmelCase : int = mgrid[0 - center : k_size - center, 0 - center : k_size - center]
__UpperCAmelCase : List[Any] = 1 / (2 * pi * sigma) * exp(-(square(__lowerCAmelCase ) + square(__lowerCAmelCase )) / (2 * square(__lowerCAmelCase )) )
return g
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] ):
"""simple docstring"""
__UpperCAmelCase : Any = image.shape[0], image.shape[1]
# dst image height and width
__UpperCAmelCase : str = height - k_size + 1
__UpperCAmelCase : int = width - k_size + 1
# im2col, turn the k_size*k_size pixels into a row and np.vstack all rows
__UpperCAmelCase : str = zeros((dst_height * dst_width, k_size * k_size) )
__UpperCAmelCase : str = 0
for i, j in product(range(__lowerCAmelCase ) , range(__lowerCAmelCase ) ):
__UpperCAmelCase : Tuple = ravel(image[i : i + k_size, j : j + k_size] )
__UpperCAmelCase : Optional[Any] = window
row += 1
# turn the kernel into shape(k*k, 1)
__UpperCAmelCase : Tuple = gen_gaussian_kernel(__lowerCAmelCase , __lowerCAmelCase )
__UpperCAmelCase : Tuple = ravel(__lowerCAmelCase )
# reshape and get the dst image
__UpperCAmelCase : Tuple = dot(__lowerCAmelCase , __lowerCAmelCase ).reshape(__lowerCAmelCase , __lowerCAmelCase ).astype(__lowerCAmelCase )
return dst
if __name__ == "__main__":
# read original image
_UpperCamelCase = imread(r'''../image_data/lena.jpg''')
# turn image in gray scale value
_UpperCamelCase = cvtColor(img, COLOR_BGR2GRAY)
# get values with two different mask size
_UpperCamelCase = gaussian_filter(gray, 3, sigma=1)
_UpperCamelCase = gaussian_filter(gray, 5, sigma=0.8)
# show result images
imshow('''gaussian filter with 3x3 mask''', gaussianaxa)
imshow('''gaussian filter with 5x5 mask''', gaussianaxa)
waitKey()
| 371 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
'''simple docstring'''
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 16 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
"""facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class _A ( __UpperCamelCase ):
_SCREAMING_SNAKE_CASE : str = "levit"
def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=3 , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=16 , __UpperCAmelCase=[128, 256, 384] , __UpperCAmelCase=[4, 8, 12] , __UpperCAmelCase=[4, 4, 4] , __UpperCAmelCase=[16, 16, 16] , __UpperCAmelCase=0 , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=0.02 , **__UpperCAmelCase , ) -> Dict:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCAmelCase : Tuple = image_size
__UpperCAmelCase : Optional[Any] = num_channels
__UpperCAmelCase : Union[str, Any] = kernel_size
__UpperCAmelCase : Optional[int] = stride
__UpperCAmelCase : str = padding
__UpperCAmelCase : int = hidden_sizes
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : Union[str, Any] = depths
__UpperCAmelCase : Optional[int] = key_dim
__UpperCAmelCase : Dict = drop_path_rate
__UpperCAmelCase : Dict = patch_size
__UpperCAmelCase : str = attention_ratio
__UpperCAmelCase : Tuple = mlp_ratio
__UpperCAmelCase : Tuple = initializer_range
__UpperCAmelCase : str = [
['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class _A ( __UpperCamelCase ):
_SCREAMING_SNAKE_CASE : Tuple = version.parse("1.11" )
@property
def __A ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def __A ( self ) -> float:
'''simple docstring'''
return 1E-4
| 350 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
_UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
_SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" )
__UpperCAmelCase : List[Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] )
__UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
# Legacy behavior
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] )
__UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""label""": """LABEL_0""", """score""": 0.504},
{"""label""": """LABEL_0""", """score""": 0.504},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
import torch
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@require_tf
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@slow
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = pipeline("""text-classification""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
@slow
@require_tf
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : int = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
__UpperCAmelCase : Union[str, Any] = """HuggingFace is in"""
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
__UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""]
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase )
__UpperCAmelCase : Any = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , )
__UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""}
__UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , )
self.assertTrue(outputs["""label"""] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
__UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]]
with self.assertRaises(__UpperCAmelCase ):
text_classifier(__UpperCAmelCase )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
__UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
| 16 | 0 |
'''simple docstring'''
import random
class _A :
"""simple docstring"""
@staticmethod
def __A ( __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = [ord(__SCREAMING_SNAKE_CASE ) for i in text]
__UpperCAmelCase : List[str] = []
__UpperCAmelCase : Tuple = []
for i in plain:
__UpperCAmelCase : List[Any] = random.randint(1 , 300 )
__UpperCAmelCase : Dict = (i + k) * k
cipher.append(__SCREAMING_SNAKE_CASE )
key.append(__SCREAMING_SNAKE_CASE )
return cipher, key
@staticmethod
def __A ( __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = []
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
__UpperCAmelCase : int = int((cipher[i] - (key[i]) ** 2) / key[i] )
plain.append(chr(__SCREAMING_SNAKE_CASE ) )
return "".join(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
_UpperCamelCase = Onepad().encrypt('''Hello''')
print(c, k)
print(Onepad().decrypt(c, k))
| 351 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
| 16 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {
'''configuration_jukebox''': [
'''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''JukeboxConfig''',
'''JukeboxPriorConfig''',
'''JukeboxVQVAEConfig''',
],
'''tokenization_jukebox''': ['''JukeboxTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''JukeboxModel''',
'''JukeboxPreTrainedModel''',
'''JukeboxVQVAE''',
'''JukeboxPrior''',
]
if TYPE_CHECKING:
from .configuration_jukebox import (
JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP,
JukeboxConfig,
JukeboxPriorConfig,
JukeboxVQVAEConfig,
)
from .tokenization_jukebox import JukeboxTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_jukebox import (
JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST,
JukeboxModel,
JukeboxPreTrainedModel,
JukeboxPrior,
JukeboxVQVAE,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 352 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class _A :
def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase )
__UpperCAmelCase : List[str] = length
__UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa )
__UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ) -> Dict:
'''simple docstring'''
return self.length
def __getitem__( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return {"x": self.x[i], "y": self.y[i]}
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Any = True
def __A ( self , __UpperCAmelCase=None ) -> str:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : Optional[int] = False
return x * self.a[0] + self.b[0]
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : str = True
def __A ( self , __UpperCAmelCase=None ) -> Tuple:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : int = False
return x * self.a + self.b
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
__UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" )
__UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
__UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" )
__UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )}
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCAmelCase : List[Any] = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" )
if "label" in examples:
__UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCAmelCase : Tuple = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCAmelCase__ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 )
__UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 16 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''IBertForMaskedLM''',
'''IBertForMultipleChoice''',
'''IBertForQuestionAnswering''',
'''IBertForSequenceClassification''',
'''IBertForTokenClassification''',
'''IBertModel''',
'''IBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ibert import (
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
IBertForMaskedLM,
IBertForMultipleChoice,
IBertForQuestionAnswering,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertModel,
IBertPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 353 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None
@property
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = (3, 32, 128)
__UpperCAmelCase : Tuple = tempfile.mkdtemp()
# fmt: off
__UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
__UpperCAmelCase : List[Any] = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
__UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) )
return image_input
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.get_tokenizer()
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
__UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.prepare_image_inputs()
__UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" )
__UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Dict = """test"""
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = """test"""
__UpperCAmelCase : int = self.prepare_image_inputs()
__UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase )
__UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = self.get_tokenizer()
__UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : str = None
__UpperCAmelCase : Dict = self.prepare_image_inputs()
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Any = self.get_image_processor()
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 )
__UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 )
__UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 )
__UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
| 16 | 0 |
'''simple docstring'''
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
_UpperCamelCase = 'src/transformers'
_UpperCamelCase = 'docs/source/en/tasks'
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any ):
"""simple docstring"""
with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
__UpperCAmelCase : Optional[int] = f.readlines()
# Find the start prompt.
__UpperCAmelCase : int = 0
while not lines[start_index].startswith(_A ):
start_index += 1
start_index += 1
__UpperCAmelCase : List[str] = start_index
while not lines[end_index].startswith(_A ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
_UpperCamelCase = direct_transformers_import(TRANSFORMERS_PATH)
_UpperCamelCase = {
'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
_UpperCamelCase = {
'summarization.md': ('nllb',),
'translation.md': ('nllb',),
}
def lowercase_ ( lowerCAmelCase__ : Optional[int] ):
"""simple docstring"""
__UpperCAmelCase : int = TASK_GUIDE_TO_MODELS[task_guide]
__UpperCAmelCase : Dict = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_A , set() )
__UpperCAmelCase : Union[str, Any] = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([f'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n"
def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str]=False ):
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = _find_text_in_file(
filename=os.path.join(_A , _A ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , )
__UpperCAmelCase : List[Any] = get_model_list_for_task(_A )
if current_list != new_list:
if overwrite:
with open(os.path.join(_A , _A ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
f'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`'
""" to fix this.""" )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
_UpperCamelCase = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 354 |
'''simple docstring'''
from collections.abc import Sequence
def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ):
"""simple docstring"""
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__UpperCAmelCase : Any = nums[0]
for i in range(1 , len(lowerCAmelCase__ ) ):
__UpperCAmelCase : Union[str, Any] = nums[i]
__UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_UpperCamelCase = int(input('''Enter number of elements : ''').strip())
_UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n]
print(max_subsequence_sum(array))
| 16 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''SCUT-DLVCLab/lilt-roberta-en-base''': (
'''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json'''
),
}
class _A ( snake_case_ ):
_SCREAMING_SNAKE_CASE : List[Any] = "lilt"
def __init__( self , __UpperCAmelCase=30_522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3_072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=None , __UpperCAmelCase=4 , __UpperCAmelCase=1_024 , **__UpperCAmelCase , ) -> List[str]:
'''simple docstring'''
super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase )
__UpperCAmelCase : List[Any] = vocab_size
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Any = num_hidden_layers
__UpperCAmelCase : Optional[Any] = num_attention_heads
__UpperCAmelCase : Any = hidden_act
__UpperCAmelCase : int = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : str = max_position_embeddings
__UpperCAmelCase : Union[str, Any] = type_vocab_size
__UpperCAmelCase : str = initializer_range
__UpperCAmelCase : Optional[int] = layer_norm_eps
__UpperCAmelCase : Any = position_embedding_type
__UpperCAmelCase : Optional[Any] = classifier_dropout
__UpperCAmelCase : Optional[Any] = channel_shrink_ratio
__UpperCAmelCase : Tuple = max_ad_position_embeddings
| 355 |
'''simple docstring'''
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = data
__UpperCAmelCase : int = previous
__UpperCAmelCase : Union[str, Any] = next_node
def __str__( self ) -> str:
'''simple docstring'''
return f'{self.data}'
def __A ( self ) -> int:
'''simple docstring'''
return self.data
def __A ( self ) -> List[str]:
'''simple docstring'''
return self.next
def __A ( self ) -> str:
'''simple docstring'''
return self.previous
class _A :
def __init__( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = head
def __iter__( self ) -> str:
'''simple docstring'''
return self
def __A ( self ) -> str:
'''simple docstring'''
if not self.current:
raise StopIteration
else:
__UpperCAmelCase : List[str] = self.current.get_data()
__UpperCAmelCase : int = self.current.get_next()
return value
class _A :
def __init__( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = None # First node in list
__UpperCAmelCase : List[str] = None # Last node in list
def __str__( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.head
__UpperCAmelCase : Optional[int] = []
while current is not None:
nodes.append(current.get_data() )
__UpperCAmelCase : Any = current.get_next()
return " ".join(str(__UpperCAmelCase ) for node in nodes )
def __contains__( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.head
while current:
if current.get_data() == value:
return True
__UpperCAmelCase : Optional[Any] = current.get_next()
return False
def __iter__( self ) -> str:
'''simple docstring'''
return LinkedListIterator(self.head )
def __A ( self ) -> List[Any]:
'''simple docstring'''
if self.head:
return self.head.get_data()
return None
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
if self.tail:
return self.tail.get_data()
return None
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
__UpperCAmelCase : str = node
__UpperCAmelCase : List[str] = node
else:
self.insert_before_node(self.head , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase )
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.set_tail(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Tuple = node
__UpperCAmelCase : List[Any] = node.previous
if node.get_previous() is None:
__UpperCAmelCase : str = node_to_insert
else:
__UpperCAmelCase : Optional[Any] = node_to_insert
__UpperCAmelCase : List[Any] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : List[str] = node
__UpperCAmelCase : Union[str, Any] = node.next
if node.get_next() is None:
__UpperCAmelCase : Dict = node_to_insert
else:
__UpperCAmelCase : Any = node_to_insert
__UpperCAmelCase : List[str] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.head
while node:
if current_position == position:
self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase )
return
current_position += 1
__UpperCAmelCase : int = node.next
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Node:
'''simple docstring'''
__UpperCAmelCase : Dict = self.head
while node:
if node.get_data() == item:
return node
__UpperCAmelCase : List[str] = node.get_next()
raise Exception("""Node not found""" )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
if (node := self.get_node(__UpperCAmelCase )) is not None:
if node == self.head:
__UpperCAmelCase : Optional[int] = self.head.get_next()
if node == self.tail:
__UpperCAmelCase : Union[str, Any] = self.tail.get_previous()
self.remove_node_pointers(__UpperCAmelCase )
@staticmethod
def __A ( __UpperCAmelCase ) -> None:
'''simple docstring'''
if node.get_next():
__UpperCAmelCase : Optional[Any] = node.previous
if node.get_previous():
__UpperCAmelCase : int = node.next
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Union[str, Any] = None
def __A ( self ) -> List[Any]:
'''simple docstring'''
return self.head is None
def lowercase_ ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaubertConfig,
TFFlaubertForMultipleChoice,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForSequenceClassification,
TFFlaubertForTokenClassification,
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
)
class _A :
def __init__( self , __UpperCAmelCase , ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : Optional[Any] = 13
__UpperCAmelCase : Any = 7
__UpperCAmelCase : str = True
__UpperCAmelCase : int = True
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Union[str, Any] = True
__UpperCAmelCase : int = True
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : str = False
__UpperCAmelCase : str = False
__UpperCAmelCase : Dict = 2
__UpperCAmelCase : int = 99
__UpperCAmelCase : str = 0
__UpperCAmelCase : List[Any] = 32
__UpperCAmelCase : Any = 2
__UpperCAmelCase : Optional[Any] = 4
__UpperCAmelCase : Any = 0.1
__UpperCAmelCase : int = 0.1
__UpperCAmelCase : Optional[Any] = 512
__UpperCAmelCase : Dict = 16
__UpperCAmelCase : Any = 2
__UpperCAmelCase : Any = 0.02
__UpperCAmelCase : Any = 3
__UpperCAmelCase : Union[str, Any] = 4
__UpperCAmelCase : str = '''last'''
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Any = None
__UpperCAmelCase : Dict = 0
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa )
__UpperCAmelCase : str = None
if self.use_input_lengths:
__UpperCAmelCase : Dict = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
__UpperCAmelCase : Dict = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Dict = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa )
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : List[Any] = FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , )
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = TFFlaubertModel(config=lowerCamelCase__ )
__UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids}
__UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ )
__UpperCAmelCase : List[str] = [input_ids, input_mask]
__UpperCAmelCase : Optional[int] = model(lowerCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[Any] = TFFlaubertWithLMHeadModel(lowerCamelCase__ )
__UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids}
__UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase__ )
__UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''lengths''': input_lengths}
__UpperCAmelCase : str = model(lowerCamelCase__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = TFFlaubertForSequenceClassification(lowerCamelCase__ )
__UpperCAmelCase : Union[str, Any] = {'''input_ids''': input_ids, '''lengths''': input_lengths}
__UpperCAmelCase : List[Any] = model(lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Any = self.num_labels
__UpperCAmelCase : Optional[Any] = TFFlaubertForTokenClassification(config=lowerCamelCase__ )
__UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
__UpperCAmelCase : List[str] = model(lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.num_choices
__UpperCAmelCase : int = TFFlaubertForMultipleChoice(config=lowerCamelCase__ )
__UpperCAmelCase : List[str] = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase : Tuple = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase : int = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase : Union[str, Any] = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
__UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = self.prepare_config_and_inputs()
(
__UpperCAmelCase
) : Dict = config_and_inputs
__UpperCAmelCase : Dict = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''langs''': token_type_ids,
'''lengths''': input_lengths,
}
return config, inputs_dict
@require_tf
class _A ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Any = (
(
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
TFFlaubertForSequenceClassification,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForTokenClassification,
TFFlaubertForMultipleChoice,
)
if is_tf_available()
else ()
)
_SCREAMING_SNAKE_CASE : str = (
(TFFlaubertWithLMHeadModel,) if is_tf_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
_SCREAMING_SNAKE_CASE : List[str] = (
{
"feature-extraction": TFFlaubertModel,
"fill-mask": TFFlaubertWithLMHeadModel,
"question-answering": TFFlaubertForQuestionAnsweringSimple,
"text-classification": TFFlaubertForSequenceClassification,
"token-classification": TFFlaubertForTokenClassification,
"zero-shot": TFFlaubertForSequenceClassification,
}
if is_tf_available()
else {}
)
_SCREAMING_SNAKE_CASE : List[Any] = False
_SCREAMING_SNAKE_CASE : str = False
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = TFFlaubertModelTester(self )
__UpperCAmelCase : List[str] = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 )
def __A ( self ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*lowerCamelCase__ )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase__ )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase__ )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase__ )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase__ )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase__ )
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : int = TFFlaubertModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
@require_tf
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" )
__UpperCAmelCase : str = tf.convert_to_tensor(
[[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !"
__UpperCAmelCase : int = model(lowerCamelCase__ )[0]
__UpperCAmelCase : List[str] = tf.TensorShape((1, 8, 512) )
self.assertEqual(output.shape , lowerCamelCase__ )
# compare the actual values for a slice.
__UpperCAmelCase : Optional[int] = tf.convert_to_tensor(
[
[
[-1.876_8773, -1.56_6555, 0.2707_2418],
[-1.692_0038, -0.587_3505, 1.932_9599],
[-2.956_3985, -1.699_3835, 1.797_2052],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 356 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : List[str]
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __call__( self ) -> Any:
'''simple docstring'''
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : Optional[List] = None
_SCREAMING_SNAKE_CASE : Optional[int] = None
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None
__UpperCAmelCase : int = len(self.languages ) if self.languages else None
def __call__( self ) -> Optional[Any]:
'''simple docstring'''
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def __A ( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = set(self.languages )
if self.languages and set(__UpperCAmelCase ) - lang_set:
raise ValueError(
f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__UpperCAmelCase : Dict = []
for lang, text in translation_dict.items():
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 16 | 0 |
_UpperCamelCase = 8.3_144_598
def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] ):
"""simple docstring"""
if temperature < 0:
raise Exception("""Temperature cannot be less than 0 K""" )
if molar_mass <= 0:
raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
_UpperCamelCase = 300
_UpperCamelCase = 28
_UpperCamelCase = rms_speed_of_molecule(temperature, molar_mass)
print(F'Vrms of Nitrogen gas at 300 K is {vrms} m/s')
| 357 |
'''simple docstring'''
from statistics import mean
import numpy as np
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Tuple = 0
# Number of processes finished
__UpperCAmelCase : Optional[int] = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
__UpperCAmelCase : Tuple = [0] * no_of_process
# List to include calculation results
__UpperCAmelCase : int = [0] * no_of_process
# Sort by arrival time.
__UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )]
__UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )]
arrival_time.sort()
while no_of_process > finished_process_count:
__UpperCAmelCase : Dict = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
__UpperCAmelCase : Any = arrival_time[i]
__UpperCAmelCase : Any = 0
# Index showing the location of the process being performed
__UpperCAmelCase : Any = 0
# Saves the current response ratio.
__UpperCAmelCase : List[str] = 0
for i in range(0 , lowerCAmelCase__ ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
__UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
__UpperCAmelCase : Tuple = temp
__UpperCAmelCase : List[str] = i
# Calculate the turn around time
__UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
__UpperCAmelCase : List[str] = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [0] * no_of_process
for i in range(0 , lowerCAmelCase__ ):
__UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
_UpperCamelCase = 5
_UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E''']
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
_UpperCamelCase = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''')
for i in range(0, no_of_process):
print(
F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'
F'{turn_around_time[i]}\t\t\t{waiting_time[i]}'
)
print(F'average waiting time : {mean(waiting_time):.5f}')
print(F'average turn around time : {mean(turn_around_time):.5f}')
| 16 | 0 |
'''simple docstring'''
import unittest
from dataclasses import dataclass
import pytest
from accelerate.commands.config.config_args import SageMakerConfig
from accelerate.utils import ComputeEnvironment
from accelerate.utils.launch import _convert_nargs_to_dict
@dataclass
class _A ( SCREAMING_SNAKE_CASE__ ):
_SCREAMING_SNAKE_CASE : str = ComputeEnvironment.AMAZON_SAGEMAKER
_SCREAMING_SNAKE_CASE : Tuple = True
_SCREAMING_SNAKE_CASE : List[Any] = "ml.p3.2xlarge"
_SCREAMING_SNAKE_CASE : Dict = "accelerate_sagemaker_execution_role"
_SCREAMING_SNAKE_CASE : Dict = "hf-sm"
_SCREAMING_SNAKE_CASE : List[str] = "us-east-1"
_SCREAMING_SNAKE_CASE : str = 1
_SCREAMING_SNAKE_CASE : int = "accelerate-sagemaker-1"
_SCREAMING_SNAKE_CASE : str = "1.6"
_SCREAMING_SNAKE_CASE : Any = "4.4"
_SCREAMING_SNAKE_CASE : List[str] = "train.py"
_SCREAMING_SNAKE_CASE : Optional[Any] = [
"--model_name_or_path",
"bert",
"--do_train",
"False",
"--epochs",
"3",
"--learning_rate",
"5e-5",
"--max_steps",
"50.5",
]
_SCREAMING_SNAKE_CASE : Any = [
"--model_name_or_path",
"bert",
"--do_train",
"--do_test",
"False",
"--do_predict",
"--epochs",
"3",
"--learning_rate",
"5e-5",
"--max_steps",
"50.5",
]
class _A ( unittest.TestCase ):
def __A ( self ) -> int:
'''simple docstring'''
# If no defaults are changed, `to_kwargs` returns an empty dict.
__UpperCAmelCase : List[str] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args )
assert isinstance(converted_args["""model_name_or_path"""] , __UpperCAmelCase )
assert isinstance(converted_args["""do_train"""] , __UpperCAmelCase )
assert isinstance(converted_args["""epochs"""] , __UpperCAmelCase )
assert isinstance(converted_args["""learning_rate"""] , __UpperCAmelCase )
assert isinstance(converted_args["""max_steps"""] , __UpperCAmelCase )
with pytest.raises(__UpperCAmelCase ):
_convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
| 358 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = parent
__UpperCAmelCase : Any = batch_size
__UpperCAmelCase : Union[str, Any] = seq_length
__UpperCAmelCase : int = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[str] = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Union[str, Any] = num_hidden_layers
__UpperCAmelCase : Optional[int] = num_attention_heads
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_size
__UpperCAmelCase : Dict = type_sequence_label_size
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : Optional[Any] = num_choices
__UpperCAmelCase : int = scope
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : List[Any] = None
if self.use_input_mask:
__UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Any = None
if self.use_token_type_ids:
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Optional[int] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> List[str]:
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_config()
__UpperCAmelCase : List[Any] = 300
return config
def __A ( self ) -> Dict:
'''simple docstring'''
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = self.prepare_config_and_inputs()
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : List[str] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.num_labels
__UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_choices
__UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : List[str] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
__UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Any = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : int = False
_SCREAMING_SNAKE_CASE : List[str] = False
_SCREAMING_SNAKE_CASE : Dict = ()
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = MraModelTester(self )
__UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : List[Any] = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""MRA does not output attentions""" )
def __A ( self ) -> List[Any]:
'''simple docstring'''
return
@require_torch
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : int = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Union[str, Any] = 50_265
__UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" )
__UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : Any = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Dict = 50_265
__UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : str = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 0 |
'''simple docstring'''
from functools import lru_cache
@lru_cache
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
if num < 0:
raise ValueError("""Number should not be negative.""" )
return 1 if num in (0, 1) else num * factorial(num - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 359 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Any = image_size
__UpperCAmelCase : Dict = patch_size
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : List[Any] = embed_dim
__UpperCAmelCase : str = depths
__UpperCAmelCase : Dict = num_heads
__UpperCAmelCase : str = window_size
__UpperCAmelCase : int = mlp_ratio
__UpperCAmelCase : Union[str, Any] = qkv_bias
__UpperCAmelCase : Dict = hidden_dropout_prob
__UpperCAmelCase : str = attention_probs_dropout_prob
__UpperCAmelCase : Optional[int] = drop_path_rate
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Optional[int] = use_absolute_embeddings
__UpperCAmelCase : Any = patch_norm
__UpperCAmelCase : Union[str, Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : Any = scope
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : Optional[int] = type_sequence_label_size
__UpperCAmelCase : int = encoder_stride
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : Tuple = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def __A ( self ) -> Dict:
'''simple docstring'''
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
__UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : str = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = self.type_sequence_label_size
__UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs
__UpperCAmelCase : Dict = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
_SCREAMING_SNAKE_CASE : List[str] = (
{"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Dict = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[str] = SwinvaModelTester(self )
__UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 )
def __A ( self ) -> Any:
'''simple docstring'''
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
@unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason="""Swinv2 does not use inputs_embeds""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCAmelCase : List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Tuple = model_class(__UpperCAmelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : str = [*signature.parameters.keys()]
__UpperCAmelCase : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = True
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : int = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : str = outputs.attentions
__UpperCAmelCase : Any = len(self.model_tester.depths )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__UpperCAmelCase : Dict = True
__UpperCAmelCase : int = config.window_size**2
__UpperCAmelCase : Any = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : Dict = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
__UpperCAmelCase : Dict = len(__UpperCAmelCase )
# Check attention is always last and order is fine
__UpperCAmelCase : Any = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
if hasattr(self.model_tester , """num_hidden_states_types""" ):
__UpperCAmelCase : Any = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
__UpperCAmelCase : Optional[int] = 2
self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) )
__UpperCAmelCase : Tuple = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : List[Any] = outputs.hidden_states
__UpperCAmelCase : List[Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# Swinv2 has a different seq_length
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__UpperCAmelCase : int = outputs.reshaped_hidden_states
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape
__UpperCAmelCase : Any = (
reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = 3
__UpperCAmelCase : str = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__UpperCAmelCase : int = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Tuple = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase )
for model_class in self.all_model_classes:
__UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class _A ( unittest.TestCase ):
@cached_property
def __A ( self ) -> int:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" )
if is_vision_available()
else None
)
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to(
__UpperCAmelCase )
__UpperCAmelCase : Tuple = self.default_image_processor
__UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase )
# verify the logits
__UpperCAmelCase : int = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 0 |
'''simple docstring'''
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class _A ( __lowercase ):
@slow
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Any = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" )
__UpperCAmelCase : Any = BertTokenizer.from_pretrained("""bert-base-uncased""" )
__UpperCAmelCase : List[str] = bertabert.config.encoder.vocab_size
__UpperCAmelCase : Optional[int] = tokenizer.sep_token_id
__UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id
__UpperCAmelCase : List[Any] = 128
__UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" )
__UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" )
__UpperCAmelCase : Optional[Any] = train_dataset.select(range(32 ) )
__UpperCAmelCase : Optional[int] = val_dataset.select(range(16 ) )
__UpperCAmelCase : Dict = 4
def _map_to_encoder_decoder_inputs(__UpperCAmelCase ):
# Tokenizer will automatically set [BOS] <text> [EOS]
__UpperCAmelCase : List[Any] = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=UpperCAmelCase__ , max_length=512 )
__UpperCAmelCase : str = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=UpperCAmelCase__ , max_length=128 )
__UpperCAmelCase : Optional[int] = inputs.input_ids
__UpperCAmelCase : List[str] = inputs.attention_mask
__UpperCAmelCase : Union[str, Any] = outputs.input_ids
__UpperCAmelCase : Optional[Any] = outputs.input_ids.copy()
__UpperCAmelCase : List[str] = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""]
]
__UpperCAmelCase : Optional[Any] = outputs.attention_mask
assert all(len(UpperCAmelCase__ ) == 512 for x in inputs.input_ids )
assert all(len(UpperCAmelCase__ ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(__UpperCAmelCase ):
__UpperCAmelCase : str = pred.label_ids
__UpperCAmelCase : str = pred.predictions
# all unnecessary tokens are removed
__UpperCAmelCase : List[str] = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ )
__UpperCAmelCase : Dict = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ )
__UpperCAmelCase : List[Any] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(UpperCAmelCase__ ) )] ) / len(UpperCAmelCase__ )
return {"accuracy": accuracy}
# map train dataset
__UpperCAmelCase : Optional[int] = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , remove_columns=["""article""", """highlights"""] , )
train_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
# same for validation dataset
__UpperCAmelCase : Any = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , remove_columns=["""article""", """highlights"""] , )
val_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
__UpperCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir()
__UpperCAmelCase : Any = SeqaSeqTrainingArguments(
output_dir=UpperCAmelCase__ , per_device_train_batch_size=UpperCAmelCase__ , per_device_eval_batch_size=UpperCAmelCase__ , predict_with_generate=UpperCAmelCase__ , evaluation_strategy="""steps""" , do_train=UpperCAmelCase__ , do_eval=UpperCAmelCase__ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
__UpperCAmelCase : str = SeqaSeqTrainer(
model=UpperCAmelCase__ , args=UpperCAmelCase__ , compute_metrics=_compute_metrics , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , )
# start training
trainer.train()
| 360 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
_UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f'Could not make batched video from {videos}' )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
__UpperCAmelCase : int = do_resize
__UpperCAmelCase : List[str] = size
__UpperCAmelCase : Any = do_center_crop
__UpperCAmelCase : Any = crop_size
__UpperCAmelCase : Optional[Any] = resample
__UpperCAmelCase : Dict = do_rescale
__UpperCAmelCase : List[str] = rescale_factor
__UpperCAmelCase : Dict = offset
__UpperCAmelCase : List[str] = do_normalize
__UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" in size:
__UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase )
elif "height" in size and "width" in size:
__UpperCAmelCase : Any = (size["""height"""], size["""width"""])
else:
raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = image.astype(np.floataa )
if offset:
__UpperCAmelCase : Tuple = image - (scale / 2)
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
if offset and not do_rescale:
raise ValueError("""For offset, do_rescale must also be set to True.""" )
# All transformations expect numpy arrays.
__UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase )
if do_resize:
__UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase )
if do_center_crop:
__UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase )
if do_rescale:
__UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase )
if do_normalize:
__UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase )
return image
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : List[Any] = resample if resample is not None else self.resample
__UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : List[Any] = offset if offset is not None else self.offset
__UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : int = image_std if image_std is not None else self.image_std
__UpperCAmelCase : Any = size if size is not None else self.size
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
__UpperCAmelCase : int = make_batched(__UpperCAmelCase )
__UpperCAmelCase : Tuple = [
[
self._preprocess_image(
image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , )
for img in video
]
for video in videos
]
__UpperCAmelCase : Tuple = {"""pixel_values""": videos}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 16 | 0 |
'''simple docstring'''
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from tax import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder
_UpperCamelCase = "base_with_context"
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) )
__UpperCAmelCase : List[Any] = nn.Parameter(
torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__lowerCAmelCase )
for lyr_num, lyr in enumerate(model.encoders ):
__UpperCAmelCase : int = weights[f'layers_{lyr_num}']
__UpperCAmelCase : Optional[Any] = nn.Parameter(
torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) )
__UpperCAmelCase : str = ly_weight["""attention"""]
__UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) )
__UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) )
__UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) )
__UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) )
__UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) )
__UpperCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) )
__UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) )
__UpperCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) )
__UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) )
return model
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ):
"""simple docstring"""
__UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) )
__UpperCAmelCase : Optional[int] = nn.Parameter(
torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__lowerCAmelCase )
for lyr_num, lyr in enumerate(model.encoders ):
__UpperCAmelCase : Optional[int] = weights[f'layers_{lyr_num}']
__UpperCAmelCase : Any = ly_weight["""attention"""]
__UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) )
__UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) )
__UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) )
__UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) )
__UpperCAmelCase : str = nn.Parameter(
torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) )
__UpperCAmelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) )
__UpperCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) )
__UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) )
__UpperCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) )
__UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) )
return model
def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : int = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) )
__UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) )
__UpperCAmelCase : int = nn.Parameter(
torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__lowerCAmelCase )
__UpperCAmelCase : Optional[int] = nn.Parameter(
torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) )
for lyr_num, lyr in enumerate(model.decoders ):
__UpperCAmelCase : Union[str, Any] = weights[f'layers_{lyr_num}']
__UpperCAmelCase : Tuple = nn.Parameter(
torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) )
__UpperCAmelCase : Optional[Any] = nn.Parameter(
torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) )
__UpperCAmelCase : str = ly_weight["""self_attention"""]
__UpperCAmelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) )
__UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) )
__UpperCAmelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) )
__UpperCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) )
__UpperCAmelCase : List[Any] = ly_weight["""MultiHeadDotProductAttention_0"""]
__UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) )
__UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) )
__UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) )
__UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) )
__UpperCAmelCase : List[Any] = nn.Parameter(
torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) )
__UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) )
__UpperCAmelCase : Tuple = nn.Parameter(
torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) )
__UpperCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) )
__UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) )
__UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) )
__UpperCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) )
__UpperCAmelCase : Dict = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) )
return model
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : List[str] = checkpoints.load_tax_checkpoint(args.checkpoint_path )
__UpperCAmelCase : Optional[int] = jnp.tree_util.tree_map(onp.array , __lowerCAmelCase )
__UpperCAmelCase : Optional[Any] = [
"""from __gin__ import dynamic_registration""",
"""from music_spectrogram_diffusion.models.diffusion import diffusion_utils""",
"""diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""",
"""diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""",
]
__UpperCAmelCase : Optional[Any] = os.path.join(args.checkpoint_path , """..""" , """config.gin""" )
__UpperCAmelCase : List[Any] = inference.parse_training_gin_file(__lowerCAmelCase , __lowerCAmelCase )
__UpperCAmelCase : List[str] = inference.InferenceModel(args.checkpoint_path , __lowerCAmelCase )
__UpperCAmelCase : Dict = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" )
__UpperCAmelCase : str = SpectrogramNotesEncoder(
max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , )
__UpperCAmelCase : List[Any] = SpectrogramContEncoder(
input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , )
__UpperCAmelCase : List[str] = TaFilmDecoder(
input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , )
__UpperCAmelCase : Union[str, Any] = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , __lowerCAmelCase )
__UpperCAmelCase : List[Any] = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , __lowerCAmelCase )
__UpperCAmelCase : List[Any] = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , __lowerCAmelCase )
__UpperCAmelCase : Union[str, Any] = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" )
__UpperCAmelCase : Optional[int] = SpectrogramDiffusionPipeline(
notes_encoder=__lowerCAmelCase , continuous_encoder=__lowerCAmelCase , decoder=__lowerCAmelCase , scheduler=__lowerCAmelCase , melgan=__lowerCAmelCase , )
if args.save:
pipe.save_pretrained(args.output_path )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''')
parser.add_argument(
'''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.'''
)
parser.add_argument(
'''--checkpoint_path''',
default=F'{MODEL}/checkpoint_500000',
type=str,
required=False,
help='''Path to the original jax model checkpoint.''',
)
_UpperCamelCase = parser.parse_args()
main(args)
| 361 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline
_SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
_SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
_SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : Dict = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
__UpperCAmelCase : List[Any] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
__UpperCAmelCase : Any = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__UpperCAmelCase : Dict = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vqvae""": vae,
"""bert""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any:
'''simple docstring'''
if str(__UpperCAmelCase ).startswith("""mps""" ):
__UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : Dict = self.get_dummy_components()
__UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
__UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> List[str]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Tuple = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
__UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] )
__UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 50,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0]
__UpperCAmelCase : Tuple = load_numpy(
"""https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" )
__UpperCAmelCase : Dict = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 16 | 0 |
'''simple docstring'''
from __future__ import annotations
_UpperCamelCase = tuple[int, int, int]
_UpperCamelCase = tuple[str, str, str]
# used alphabet --------------------------
# from string.ascii_uppercase
_UpperCamelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
# -------------------------- default selection --------------------------
# rotors --------------------------
_UpperCamelCase = 'EGZWVONAHDCLFQMSIPJBYUKXTR'
_UpperCamelCase = 'FOBHMDKEXQNRAULPGSJVTYICZW'
_UpperCamelCase = 'ZJXESIUQLHAVRMDOYGTNFWPBKC'
# reflector --------------------------
_UpperCamelCase = {
'A': 'N',
'N': 'A',
'B': 'O',
'O': 'B',
'C': 'P',
'P': 'C',
'D': 'Q',
'Q': 'D',
'E': 'R',
'R': 'E',
'F': 'S',
'S': 'F',
'G': 'T',
'T': 'G',
'H': 'U',
'U': 'H',
'I': 'V',
'V': 'I',
'J': 'W',
'W': 'J',
'K': 'X',
'X': 'K',
'L': 'Y',
'Y': 'L',
'M': 'Z',
'Z': 'M',
}
# -------------------------- extra rotors --------------------------
_UpperCamelCase = 'RMDJXFUWGISLHVTCQNKYPBEZOA'
_UpperCamelCase = 'SGLCPQWZHKXAREONTFBVIYJUDM'
_UpperCamelCase = 'HVSICLTYKQUBXDWAJZOMFGPREN'
_UpperCamelCase = 'RZWQHFMVDBKICJLNTUXAGYPSOE'
_UpperCamelCase = 'LFKIJODBEGAMQPXVUHYSTCZRWN'
_UpperCamelCase = 'KOAEGVDHXPQZMLFTYWJNBRCIUS'
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ):
"""simple docstring"""
if (unique_rotsel := len(set(lowercase__ ) )) < 3:
__UpperCAmelCase : List[str] = f'Please use 3 unique rotors (not {unique_rotsel})'
raise Exception(lowercase__ )
# Checks if rotor positions are valid
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = rotpos
if not 0 < rotorposa <= len(lowercase__ ):
__UpperCAmelCase : Optional[Any] = f'First rotor position is not within range of 1..26 ({rotorposa}'
raise ValueError(lowercase__ )
if not 0 < rotorposa <= len(lowercase__ ):
__UpperCAmelCase : List[Any] = f'Second rotor position is not within range of 1..26 ({rotorposa})'
raise ValueError(lowercase__ )
if not 0 < rotorposa <= len(lowercase__ ):
__UpperCAmelCase : Tuple = f'Third rotor position is not within range of 1..26 ({rotorposa})'
raise ValueError(lowercase__ )
# Validates string and returns dict
__UpperCAmelCase : str = _plugboard(lowercase__ )
return rotpos, rotsel, pbdict
def lowercase_ ( lowerCAmelCase__ : Dict ):
"""simple docstring"""
if not isinstance(lowercase__ , lowercase__ ):
__UpperCAmelCase : Dict = f'Plugboard setting isn\'t type string ({type(lowercase__ )})'
raise TypeError(lowercase__ )
elif len(lowercase__ ) % 2 != 0:
__UpperCAmelCase : Optional[Any] = f'Odd number of symbols ({len(lowercase__ )})'
raise Exception(lowercase__ )
elif pbstring == "":
return {}
pbstring.replace(""" """ , """""" )
# Checks if all characters are unique
__UpperCAmelCase : Optional[int] = set()
for i in pbstring:
if i not in abc:
__UpperCAmelCase : Optional[int] = f'\'{i}\' not in list of symbols'
raise Exception(lowercase__ )
elif i in tmppbl:
__UpperCAmelCase : List[Any] = f'Duplicate symbol ({i})'
raise Exception(lowercase__ )
else:
tmppbl.add(lowercase__ )
del tmppbl
# Created the dictionary
__UpperCAmelCase : str = {}
for j in range(0 , len(lowercase__ ) - 1 , 2 ):
__UpperCAmelCase : int = pbstring[j + 1]
__UpperCAmelCase : str = pbstring[j]
return pb
def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : str = (rotora, rotora, rotora) , lowerCAmelCase__ : int = "" , ):
"""simple docstring"""
__UpperCAmelCase : Tuple = text.upper()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = _validator(
lowercase__ , lowercase__ , plugb.upper() )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = rotor_position
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = rotor_selection
rotorposa -= 1
rotorposa -= 1
rotorposa -= 1
__UpperCAmelCase : Optional[Any] = []
# encryption/decryption process --------------------------
for symbol in text:
if symbol in abc:
# 1st plugboard --------------------------
if symbol in plugboard:
__UpperCAmelCase : Dict = plugboard[symbol]
# rotor ra --------------------------
__UpperCAmelCase : str = abc.index(lowercase__ ) + rotorposa
__UpperCAmelCase : Union[str, Any] = rotora[index % len(lowercase__ )]
# rotor rb --------------------------
__UpperCAmelCase : int = abc.index(lowercase__ ) + rotorposa
__UpperCAmelCase : List[Any] = rotora[index % len(lowercase__ )]
# rotor rc --------------------------
__UpperCAmelCase : Optional[int] = abc.index(lowercase__ ) + rotorposa
__UpperCAmelCase : str = rotora[index % len(lowercase__ )]
# reflector --------------------------
# this is the reason you don't need another machine to decipher
__UpperCAmelCase : Union[str, Any] = reflector[symbol]
# 2nd rotors
__UpperCAmelCase : int = abc[rotora.index(lowercase__ ) - rotorposa]
__UpperCAmelCase : Optional[int] = abc[rotora.index(lowercase__ ) - rotorposa]
__UpperCAmelCase : List[str] = abc[rotora.index(lowercase__ ) - rotorposa]
# 2nd plugboard
if symbol in plugboard:
__UpperCAmelCase : List[str] = plugboard[symbol]
# moves/resets rotor positions
rotorposa += 1
if rotorposa >= len(lowercase__ ):
__UpperCAmelCase : List[str] = 0
rotorposa += 1
if rotorposa >= len(lowercase__ ):
__UpperCAmelCase : Optional[Any] = 0
rotorposa += 1
if rotorposa >= len(lowercase__ ):
__UpperCAmelCase : int = 0
# else:
# pass
# Error could be also raised
# raise ValueError(
# 'Invalid symbol('+repr(symbol)+')')
result.append(lowercase__ )
return "".join(lowercase__ )
if __name__ == "__main__":
_UpperCamelCase = 'This is my Python script that emulates the Enigma machine from WWII.'
_UpperCamelCase = (1, 1, 1)
_UpperCamelCase = 'pictures'
_UpperCamelCase = (rotora, rotora, rotora)
_UpperCamelCase = enigma(message, rotor_pos, rotor_sel, pb)
print('''Encrypted message:''', en)
print('''Decrypted message:''', enigma(en, rotor_pos, rotor_sel, pb))
| 362 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column
__UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )]
def __str__( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n'
# Make string identifier
__UpperCAmelCase : Optional[Any] = 0
for row_vector in self.array:
for obj in row_vector:
__UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) )
__UpperCAmelCase : Optional[int] = f'%{max_element_length}s'
# Make string and return
def single_line(__UpperCAmelCase ) -> str:
nonlocal string_format_identifier
__UpperCAmelCase : Any = """["""
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array )
return s
def __repr__( self ) -> str:
'''simple docstring'''
return str(self )
def __A ( self , __UpperCAmelCase ) -> bool:
'''simple docstring'''
if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
return self.array[loc[0]][loc[1]]
def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = value
def __add__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == another.row and self.column == another.column
# Add
__UpperCAmelCase : Dict = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] + another[r, c]
return result
def __neg__( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : Dict = -self[r, c]
return result
def __sub__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
return self + (-another)
def __mul__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication
__UpperCAmelCase : Optional[int] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] * another
return result
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication
assert self.column == another.row
__UpperCAmelCase : Dict = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
__UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})'
raise TypeError(__UpperCAmelCase )
def __A ( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Dict = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[str] = self[r, c]
return result
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
__UpperCAmelCase : Optional[Any] = v.transpose()
__UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Dict = Matrix(3 , 3 , 0 )
for i in range(3 ):
__UpperCAmelCase : Tuple = 1
print(f'a^(-1) is {ainv}' )
# u, v
__UpperCAmelCase : Dict = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3
__UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5
print(f'u is {u}' )
print(f'v is {v}' )
print(f'uv^T is {u * v.transpose()}' )
# Sherman Morrison
print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' )
def lowercase_ ( ):
"""simple docstring"""
import doctest
doctest.testmod()
testa()
| 16 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional
from packaging import version
if TYPE_CHECKING:
from ... import PreTrainedTokenizer, TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import is_torch_available, logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json',
'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json',
'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json',
'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json',
'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json',
'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json',
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : int = "bloom"
_SCREAMING_SNAKE_CASE : List[str] = ["past_key_values"]
_SCREAMING_SNAKE_CASE : int = {
"num_hidden_layers": "n_layer",
"num_attention_heads": "n_head",
}
def __init__( self , __UpperCAmelCase=250_880 , __UpperCAmelCase=64 , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = vocab_size
# Backward compatibility with n_embed kwarg
__UpperCAmelCase : List[str] = kwargs.pop("""n_embed""" , _SCREAMING_SNAKE_CASE )
__UpperCAmelCase : Optional[int] = hidden_size if n_embed is None else n_embed
__UpperCAmelCase : Dict = n_layer
__UpperCAmelCase : List[Any] = n_head
__UpperCAmelCase : Dict = layer_norm_epsilon
__UpperCAmelCase : Dict = initializer_range
__UpperCAmelCase : List[Any] = use_cache
__UpperCAmelCase : List[Any] = pretraining_tp
__UpperCAmelCase : List[str] = apply_residual_connection_post_layernorm
__UpperCAmelCase : Any = hidden_dropout
__UpperCAmelCase : Tuple = attention_dropout
__UpperCAmelCase : Optional[Any] = bos_token_id
__UpperCAmelCase : List[str] = eos_token_id
__UpperCAmelCase : Optional[int] = slow_but_exact
super().__init__(bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : int = version.parse("1.12" )
def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Dict:
'''simple docstring'''
super().__init__(_SCREAMING_SNAKE_CASE , task=_SCREAMING_SNAKE_CASE , patching_specs=_SCREAMING_SNAKE_CASE , use_past=_SCREAMING_SNAKE_CASE )
if not getattr(self._config , """pad_token_id""" , _SCREAMING_SNAKE_CASE ):
# TODO: how to do that better?
__UpperCAmelCase : int = 0
@property
def __A ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
__UpperCAmelCase : Any = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
# BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction="""inputs""" , inverted_values_shape=_SCREAMING_SNAKE_CASE )
__UpperCAmelCase : int = {0: "batch", 1: "past_sequence + sequence"}
else:
__UpperCAmelCase : Dict = {0: "batch", 1: "sequence"}
return common_inputs
@property
def __A ( self ) -> int:
'''simple docstring'''
return self._config.n_layer
@property
def __A ( self ) -> int:
'''simple docstring'''
return self._config.n_head
@property
def __A ( self ) -> float:
'''simple docstring'''
return 1E-3
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = super(_SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs(
_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE )
# We need to order the input in the way they appears in the forward()
__UpperCAmelCase : str = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__UpperCAmelCase : Dict = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
__UpperCAmelCase : int = seqlen + 2
__UpperCAmelCase : Union[str, Any] = self._config.hidden_size // self.num_attention_heads
__UpperCAmelCase : Optional[int] = (
batch * self.num_attention_heads,
head_dim,
past_key_values_length,
)
__UpperCAmelCase : int = (
batch * self.num_attention_heads,
past_key_values_length,
head_dim,
)
__UpperCAmelCase : int = [
(torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers )
]
__UpperCAmelCase : str = common_inputs["attention_mask"]
if self.use_past:
__UpperCAmelCase : Any = ordered_inputs["attention_mask"].dtype
__UpperCAmelCase : List[Any] = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE )] , dim=1 )
return ordered_inputs
@property
def __A ( self ) -> int:
'''simple docstring'''
return 13
| 363 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''],
'''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''],
'''processing_wav2vec2''': ['''Wav2Vec2Processor'''],
'''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Wav2Vec2ForAudioFrameClassification''',
'''Wav2Vec2ForCTC''',
'''Wav2Vec2ForMaskedLM''',
'''Wav2Vec2ForPreTraining''',
'''Wav2Vec2ForSequenceClassification''',
'''Wav2Vec2ForXVector''',
'''Wav2Vec2Model''',
'''Wav2Vec2PreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWav2Vec2ForCTC''',
'''TFWav2Vec2Model''',
'''TFWav2Vec2PreTrainedModel''',
'''TFWav2Vec2ForSequenceClassification''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FlaxWav2Vec2ForCTC''',
'''FlaxWav2Vec2ForPreTraining''',
'''FlaxWav2Vec2Model''',
'''FlaxWav2Vec2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 0 |
'''simple docstring'''
import hashlib
import unittest
from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available
from transformers.pipelines import DepthEstimationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
else:
class _A :
@staticmethod
def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
pass
def lowercase_ ( lowerCAmelCase__ : Image ):
"""simple docstring"""
__UpperCAmelCase : Tuple = hashlib.mda(image.tobytes() )
return m.hexdigest()
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = DepthEstimationPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ )
return depth_estimator, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , lowerCamelCase_ )
import datasets
__UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" )
__UpperCAmelCase : List[str] = depth_estimator(
[
Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ),
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
# RGBA
dataset[0]["""file"""],
# LA
dataset[1]["""file"""],
# L
dataset[2]["""file"""],
] )
self.assertEqual(
[
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
] , lowerCamelCase_ , )
@require_tf
@unittest.skip("""Depth estimation is not implemented in TF""" )
def __A ( self ) -> Any:
'''simple docstring'''
pass
@slow
@require_torch
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """Intel/dpt-large"""
__UpperCAmelCase : str = pipeline("""depth-estimation""" , model=lowerCamelCase_ )
__UpperCAmelCase : Dict = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" )
__UpperCAmelCase : Dict = hashimage(outputs["""depth"""] )
# This seems flaky.
# self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977")
self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 )
self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 )
@require_torch
def __A ( self ) -> Any:
'''simple docstring'''
# This is highly irregular to have no small tests.
self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
| 364 |
'''simple docstring'''
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING
_SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING
def __A ( self ) -> Any:
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""},
{"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""},
] , )
__UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is grouped""",
"""score""": 2.1E-05,
"""token""": 38_015,
"""token_str""": """ grouped""",
},
{
"""sequence""": """The largest city in France is accuser""",
"""score""": 2.1E-05,
"""token""": 25_506,
"""token_str""": """ accuser""",
},
] , )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""},
{"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is Maul""",
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
},
{"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""},
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is Maul<mask></s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""},
],
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is<mask> Maul</s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""},
],
] , )
@require_torch_gpu
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" )
# convert model to fp16
pipe.model.half()
__UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
@require_torch
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" )
self.run_large_test(__UpperCAmelCase )
@slow
@require_tf
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" )
self.run_large_test(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""},
{"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{
"""sequence""": """The largest city in France is Paris""",
"""score""": 0.251,
"""token""": 2_201,
"""token_str""": """ Paris""",
},
{
"""sequence""": """The largest city in France is Lyon""",
"""score""": 0.214,
"""token""": 12_790,
"""token_str""": """ Lyon""",
},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" )
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : int = None
self.run_pipeline_test(__UpperCAmelCase , [] )
@require_tf
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : str = None
self.run_pipeline_test(__UpperCAmelCase , [] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" )
__UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = [
f'This is another {tokenizer.mask_token} test',
]
return fill_masker, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = fill_masker.tokenizer
__UpperCAmelCase : Union[str, Any] = fill_masker.model
__UpperCAmelCase : Tuple = fill_masker(
f'This is a {tokenizer.mask_token}' , )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
with self.assertRaises(__UpperCAmelCase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(__UpperCAmelCase ):
fill_masker("""This is""" )
self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Dict = tokenizer.get_vocab()
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:2]
# Pipeline argument
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase )
__UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Any = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Call argument
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Score equivalence
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs]
__UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ) == set(__UpperCAmelCase ):
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
# Raises with invalid
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] )
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 )
__UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : int = tokenizer.get_vocab()
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
# top_k=2, ntargets=3
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
__UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = tokenizer.get_vocab()
# String duplicates + id duplicates
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]]
__UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(__UpperCAmelCase ) , 3 )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Dict = fill_masker(
f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
| 16 | 0 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_UpperCamelCase = {
"""vocab_file""": {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""",
"""bert-base-multilingual-uncased""": (
"""https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt"""
),
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"""
),
"""bert-base-cased-finetuned-mrpc""": (
"""https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt"""
),
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""",
"""bert-base-german-dbmdz-uncased""": (
"""https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt"""
),
"""wietsedv/bert-base-dutch-cased""": (
"""https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""",
"""bert-base-multilingual-uncased""": (
"""https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json"""
),
"""bert-base-multilingual-cased""": (
"""https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json"""
),
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"""
),
"""bert-base-cased-finetuned-mrpc""": (
"""https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json"""
),
"""bert-base-german-dbmdz-cased""": (
"""https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json"""
),
"""bert-base-german-dbmdz-uncased""": (
"""https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json"""
),
"""wietsedv/bert-base-dutch-cased""": (
"""https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json"""
),
},
}
_UpperCamelCase = {
"""bert-base-uncased""": 512,
"""bert-large-uncased""": 512,
"""bert-base-cased""": 512,
"""bert-large-cased""": 512,
"""bert-base-multilingual-uncased""": 512,
"""bert-base-multilingual-cased""": 512,
"""bert-base-chinese""": 512,
"""bert-base-german-cased""": 512,
"""bert-large-uncased-whole-word-masking""": 512,
"""bert-large-cased-whole-word-masking""": 512,
"""bert-large-uncased-whole-word-masking-finetuned-squad""": 512,
"""bert-large-cased-whole-word-masking-finetuned-squad""": 512,
"""bert-base-cased-finetuned-mrpc""": 512,
"""bert-base-german-dbmdz-cased""": 512,
"""bert-base-german-dbmdz-uncased""": 512,
"""TurkuNLP/bert-base-finnish-cased-v1""": 512,
"""TurkuNLP/bert-base-finnish-uncased-v1""": 512,
"""wietsedv/bert-base-dutch-cased""": 512,
}
_UpperCamelCase = {
"""bert-base-uncased""": {"""do_lower_case""": True},
"""bert-large-uncased""": {"""do_lower_case""": True},
"""bert-base-cased""": {"""do_lower_case""": False},
"""bert-large-cased""": {"""do_lower_case""": False},
"""bert-base-multilingual-uncased""": {"""do_lower_case""": True},
"""bert-base-multilingual-cased""": {"""do_lower_case""": False},
"""bert-base-chinese""": {"""do_lower_case""": False},
"""bert-base-german-cased""": {"""do_lower_case""": False},
"""bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True},
"""bert-large-cased-whole-word-masking""": {"""do_lower_case""": False},
"""bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True},
"""bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False},
"""bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False},
"""bert-base-german-dbmdz-cased""": {"""do_lower_case""": False},
"""bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True},
"""TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False},
"""TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True},
"""wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False},
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_INIT_CONFIGURATION
_SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : List[Any] = BertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(
_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , )
__UpperCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , _lowercase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , _lowercase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , _lowercase ) != tokenize_chinese_chars
):
__UpperCAmelCase : str = getattr(_lowercase , normalizer_state.pop("""type""" ) )
__UpperCAmelCase : str = do_lower_case
__UpperCAmelCase : Optional[int] = strip_accents
__UpperCAmelCase : Optional[Any] = tokenize_chinese_chars
__UpperCAmelCase : Tuple = normalizer_class(**_lowercase )
__UpperCAmelCase : Any = do_lower_case
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : str = [self.sep_token_id]
__UpperCAmelCase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self._tokenizer.model.save(_lowercase , name=_lowercase )
return tuple(_lowercase )
| 365 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} )
_SCREAMING_SNAKE_CASE : str = "image"
_SCREAMING_SNAKE_CASE : str = "labels"
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(f'Column {self.label_column} is not present in features.' )
if not isinstance(features[self.label_column] , __UpperCAmelCase ):
raise ValueError(f'Column {self.label_column} is not a ClassLabel.' )
__UpperCAmelCase : int = copy.deepcopy(self )
__UpperCAmelCase : str = self.label_schema.copy()
__UpperCAmelCase : Optional[Any] = features[self.label_column]
__UpperCAmelCase : Optional[int] = label_schema
return task_template
@property
def __A ( self ) -> Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 16 | 0 |
'''simple docstring'''
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
_UpperCamelCase = datasets.logging.get_logger(__name__)
_UpperCamelCase = '''\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'''
_UpperCamelCase = '''\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'''
_UpperCamelCase = '''\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'''
def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]="dummy_doc" ):
"""simple docstring"""
__UpperCAmelCase : List[str] = {doc: key_lines}
__UpperCAmelCase : List[str] = {doc: sys_lines}
__UpperCAmelCase : Optional[int] = {}
__UpperCAmelCase : Dict = 0
__UpperCAmelCase : str = 0
__UpperCAmelCase : List[Any] = 0
__UpperCAmelCase : str = 0
__UpperCAmelCase : List[str] = 0
__UpperCAmelCase : Dict = 0
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = reader.get_doc_mentions(SCREAMING_SNAKE_CASE__ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE__ )
key_singletons_num += singletons_num
if NP_only or min_span:
__UpperCAmelCase : Dict = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE__ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase , __UpperCAmelCase : int = reader.get_doc_mentions(SCREAMING_SNAKE_CASE__ , sys_doc_lines[doc] , SCREAMING_SNAKE_CASE__ )
sys_singletons_num += singletons_num
if NP_only or min_span:
__UpperCAmelCase : int = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE__ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if remove_nested:
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
__UpperCAmelCase , __UpperCAmelCase : List[str] = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
__UpperCAmelCase : int = reader.get_mention_assignments(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Union[str, Any] = reader.get_mention_assignments(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Tuple = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"""Number of removed nested coreferring mentions in the key """
f'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' )
logger.info(
"""Number of resulting singleton clusters in the key """
f'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' )
if not keep_singletons:
logger.info(
f'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '
"""files, respectively""" )
return doc_coref_infos
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = get_coref_infos(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Optional[Any] = {}
__UpperCAmelCase : Optional[int] = 0
__UpperCAmelCase : str = 0
for name, metric in metrics:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = evaluator.evaluate_documents(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({f'{name}/recall': recall, f'{name}/precision': precision, f'{name}/f1': fa} )
logger.info(
name.ljust(10 ) , f'Recall: {recall * 100:.2f}' , f' Precision: {precision * 100:.2f}' , f' F1: {fa * 100:.2f}' , )
if conll_subparts_num == 3:
__UpperCAmelCase : int = (conll / 3) * 100
logger.info(f'CoNLL score: {conll:.2f}' )
output_scores.update({"""conll_score""": conll} )
return output_scores
def lowercase_ ( lowerCAmelCase__ : Tuple ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = False
for line in key_lines:
if not line.startswith("""#""" ):
if len(line.split() ) > 6:
__UpperCAmelCase : List[Any] = line.split()[5]
if not parse_col == "-":
__UpperCAmelCase : str = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _A ( datasets.Metric ):
def __A ( self ) -> Dict:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Sequence(datasets.Value("""string""" ) ),
} ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[
"""https://github.com/ns-moosavi/coval""",
"""https://www.aclweb.org/anthology/P16-1060""",
"""http://www.conll.cemantix.org/2012/data.html""",
] , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Dict = [
("""mentions""", evaluator.mentions),
("""muc""", evaluator.muc),
("""bcub""", evaluator.b_cubed),
("""ceafe""", evaluator.ceafe),
("""lea""", evaluator.lea),
]
if min_span:
__UpperCAmelCase : Optional[int] = util.check_gold_parse_annotation(_UpperCAmelCase )
if not has_gold_parse:
raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
__UpperCAmelCase : Union[str, Any] = evaluate(
key_lines=_UpperCAmelCase , sys_lines=_UpperCAmelCase , metrics=_UpperCAmelCase , NP_only=_UpperCAmelCase , remove_nested=_UpperCAmelCase , keep_singletons=_UpperCAmelCase , min_span=_UpperCAmelCase , )
return score
| 366 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Tuple = seq_length
__UpperCAmelCase : str = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[Any] = use_token_type_ids
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : str = num_attention_heads
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : Tuple = max_position_embeddings
__UpperCAmelCase : Dict = type_vocab_size
__UpperCAmelCase : List[Any] = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[str] = num_labels
__UpperCAmelCase : str = num_choices
__UpperCAmelCase : List[Any] = scope
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Tuple = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
# first forward pass
__UpperCAmelCase : Optional[int] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCAmelCase : int = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
# select random slice
__UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = config_and_inputs
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : List[str] = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = LlamaModelTester(self )
__UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : str = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Any = 3
__UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[int] = 3
__UpperCAmelCase : Optional[Any] = """single_label_classification"""
__UpperCAmelCase : int = input_dict["""input_ids"""]
__UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = 3
__UpperCAmelCase : str = """multi_label_classification"""
__UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size )
__UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
original_model.to(__UpperCAmelCase )
original_model.eval()
__UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0}
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
scaled_model.to(__UpperCAmelCase )
scaled_model.eval()
__UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
@require_torch
class _A ( unittest.TestCase ):
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" )
__UpperCAmelCase : int = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" )
__UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" )
__UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
@unittest.skip(
"""Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" )
@slow
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" )
__UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) )
__UpperCAmelCase : Dict = torch.tensor(
[[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Model is curently gated""" )
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi"""
__UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """
__UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" )
__UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" )
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained(
"""meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase )
# greedy generation outputs
__UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 16 | 0 |
'''simple docstring'''
import tensorflow as tf
from ...tf_utils import shape_list
class _A ( tf.keras.layers.Layer ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 , __UpperCAmelCase=False , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(**__lowerCamelCase )
__UpperCAmelCase : Tuple = vocab_size
__UpperCAmelCase : Tuple = d_embed
__UpperCAmelCase : Any = d_proj
__UpperCAmelCase : Optional[int] = cutoffs + [vocab_size]
__UpperCAmelCase : Optional[int] = [0] + self.cutoffs
__UpperCAmelCase : Union[str, Any] = div_val
__UpperCAmelCase : List[str] = self.cutoffs[0]
__UpperCAmelCase : Tuple = len(self.cutoffs ) - 1
__UpperCAmelCase : Union[str, Any] = self.shortlist_size + self.n_clusters
__UpperCAmelCase : int = keep_order
__UpperCAmelCase : Dict = []
__UpperCAmelCase : Dict = []
def __A ( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
if self.n_clusters > 0:
__UpperCAmelCase : Dict = self.add_weight(
shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=__lowerCamelCase , name="""cluster_weight""" )
__UpperCAmelCase : Dict = self.add_weight(
shape=(self.n_clusters,) , initializer="""zeros""" , trainable=__lowerCamelCase , name="""cluster_bias""" )
if self.div_val == 1:
for i in range(len(self.cutoffs ) ):
if self.d_proj != self.d_embed:
__UpperCAmelCase : Dict = self.add_weight(
shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=__lowerCamelCase , name=f'out_projs_._{i}' , )
self.out_projs.append(__lowerCamelCase )
else:
self.out_projs.append(__lowerCamelCase )
__UpperCAmelCase : List[Any] = self.add_weight(
shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=__lowerCamelCase , name=f'out_layers_._{i}_._weight' , )
__UpperCAmelCase : List[Any] = self.add_weight(
shape=(self.vocab_size,) , initializer="""zeros""" , trainable=__lowerCamelCase , name=f'out_layers_._{i}_._bias' , )
self.out_layers.append((weight, bias) )
else:
for i in range(len(self.cutoffs ) ):
__UpperCAmelCase : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
__UpperCAmelCase : Tuple = self.d_embed // (self.div_val**i)
__UpperCAmelCase : Tuple = self.add_weight(
shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=__lowerCamelCase , name=f'out_projs_._{i}' )
self.out_projs.append(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = self.add_weight(
shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=__lowerCamelCase , name=f'out_layers_._{i}_._weight' , )
__UpperCAmelCase : Union[str, Any] = self.add_weight(
shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=__lowerCamelCase , name=f'out_layers_._{i}_._bias' , )
self.out_layers.append((weight, bias) )
super().build(__lowerCamelCase )
@staticmethod
def __A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = x
if proj is not None:
__UpperCAmelCase : Tuple = tf.einsum("""ibd,ed->ibe""" , __lowerCamelCase , __lowerCamelCase )
return tf.einsum("""ibd,nd->ibn""" , __lowerCamelCase , __lowerCamelCase ) + b
@staticmethod
def __A ( __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Dict = shape_list(__lowerCamelCase )
__UpperCAmelCase : Dict = tf.range(lp_size[0] , dtype=target.dtype )
__UpperCAmelCase : Optional[Any] = tf.stack([r, target] , 1 )
return tf.gather_nd(__lowerCamelCase , __lowerCamelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = 0
if self.n_clusters == 0:
__UpperCAmelCase : List[str] = self._logit(__lowerCamelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] )
if target is not None:
__UpperCAmelCase : Optional[int] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=__lowerCamelCase , logits=__lowerCamelCase )
__UpperCAmelCase : Dict = tf.nn.log_softmax(__lowerCamelCase , axis=-1 )
else:
__UpperCAmelCase : Union[str, Any] = shape_list(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = []
__UpperCAmelCase : Tuple = tf.zeros(hidden_sizes[:2] )
for i in range(len(self.cutoffs ) ):
__UpperCAmelCase : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
if target is not None:
__UpperCAmelCase : Tuple = (target >= l_idx) & (target < r_idx)
__UpperCAmelCase : Union[str, Any] = tf.where(__lowerCamelCase )
__UpperCAmelCase : Tuple = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) - l_idx
if self.div_val == 1:
__UpperCAmelCase : Optional[Any] = self.out_layers[0][0][l_idx:r_idx]
__UpperCAmelCase : Optional[int] = self.out_layers[0][1][l_idx:r_idx]
else:
__UpperCAmelCase : Optional[int] = self.out_layers[i][0]
__UpperCAmelCase : int = self.out_layers[i][1]
if i == 0:
__UpperCAmelCase : str = tf.concat([cur_W, self.cluster_weight] , 0 )
__UpperCAmelCase : Tuple = tf.concat([cur_b, self.cluster_bias] , 0 )
__UpperCAmelCase : Union[str, Any] = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[0] )
__UpperCAmelCase : List[str] = tf.nn.log_softmax(__lowerCamelCase )
out.append(head_logprob[..., : self.cutoffs[0]] )
if target is not None:
__UpperCAmelCase : Optional[Any] = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : str = self._gather_logprob(__lowerCamelCase , __lowerCamelCase )
else:
__UpperCAmelCase : str = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[i] )
__UpperCAmelCase : Dict = tf.nn.log_softmax(__lowerCamelCase )
__UpperCAmelCase : str = self.cutoffs[0] + i - 1 # No probability for the head cluster
__UpperCAmelCase : Optional[Any] = head_logprob[..., cluster_prob_idx, None] + tail_logprob
out.append(__lowerCamelCase )
if target is not None:
__UpperCAmelCase : List[Any] = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Any = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Dict = self._gather_logprob(__lowerCamelCase , __lowerCamelCase )
cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1]
if target is not None:
loss += tf.scatter_nd(__lowerCamelCase , -cur_logprob , shape_list(__lowerCamelCase ) )
__UpperCAmelCase : Union[str, Any] = tf.concat(__lowerCamelCase , axis=-1 )
if target is not None:
if return_mean:
__UpperCAmelCase : List[Any] = tf.reduce_mean(__lowerCamelCase )
# Add the training-time loss value to the layer using `self.add_loss()`.
self.add_loss(__lowerCamelCase )
# Log the loss as a metric (we could log arbitrary metrics,
# including different metrics for training and inference.
self.add_metric(__lowerCamelCase , name=self.name , aggregation="""mean""" if return_mean else """""" )
return out
| 367 |
'''simple docstring'''
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
_UpperCamelCase = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ):
"""simple docstring"""
return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths )
def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = []
if args.gold_data_mode == "qa":
__UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ )
for answer_list in data[1]:
__UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ )
answers.append(lowerCAmelCase__ )
else:
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : str = [[reference] for reference in references]
__UpperCAmelCase : Optional[int] = 0
for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
total += 1
em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : int = 100.0 * em / total
__UpperCAmelCase : Dict = 100.0 * fa / total
logger.info(f'F1: {fa:.2f}' )
logger.info(f'EM: {em:.2f}' )
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : Tuple = args.k
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = 0
for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] )
__UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
__UpperCAmelCase : List[str] = 100.0 * em / total
logger.info(f'Precision@{k}: {em: .2f}' )
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ):
"""simple docstring"""
def strip_title(lowerCAmelCase__ : Optional[int] ):
if title.startswith("""\"""" ):
__UpperCAmelCase : List[Any] = title[1:]
if title.endswith("""\"""" ):
__UpperCAmelCase : int = title[:-1]
return title
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device )
__UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ )
__UpperCAmelCase : int = question_enc_outputs[0]
__UpperCAmelCase : Dict = rag_model.retriever(
lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , )
__UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
__UpperCAmelCase : Union[str, Any] = []
for docs in all_docs:
__UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]]
provenance_strings.append("""\t""".join(lowerCAmelCase__ ) )
return provenance_strings
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
with torch.no_grad():
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )
__UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device )
__UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device )
__UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
__UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
if args.print_predictions:
for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) )
return answers
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=(
"""RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the"""
""" model_name_or_path"""
) , )
parser.add_argument(
"""--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , )
parser.add_argument(
"""--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , )
parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" )
parser.add_argument(
"""--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=(
"""Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates"""
""" precision@k."""
) , )
parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" )
parser.add_argument(
"""--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , )
parser.add_argument(
"""--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , )
parser.add_argument(
"""--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=(
"""Format of the gold data file"""
"""qa - a single line in the following format: question [tab] answer_list"""
"""ans - a single line of the gold file contains the expected answer string"""
) , )
parser.add_argument(
"""--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , )
parser.add_argument(
"""--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , )
parser.add_argument(
"""--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , )
parser.add_argument(
"""--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , )
parser.add_argument(
"""--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , )
parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" )
parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" )
parser.add_argument(
"""--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , )
parser.add_argument(
"""--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , )
__UpperCAmelCase : str = parser.parse_args()
__UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
return args
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = {}
if args.model_type is None:
__UpperCAmelCase : str = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration
__UpperCAmelCase : Dict = args.n_docs
if args.index_name is not None:
__UpperCAmelCase : Union[str, Any] = args.index_name
if args.index_path is not None:
__UpperCAmelCase : Dict = args.index_path
else:
__UpperCAmelCase : str = BartForConditionalGeneration
__UpperCAmelCase : str = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k
__UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) )
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
continue
logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) )
logger.info(""" Batch size = %d""" , args.eval_batch_size )
logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) )
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
__UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ )
model.retriever.init_retrieval()
else:
__UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
model.to(args.device )
with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file:
__UpperCAmelCase : Union[str, Any] = []
for line in tqdm(lowerCAmelCase__ ):
questions.append(line.strip() )
if len(lowerCAmelCase__ ) == args.eval_batch_size:
__UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" )
preds_file.flush()
__UpperCAmelCase : List[str] = []
if len(lowerCAmelCase__ ) > 0:
__UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) )
preds_file.flush()
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
_UpperCamelCase = get_args()
main(args)
| 16 | 0 |
'''simple docstring'''
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : str = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" )
__UpperCAmelCase : str = AutoTokenizer.from_pretrained("""google/mt5-small""" )
__UpperCAmelCase : Union[str, Any] = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids
__UpperCAmelCase : Any = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids
__UpperCAmelCase : Tuple = shift_tokens_right(lowercase_ , model.config.pad_token_id , model.config.decoder_start_token_id )
__UpperCAmelCase : Tuple = model(lowercase_ , decoder_input_ids=lowercase_ ).logits
__UpperCAmelCase : Any = optax.softmax_cross_entropy(lowercase_ , onehot(lowercase_ , logits.shape[-1] ) ).mean()
__UpperCAmelCase : List[str] = -(labels.shape[-1] * loss.item())
__UpperCAmelCase : List[Any] = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 368 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _A :
@staticmethod
def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = [
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
]
return object_detector, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 )
__UpperCAmelCase : Tuple = len(__UpperCAmelCase )
self.assertGreater(__UpperCAmelCase , 0 )
self.assertEqual(
__UpperCAmelCase , [
{
"""score""": ANY(__UpperCAmelCase ),
"""label""": ANY(__UpperCAmelCase ),
"""box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )},
}
for i in range(__UpperCAmelCase )
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> Tuple:
'''simple docstring'''
pass
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
] , )
__UpperCAmelCase : str = object_detector(
[
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
]
] , )
@require_torch
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
] , )
__UpperCAmelCase : Any = object_detector(
[
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> List[str]:
'''simple docstring'''
pass
@require_torch
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = 0.2
__UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
] , )
@require_torch
@slow
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 2
__UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
] , )
| 16 | 0 |
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
if a < 0:
raise ValueError("""Input value must be a positive integer""" )
elif isinstance(_lowerCamelCase , _lowerCamelCase ):
raise TypeError("""Input value must be a 'int' type""" )
return bin(_lowerCamelCase ).count("""1""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 369 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.txt'''}
_UpperCamelCase = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': 512,
'''YituTech/conv-bert-medium-small''': 512,
'''YituTech/conv-bert-small''': 512,
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION
_SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars
):
__UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) )
__UpperCAmelCase : Union[str, Any] = do_lower_case
__UpperCAmelCase : str = strip_accents
__UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars
__UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase )
__UpperCAmelCase : List[Any] = do_lower_case
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [self.sep_token_id]
__UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 16 | 0 |
'''simple docstring'''
from collections.abc import Generator
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Dict = 0, 1
while True:
__UpperCAmelCase : Optional[int] = b, a + b
yield b
def lowercase_ ( lowerCAmelCase__ : List[Any] = 1000 ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Optional[Any] = fibonacci_generator()
while len(str(next(lowerCAmelCase__ ) ) ) < n:
answer += 1
return answer + 1
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 370 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_UpperCamelCase = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''OwlViTFeatureExtractor''']
_UpperCamelCase = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 0 |
def lowercase_ ( lowerCAmelCase__ : list[list[int | float]] ):
"""simple docstring"""
__UpperCAmelCase : int = len(lowerCamelCase__ )
__UpperCAmelCase : List[Any] = len(matrix[0] )
__UpperCAmelCase : int = min(lowerCamelCase__ , lowerCamelCase__ )
for row in range(lowerCamelCase__ ):
# Check if diagonal element is not zero
if matrix[row][row] != 0:
# Eliminate all the elements below the diagonal
for col in range(row + 1 , lowerCamelCase__ ):
__UpperCAmelCase : str = matrix[col][row] / matrix[row][row]
for i in range(lowerCamelCase__ , lowerCamelCase__ ):
matrix[col][i] -= multiplier * matrix[row][i]
else:
# Find a non-zero diagonal element to swap rows
__UpperCAmelCase : Optional[Any] = True
for i in range(row + 1 , lowerCamelCase__ ):
if matrix[i][row] != 0:
__UpperCAmelCase , __UpperCAmelCase : List[str] = matrix[i], matrix[row]
__UpperCAmelCase : Dict = False
break
if reduce:
rank -= 1
for i in range(lowerCamelCase__ ):
__UpperCAmelCase : Tuple = matrix[i][rank]
# Reduce the row pointer by one to stay on the same row
row -= 1
return rank
if __name__ == "__main__":
import doctest
doctest.testmod()
| 371 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
'''simple docstring'''
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 16 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTMSNModel''',
'''ViTMSNForImageClassification''',
'''ViTMSNPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 350 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
_UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
_SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" )
__UpperCAmelCase : List[Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] )
__UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
# Legacy behavior
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] )
__UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""label""": """LABEL_0""", """score""": 0.504},
{"""label""": """LABEL_0""", """score""": 0.504},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
import torch
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@require_tf
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@slow
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = pipeline("""text-classification""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
@slow
@require_tf
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : int = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
__UpperCAmelCase : Union[str, Any] = """HuggingFace is in"""
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
__UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""]
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase )
__UpperCAmelCase : Any = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , )
__UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""}
__UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , )
self.assertTrue(outputs["""label"""] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
__UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]]
with self.assertRaises(__UpperCAmelCase ):
text_classifier(__UpperCAmelCase )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
__UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
| 16 | 0 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
_UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
_UpperCamelCase = 25_0004
_UpperCamelCase = 25_0020
@require_sentencepiece
@require_tokenizers
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Tuple = MBartaaTokenizer
_SCREAMING_SNAKE_CASE : int = MBartaaTokenizerFast
_SCREAMING_SNAKE_CASE : List[Any] = True
_SCREAMING_SNAKE_CASE : str = True
def __A ( self ) -> List[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase : str = MBartaaTokenizer(__UpperCAmelCase , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=__UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = '''<s>'''
__UpperCAmelCase : str = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(vocab_keys[-1] , """<mask>""" )
self.assertEqual(len(__UpperCAmelCase ) , 1_054 )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1_054 )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = MBartaaTokenizer(__UpperCAmelCase , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=__UpperCAmelCase )
__UpperCAmelCase : str = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(__UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
__UpperCAmelCase : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__UpperCAmelCase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , )
__UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__UpperCAmelCase )
self.assertListEqual(
__UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__UpperCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(__UpperCAmelCase )
self.assertListEqual(
__UpperCAmelCase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , )
@slow
def __A ( self ) -> int:
'''simple docstring'''
# fmt: off
__UpperCAmelCase : int = {'''input_ids''': [[250_004, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [250_004, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250_004, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__UpperCAmelCase , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , )
def __A ( self ) -> Any:
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__UpperCAmelCase : Optional[int] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
__UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase )
__UpperCAmelCase : int = tempfile.mkdtemp()
__UpperCAmelCase : Dict = tokenizer_r.save_pretrained(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = tokenizer_p.save_pretrained(__UpperCAmelCase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
__UpperCAmelCase : List[Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(__UpperCAmelCase , __UpperCAmelCase )
# Checks everything loads correctly in the same way
__UpperCAmelCase : List[str] = tokenizer_r.from_pretrained(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer_p.from_pretrained(__UpperCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__UpperCAmelCase , __UpperCAmelCase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__UpperCAmelCase )
# Save tokenizer rust, legacy_format=True
__UpperCAmelCase : Optional[Any] = tempfile.mkdtemp()
__UpperCAmelCase : int = tokenizer_r.save_pretrained(__UpperCAmelCase , legacy_format=__UpperCAmelCase )
__UpperCAmelCase : Tuple = tokenizer_p.save_pretrained(__UpperCAmelCase )
# Checks it save with the same files
self.assertSequenceEqual(__UpperCAmelCase , __UpperCAmelCase )
# Checks everything loads correctly in the same way
__UpperCAmelCase : Optional[int] = tokenizer_r.from_pretrained(__UpperCAmelCase )
__UpperCAmelCase : Any = tokenizer_p.from_pretrained(__UpperCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__UpperCAmelCase , __UpperCAmelCase ) )
shutil.rmtree(__UpperCAmelCase )
# Save tokenizer rust, legacy_format=False
__UpperCAmelCase : List[str] = tempfile.mkdtemp()
__UpperCAmelCase : int = tokenizer_r.save_pretrained(__UpperCAmelCase , legacy_format=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer_p.save_pretrained(__UpperCAmelCase )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__UpperCAmelCase : Dict = tokenizer_r.from_pretrained(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer_p.from_pretrained(__UpperCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__UpperCAmelCase , __UpperCAmelCase ) )
shutil.rmtree(__UpperCAmelCase )
@require_torch
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Optional[Any] = "facebook/mbart-large-50-one-to-many-mmt"
_SCREAMING_SNAKE_CASE : Dict = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
_SCREAMING_SNAKE_CASE : Tuple = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
_SCREAMING_SNAKE_CASE : List[str] = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2]
@classmethod
def __A ( cls ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" )
__UpperCAmelCase : List[str] = 1
return cls
def __A ( self ) -> List[str]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250_001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250_004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250_020 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 250_038 )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , __UpperCAmelCase )
def __A ( self ) -> Dict:
'''simple docstring'''
self.assertIn(__UpperCAmelCase , self.tokenizer.all_special_ids )
__UpperCAmelCase : Optional[Any] = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2]
__UpperCAmelCase : Tuple = self.tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
__UpperCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , __UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : str = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , __UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = 10
__UpperCAmelCase : int = self.tokenizer(__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase ).input_ids[0]
self.assertEqual(ids[0] , __UpperCAmelCase )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250_053, 250_001] )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = tempfile.mkdtemp()
__UpperCAmelCase : Tuple = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(__UpperCAmelCase )
__UpperCAmelCase : List[str] = MBartaaTokenizer.from_pretrained(__UpperCAmelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __UpperCAmelCase )
@require_torch
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__UpperCAmelCase , return_tensors="""pt""" )
__UpperCAmelCase : Dict = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
__UpperCAmelCase : Dict = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
__UpperCAmelCase : Tuple = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , __UpperCAmelCase )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = self.tokenizer(self.src_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=3 , return_tensors="""pt""" )
__UpperCAmelCase : int = self.tokenizer(
text_target=self.tgt_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=10 , return_tensors="""pt""" )
__UpperCAmelCase : int = targets['''input_ids''']
__UpperCAmelCase : List[str] = shift_tokens_right(__UpperCAmelCase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {
# en_XX, A, test, EOS
"""input_ids""": [[250_004, 62, 3_034, 2]],
"""attention_mask""": [[1, 1, 1, 1]],
# ar_AR
"""forced_bos_token_id""": 250_001,
} , )
| 351 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
| 16 | 0 |
'''simple docstring'''
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
_UpperCamelCase = logging.get_logger(__name__)
class _A ( _lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = "linear"
_SCREAMING_SNAKE_CASE : List[str] = "cosine"
_SCREAMING_SNAKE_CASE : Optional[int] = "cosine_with_restarts"
_SCREAMING_SNAKE_CASE : Dict = "polynomial"
_SCREAMING_SNAKE_CASE : Any = "constant"
_SCREAMING_SNAKE_CASE : List[str] = "constant_with_warmup"
_SCREAMING_SNAKE_CASE : List[str] = "piecewise_constant"
def lowercase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int = -1 ):
"""simple docstring"""
return LambdaLR(UpperCAmelCase_ , lambda lowerCAmelCase__ : 1 , last_epoch=UpperCAmelCase_ )
def lowercase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int , lowerCAmelCase__ : int = -1 ):
"""simple docstring"""
def lr_lambda(lowerCAmelCase__ : int ):
if current_step < num_warmup_steps:
return float(UpperCAmelCase_ ) / float(max(1.0 , UpperCAmelCase_ ) )
return 1.0
return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , last_epoch=UpperCAmelCase_ )
def lowercase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : str , lowerCAmelCase__ : int = -1 ):
"""simple docstring"""
__UpperCAmelCase : str = {}
__UpperCAmelCase : int = step_rules.split(""",""" )
for rule_str in rule_list[:-1]:
__UpperCAmelCase , __UpperCAmelCase : str = rule_str.split(""":""" )
__UpperCAmelCase : Optional[int] = int(UpperCAmelCase_ )
__UpperCAmelCase : Any = float(UpperCAmelCase_ )
__UpperCAmelCase : str = value
__UpperCAmelCase : str = float(rule_list[-1] )
def create_rules_function(lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] ):
def rule_func(lowerCAmelCase__ : int ) -> float:
__UpperCAmelCase : Any = sorted(rules_dict.keys() )
for i, sorted_step in enumerate(UpperCAmelCase_ ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
__UpperCAmelCase : str = create_rules_function(UpperCAmelCase_ , UpperCAmelCase_ )
return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , last_epoch=UpperCAmelCase_ )
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : int=-1 ):
"""simple docstring"""
def lr_lambda(lowerCAmelCase__ : int ):
if current_step < num_warmup_steps:
return float(UpperCAmelCase_ ) / float(max(1 , UpperCAmelCase_ ) )
return max(
0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) )
return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowercase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : float = 0.5 , lowerCAmelCase__ : int = -1 ):
"""simple docstring"""
def lr_lambda(lowerCAmelCase__ : int ):
if current_step < num_warmup_steps:
return float(UpperCAmelCase_ ) / float(max(1 , UpperCAmelCase_ ) )
__UpperCAmelCase : Tuple = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(UpperCAmelCase_ ) * 2.0 * progress )) )
return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowercase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : int = -1 ):
"""simple docstring"""
def lr_lambda(lowerCAmelCase__ : Any ):
if current_step < num_warmup_steps:
return float(UpperCAmelCase_ ) / float(max(1 , UpperCAmelCase_ ) )
__UpperCAmelCase : Any = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(UpperCAmelCase_ ) * progress) % 1.0) )) )
return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any]=1E-7 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : List[str]=-1 ):
"""simple docstring"""
__UpperCAmelCase : str = optimizer.defaults["""lr"""]
if not (lr_init > lr_end):
raise ValueError(f'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' )
def lr_lambda(lowerCAmelCase__ : int ):
if current_step < num_warmup_steps:
return float(UpperCAmelCase_ ) / float(max(1 , UpperCAmelCase_ ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
__UpperCAmelCase : Optional[int] = lr_init - lr_end
__UpperCAmelCase : Any = num_training_steps - num_warmup_steps
__UpperCAmelCase : Union[str, Any] = 1 - (current_step - num_warmup_steps) / decay_steps
__UpperCAmelCase : Tuple = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
_UpperCamelCase = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def lowercase_ ( lowerCAmelCase__ : Union[str, SchedulerType] , lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : float = 1.0 , lowerCAmelCase__ : int = -1 , ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = SchedulerType(UpperCAmelCase_ )
__UpperCAmelCase : Optional[int] = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(UpperCAmelCase_ , last_epoch=UpperCAmelCase_ )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(UpperCAmelCase_ , step_rules=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f'{name} requires `num_warmup_steps`, please provide that argument.' )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(UpperCAmelCase_ , num_warmup_steps=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f'{name} requires `num_training_steps`, please provide that argument.' )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
UpperCAmelCase_ , num_warmup_steps=UpperCAmelCase_ , num_training_steps=UpperCAmelCase_ , num_cycles=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ , )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
UpperCAmelCase_ , num_warmup_steps=UpperCAmelCase_ , num_training_steps=UpperCAmelCase_ , power=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ , )
return schedule_func(
UpperCAmelCase_ , num_warmup_steps=UpperCAmelCase_ , num_training_steps=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ )
| 352 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class _A :
def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase )
__UpperCAmelCase : List[str] = length
__UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa )
__UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ) -> Dict:
'''simple docstring'''
return self.length
def __getitem__( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return {"x": self.x[i], "y": self.y[i]}
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Any = True
def __A ( self , __UpperCAmelCase=None ) -> str:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : Optional[int] = False
return x * self.a[0] + self.b[0]
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : str = True
def __A ( self , __UpperCAmelCase=None ) -> Tuple:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : int = False
return x * self.a + self.b
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
__UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" )
__UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
__UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" )
__UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )}
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCAmelCase : List[Any] = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" )
if "label" in examples:
__UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCAmelCase : Tuple = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCAmelCase__ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 )
__UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 16 | 0 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = len(_lowerCAmelCase ) + 1
__UpperCAmelCase : Optional[int] = len(_lowerCAmelCase ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
__UpperCAmelCase : List[Any] = [[0 for i in range(_lowerCAmelCase )] for j in range(_lowerCAmelCase )]
# since string of zero length match pattern of zero length
__UpperCAmelCase : Union[str, Any] = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , _lowerCAmelCase ):
__UpperCAmelCase : Optional[Any] = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , _lowerCAmelCase ):
__UpperCAmelCase : List[str] = dp[0][j - 2] if pattern[j - 1] == "*" else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , _lowerCAmelCase ):
for j in range(1 , _lowerCAmelCase ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
__UpperCAmelCase : Optional[Any] = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
__UpperCAmelCase : Union[str, Any] = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
__UpperCAmelCase : List[str] = dp[i - 1][j]
else:
__UpperCAmelCase : List[str] = 0
else:
__UpperCAmelCase : Optional[int] = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
_UpperCamelCase = '''aab'''
_UpperCamelCase = '''c*a*b'''
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(F'{input_string} matches the given pattern {pattern}')
else:
print(F'{input_string} does not match with the given pattern {pattern}')
| 353 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None
@property
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = (3, 32, 128)
__UpperCAmelCase : Tuple = tempfile.mkdtemp()
# fmt: off
__UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
__UpperCAmelCase : List[Any] = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
__UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) )
return image_input
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.get_tokenizer()
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
__UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.prepare_image_inputs()
__UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" )
__UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Dict = """test"""
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = """test"""
__UpperCAmelCase : int = self.prepare_image_inputs()
__UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase )
__UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = self.get_tokenizer()
__UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : str = None
__UpperCAmelCase : Dict = self.prepare_image_inputs()
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Any = self.get_image_processor()
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 )
__UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 )
__UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 )
__UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
| 16 | 0 |
'''simple docstring'''
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
_UpperCamelCase = "\\n Text data.\n Second line of data."
_UpperCamelCase = "file"
@pytest.fixture(scope="""session""" )
def lowercase_ ( lowerCAmelCase__ : Optional[int] ):
"""simple docstring"""
__UpperCAmelCase : Tuple = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""")
__UpperCAmelCase : Tuple = bytes(lowerCAmelCase__ , """utf-8""" )
with zstd.open(lowerCAmelCase__ , """wb""" ) as f:
f.write(lowerCAmelCase__ )
return path
@pytest.fixture
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
with open(os.path.join(tmpfs.local_root_dir , lowerCAmelCase__ ) , """w""" ) as f:
f.write(lowerCAmelCase__ )
return FILE_PATH
@pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] )
def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
__UpperCAmelCase : int = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path}
__UpperCAmelCase : Dict = input_paths[compression_format]
__UpperCAmelCase : Tuple = tmp_path / """cache"""
__UpperCAmelCase : int = DownloadConfig(cache_dir=lowerCAmelCase__ , extract_compressed_file=lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = cached_path(lowerCAmelCase__ , download_config=lowerCAmelCase__ )
with open(lowerCAmelCase__ ) as f:
__UpperCAmelCase : Optional[int] = f.read()
with open(lowerCAmelCase__ ) as f:
__UpperCAmelCase : Optional[Any] = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize("""default_extracted""" , [True, False] )
@pytest.mark.parametrize("""default_cache_dir""" , [True, False] )
def lowercase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = """custom_cache"""
__UpperCAmelCase : str = """custom_extracted_dir"""
__UpperCAmelCase : Optional[Any] = tmp_path / """custom_extracted_path"""
if default_extracted:
__UpperCAmelCase : List[str] = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""")
else:
monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , lowerCAmelCase__ )
monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(lowerCAmelCase__ ) )
__UpperCAmelCase : List[str] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
__UpperCAmelCase : Optional[int] = xz_file
__UpperCAmelCase : Optional[Any] = (
DownloadConfig(extract_compressed_file=lowerCAmelCase__ )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowerCAmelCase__ )
)
__UpperCAmelCase : Optional[int] = cached_path(lowerCAmelCase__ , download_config=lowerCAmelCase__ )
assert Path(lowerCAmelCase__ ).parent.parts[-2:] == expected
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : str = str(Path(lowerCAmelCase__ ).resolve() )
assert cached_path(lowerCAmelCase__ ) == text_file
# relative path
__UpperCAmelCase : Optional[int] = str(Path(lowerCAmelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(lowerCAmelCase__ ) == text_file
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : str = str(tmp_path.resolve() / """__missing_file__.txt""" )
with pytest.raises(lowerCAmelCase__ ):
cached_path(lowerCAmelCase__ )
# relative path
__UpperCAmelCase : str = """./__missing_file__.txt"""
with pytest.raises(lowerCAmelCase__ ):
cached_path(lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Tuple = get_from_cache(f'tmp://{tmpfs_file}' )
with open(lowerCAmelCase__ ) as f:
__UpperCAmelCase : List[str] = f.read()
assert output_file_content == FILE_CONTENT
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowerCAmelCase__ )
def lowercase_ ( ):
"""simple docstring"""
with pytest.raises(lowerCAmelCase__ ):
cached_path("""https://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase : int = tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(lowerCAmelCase__ ):
http_get("""https://huggingface.co""" , temp_file=lowerCAmelCase__ )
with pytest.raises(lowerCAmelCase__ ):
http_head("""https://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : Tuple ):
"""simple docstring"""
__UpperCAmelCase : str = tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(lowerCAmelCase__ ):
ftp_get("""ftp://huggingface.co""" , temp_file=lowerCAmelCase__ )
with pytest.raises(lowerCAmelCase__ ):
ftp_head("""ftp://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : Any ):
"""simple docstring"""
__UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(lowerCAmelCase__ ):
fsspec_get("""s3://huggingface.co""" , temp_file=lowerCAmelCase__ )
with pytest.raises(lowerCAmelCase__ ):
fsspec_head("""s3://huggingface.co""" )
| 354 |
'''simple docstring'''
from collections.abc import Sequence
def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ):
"""simple docstring"""
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__UpperCAmelCase : Any = nums[0]
for i in range(1 , len(lowerCAmelCase__ ) ):
__UpperCAmelCase : Union[str, Any] = nums[i]
__UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_UpperCamelCase = int(input('''Enter number of elements : ''').strip())
_UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n]
print(max_subsequence_sum(array))
| 16 | 0 |
'''simple docstring'''
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
_UpperCamelCase = get_logger(__name__)
_UpperCamelCase = Path(__file__).parent / 'model_card_template.md'
_UpperCamelCase = uuida().hex
_UpperCamelCase = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES
_UpperCamelCase = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES
_UpperCamelCase = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/'
def lowercase_ ( lowerCAmelCase__ : Dict = None ):
"""simple docstring"""
__UpperCAmelCase : str = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}'
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += f'; torch/{_torch_version}'
if is_flax_available():
ua += f'; jax/{_jax_version}'
ua += f'; flax/{_flax_version}'
if is_onnx_available():
ua += f'; onnxruntime/{_onnxruntime_version}'
# CI will set this value to True
if os.environ.get("""DIFFUSERS_IS_CI""" , """""" ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() )
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ):
ua += "; " + user_agent
return ua
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any = None , lowerCAmelCase__ : Union[str, Any] = None ):
"""simple docstring"""
if token is None:
__UpperCAmelCase : Tuple = HfFolder.get_token()
if organization is None:
__UpperCAmelCase : str = whoami(__UpperCAmelCase )["""name"""]
return f'{username}/{model_id}'
else:
return f'{organization}/{model_id}'
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
if not is_jinja_available():
raise ValueError(
"""Modelcard rendering is based on Jinja templates."""
""" Please make sure to have `jinja` installed before using `create_model_card`."""
""" To install it, please run `pip install Jinja2`.""" )
if hasattr(__UpperCAmelCase , """local_rank""" ) and args.local_rank not in [-1, 0]:
return
__UpperCAmelCase : str = args.hub_token if hasattr(__UpperCAmelCase , """hub_token""" ) else None
__UpperCAmelCase : Optional[int] = get_full_repo_name(__UpperCAmelCase , token=__UpperCAmelCase )
__UpperCAmelCase : str = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language="""en""" , license="""apache-2.0""" , library_name="""diffusers""" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__UpperCAmelCase , model_name=__UpperCAmelCase , repo_name=__UpperCAmelCase , dataset_name=args.dataset_name if hasattr(__UpperCAmelCase , """dataset_name""" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(__UpperCAmelCase , """gradient_accumulation_steps""" ) else None
) , adam_betaa=args.adam_betaa if hasattr(__UpperCAmelCase , """adam_beta1""" ) else None , adam_betaa=args.adam_betaa if hasattr(__UpperCAmelCase , """adam_beta2""" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__UpperCAmelCase , """adam_weight_decay""" ) else None , adam_epsilon=args.adam_epsilon if hasattr(__UpperCAmelCase , """adam_epsilon""" ) else None , lr_scheduler=args.lr_scheduler if hasattr(__UpperCAmelCase , """lr_scheduler""" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__UpperCAmelCase , """lr_warmup_steps""" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__UpperCAmelCase , """ema_inv_gamma""" ) else None , ema_power=args.ema_power if hasattr(__UpperCAmelCase , """ema_power""" ) else None , ema_max_decay=args.ema_max_decay if hasattr(__UpperCAmelCase , """ema_max_decay""" ) else None , mixed_precision=args.mixed_precision , )
__UpperCAmelCase : Union[str, Any] = os.path.join(args.output_dir , """README.md""" )
model_card.save(__UpperCAmelCase )
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict = None ):
"""simple docstring"""
if resolved_file is None or commit_hash is not None:
return commit_hash
__UpperCAmelCase : Any = str(Path(__UpperCAmelCase ).as_posix() )
__UpperCAmelCase : str = re.search(r"""snapshots/([^/]+)/""" , __UpperCAmelCase )
if search is None:
return None
__UpperCAmelCase : List[Any] = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(__UpperCAmelCase ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
_UpperCamelCase = os.path.expanduser(
os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface'''))
)
_UpperCamelCase = os.path.join(hf_cache_home, '''diffusers''')
def lowercase_ ( lowerCAmelCase__ : int = None , lowerCAmelCase__ : str = None ):
"""simple docstring"""
if new_cache_dir is None:
__UpperCAmelCase : List[Any] = DIFFUSERS_CACHE
if old_cache_dir is None:
__UpperCAmelCase : Tuple = old_diffusers_cache
__UpperCAmelCase : Dict = Path(__UpperCAmelCase ).expanduser()
__UpperCAmelCase : Dict = Path(__UpperCAmelCase ).expanduser()
for old_blob_path in old_cache_dir.glob("""**/blobs/*""" ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
__UpperCAmelCase : Tuple = new_cache_dir / old_blob_path.relative_to(__UpperCAmelCase )
new_blob_path.parent.mkdir(parents=__UpperCAmelCase , exist_ok=__UpperCAmelCase )
os.replace(__UpperCAmelCase , __UpperCAmelCase )
try:
os.symlink(__UpperCAmelCase , __UpperCAmelCase )
except OSError:
logger.warning(
"""Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""" )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
_UpperCamelCase = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''')
if not os.path.isfile(cache_version_file):
_UpperCamelCase = 0
else:
with open(cache_version_file) as f:
try:
_UpperCamelCase = int(f.read())
except ValueError:
_UpperCamelCase = 0
if cache_version < 1:
_UpperCamelCase = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
'''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your '''
'''existing cached models. This is a one-time operation, you can interrupt it or run it '''
'''later by calling `diffusers.utils.hub_utils.move_cache()`.'''
)
try:
move_cache()
except Exception as e:
_UpperCamelCase = '\n'.join(traceback.format_tb(e.__traceback__))
logger.error(
F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease '
'''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole '''
'''message and we will do our best to help.'''
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, '''w''') as f:
f.write('''1''')
except Exception:
logger.warning(
F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure '
'''the directory exists and can be written to.'''
)
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] = None ):
"""simple docstring"""
if variant is not None:
__UpperCAmelCase : Tuple = weights_name.split(""".""" )
__UpperCAmelCase : List[Any] = splits[:-1] + [variant] + splits[-1:]
__UpperCAmelCase : int = """.""".join(__UpperCAmelCase )
return weights_name
def lowercase_ ( lowerCAmelCase__ : Optional[int] , *,
lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=None , ):
"""simple docstring"""
__UpperCAmelCase : List[str] = str(__UpperCAmelCase )
if os.path.isfile(__UpperCAmelCase ):
return pretrained_model_name_or_path
elif os.path.isdir(__UpperCAmelCase ):
if os.path.isfile(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ):
# Load from a PyTorch checkpoint
__UpperCAmelCase : Optional[int] = os.path.join(__UpperCAmelCase , __UpperCAmelCase )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ):
__UpperCAmelCase : List[Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return model_file
else:
raise EnvironmentError(
f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(__UpperCAmelCase ).base_version ) >= version.parse("""0.20.0""" )
):
try:
__UpperCAmelCase : Dict = hf_hub_download(
__UpperCAmelCase , filename=_add_variant(__UpperCAmelCase , __UpperCAmelCase ) , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , user_agent=__UpperCAmelCase , subfolder=__UpperCAmelCase , revision=revision or commit_hash , )
warnings.warn(
f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , __UpperCAmelCase , )
return model_file
except: # noqa: E722
warnings.warn(
f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__UpperCAmelCase , __UpperCAmelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__UpperCAmelCase , __UpperCAmelCase )}\' so that the correct variant file can be added.' , __UpperCAmelCase , )
try:
# 2. Load model file as usual
__UpperCAmelCase : Dict = hf_hub_download(
__UpperCAmelCase , filename=__UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , user_agent=__UpperCAmelCase , subfolder=__UpperCAmelCase , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier '
"""listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a """
"""token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """
"""login`.""" )
except RevisionNotFoundError:
raise EnvironmentError(
f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for '
"""this model name. Check the model page at """
f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' )
except EntryNotFoundError:
raise EnvironmentError(
f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' )
except HTTPError as err:
raise EnvironmentError(
f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' )
except ValueError:
raise EnvironmentError(
f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it'
f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a'
f' directory containing a file named {weights_name} or'
""" \nCheckout your internet connection or see how to run the library in"""
""" offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.""" )
except EnvironmentError:
raise EnvironmentError(
f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from '
"""\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. """
f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory '
f'containing a file named {weights_name}' )
| 355 |
'''simple docstring'''
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = data
__UpperCAmelCase : int = previous
__UpperCAmelCase : Union[str, Any] = next_node
def __str__( self ) -> str:
'''simple docstring'''
return f'{self.data}'
def __A ( self ) -> int:
'''simple docstring'''
return self.data
def __A ( self ) -> List[str]:
'''simple docstring'''
return self.next
def __A ( self ) -> str:
'''simple docstring'''
return self.previous
class _A :
def __init__( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = head
def __iter__( self ) -> str:
'''simple docstring'''
return self
def __A ( self ) -> str:
'''simple docstring'''
if not self.current:
raise StopIteration
else:
__UpperCAmelCase : List[str] = self.current.get_data()
__UpperCAmelCase : int = self.current.get_next()
return value
class _A :
def __init__( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = None # First node in list
__UpperCAmelCase : List[str] = None # Last node in list
def __str__( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.head
__UpperCAmelCase : Optional[int] = []
while current is not None:
nodes.append(current.get_data() )
__UpperCAmelCase : Any = current.get_next()
return " ".join(str(__UpperCAmelCase ) for node in nodes )
def __contains__( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.head
while current:
if current.get_data() == value:
return True
__UpperCAmelCase : Optional[Any] = current.get_next()
return False
def __iter__( self ) -> str:
'''simple docstring'''
return LinkedListIterator(self.head )
def __A ( self ) -> List[Any]:
'''simple docstring'''
if self.head:
return self.head.get_data()
return None
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
if self.tail:
return self.tail.get_data()
return None
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
__UpperCAmelCase : str = node
__UpperCAmelCase : List[str] = node
else:
self.insert_before_node(self.head , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase )
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.set_tail(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Tuple = node
__UpperCAmelCase : List[Any] = node.previous
if node.get_previous() is None:
__UpperCAmelCase : str = node_to_insert
else:
__UpperCAmelCase : Optional[Any] = node_to_insert
__UpperCAmelCase : List[Any] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : List[str] = node
__UpperCAmelCase : Union[str, Any] = node.next
if node.get_next() is None:
__UpperCAmelCase : Dict = node_to_insert
else:
__UpperCAmelCase : Any = node_to_insert
__UpperCAmelCase : List[str] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.head
while node:
if current_position == position:
self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase )
return
current_position += 1
__UpperCAmelCase : int = node.next
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Node:
'''simple docstring'''
__UpperCAmelCase : Dict = self.head
while node:
if node.get_data() == item:
return node
__UpperCAmelCase : List[str] = node.get_next()
raise Exception("""Node not found""" )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
if (node := self.get_node(__UpperCAmelCase )) is not None:
if node == self.head:
__UpperCAmelCase : Optional[int] = self.head.get_next()
if node == self.tail:
__UpperCAmelCase : Union[str, Any] = self.tail.get_previous()
self.remove_node_pointers(__UpperCAmelCase )
@staticmethod
def __A ( __UpperCAmelCase ) -> None:
'''simple docstring'''
if node.get_next():
__UpperCAmelCase : Optional[Any] = node.previous
if node.get_previous():
__UpperCAmelCase : int = node.next
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Union[str, Any] = None
def __A ( self ) -> List[Any]:
'''simple docstring'''
return self.head is None
def lowercase_ ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 0 |
'''simple docstring'''
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.txt'''}
_UpperCamelCase = {
'''vocab_file''': {
'''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''',
},
}
_UpperCamelCase = {
'''openbmb/cpm-ant-10b''': 1024,
}
def lowercase_ ( lowerCAmelCase__ : Any ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = collections.OrderedDict()
with open(lowercase_ , """r""" , encoding="""utf-8""" ) as reader:
__UpperCAmelCase : Optional[Any] = reader.readlines()
for index, token in enumerate(lowercase_ ):
__UpperCAmelCase : str = token.rstrip("""\n""" )
__UpperCAmelCase : Optional[Any] = index
return vocab
class _A ( A__ ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<unk>" , __UpperCAmelCase=200 ) -> int:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = vocab
__UpperCAmelCase : Optional[Any] = unk_token
__UpperCAmelCase : Optional[Any] = max_input_chars_per_word
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = list(lowerCamelCase__ )
if len(lowerCamelCase__ ) > self.max_input_chars_per_word:
return [self.unk_token]
__UpperCAmelCase : Optional[Any] = 0
__UpperCAmelCase : List[Any] = []
while start < len(lowerCamelCase__ ):
__UpperCAmelCase : Optional[int] = len(lowerCamelCase__ )
__UpperCAmelCase : List[Any] = None
while start < end:
__UpperCAmelCase : Dict = """""".join(chars[start:end] )
if substr in self.vocab:
__UpperCAmelCase : Tuple = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token )
start += 1
else:
sub_tokens.append(lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = end
return sub_tokens
class _A ( A__ ):
_SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : List[str] = ['input_ids', 'attention_mask']
_SCREAMING_SNAKE_CASE : int = False
def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<d>" , __UpperCAmelCase="</d>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="</n>" , __UpperCAmelCase="</_>" , __UpperCAmelCase="left" , **__UpperCAmelCase , ) -> Any:
'''simple docstring'''
requires_backends(self , ["""jieba"""] )
super().__init__(
bod_token=lowerCamelCase__ , eod_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , line_token=lowerCamelCase__ , space_token=lowerCamelCase__ , padding_side=lowerCamelCase__ , **lowerCamelCase__ , )
__UpperCAmelCase : List[Any] = bod_token
__UpperCAmelCase : Any = eod_token
__UpperCAmelCase : int = load_vocab(lowerCamelCase__ )
__UpperCAmelCase : List[Any] = self.encoder[space_token]
__UpperCAmelCase : Union[str, Any] = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
__UpperCAmelCase : str = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __UpperCAmelCase : x[1] ) )
__UpperCAmelCase : List[Any] = {v: k for k, v in self.encoder.items()}
__UpperCAmelCase : Any = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token )
@property
def __A ( self ) -> List[str]:
'''simple docstring'''
return self.encoder[self.bod_token]
@property
def __A ( self ) -> int:
'''simple docstring'''
return self.encoder[self.eod_token]
@property
def __A ( self ) -> Dict:
'''simple docstring'''
return self.encoder["\n"]
@property
def __A ( self ) -> str:
'''simple docstring'''
return len(self.encoder )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = []
for x in jieba.cut(lowerCamelCase__ , cut_all=lowerCamelCase__ ):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase__ ) )
return output_tokens
def __A ( self , __UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = [i for i in token_ids if i >= 0]
__UpperCAmelCase : int = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(lowerCamelCase__ , **lowerCamelCase__ )
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
return token in self.encoder
def __A ( self , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
return "".join(lowerCamelCase__ )
def __A ( self , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) )
def __A ( self , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return self.decoder.get(lowerCamelCase__ , self.unk_token )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[Any]:
'''simple docstring'''
if os.path.isdir(lowerCamelCase__ ):
__UpperCAmelCase : int = os.path.join(
lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
else:
__UpperCAmelCase : Union[str, Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory
__UpperCAmelCase : Union[str, Any] = 0
if " " in self.encoder:
__UpperCAmelCase : List[str] = self.encoder[""" """]
del self.encoder[" "]
if "\n" in self.encoder:
__UpperCAmelCase : int = self.encoder["""\n"""]
del self.encoder["\n"]
__UpperCAmelCase : List[str] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __UpperCAmelCase : x[1] ) )
with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
""" Please check that the vocabulary is not corrupted!""" )
__UpperCAmelCase : Any = token_index
writer.write(token + """\n""" )
index += 1
return (vocab_file,)
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Optional[Any]:
'''simple docstring'''
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> Optional[Any]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ )
if token_ids_a is not None:
return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ ))
return [1] + ([0] * len(lowerCamelCase__ ))
| 356 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : List[str]
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __call__( self ) -> Any:
'''simple docstring'''
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : Optional[List] = None
_SCREAMING_SNAKE_CASE : Optional[int] = None
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None
__UpperCAmelCase : int = len(self.languages ) if self.languages else None
def __call__( self ) -> Optional[Any]:
'''simple docstring'''
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def __A ( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = set(self.languages )
if self.languages and set(__UpperCAmelCase ) - lang_set:
raise ValueError(
f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__UpperCAmelCase : Dict = []
for lang, text in translation_dict.items():
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 16 | 0 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''microsoft/unispeech-sat-base-100h-libri-ft''': (
'''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'''
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class _A ( a_ ):
_SCREAMING_SNAKE_CASE : Any = "unispeech-sat"
def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3_072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=(512, 512, 512, 512, 1_500) , __UpperCAmelCase=(5, 3, 3, 1, 1) , __UpperCAmelCase=(1, 2, 3, 1, 1) , __UpperCAmelCase=512 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=504 , **__UpperCAmelCase , ) -> str:
'''simple docstring'''
super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ )
__UpperCAmelCase : Any = hidden_size
__UpperCAmelCase : Union[str, Any] = feat_extract_norm
__UpperCAmelCase : Dict = feat_extract_activation
__UpperCAmelCase : Optional[Any] = list(lowercase_ )
__UpperCAmelCase : str = list(lowercase_ )
__UpperCAmelCase : Optional[int] = list(lowercase_ )
__UpperCAmelCase : Dict = conv_bias
__UpperCAmelCase : Dict = num_conv_pos_embeddings
__UpperCAmelCase : List[Any] = num_conv_pos_embedding_groups
__UpperCAmelCase : Dict = len(self.conv_dim )
__UpperCAmelCase : str = num_hidden_layers
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Any = hidden_act
__UpperCAmelCase : Any = num_attention_heads
__UpperCAmelCase : str = hidden_dropout
__UpperCAmelCase : List[str] = attention_dropout
__UpperCAmelCase : Any = activation_dropout
__UpperCAmelCase : Optional[Any] = feat_proj_dropout
__UpperCAmelCase : Any = final_dropout
__UpperCAmelCase : Tuple = layerdrop
__UpperCAmelCase : Optional[int] = layer_norm_eps
__UpperCAmelCase : Any = initializer_range
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Any = num_clusters
__UpperCAmelCase : str = do_stable_layer_norm
__UpperCAmelCase : Dict = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCAmelCase : List[str] = apply_spec_augment
__UpperCAmelCase : Optional[int] = mask_time_prob
__UpperCAmelCase : Tuple = mask_time_length
__UpperCAmelCase : Union[str, Any] = mask_time_min_masks
__UpperCAmelCase : List[Any] = mask_feature_prob
__UpperCAmelCase : Optional[Any] = mask_feature_length
__UpperCAmelCase : List[Any] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
__UpperCAmelCase : Dict = num_codevectors_per_group
__UpperCAmelCase : Tuple = num_codevector_groups
__UpperCAmelCase : int = contrastive_logits_temperature
__UpperCAmelCase : Dict = feat_quantizer_dropout
__UpperCAmelCase : Any = num_negatives
__UpperCAmelCase : Dict = codevector_dim
__UpperCAmelCase : Dict = proj_codevector_dim
__UpperCAmelCase : Union[str, Any] = diversity_loss_weight
# ctc loss
__UpperCAmelCase : List[str] = ctc_loss_reduction
__UpperCAmelCase : Optional[Any] = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__UpperCAmelCase : List[Any] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__UpperCAmelCase : Dict = list(lowercase_ )
__UpperCAmelCase : int = list(lowercase_ )
__UpperCAmelCase : Dict = list(lowercase_ )
__UpperCAmelCase : Tuple = xvector_output_dim
@property
def __A ( self ) -> List[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 357 |
'''simple docstring'''
from statistics import mean
import numpy as np
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Tuple = 0
# Number of processes finished
__UpperCAmelCase : Optional[int] = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
__UpperCAmelCase : Tuple = [0] * no_of_process
# List to include calculation results
__UpperCAmelCase : int = [0] * no_of_process
# Sort by arrival time.
__UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )]
__UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )]
arrival_time.sort()
while no_of_process > finished_process_count:
__UpperCAmelCase : Dict = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
__UpperCAmelCase : Any = arrival_time[i]
__UpperCAmelCase : Any = 0
# Index showing the location of the process being performed
__UpperCAmelCase : Any = 0
# Saves the current response ratio.
__UpperCAmelCase : List[str] = 0
for i in range(0 , lowerCAmelCase__ ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
__UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
__UpperCAmelCase : Tuple = temp
__UpperCAmelCase : List[str] = i
# Calculate the turn around time
__UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
__UpperCAmelCase : List[str] = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [0] * no_of_process
for i in range(0 , lowerCAmelCase__ ):
__UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
_UpperCamelCase = 5
_UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E''']
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
_UpperCamelCase = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''')
for i in range(0, no_of_process):
print(
F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'
F'{turn_around_time[i]}\t\t\t{waiting_time[i]}'
)
print(F'average waiting time : {mean(waiting_time):.5f}')
print(F'average turn around time : {mean(turn_around_time):.5f}')
| 16 | 0 |
'''simple docstring'''
from __future__ import annotations
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
if (voltage, current, resistance).count(0 ) != 1:
raise ValueError("""One and only one argument must be 0""" )
if resistance < 0:
raise ValueError("""Resistance cannot be negative""" )
if voltage == 0:
return {"voltage": float(current * resistance )}
elif current == 0:
return {"current": voltage / resistance}
elif resistance == 0:
return {"resistance": voltage / current}
else:
raise ValueError("""Exactly one argument must be 0""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 358 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = parent
__UpperCAmelCase : Any = batch_size
__UpperCAmelCase : Union[str, Any] = seq_length
__UpperCAmelCase : int = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[str] = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Union[str, Any] = num_hidden_layers
__UpperCAmelCase : Optional[int] = num_attention_heads
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_size
__UpperCAmelCase : Dict = type_sequence_label_size
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : Optional[Any] = num_choices
__UpperCAmelCase : int = scope
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : List[Any] = None
if self.use_input_mask:
__UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Any = None
if self.use_token_type_ids:
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Optional[int] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> List[str]:
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_config()
__UpperCAmelCase : List[Any] = 300
return config
def __A ( self ) -> Dict:
'''simple docstring'''
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = self.prepare_config_and_inputs()
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : List[str] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.num_labels
__UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_choices
__UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : List[str] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
__UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Any = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : int = False
_SCREAMING_SNAKE_CASE : List[str] = False
_SCREAMING_SNAKE_CASE : Dict = ()
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = MraModelTester(self )
__UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : List[Any] = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""MRA does not output attentions""" )
def __A ( self ) -> List[Any]:
'''simple docstring'''
return
@require_torch
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : int = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Union[str, Any] = 50_265
__UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" )
__UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : Any = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Dict = 50_265
__UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : str = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
_UpperCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)]
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError("""n must be an integer""" )
if n <= 0:
raise ValueError("""n must be >= 0""" )
__UpperCAmelCase : List[Any] = []
for num in range(len(lowerCAmelCase__ ) ):
__UpperCAmelCase : int = 0
while 2 * i * i <= odd_composites[num]:
__UpperCAmelCase : int = odd_composites[num] - 2 * i * i
if is_prime(lowerCAmelCase__ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(lowerCAmelCase__ ) == n:
return list_nums
return []
def lowercase_ ( ):
"""simple docstring"""
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F'{solution() = }')
| 359 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Any = image_size
__UpperCAmelCase : Dict = patch_size
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : List[Any] = embed_dim
__UpperCAmelCase : str = depths
__UpperCAmelCase : Dict = num_heads
__UpperCAmelCase : str = window_size
__UpperCAmelCase : int = mlp_ratio
__UpperCAmelCase : Union[str, Any] = qkv_bias
__UpperCAmelCase : Dict = hidden_dropout_prob
__UpperCAmelCase : str = attention_probs_dropout_prob
__UpperCAmelCase : Optional[int] = drop_path_rate
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Optional[int] = use_absolute_embeddings
__UpperCAmelCase : Any = patch_norm
__UpperCAmelCase : Union[str, Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : Any = scope
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : Optional[int] = type_sequence_label_size
__UpperCAmelCase : int = encoder_stride
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : Tuple = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def __A ( self ) -> Dict:
'''simple docstring'''
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
__UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : str = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = self.type_sequence_label_size
__UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs
__UpperCAmelCase : Dict = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
_SCREAMING_SNAKE_CASE : List[str] = (
{"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Dict = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[str] = SwinvaModelTester(self )
__UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 )
def __A ( self ) -> Any:
'''simple docstring'''
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
@unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason="""Swinv2 does not use inputs_embeds""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCAmelCase : List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Tuple = model_class(__UpperCAmelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : str = [*signature.parameters.keys()]
__UpperCAmelCase : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = True
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : int = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : str = outputs.attentions
__UpperCAmelCase : Any = len(self.model_tester.depths )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__UpperCAmelCase : Dict = True
__UpperCAmelCase : int = config.window_size**2
__UpperCAmelCase : Any = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : Dict = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
__UpperCAmelCase : Dict = len(__UpperCAmelCase )
# Check attention is always last and order is fine
__UpperCAmelCase : Any = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
if hasattr(self.model_tester , """num_hidden_states_types""" ):
__UpperCAmelCase : Any = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
__UpperCAmelCase : Optional[int] = 2
self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) )
__UpperCAmelCase : Tuple = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : List[Any] = outputs.hidden_states
__UpperCAmelCase : List[Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# Swinv2 has a different seq_length
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__UpperCAmelCase : int = outputs.reshaped_hidden_states
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape
__UpperCAmelCase : Any = (
reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = 3
__UpperCAmelCase : str = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__UpperCAmelCase : int = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Tuple = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase )
for model_class in self.all_model_classes:
__UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class _A ( unittest.TestCase ):
@cached_property
def __A ( self ) -> int:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" )
if is_vision_available()
else None
)
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to(
__UpperCAmelCase )
__UpperCAmelCase : Tuple = self.default_image_processor
__UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase )
# verify the logits
__UpperCAmelCase : int = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 0 |
'''simple docstring'''
_UpperCamelCase = [
'''VerificationMode''',
'''Version''',
'''disable_progress_bar''',
'''enable_progress_bar''',
'''is_progress_bar_enabled''',
'''experimental''',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 360 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
_UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f'Could not make batched video from {videos}' )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
__UpperCAmelCase : int = do_resize
__UpperCAmelCase : List[str] = size
__UpperCAmelCase : Any = do_center_crop
__UpperCAmelCase : Any = crop_size
__UpperCAmelCase : Optional[Any] = resample
__UpperCAmelCase : Dict = do_rescale
__UpperCAmelCase : List[str] = rescale_factor
__UpperCAmelCase : Dict = offset
__UpperCAmelCase : List[str] = do_normalize
__UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" in size:
__UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase )
elif "height" in size and "width" in size:
__UpperCAmelCase : Any = (size["""height"""], size["""width"""])
else:
raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = image.astype(np.floataa )
if offset:
__UpperCAmelCase : Tuple = image - (scale / 2)
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
if offset and not do_rescale:
raise ValueError("""For offset, do_rescale must also be set to True.""" )
# All transformations expect numpy arrays.
__UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase )
if do_resize:
__UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase )
if do_center_crop:
__UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase )
if do_rescale:
__UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase )
if do_normalize:
__UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase )
return image
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : List[Any] = resample if resample is not None else self.resample
__UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : List[Any] = offset if offset is not None else self.offset
__UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : int = image_std if image_std is not None else self.image_std
__UpperCAmelCase : Any = size if size is not None else self.size
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
__UpperCAmelCase : int = make_batched(__UpperCAmelCase )
__UpperCAmelCase : Tuple = [
[
self._preprocess_image(
image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , )
for img in video
]
for video in videos
]
__UpperCAmelCase : Tuple = {"""pixel_values""": videos}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 16 | 0 |
'''simple docstring'''
import string
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = ''''''
for i in sequence:
__UpperCAmelCase : str = ord(__lowerCAmelCase )
if 65 <= extract <= 90:
output += chr(155 - extract )
elif 97 <= extract <= 122:
output += chr(219 - extract )
else:
output += i
return output
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = string.ascii_letters
__UpperCAmelCase : int = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1]
return "".join(
letters_reversed[letters.index(__lowerCAmelCase )] if c in letters else c for c in sequence )
def lowercase_ ( ):
"""simple docstring"""
from timeit import timeit
print("""Running performance benchmarks...""" )
__UpperCAmelCase : List[Any] = '''from string import printable ; from __main__ import atbash, atbash_slow'''
print(f'> atbash_slow(): {timeit("atbash_slow(printable)" , setup=__lowerCAmelCase )} seconds' )
print(f'> atbash(): {timeit("atbash(printable)" , setup=__lowerCAmelCase )} seconds' )
if __name__ == "__main__":
for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"):
print(F'{example} encrypted in atbash: {atbash(example)}')
benchmark()
| 361 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline
_SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
_SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
_SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : Dict = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
__UpperCAmelCase : List[Any] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
__UpperCAmelCase : Any = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__UpperCAmelCase : Dict = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vqvae""": vae,
"""bert""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any:
'''simple docstring'''
if str(__UpperCAmelCase ).startswith("""mps""" ):
__UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : Dict = self.get_dummy_components()
__UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
__UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> List[str]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Tuple = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
__UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] )
__UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 50,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0]
__UpperCAmelCase : Tuple = load_numpy(
"""https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" )
__UpperCAmelCase : Dict = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 16 | 0 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 7 , lowerCAmelCase__ : int = 1000000 ):
"""simple docstring"""
__UpperCAmelCase : Dict = 0
__UpperCAmelCase : int = 1
for current_denominator in range(1 , limit + 1 ):
__UpperCAmelCase : Tuple = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
__UpperCAmelCase : Union[str, Any] = current_numerator
__UpperCAmelCase : Union[str, Any] = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=100_0000))
| 362 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column
__UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )]
def __str__( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n'
# Make string identifier
__UpperCAmelCase : Optional[Any] = 0
for row_vector in self.array:
for obj in row_vector:
__UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) )
__UpperCAmelCase : Optional[int] = f'%{max_element_length}s'
# Make string and return
def single_line(__UpperCAmelCase ) -> str:
nonlocal string_format_identifier
__UpperCAmelCase : Any = """["""
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array )
return s
def __repr__( self ) -> str:
'''simple docstring'''
return str(self )
def __A ( self , __UpperCAmelCase ) -> bool:
'''simple docstring'''
if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
return self.array[loc[0]][loc[1]]
def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = value
def __add__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == another.row and self.column == another.column
# Add
__UpperCAmelCase : Dict = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] + another[r, c]
return result
def __neg__( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : Dict = -self[r, c]
return result
def __sub__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
return self + (-another)
def __mul__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication
__UpperCAmelCase : Optional[int] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] * another
return result
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication
assert self.column == another.row
__UpperCAmelCase : Dict = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
__UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})'
raise TypeError(__UpperCAmelCase )
def __A ( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Dict = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[str] = self[r, c]
return result
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
__UpperCAmelCase : Optional[Any] = v.transpose()
__UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Dict = Matrix(3 , 3 , 0 )
for i in range(3 ):
__UpperCAmelCase : Tuple = 1
print(f'a^(-1) is {ainv}' )
# u, v
__UpperCAmelCase : Dict = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3
__UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5
print(f'u is {u}' )
print(f'v is {v}' )
print(f'uv^T is {u * v.transpose()}' )
# Sherman Morrison
print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' )
def lowercase_ ( ):
"""simple docstring"""
import doctest
doctest.testmod()
testa()
| 16 | 0 |
'''simple docstring'''
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
_UpperCamelCase = """sshleifer/bart-tiny-random"""
_UpperCamelCase = """patrickvonplaten/t5-tiny-random"""
@require_torch
class _A ( unittest.TestCase ):
@cached_property
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
return AutoConfig.from_pretrained(a__ )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase , *__UpperCAmelCase : List[Any] = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=1 )
self.assertEqual(student.config.num_hidden_layers , 1 )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase , *__UpperCAmelCase : Optional[Any] = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=a__ )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase , *__UpperCAmelCase : str = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=a__ )
self.assertEqual(student.config.encoder_layers , 1 )
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase , *__UpperCAmelCase : Optional[int] = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=1 )
self.assertEqual(student.config.encoder_layers , 1 )
self.assertEqual(student.config.decoder_layers , 1 )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
with self.assertRaises(a__ ):
create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=a__ , d=a__ )
| 363 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''],
'''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''],
'''processing_wav2vec2''': ['''Wav2Vec2Processor'''],
'''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Wav2Vec2ForAudioFrameClassification''',
'''Wav2Vec2ForCTC''',
'''Wav2Vec2ForMaskedLM''',
'''Wav2Vec2ForPreTraining''',
'''Wav2Vec2ForSequenceClassification''',
'''Wav2Vec2ForXVector''',
'''Wav2Vec2Model''',
'''Wav2Vec2PreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWav2Vec2ForCTC''',
'''TFWav2Vec2Model''',
'''TFWav2Vec2PreTrainedModel''',
'''TFWav2Vec2ForSequenceClassification''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FlaxWav2Vec2ForCTC''',
'''FlaxWav2Vec2ForPreTraining''',
'''FlaxWav2Vec2Model''',
'''FlaxWav2Vec2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''',
}
class _A ( __lowerCAmelCase ):
_SCREAMING_SNAKE_CASE : Any = '''timesformer'''
def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=8 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3_072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-6 , __UpperCAmelCase=True , __UpperCAmelCase="divided_space_time" , __UpperCAmelCase=0 , **__UpperCAmelCase , ) -> List[str]:
'''simple docstring'''
super().__init__(**lowerCAmelCase_ )
__UpperCAmelCase : Tuple = image_size
__UpperCAmelCase : Dict = patch_size
__UpperCAmelCase : Optional[Any] = num_channels
__UpperCAmelCase : Tuple = num_frames
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : str = num_hidden_layers
__UpperCAmelCase : str = num_attention_heads
__UpperCAmelCase : List[str] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_act
__UpperCAmelCase : Any = hidden_dropout_prob
__UpperCAmelCase : Dict = attention_probs_dropout_prob
__UpperCAmelCase : str = initializer_range
__UpperCAmelCase : Tuple = layer_norm_eps
__UpperCAmelCase : List[str] = qkv_bias
__UpperCAmelCase : Optional[Any] = attention_type
__UpperCAmelCase : Optional[Any] = drop_path_rate
| 364 |
'''simple docstring'''
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING
_SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING
def __A ( self ) -> Any:
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""},
{"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""},
] , )
__UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is grouped""",
"""score""": 2.1E-05,
"""token""": 38_015,
"""token_str""": """ grouped""",
},
{
"""sequence""": """The largest city in France is accuser""",
"""score""": 2.1E-05,
"""token""": 25_506,
"""token_str""": """ accuser""",
},
] , )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""},
{"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is Maul""",
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
},
{"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""},
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is Maul<mask></s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""},
],
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is<mask> Maul</s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""},
],
] , )
@require_torch_gpu
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" )
# convert model to fp16
pipe.model.half()
__UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
@require_torch
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" )
self.run_large_test(__UpperCAmelCase )
@slow
@require_tf
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" )
self.run_large_test(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""},
{"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{
"""sequence""": """The largest city in France is Paris""",
"""score""": 0.251,
"""token""": 2_201,
"""token_str""": """ Paris""",
},
{
"""sequence""": """The largest city in France is Lyon""",
"""score""": 0.214,
"""token""": 12_790,
"""token_str""": """ Lyon""",
},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" )
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : int = None
self.run_pipeline_test(__UpperCAmelCase , [] )
@require_tf
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : str = None
self.run_pipeline_test(__UpperCAmelCase , [] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" )
__UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = [
f'This is another {tokenizer.mask_token} test',
]
return fill_masker, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = fill_masker.tokenizer
__UpperCAmelCase : Union[str, Any] = fill_masker.model
__UpperCAmelCase : Tuple = fill_masker(
f'This is a {tokenizer.mask_token}' , )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
with self.assertRaises(__UpperCAmelCase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(__UpperCAmelCase ):
fill_masker("""This is""" )
self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Dict = tokenizer.get_vocab()
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:2]
# Pipeline argument
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase )
__UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Any = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Call argument
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Score equivalence
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs]
__UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ) == set(__UpperCAmelCase ):
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
# Raises with invalid
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] )
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 )
__UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : int = tokenizer.get_vocab()
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
# top_k=2, ntargets=3
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
__UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = tokenizer.get_vocab()
# String duplicates + id duplicates
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]]
__UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(__UpperCAmelCase ) , 3 )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Dict = fill_masker(
f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
| 16 | 0 |
'''simple docstring'''
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any ):
"""simple docstring"""
__UpperCAmelCase : List[str] = XCLIPTextConfig()
# derive patch size from model name
__UpperCAmelCase : int = model_name.find("""patch""" )
__UpperCAmelCase : Optional[int] = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] )
__UpperCAmelCase : List[Any] = XCLIPVisionConfig(patch_size=lowerCAmelCase__ , num_frames=lowerCAmelCase__ )
if "large" in model_name:
__UpperCAmelCase : Tuple = 768
__UpperCAmelCase : Dict = 3072
__UpperCAmelCase : Any = 12
__UpperCAmelCase : Union[str, Any] = 1024
__UpperCAmelCase : Dict = 4096
__UpperCAmelCase : int = 16
__UpperCAmelCase : int = 24
__UpperCAmelCase : Any = 768
__UpperCAmelCase : int = 3072
if model_name == "xclip-large-patch14-16-frames":
__UpperCAmelCase : List[Any] = 336
__UpperCAmelCase : List[str] = XCLIPConfig.from_text_vision_configs(lowerCAmelCase__ , lowerCAmelCase__ )
if "large" in model_name:
__UpperCAmelCase : str = 768
return config
def lowercase_ ( lowerCAmelCase__ : Dict ):
"""simple docstring"""
if name == "token_embedding.weight":
__UpperCAmelCase : Any = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" )
if name == "positional_embedding":
__UpperCAmelCase : str = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" )
if "ln_1" in name:
__UpperCAmelCase : List[Any] = name.replace("""ln_1""" , """layer_norm1""" )
if "ln_2" in name:
__UpperCAmelCase : Optional[int] = name.replace("""ln_2""" , """layer_norm2""" )
if "c_fc" in name:
__UpperCAmelCase : List[Any] = name.replace("""c_fc""" , """fc1""" )
if "c_proj" in name:
__UpperCAmelCase : Union[str, Any] = name.replace("""c_proj""" , """fc2""" )
if name.startswith("""transformer.resblocks""" ):
__UpperCAmelCase : Dict = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" )
if "attn.out_proj" in name and "message" not in name:
__UpperCAmelCase : List[Any] = name.replace("""attn.out_proj""" , """self_attn.out_proj""" )
if "ln_final" in name:
__UpperCAmelCase : Dict = name.replace("""ln_final""" , """text_model.final_layer_norm""" )
# visual encoder
if name == "visual.class_embedding":
__UpperCAmelCase : Optional[int] = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" )
if name == "visual.positional_embedding":
__UpperCAmelCase : Tuple = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" )
if name.startswith("""visual.transformer.resblocks""" ):
__UpperCAmelCase : Union[str, Any] = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" )
if "visual.conv1" in name:
__UpperCAmelCase : str = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" )
if "visual.ln_pre" in name:
__UpperCAmelCase : Any = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" )
if "visual.ln_post" in name:
__UpperCAmelCase : Optional[Any] = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" )
if "visual.proj" in name:
__UpperCAmelCase : Optional[int] = name.replace("""visual.proj""" , """visual_projection.weight""" )
if "text_projection" in name:
__UpperCAmelCase : str = name.replace("""text_projection""" , """text_projection.weight""" )
# things on top
if "prompts_visual_proj" in name:
__UpperCAmelCase : List[Any] = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" )
if "prompts_visual_ln" in name:
__UpperCAmelCase : str = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" )
# mit
if name == "mit.positional_embedding":
__UpperCAmelCase : Optional[int] = name.replace("""positional""" , """position""" )
if name.startswith("""mit.resblocks""" ):
__UpperCAmelCase : Dict = name.replace("""mit.resblocks""" , """mit.encoder.layers""" )
# prompts generator
if name.startswith("""prompts_generator.norm""" ):
__UpperCAmelCase : Tuple = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" )
return name
def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
__UpperCAmelCase : str = orig_state_dict.pop(lowerCAmelCase__ )
if "attn.in_proj" in key:
__UpperCAmelCase : str = key.split(""".""" )
if key.startswith("""visual""" ):
__UpperCAmelCase : Optional[int] = key_split[3]
__UpperCAmelCase : Union[str, Any] = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
__UpperCAmelCase : List[str] = val[
:dim, :
]
__UpperCAmelCase : str = val[
dim : dim * 2, :
]
__UpperCAmelCase : List[str] = val[
-dim:, :
]
else:
__UpperCAmelCase : List[str] = val[
:dim
]
__UpperCAmelCase : List[Any] = val[
dim : dim * 2
]
__UpperCAmelCase : Optional[int] = val[
-dim:
]
else:
if "weight" in key:
__UpperCAmelCase : str = val[
:dim, :
]
__UpperCAmelCase : str = val[
dim : dim * 2, :
]
__UpperCAmelCase : List[str] = val[
-dim:, :
]
else:
__UpperCAmelCase : str = val[:dim]
__UpperCAmelCase : Any = val[
dim : dim * 2
]
__UpperCAmelCase : List[Any] = val[-dim:]
elif key.startswith("""mit""" ):
__UpperCAmelCase : Dict = key_split[2]
__UpperCAmelCase : List[Any] = config.vision_config.mit_hidden_size
if "weight" in key:
__UpperCAmelCase : Optional[Any] = val[:dim, :]
__UpperCAmelCase : List[str] = val[dim : dim * 2, :]
__UpperCAmelCase : int = val[-dim:, :]
else:
__UpperCAmelCase : Dict = val[:dim]
__UpperCAmelCase : str = val[dim : dim * 2]
__UpperCAmelCase : Optional[Any] = val[-dim:]
else:
__UpperCAmelCase : List[Any] = key_split[2]
__UpperCAmelCase : Tuple = config.text_config.hidden_size
if "weight" in key:
__UpperCAmelCase : int = val[:dim, :]
__UpperCAmelCase : List[Any] = val[
dim : dim * 2, :
]
__UpperCAmelCase : int = val[-dim:, :]
else:
__UpperCAmelCase : List[str] = val[:dim]
__UpperCAmelCase : Optional[int] = val[
dim : dim * 2
]
__UpperCAmelCase : Union[str, Any] = val[-dim:]
else:
__UpperCAmelCase : Tuple = rename_key(lowerCAmelCase__ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
__UpperCAmelCase : int = val.T
__UpperCAmelCase : str = val
return orig_state_dict
def lowercase_ ( lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
if num_frames == 8:
__UpperCAmelCase : List[Any] = """eating_spaghetti_8_frames.npy"""
elif num_frames == 16:
__UpperCAmelCase : Tuple = """eating_spaghetti.npy"""
elif num_frames == 32:
__UpperCAmelCase : Tuple = """eating_spaghetti_32_frames.npy"""
__UpperCAmelCase : Optional[int] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename=lowerCAmelCase__ , repo_type="""dataset""" , )
__UpperCAmelCase : Optional[Any] = np.load(lowerCAmelCase__ )
return list(lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Tuple=False ):
"""simple docstring"""
__UpperCAmelCase : List[str] = {
# fully supervised kinetics-400 checkpoints
"""xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""",
"""xclip-base-patch32-16-frames""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth"""
),
"""xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""",
"""xclip-base-patch16-16-frames""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth"""
),
"""xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb""",
"""xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f""",
# fully supervised kinetics-600 checkpoints
"""xclip-base-patch16-kinetics-600""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth"""
),
"""xclip-base-patch16-kinetics-600-16-frames""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth"""
),
"""xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be""",
# few shot
"""xclip-base-patch16-hmdb-2-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth"""
),
"""xclip-base-patch16-hmdb-4-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth"""
),
"""xclip-base-patch16-hmdb-8-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth"""
),
"""xclip-base-patch16-hmdb-16-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth"""
),
"""xclip-base-patch16-ucf-2-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth"""
),
"""xclip-base-patch16-ucf-4-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth"""
),
"""xclip-base-patch16-ucf-8-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth"""
),
"""xclip-base-patch16-ucf-16-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth"""
),
# zero shot
"""xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""",
}
__UpperCAmelCase : Optional[int] = model_to_url[model_name]
__UpperCAmelCase : Union[str, Any] = 8
if "16-frames" in model_name:
__UpperCAmelCase : Tuple = 16
elif "shot" in model_name:
__UpperCAmelCase : List[str] = 32
__UpperCAmelCase : List[Any] = get_xclip_config(lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : Tuple = XCLIPModel(lowerCAmelCase__ )
model.eval()
if "drive" in checkpoint_url:
__UpperCAmelCase : Optional[Any] = """pytorch_model.bin"""
gdown.cached_download(lowerCAmelCase__ , lowerCAmelCase__ , quiet=lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""]
else:
__UpperCAmelCase : List[str] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ )["""model"""]
__UpperCAmelCase : str = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : str = XCLIPModel(lowerCAmelCase__ )
__UpperCAmelCase : Dict = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
__UpperCAmelCase : Tuple = 336 if model_name == """xclip-large-patch14-16-frames""" else 224
__UpperCAmelCase : str = VideoMAEImageProcessor(size=lowerCAmelCase__ )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" )
__UpperCAmelCase : int = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" )
__UpperCAmelCase : List[str] = XCLIPProcessor(image_processor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = prepare_video(lowerCAmelCase__ )
__UpperCAmelCase : Any = processor(
text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ )
print("""Shape of pixel values:""" , inputs.pixel_values.shape )
with torch.no_grad():
__UpperCAmelCase : Dict = model(**lowerCAmelCase__ )
# Verify outputs
__UpperCAmelCase : Optional[int] = outputs.logits_per_video
__UpperCAmelCase : List[str] = logits_per_video.softmax(dim=1 )
print("""Probs:""" , lowerCAmelCase__ )
# kinetics-400
if model_name == "xclip-base-patch32":
__UpperCAmelCase : List[Any] = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] )
elif model_name == "xclip-base-patch32-16-frames":
__UpperCAmelCase : str = torch.tensor([[7.09_99E-04, 9.98_83E-01, 4.55_80E-04]] )
elif model_name == "xclip-base-patch16":
__UpperCAmelCase : Optional[Any] = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] )
elif model_name == "xclip-base-patch16-16-frames":
__UpperCAmelCase : int = torch.tensor([[7.69_37E-04, 9.97_28E-01, 1.94_73E-03]] )
elif model_name == "xclip-large-patch14":
__UpperCAmelCase : Union[str, Any] = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] )
elif model_name == "xclip-large-patch14-16-frames":
__UpperCAmelCase : int = torch.tensor([[3.38_77E-04, 9.99_37E-01, 2.88_88E-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
__UpperCAmelCase : Any = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
__UpperCAmelCase : Tuple = torch.tensor([[3.85_54E-04, 9.99_29E-01, 3.27_54E-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
__UpperCAmelCase : Any = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
__UpperCAmelCase : List[str] = torch.tensor([[7.18_90E-06, 9.99_94E-01, 5.65_59E-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
__UpperCAmelCase : str = torch.tensor([[1.03_20E-05, 9.99_93E-01, 6.24_35E-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
__UpperCAmelCase : Optional[int] = torch.tensor([[4.13_77E-06, 9.99_90E-01, 9.83_86E-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
__UpperCAmelCase : int = torch.tensor([[4.13_47E-05, 9.99_62E-01, 3.34_11E-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
__UpperCAmelCase : Tuple = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
__UpperCAmelCase : Union[str, Any] = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
__UpperCAmelCase : List[str] = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
__UpperCAmelCase : Union[str, Any] = torch.tensor([[9.82_19E-04, 9.95_93E-01, 3.08_63E-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
__UpperCAmelCase : int = torch.tensor([[3.50_82E-04, 9.97_85E-01, 1.79_66E-03]] )
else:
raise ValueError(f'Model name {model_name} not supported' )
assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
print("""Pushing model, processor and slow tokenizer files to the hub...""" )
model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" )
processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" )
slow_tokenizer.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''xclip-base-patch32''',
type=str,
help='''Name of the model.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_UpperCamelCase = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 365 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} )
_SCREAMING_SNAKE_CASE : str = "image"
_SCREAMING_SNAKE_CASE : str = "labels"
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(f'Column {self.label_column} is not present in features.' )
if not isinstance(features[self.label_column] , __UpperCAmelCase ):
raise ValueError(f'Column {self.label_column} is not a ClassLabel.' )
__UpperCAmelCase : int = copy.deepcopy(self )
__UpperCAmelCase : str = self.label_schema.copy()
__UpperCAmelCase : Optional[Any] = features[self.label_column]
__UpperCAmelCase : Optional[int] = label_schema
return task_template
@property
def __A ( self ) -> Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 16 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : int = """megatron-bert"""
def __init__( self , __UpperCAmelCase=29_056 , __UpperCAmelCase=1_024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4_096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> str:
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ )
__UpperCAmelCase : Any = vocab_size
__UpperCAmelCase : List[Any] = hidden_size
__UpperCAmelCase : Tuple = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : Dict = hidden_act
__UpperCAmelCase : List[Any] = intermediate_size
__UpperCAmelCase : Dict = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : List[Any] = max_position_embeddings
__UpperCAmelCase : Optional[Any] = type_vocab_size
__UpperCAmelCase : int = initializer_range
__UpperCAmelCase : int = layer_norm_eps
__UpperCAmelCase : Tuple = position_embedding_type
__UpperCAmelCase : List[Any] = use_cache
| 366 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Tuple = seq_length
__UpperCAmelCase : str = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[Any] = use_token_type_ids
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : str = num_attention_heads
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : Tuple = max_position_embeddings
__UpperCAmelCase : Dict = type_vocab_size
__UpperCAmelCase : List[Any] = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[str] = num_labels
__UpperCAmelCase : str = num_choices
__UpperCAmelCase : List[Any] = scope
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Tuple = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
# first forward pass
__UpperCAmelCase : Optional[int] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCAmelCase : int = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
# select random slice
__UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = config_and_inputs
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : List[str] = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = LlamaModelTester(self )
__UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : str = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Any = 3
__UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[int] = 3
__UpperCAmelCase : Optional[Any] = """single_label_classification"""
__UpperCAmelCase : int = input_dict["""input_ids"""]
__UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = 3
__UpperCAmelCase : str = """multi_label_classification"""
__UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size )
__UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
original_model.to(__UpperCAmelCase )
original_model.eval()
__UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0}
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
scaled_model.to(__UpperCAmelCase )
scaled_model.eval()
__UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
@require_torch
class _A ( unittest.TestCase ):
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" )
__UpperCAmelCase : int = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" )
__UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" )
__UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
@unittest.skip(
"""Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" )
@slow
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" )
__UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) )
__UpperCAmelCase : Dict = torch.tensor(
[[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Model is curently gated""" )
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi"""
__UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """
__UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" )
__UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" )
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained(
"""meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase )
# greedy generation outputs
__UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 16 | 0 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_UpperCamelCase = logging.get_logger(__name__)
class _A ( _a ):
_SCREAMING_SNAKE_CASE : str = ["""pixel_values"""]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCAmelCase : Tuple = size if size is not None else {'shortest_edge': 384}
__UpperCAmelCase : Union[str, Any] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = do_resize
__UpperCAmelCase : str = size
# Default value set here for backwards compatibility where the value in config is None
__UpperCAmelCase : List[Any] = crop_pct if crop_pct is not None else 224 / 256
__UpperCAmelCase : Tuple = resample
__UpperCAmelCase : List[str] = do_rescale
__UpperCAmelCase : Dict = rescale_factor
__UpperCAmelCase : List[str] = do_normalize
__UpperCAmelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : Dict = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(f'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' )
__UpperCAmelCase : Tuple = size['shortest_edge']
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
__UpperCAmelCase : str = int(shortest_edge / crop_pct )
__UpperCAmelCase : int = get_resize_output_image_size(__UpperCAmelCase , size=__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : List[str] = resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=__UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
__UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Any:
'''simple docstring'''
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : Any = crop_pct if crop_pct is not None else self.crop_pct
__UpperCAmelCase : List[Any] = resample if resample is not None else self.resample
__UpperCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : List[str] = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : List[str] = image_std if image_std is not None else self.image_std
__UpperCAmelCase : Dict = size if size is not None else self.size
__UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Dict = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError("""crop_pct must be specified if size < 384.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
__UpperCAmelCase : int = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
__UpperCAmelCase : Union[str, Any] = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , crop_pct=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_rescale:
__UpperCAmelCase : Any = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
__UpperCAmelCase : Tuple = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
__UpperCAmelCase : List[str] = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
__UpperCAmelCase : str = {'pixel_values': images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 367 |
'''simple docstring'''
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
_UpperCamelCase = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ):
"""simple docstring"""
return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths )
def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = []
if args.gold_data_mode == "qa":
__UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ )
for answer_list in data[1]:
__UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ )
answers.append(lowerCAmelCase__ )
else:
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : str = [[reference] for reference in references]
__UpperCAmelCase : Optional[int] = 0
for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
total += 1
em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : int = 100.0 * em / total
__UpperCAmelCase : Dict = 100.0 * fa / total
logger.info(f'F1: {fa:.2f}' )
logger.info(f'EM: {em:.2f}' )
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : Tuple = args.k
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = 0
for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] )
__UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
__UpperCAmelCase : List[str] = 100.0 * em / total
logger.info(f'Precision@{k}: {em: .2f}' )
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ):
"""simple docstring"""
def strip_title(lowerCAmelCase__ : Optional[int] ):
if title.startswith("""\"""" ):
__UpperCAmelCase : List[Any] = title[1:]
if title.endswith("""\"""" ):
__UpperCAmelCase : int = title[:-1]
return title
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device )
__UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ )
__UpperCAmelCase : int = question_enc_outputs[0]
__UpperCAmelCase : Dict = rag_model.retriever(
lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , )
__UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
__UpperCAmelCase : Union[str, Any] = []
for docs in all_docs:
__UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]]
provenance_strings.append("""\t""".join(lowerCAmelCase__ ) )
return provenance_strings
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
with torch.no_grad():
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )
__UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device )
__UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device )
__UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
__UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
if args.print_predictions:
for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) )
return answers
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=(
"""RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the"""
""" model_name_or_path"""
) , )
parser.add_argument(
"""--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , )
parser.add_argument(
"""--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , )
parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" )
parser.add_argument(
"""--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=(
"""Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates"""
""" precision@k."""
) , )
parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" )
parser.add_argument(
"""--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , )
parser.add_argument(
"""--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , )
parser.add_argument(
"""--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=(
"""Format of the gold data file"""
"""qa - a single line in the following format: question [tab] answer_list"""
"""ans - a single line of the gold file contains the expected answer string"""
) , )
parser.add_argument(
"""--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , )
parser.add_argument(
"""--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , )
parser.add_argument(
"""--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , )
parser.add_argument(
"""--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , )
parser.add_argument(
"""--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , )
parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" )
parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" )
parser.add_argument(
"""--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , )
parser.add_argument(
"""--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , )
__UpperCAmelCase : str = parser.parse_args()
__UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
return args
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = {}
if args.model_type is None:
__UpperCAmelCase : str = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration
__UpperCAmelCase : Dict = args.n_docs
if args.index_name is not None:
__UpperCAmelCase : Union[str, Any] = args.index_name
if args.index_path is not None:
__UpperCAmelCase : Dict = args.index_path
else:
__UpperCAmelCase : str = BartForConditionalGeneration
__UpperCAmelCase : str = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k
__UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) )
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
continue
logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) )
logger.info(""" Batch size = %d""" , args.eval_batch_size )
logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) )
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
__UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ )
model.retriever.init_retrieval()
else:
__UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
model.to(args.device )
with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file:
__UpperCAmelCase : Union[str, Any] = []
for line in tqdm(lowerCAmelCase__ ):
questions.append(line.strip() )
if len(lowerCAmelCase__ ) == args.eval_batch_size:
__UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" )
preds_file.flush()
__UpperCAmelCase : List[str] = []
if len(lowerCAmelCase__ ) > 0:
__UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) )
preds_file.flush()
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
_UpperCamelCase = get_args()
main(args)
| 16 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''',
# See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox
}
class _A ( __a ):
_SCREAMING_SNAKE_CASE : Optional[Any] = "gpt_neox"
def __init__( self , __UpperCAmelCase=50_432 , __UpperCAmelCase=6_144 , __UpperCAmelCase=44 , __UpperCAmelCase=64 , __UpperCAmelCase=24_576 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.25 , __UpperCAmelCase=10_000 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=2_048 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> List[str]:
'''simple docstring'''
super().__init__(bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
__UpperCAmelCase : Optional[int] = vocab_size
__UpperCAmelCase : Optional[int] = max_position_embeddings
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Union[str, Any] = num_hidden_layers
__UpperCAmelCase : List[Any] = num_attention_heads
__UpperCAmelCase : Tuple = intermediate_size
__UpperCAmelCase : str = hidden_act
__UpperCAmelCase : List[Any] = rotary_pct
__UpperCAmelCase : Optional[int] = rotary_emb_base
__UpperCAmelCase : Optional[int] = attention_dropout
__UpperCAmelCase : str = hidden_dropout
__UpperCAmelCase : Union[str, Any] = classifier_dropout
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Optional[Any] = layer_norm_eps
__UpperCAmelCase : Tuple = use_cache
__UpperCAmelCase : Union[str, Any] = tie_word_embeddings
__UpperCAmelCase : int = use_parallel_residual
__UpperCAmelCase : Optional[int] = rope_scaling
self._rope_scaling_validation()
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
"""The hidden size is not divisble by the number of attention heads! Make sure to update them!""" )
def __A ( self ) -> Tuple:
'''simple docstring'''
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , UpperCamelCase__ ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f'got {self.rope_scaling}' )
__UpperCAmelCase : int = self.rope_scaling.get("""type""" , UpperCamelCase__ )
__UpperCAmelCase : Optional[int] = self.rope_scaling.get("""factor""" , UpperCamelCase__ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' )
if rope_scaling_factor is None or not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or rope_scaling_factor <= 1.0:
raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
| 368 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _A :
@staticmethod
def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = [
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
]
return object_detector, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 )
__UpperCAmelCase : Tuple = len(__UpperCAmelCase )
self.assertGreater(__UpperCAmelCase , 0 )
self.assertEqual(
__UpperCAmelCase , [
{
"""score""": ANY(__UpperCAmelCase ),
"""label""": ANY(__UpperCAmelCase ),
"""box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )},
}
for i in range(__UpperCAmelCase )
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> Tuple:
'''simple docstring'''
pass
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
] , )
__UpperCAmelCase : str = object_detector(
[
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
]
] , )
@require_torch
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
] , )
__UpperCAmelCase : Any = object_detector(
[
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> List[str]:
'''simple docstring'''
pass
@require_torch
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = 0.2
__UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
] , )
@require_torch
@slow
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 2
__UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
] , )
| 16 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
_UpperCamelCase = {
'configuration_speecht5': [
'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP',
'SpeechT5Config',
'SpeechT5HifiGanConfig',
],
'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'],
'processing_speecht5': ['SpeechT5Processor'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['SpeechT5Tokenizer']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'SpeechT5ForSpeechToText',
'SpeechT5ForSpeechToSpeech',
'SpeechT5ForTextToSpeech',
'SpeechT5Model',
'SpeechT5PreTrainedModel',
'SpeechT5HifiGan',
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 369 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.txt'''}
_UpperCamelCase = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': 512,
'''YituTech/conv-bert-medium-small''': 512,
'''YituTech/conv-bert-small''': 512,
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION
_SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars
):
__UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) )
__UpperCAmelCase : Union[str, Any] = do_lower_case
__UpperCAmelCase : str = strip_accents
__UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars
__UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase )
__UpperCAmelCase : List[Any] = do_lower_case
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [self.sep_token_id]
__UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 16 | 0 |
'''simple docstring'''
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
_UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
_UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007
def lowercase_ ( lowerCAmelCase__ : Vector , lowerCAmelCase__ : Vector ):
"""simple docstring"""
return np.sqrt(np.sum((np.asarray(a__ ) - np.asarray(a__ )) ** 2 ) )
def lowercase_ ( lowerCAmelCase__ : Vector , lowerCAmelCase__ : Vector ):
"""simple docstring"""
return sum((va - va) ** 2 for va, va in zip(a__ , a__ ) ) ** (1 / 2)
if __name__ == "__main__":
def lowercase_ ( ):
"""simple docstring"""
from timeit import timeit
print("""Without Numpy""" )
print(
timeit(
"""euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) )
print("""With Numpy""" )
print(
timeit(
"""euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) )
benchmark()
| 370 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_UpperCamelCase = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''OwlViTFeatureExtractor''']
_UpperCamelCase = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 0 |
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
return 1 if input_a == input_a else 0
def lowercase_ ( ):
"""simple docstring"""
assert xnor_gate(0 , 0 ) == 1
assert xnor_gate(0 , 1 ) == 0
assert xnor_gate(1 , 0 ) == 0
assert xnor_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(xnor_gate(0, 0))
print(xnor_gate(0, 1))
print(xnor_gate(1, 0))
print(xnor_gate(1, 1))
| 371 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
'''simple docstring'''
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 16 | 0 |
'''simple docstring'''
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def lowercase_ ( ):
"""simple docstring"""
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(A__ ):
requests.request("""GET""" , """https://huggingface.co""" )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 )
@pytest.mark.integration
def lowercase_ ( ):
"""simple docstring"""
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request("""GET""" , """https://huggingface.co""" )
def lowercase_ ( ):
"""simple docstring"""
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(A__ ):
http_head("""https://huggingface.co""" )
| 350 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
_UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
_SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" )
__UpperCAmelCase : List[Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] )
__UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
# Legacy behavior
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] )
__UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""label""": """LABEL_0""", """score""": 0.504},
{"""label""": """LABEL_0""", """score""": 0.504},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
import torch
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@require_tf
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@slow
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = pipeline("""text-classification""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
@slow
@require_tf
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : int = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
__UpperCAmelCase : Union[str, Any] = """HuggingFace is in"""
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
__UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""]
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase )
__UpperCAmelCase : Any = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , )
__UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""}
__UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , )
self.assertTrue(outputs["""label"""] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
__UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]]
with self.assertRaises(__UpperCAmelCase ):
text_classifier(__UpperCAmelCase )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
__UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
| 16 | 0 |
'''simple docstring'''
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class _A :
"""simple docstring"""
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=sys.maxsize ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = '''bilinear'''
__UpperCAmelCase : List[str] = max_size
__UpperCAmelCase : List[Any] = short_edge_length
def __call__( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = []
for img in imgs:
__UpperCAmelCase : Dict = img.shape[:2]
# later: provide list and randomly choose index for resize
__UpperCAmelCase : str = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
__UpperCAmelCase : List[Any] = size * 1.0 / min(snake_case_ , snake_case_ )
if h < w:
__UpperCAmelCase : Dict = size, scale * w
else:
__UpperCAmelCase : Optional[Any] = scale * h, size
if max(snake_case_ , snake_case_ ) > self.max_size:
__UpperCAmelCase : Tuple = self.max_size * 1.0 / max(snake_case_ , snake_case_ )
__UpperCAmelCase : List[Any] = newh * scale
__UpperCAmelCase : int = neww * scale
__UpperCAmelCase : Dict = int(neww + 0.5 )
__UpperCAmelCase : Dict = int(newh + 0.5 )
if img.dtype == np.uinta:
__UpperCAmelCase : Optional[Any] = Image.fromarray(snake_case_ )
__UpperCAmelCase : str = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
__UpperCAmelCase : Optional[Any] = np.asarray(snake_case_ )
else:
__UpperCAmelCase : Tuple = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
__UpperCAmelCase : Any = nn.functional.interpolate(
snake_case_ , (newh, neww) , mode=self.interp_method , align_corners=snake_case_ ).squeeze(0 )
img_augs.append(snake_case_ )
return img_augs
class _A :
"""simple docstring"""
def __init__( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
__UpperCAmelCase : Union[str, Any] = cfg.INPUT.FORMAT
__UpperCAmelCase : Dict = cfg.SIZE_DIVISIBILITY
__UpperCAmelCase : List[Any] = cfg.PAD_VALUE
__UpperCAmelCase : Dict = cfg.INPUT.MAX_SIZE_TEST
__UpperCAmelCase : List[Any] = cfg.MODEL.DEVICE
__UpperCAmelCase : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
__UpperCAmelCase : int = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
__UpperCAmelCase : Union[str, Any] = lambda __UpperCAmelCase : (x - self.pixel_mean) / self.pixel_std
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = tuple(max(snake_case_ ) for s in zip(*[img.shape for img in images] ) )
__UpperCAmelCase : List[Any] = [im.shape[-2:] for im in images]
__UpperCAmelCase : Optional[int] = [
nn.functional.pad(
snake_case_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(snake_case_ , snake_case_ )
]
return torch.stack(snake_case_ ), torch.tensor(snake_case_ )
def __call__( self , __UpperCAmelCase , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
with torch.no_grad():
if not isinstance(snake_case_ , snake_case_ ):
__UpperCAmelCase : str = [images]
if single_image:
assert len(snake_case_ ) == 1
for i in range(len(snake_case_ ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(snake_case_ , images.pop(snake_case_ ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
snake_case_ , torch.as_tensor(img_tensorize(images.pop(snake_case_ ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
__UpperCAmelCase : Optional[Any] = torch.tensor([im.shape[:2] for im in images] )
__UpperCAmelCase : int = self.aug(snake_case_ )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
__UpperCAmelCase : str = [self.normalizer(snake_case_ ) for x in images]
# now pad them to do the following operations
__UpperCAmelCase : List[Any] = self.pad(snake_case_ )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
__UpperCAmelCase : str = torch.true_divide(snake_case_ , snake_case_ )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] ):
"""simple docstring"""
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple[int, int] ):
"""simple docstring"""
assert torch.isfinite(lowerCAmelCase__ ).all(), "Box tensor contains infinite or NaN!"
__UpperCAmelCase : Optional[Any] = box_size
tensor[:, 0].clamp_(min=0 , max=lowerCAmelCase__ )
tensor[:, 1].clamp_(min=0 , max=lowerCAmelCase__ )
tensor[:, 2].clamp_(min=0 , max=lowerCAmelCase__ )
tensor[:, 3].clamp_(min=0 , max=lowerCAmelCase__ )
| 351 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
| 16 | 0 |
'''simple docstring'''
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 352 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class _A :
def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase )
__UpperCAmelCase : List[str] = length
__UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa )
__UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ) -> Dict:
'''simple docstring'''
return self.length
def __getitem__( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return {"x": self.x[i], "y": self.y[i]}
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Any = True
def __A ( self , __UpperCAmelCase=None ) -> str:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : Optional[int] = False
return x * self.a[0] + self.b[0]
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : str = True
def __A ( self , __UpperCAmelCase=None ) -> Tuple:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : int = False
return x * self.a + self.b
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
__UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" )
__UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
__UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" )
__UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )}
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCAmelCase : List[Any] = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" )
if "label" in examples:
__UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCAmelCase : Tuple = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCAmelCase__ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 )
__UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 16 | 0 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( lowerCAmelCase__ : Any ):
"""simple docstring"""
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f'Could not make batched video from {videos}' )
class _A ( lowercase_ ):
_SCREAMING_SNAKE_CASE : List[Any] = ["pixel_values"]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**a__ )
__UpperCAmelCase : Any = size if size is not None else {"""shortest_edge""": 224}
__UpperCAmelCase : int = get_size_dict(a__ , default_to_square=a__ )
__UpperCAmelCase : List[str] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : str = get_size_dict(a__ , param_name="""crop_size""" )
__UpperCAmelCase : Tuple = do_resize
__UpperCAmelCase : str = size
__UpperCAmelCase : List[str] = do_center_crop
__UpperCAmelCase : List[Any] = crop_size
__UpperCAmelCase : str = resample
__UpperCAmelCase : Dict = do_rescale
__UpperCAmelCase : Optional[Any] = rescale_factor
__UpperCAmelCase : Tuple = do_normalize
__UpperCAmelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = get_size_dict(a__ , default_to_square=a__ )
if "shortest_edge" in size:
__UpperCAmelCase : Optional[Any] = get_resize_output_image_size(a__ , size["""shortest_edge"""] , default_to_square=a__ )
elif "height" in size and "width" in size:
__UpperCAmelCase : Optional[int] = (size["""height"""], size["""width"""])
else:
raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : List[str] = get_size_dict(a__ )
if "height" not in size or "width" not in size:
raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(a__ , size=(size["""height"""], size["""width"""]) , data_format=a__ , **a__ )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[str]:
'''simple docstring'''
return rescale(a__ , scale=a__ , data_format=a__ , **a__ )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
__UpperCAmelCase : Union[str, Any] = to_numpy_array(a__ )
if do_resize:
__UpperCAmelCase : int = self.resize(image=a__ , size=a__ , resample=a__ )
if do_center_crop:
__UpperCAmelCase : Optional[int] = self.center_crop(a__ , size=a__ )
if do_rescale:
__UpperCAmelCase : List[Any] = self.rescale(image=a__ , scale=a__ )
if do_normalize:
__UpperCAmelCase : Union[str, Any] = self.normalize(image=a__ , mean=a__ , std=a__ )
__UpperCAmelCase : int = to_channel_dimension_format(a__ , a__ )
return image
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : str = resample if resample is not None else self.resample
__UpperCAmelCase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : List[str] = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : Optional[Any] = image_std if image_std is not None else self.image_std
__UpperCAmelCase : List[Any] = size if size is not None else self.size
__UpperCAmelCase : List[str] = get_size_dict(a__ , default_to_square=a__ )
__UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : Union[str, Any] = get_size_dict(a__ , param_name="""crop_size""" )
if not valid_images(a__ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
__UpperCAmelCase : Union[str, Any] = make_batched(a__ )
__UpperCAmelCase : List[str] = [
[
self._preprocess_image(
image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , )
for img in video
]
for video in videos
]
__UpperCAmelCase : Tuple = {"""pixel_values""": videos}
return BatchFeature(data=a__ , tensor_type=a__ )
| 353 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None
@property
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = (3, 32, 128)
__UpperCAmelCase : Tuple = tempfile.mkdtemp()
# fmt: off
__UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
__UpperCAmelCase : List[Any] = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
__UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) )
return image_input
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.get_tokenizer()
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
__UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.prepare_image_inputs()
__UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" )
__UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Dict = """test"""
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = """test"""
__UpperCAmelCase : int = self.prepare_image_inputs()
__UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase )
__UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = self.get_tokenizer()
__UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : str = None
__UpperCAmelCase : Dict = self.prepare_image_inputs()
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Any = self.get_image_processor()
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 )
__UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 )
__UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 )
__UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
| 16 | 0 |
'''simple docstring'''
from collections.abc import Sequence
from queue import Queue
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = start
__UpperCAmelCase : List[Any] = end
__UpperCAmelCase : str = val
__UpperCAmelCase : Union[str, Any] = (start + end) // 2
__UpperCAmelCase : Any = left
__UpperCAmelCase : Tuple = right
def __repr__( self ) -> Optional[Any]:
'''simple docstring'''
return f'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})'
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = collection
__UpperCAmelCase : Dict = function
if self.collection:
__UpperCAmelCase : Any = self._build_tree(0 , len(UpperCamelCase_ ) - 1 )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
self._update_tree(self.root , UpperCamelCase_ , UpperCamelCase_ )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return self._query_range(self.root , UpperCamelCase_ , UpperCamelCase_ )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
if start == end:
return SegmentTreeNode(UpperCamelCase_ , UpperCamelCase_ , self.collection[start] )
__UpperCAmelCase : Dict = (start + end) // 2
__UpperCAmelCase : Optional[Any] = self._build_tree(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = self._build_tree(mid + 1 , UpperCamelCase_ )
return SegmentTreeNode(UpperCamelCase_ , UpperCamelCase_ , self.fn(left.val , right.val ) , UpperCamelCase_ , UpperCamelCase_ )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
if node.start == i and node.end == i:
__UpperCAmelCase : Optional[int] = val
return
if i <= node.mid:
self._update_tree(node.left , UpperCamelCase_ , UpperCamelCase_ )
else:
self._update_tree(node.right , UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : Dict = self.fn(node.left.val , node.right.val )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left , UpperCamelCase_ , UpperCamelCase_ )
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left , UpperCamelCase_ , node.mid ) , self._query_range(node.right , node.mid + 1 , UpperCamelCase_ ) , )
else:
# range in right child tree
return self._query_range(node.right , UpperCamelCase_ , UpperCamelCase_ )
def __A ( self ) -> str:
'''simple docstring'''
if self.root is not None:
__UpperCAmelCase : Optional[Any] = Queue()
queue.put(self.root )
while not queue.empty():
__UpperCAmelCase : Any = queue.get()
yield node
if node.left is not None:
queue.put(node.left )
if node.right is not None:
queue.put(node.right )
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print('''*''' * 50)
_UpperCamelCase = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print()
| 354 |
'''simple docstring'''
from collections.abc import Sequence
def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ):
"""simple docstring"""
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__UpperCAmelCase : Any = nums[0]
for i in range(1 , len(lowerCAmelCase__ ) ):
__UpperCAmelCase : Union[str, Any] = nums[i]
__UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_UpperCamelCase = int(input('''Enter number of elements : ''').strip())
_UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n]
print(max_subsequence_sum(array))
| 16 | 0 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [[1, 2, 4], [1, 2, 3, 4]]
__UpperCAmelCase : Tuple = DisjunctiveConstraint(__lowerCamelCase )
self.assertTrue(isinstance(dc.token_ids , __lowerCamelCase ) )
with self.assertRaises(__lowerCamelCase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__lowerCamelCase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[Any] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__lowerCamelCase ):
DisjunctiveConstraint(__lowerCamelCase ) # fails here
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = [[1, 2, 3], [1, 2, 4]]
__UpperCAmelCase : Dict = DisjunctiveConstraint(__lowerCamelCase )
__UpperCAmelCase : List[str] = dc.update(1 )
__UpperCAmelCase : str = stepped is True and completed is False and reset is False
self.assertTrue(__lowerCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__UpperCAmelCase : Any = dc.update(2 )
__UpperCAmelCase : Union[str, Any] = stepped is True and completed is False and reset is False
self.assertTrue(__lowerCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__UpperCAmelCase : List[Any] = dc.update(3 )
__UpperCAmelCase : List[str] = stepped is True and completed is True and reset is False
self.assertTrue(__lowerCamelCase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
__UpperCAmelCase : Any = DisjunctiveConstraint(__lowerCamelCase )
__UpperCAmelCase : int = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__UpperCAmelCase : Union[str, Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__UpperCAmelCase : Tuple = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
__UpperCAmelCase : Dict = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
__UpperCAmelCase : Optional[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
__UpperCAmelCase : Union[str, Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
__UpperCAmelCase : Union[str, Any] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 355 |
'''simple docstring'''
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = data
__UpperCAmelCase : int = previous
__UpperCAmelCase : Union[str, Any] = next_node
def __str__( self ) -> str:
'''simple docstring'''
return f'{self.data}'
def __A ( self ) -> int:
'''simple docstring'''
return self.data
def __A ( self ) -> List[str]:
'''simple docstring'''
return self.next
def __A ( self ) -> str:
'''simple docstring'''
return self.previous
class _A :
def __init__( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = head
def __iter__( self ) -> str:
'''simple docstring'''
return self
def __A ( self ) -> str:
'''simple docstring'''
if not self.current:
raise StopIteration
else:
__UpperCAmelCase : List[str] = self.current.get_data()
__UpperCAmelCase : int = self.current.get_next()
return value
class _A :
def __init__( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = None # First node in list
__UpperCAmelCase : List[str] = None # Last node in list
def __str__( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.head
__UpperCAmelCase : Optional[int] = []
while current is not None:
nodes.append(current.get_data() )
__UpperCAmelCase : Any = current.get_next()
return " ".join(str(__UpperCAmelCase ) for node in nodes )
def __contains__( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.head
while current:
if current.get_data() == value:
return True
__UpperCAmelCase : Optional[Any] = current.get_next()
return False
def __iter__( self ) -> str:
'''simple docstring'''
return LinkedListIterator(self.head )
def __A ( self ) -> List[Any]:
'''simple docstring'''
if self.head:
return self.head.get_data()
return None
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
if self.tail:
return self.tail.get_data()
return None
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
__UpperCAmelCase : str = node
__UpperCAmelCase : List[str] = node
else:
self.insert_before_node(self.head , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase )
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.set_tail(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Tuple = node
__UpperCAmelCase : List[Any] = node.previous
if node.get_previous() is None:
__UpperCAmelCase : str = node_to_insert
else:
__UpperCAmelCase : Optional[Any] = node_to_insert
__UpperCAmelCase : List[Any] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : List[str] = node
__UpperCAmelCase : Union[str, Any] = node.next
if node.get_next() is None:
__UpperCAmelCase : Dict = node_to_insert
else:
__UpperCAmelCase : Any = node_to_insert
__UpperCAmelCase : List[str] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.head
while node:
if current_position == position:
self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase )
return
current_position += 1
__UpperCAmelCase : int = node.next
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Node:
'''simple docstring'''
__UpperCAmelCase : Dict = self.head
while node:
if node.get_data() == item:
return node
__UpperCAmelCase : List[str] = node.get_next()
raise Exception("""Node not found""" )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
if (node := self.get_node(__UpperCAmelCase )) is not None:
if node == self.head:
__UpperCAmelCase : Optional[int] = self.head.get_next()
if node == self.tail:
__UpperCAmelCase : Union[str, Any] = self.tail.get_previous()
self.remove_node_pointers(__UpperCAmelCase )
@staticmethod
def __A ( __UpperCAmelCase ) -> None:
'''simple docstring'''
if node.get_next():
__UpperCAmelCase : Optional[Any] = node.previous
if node.get_previous():
__UpperCAmelCase : int = node.next
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Union[str, Any] = None
def __A ( self ) -> List[Any]:
'''simple docstring'''
return self.head is None
def lowercase_ ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 0 |
'''simple docstring'''
_UpperCamelCase = 8.3_144_598
def lowercase_ ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ):
"""simple docstring"""
if temperature < 0:
raise Exception("""Temperature cannot be less than 0 K""" )
if molar_mass <= 0:
raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
_UpperCamelCase = 300
_UpperCamelCase = 28
_UpperCamelCase = rms_speed_of_molecule(temperature, molar_mass)
print(F'Vrms of Nitrogen gas at 300 K is {vrms} m/s')
| 356 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : List[str]
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __call__( self ) -> Any:
'''simple docstring'''
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : Optional[List] = None
_SCREAMING_SNAKE_CASE : Optional[int] = None
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None
__UpperCAmelCase : int = len(self.languages ) if self.languages else None
def __call__( self ) -> Optional[Any]:
'''simple docstring'''
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def __A ( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = set(self.languages )
if self.languages and set(__UpperCAmelCase ) - lang_set:
raise ValueError(
f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__UpperCAmelCase : Dict = []
for lang, text in translation_dict.items():
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 16 | 0 |
from pathlib import Path
import json
import tempfile
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
_UpperCamelCase = 'tiny-wmt19-en-ru'
# Build
# borrowed from a test
_UpperCamelCase = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
_UpperCamelCase = dict(zip(vocab, range(len(vocab))))
_UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
with tempfile.TemporaryDirectory() as tmpdirname:
_UpperCamelCase = Path(tmpdirname)
_UpperCamelCase = build_dir / VOCAB_FILES_NAMES['src_vocab_file']
_UpperCamelCase = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file']
_UpperCamelCase = build_dir / VOCAB_FILES_NAMES['merges_file']
with open(src_vocab_file, '''w''') as fp:
fp.write(json.dumps(vocab_tokens))
with open(tgt_vocab_file, '''w''') as fp:
fp.write(json.dumps(vocab_tokens))
with open(merges_file, '''w''') as fp:
fp.write('''\n'''.join(merges))
_UpperCamelCase = FSMTTokenizer(
langs=['''en''', '''ru'''],
src_vocab_size=len(vocab),
tgt_vocab_size=len(vocab),
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
)
_UpperCamelCase = FSMTConfig(
langs=['''ru''', '''en'''],
src_vocab_size=1000,
tgt_vocab_size=1000,
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
_UpperCamelCase = FSMTForConditionalGeneration(config)
print(F'num of params {tiny_model.num_parameters()}')
# Test
_UpperCamelCase = tokenizer(['''Making tiny model'''], return_tensors='''pt''')
_UpperCamelCase = tiny_model(**batch)
print('''test output:''', len(outputs.logits[0]))
# Save
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(F'Generated {mname_tiny}')
# Upload
# transformers-cli upload tiny-wmt19-en-ru
| 357 |
'''simple docstring'''
from statistics import mean
import numpy as np
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Tuple = 0
# Number of processes finished
__UpperCAmelCase : Optional[int] = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
__UpperCAmelCase : Tuple = [0] * no_of_process
# List to include calculation results
__UpperCAmelCase : int = [0] * no_of_process
# Sort by arrival time.
__UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )]
__UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )]
arrival_time.sort()
while no_of_process > finished_process_count:
__UpperCAmelCase : Dict = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
__UpperCAmelCase : Any = arrival_time[i]
__UpperCAmelCase : Any = 0
# Index showing the location of the process being performed
__UpperCAmelCase : Any = 0
# Saves the current response ratio.
__UpperCAmelCase : List[str] = 0
for i in range(0 , lowerCAmelCase__ ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
__UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
__UpperCAmelCase : Tuple = temp
__UpperCAmelCase : List[str] = i
# Calculate the turn around time
__UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
__UpperCAmelCase : List[str] = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [0] * no_of_process
for i in range(0 , lowerCAmelCase__ ):
__UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
_UpperCamelCase = 5
_UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E''']
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
_UpperCamelCase = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''')
for i in range(0, no_of_process):
print(
F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'
F'{turn_around_time[i]}\t\t\t{waiting_time[i]}'
)
print(F'average waiting time : {mean(waiting_time):.5f}')
print(F'average turn around time : {mean(turn_around_time):.5f}')
| 16 | 0 |
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
_UpperCamelCase = pd.read_csv('''sample_data.csv''', header=None)
_UpperCamelCase = df.shape[:1][0]
# If you're using some other dataset input the target column
_UpperCamelCase = df.iloc[:, 1:2]
_UpperCamelCase = actual_data.values.reshape(len_data, 1)
_UpperCamelCase = MinMaxScaler().fit_transform(actual_data)
_UpperCamelCase = 10
_UpperCamelCase = 5
_UpperCamelCase = 20
_UpperCamelCase = len_data - periods * look_back
_UpperCamelCase = actual_data[:division]
_UpperCamelCase = actual_data[division - look_back :]
_UpperCamelCase = [], []
_UpperCamelCase = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
_UpperCamelCase = np.array(train_x)
_UpperCamelCase = np.array(test_x)
_UpperCamelCase = np.array([list(i.ravel()) for i in train_y])
_UpperCamelCase = np.array([list(i.ravel()) for i in test_y])
_UpperCamelCase = Sequential()
model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(128, 1)))
model.add(Dense(forward_days))
model.compile(loss='''mean_squared_error''', optimizer='''adam''')
_UpperCamelCase = model.fit(
x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4
)
_UpperCamelCase = model.predict(x_test)
| 358 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = parent
__UpperCAmelCase : Any = batch_size
__UpperCAmelCase : Union[str, Any] = seq_length
__UpperCAmelCase : int = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[str] = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Union[str, Any] = num_hidden_layers
__UpperCAmelCase : Optional[int] = num_attention_heads
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_size
__UpperCAmelCase : Dict = type_sequence_label_size
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : Optional[Any] = num_choices
__UpperCAmelCase : int = scope
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : List[Any] = None
if self.use_input_mask:
__UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Any = None
if self.use_token_type_ids:
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Optional[int] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> List[str]:
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_config()
__UpperCAmelCase : List[Any] = 300
return config
def __A ( self ) -> Dict:
'''simple docstring'''
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = self.prepare_config_and_inputs()
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : List[str] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.num_labels
__UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_choices
__UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : List[str] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
__UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Any = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : int = False
_SCREAMING_SNAKE_CASE : List[str] = False
_SCREAMING_SNAKE_CASE : Dict = ()
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = MraModelTester(self )
__UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : List[Any] = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""MRA does not output attentions""" )
def __A ( self ) -> List[Any]:
'''simple docstring'''
return
@require_torch
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : int = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Union[str, Any] = 50_265
__UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" )
__UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : Any = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Dict = 50_265
__UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : str = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 0 |
'''simple docstring'''
import functools
from typing import Any
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict ):
"""simple docstring"""
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or len(lowerCAmelCase__ ) == 0:
raise ValueError("""the string should be not empty string""" )
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not all(
isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) > 0 for item in words ):
raise ValueError("""the words should be a list of non-empty strings""" )
# Build trie
__UpperCAmelCase : int = {}
__UpperCAmelCase : Union[str, Any] = """WORD_KEEPER"""
for word in words:
__UpperCAmelCase : Optional[int] = trie
for c in word:
if c not in trie_node:
__UpperCAmelCase : List[Any] = {}
__UpperCAmelCase : int = trie_node[c]
__UpperCAmelCase : Union[str, Any] = True
__UpperCAmelCase : str = len(lowerCAmelCase__ )
# Dynamic programming method
@functools.cache
def is_breakable(lowerCAmelCase__ : str ) -> bool:
if index == len_string:
return True
__UpperCAmelCase : Dict = trie
for i in range(lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase : List[str] = trie_node.get(string[i] , lowerCAmelCase__ )
if trie_node is None:
return False
if trie_node.get(lowerCAmelCase__ , lowerCAmelCase__ ) and is_breakable(i + 1 ):
return True
return False
return is_breakable(0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 359 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Any = image_size
__UpperCAmelCase : Dict = patch_size
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : List[Any] = embed_dim
__UpperCAmelCase : str = depths
__UpperCAmelCase : Dict = num_heads
__UpperCAmelCase : str = window_size
__UpperCAmelCase : int = mlp_ratio
__UpperCAmelCase : Union[str, Any] = qkv_bias
__UpperCAmelCase : Dict = hidden_dropout_prob
__UpperCAmelCase : str = attention_probs_dropout_prob
__UpperCAmelCase : Optional[int] = drop_path_rate
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Optional[int] = use_absolute_embeddings
__UpperCAmelCase : Any = patch_norm
__UpperCAmelCase : Union[str, Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : Any = scope
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : Optional[int] = type_sequence_label_size
__UpperCAmelCase : int = encoder_stride
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : Tuple = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def __A ( self ) -> Dict:
'''simple docstring'''
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
__UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : str = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = self.type_sequence_label_size
__UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs
__UpperCAmelCase : Dict = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
_SCREAMING_SNAKE_CASE : List[str] = (
{"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Dict = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[str] = SwinvaModelTester(self )
__UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 )
def __A ( self ) -> Any:
'''simple docstring'''
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
@unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason="""Swinv2 does not use inputs_embeds""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCAmelCase : List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Tuple = model_class(__UpperCAmelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : str = [*signature.parameters.keys()]
__UpperCAmelCase : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = True
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : int = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : str = outputs.attentions
__UpperCAmelCase : Any = len(self.model_tester.depths )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__UpperCAmelCase : Dict = True
__UpperCAmelCase : int = config.window_size**2
__UpperCAmelCase : Any = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : Dict = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
__UpperCAmelCase : Dict = len(__UpperCAmelCase )
# Check attention is always last and order is fine
__UpperCAmelCase : Any = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
if hasattr(self.model_tester , """num_hidden_states_types""" ):
__UpperCAmelCase : Any = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
__UpperCAmelCase : Optional[int] = 2
self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) )
__UpperCAmelCase : Tuple = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : List[Any] = outputs.hidden_states
__UpperCAmelCase : List[Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# Swinv2 has a different seq_length
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__UpperCAmelCase : int = outputs.reshaped_hidden_states
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape
__UpperCAmelCase : Any = (
reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = 3
__UpperCAmelCase : str = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__UpperCAmelCase : int = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Tuple = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase )
for model_class in self.all_model_classes:
__UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class _A ( unittest.TestCase ):
@cached_property
def __A ( self ) -> int:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" )
if is_vision_available()
else None
)
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to(
__UpperCAmelCase )
__UpperCAmelCase : Tuple = self.default_image_processor
__UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase )
# verify the logits
__UpperCAmelCase : int = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 0 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _A ( lowerCamelCase__ ):
_SCREAMING_SNAKE_CASE : List[Any] = "ClapFeatureExtractor"
_SCREAMING_SNAKE_CASE : Dict = ("RobertaTokenizer", "RobertaTokenizerFast")
def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
super().__init__(__A , __A )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = kwargs.pop("""sampling_rate""" , __A )
if text is None and audios is None:
raise ValueError("""You have to specify either text or audios. Both cannot be none.""" )
if text is not None:
__UpperCAmelCase : Optional[Any] = self.tokenizer(__A , return_tensors=__A , **__A )
if audios is not None:
__UpperCAmelCase : Any = self.feature_extractor(
__A , sampling_rate=__A , return_tensors=__A , **__A )
if text is not None and audios is not None:
__UpperCAmelCase : int = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__A ) , tensor_type=__A )
def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
return self.tokenizer.batch_decode(*__A , **__A )
def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return self.tokenizer.decode(*__A , **__A )
@property
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.tokenizer.model_input_names
__UpperCAmelCase : List[str] = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 360 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
_UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f'Could not make batched video from {videos}' )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
__UpperCAmelCase : int = do_resize
__UpperCAmelCase : List[str] = size
__UpperCAmelCase : Any = do_center_crop
__UpperCAmelCase : Any = crop_size
__UpperCAmelCase : Optional[Any] = resample
__UpperCAmelCase : Dict = do_rescale
__UpperCAmelCase : List[str] = rescale_factor
__UpperCAmelCase : Dict = offset
__UpperCAmelCase : List[str] = do_normalize
__UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" in size:
__UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase )
elif "height" in size and "width" in size:
__UpperCAmelCase : Any = (size["""height"""], size["""width"""])
else:
raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = image.astype(np.floataa )
if offset:
__UpperCAmelCase : Tuple = image - (scale / 2)
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
if offset and not do_rescale:
raise ValueError("""For offset, do_rescale must also be set to True.""" )
# All transformations expect numpy arrays.
__UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase )
if do_resize:
__UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase )
if do_center_crop:
__UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase )
if do_rescale:
__UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase )
if do_normalize:
__UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase )
return image
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : List[Any] = resample if resample is not None else self.resample
__UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : List[Any] = offset if offset is not None else self.offset
__UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : int = image_std if image_std is not None else self.image_std
__UpperCAmelCase : Any = size if size is not None else self.size
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
__UpperCAmelCase : int = make_batched(__UpperCAmelCase )
__UpperCAmelCase : Tuple = [
[
self._preprocess_image(
image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , )
for img in video
]
for video in videos
]
__UpperCAmelCase : Tuple = {"""pixel_values""": videos}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 16 | 0 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["image_processor", "tokenizer"]
_SCREAMING_SNAKE_CASE : Optional[Any] = "LayoutLMv2ImageProcessor"
_SCREAMING_SNAKE_CASE : Dict = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast")
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __a , )
__UpperCAmelCase : Union[str, Any] = kwargs.pop("""feature_extractor""" )
__UpperCAmelCase : Optional[int] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__a , __a )
def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> BatchEncoding:
'''simple docstring'''
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"""You cannot provide bounding boxes """
"""if you initialized the image processor with apply_ocr set to True.""" )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"""You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" )
# first, apply the image processor
__UpperCAmelCase : Optional[Any] = self.image_processor(images=__a , return_tensors=__a )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(__a , __a ):
__UpperCAmelCase : List[str] = [text] # add batch dimension (as the image processor always adds a batch dimension)
__UpperCAmelCase : Optional[int] = features["""words"""]
__UpperCAmelCase : Optional[int] = self.tokenizer(
text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , )
# add pixel values
__UpperCAmelCase : Dict = features.pop("""pixel_values""" )
if return_overflowing_tokens is True:
__UpperCAmelCase : Optional[int] = self.get_overflowing_images(__a , encoded_inputs["""overflow_to_sample_mapping"""] )
__UpperCAmelCase : List[Any] = images
return encoded_inputs
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : str = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(__a ) != len(__a ):
raise ValueError(
"""Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"""
f' {len(__a )} and {len(__a )}' )
return images_with_overflow
def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
return self.tokenizer.batch_decode(*__a , **__a )
def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
return self.tokenizer.decode(*__a , **__a )
@property
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def __A ( self ) -> Any:
'''simple docstring'''
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __a , )
return self.image_processor_class
@property
def __A ( self ) -> List[str]:
'''simple docstring'''
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __a , )
return self.image_processor
| 361 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline
_SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
_SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
_SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : Dict = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
__UpperCAmelCase : List[Any] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
__UpperCAmelCase : Any = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__UpperCAmelCase : Dict = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vqvae""": vae,
"""bert""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any:
'''simple docstring'''
if str(__UpperCAmelCase ).startswith("""mps""" ):
__UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : Dict = self.get_dummy_components()
__UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
__UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> List[str]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Tuple = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
__UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] )
__UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 50,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0]
__UpperCAmelCase : Tuple = load_numpy(
"""https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" )
__UpperCAmelCase : Dict = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 16 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''edbeeching/decision-transformer-gym-hopper-medium''': (
'''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json'''
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class _A ( _snake_case ):
_SCREAMING_SNAKE_CASE : List[str] = "decision_transformer"
_SCREAMING_SNAKE_CASE : Dict = ["past_key_values"]
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4_096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1_024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50_256 , __UpperCAmelCase=50_256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : Any = state_dim
__UpperCAmelCase : Optional[Any] = act_dim
__UpperCAmelCase : Optional[Any] = hidden_size
__UpperCAmelCase : List[str] = max_ep_len
__UpperCAmelCase : Union[str, Any] = action_tanh
__UpperCAmelCase : List[Any] = vocab_size
__UpperCAmelCase : Optional[Any] = n_positions
__UpperCAmelCase : Optional[int] = n_layer
__UpperCAmelCase : int = n_head
__UpperCAmelCase : List[Any] = n_inner
__UpperCAmelCase : Optional[Any] = activation_function
__UpperCAmelCase : Dict = resid_pdrop
__UpperCAmelCase : Dict = embd_pdrop
__UpperCAmelCase : Optional[int] = attn_pdrop
__UpperCAmelCase : Tuple = layer_norm_epsilon
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : Any = scale_attn_weights
__UpperCAmelCase : Optional[Any] = use_cache
__UpperCAmelCase : Optional[Any] = scale_attn_by_inverse_layer_idx
__UpperCAmelCase : Optional[int] = reorder_and_upcast_attn
__UpperCAmelCase : Dict = bos_token_id
__UpperCAmelCase : Union[str, Any] = eos_token_id
super().__init__(bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
| 362 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column
__UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )]
def __str__( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n'
# Make string identifier
__UpperCAmelCase : Optional[Any] = 0
for row_vector in self.array:
for obj in row_vector:
__UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) )
__UpperCAmelCase : Optional[int] = f'%{max_element_length}s'
# Make string and return
def single_line(__UpperCAmelCase ) -> str:
nonlocal string_format_identifier
__UpperCAmelCase : Any = """["""
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array )
return s
def __repr__( self ) -> str:
'''simple docstring'''
return str(self )
def __A ( self , __UpperCAmelCase ) -> bool:
'''simple docstring'''
if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
return self.array[loc[0]][loc[1]]
def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = value
def __add__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == another.row and self.column == another.column
# Add
__UpperCAmelCase : Dict = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] + another[r, c]
return result
def __neg__( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : Dict = -self[r, c]
return result
def __sub__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
return self + (-another)
def __mul__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication
__UpperCAmelCase : Optional[int] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] * another
return result
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication
assert self.column == another.row
__UpperCAmelCase : Dict = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
__UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})'
raise TypeError(__UpperCAmelCase )
def __A ( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Dict = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[str] = self[r, c]
return result
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
__UpperCAmelCase : Optional[Any] = v.transpose()
__UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Dict = Matrix(3 , 3 , 0 )
for i in range(3 ):
__UpperCAmelCase : Tuple = 1
print(f'a^(-1) is {ainv}' )
# u, v
__UpperCAmelCase : Dict = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3
__UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5
print(f'u is {u}' )
print(f'v is {v}' )
print(f'uv^T is {u * v.transpose()}' )
# Sherman Morrison
print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' )
def lowercase_ ( ):
"""simple docstring"""
import doctest
doctest.testmod()
testa()
| 16 | 0 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_lxmert import LxmertTokenizer
_UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
_UpperCamelCase = {
'''vocab_file''': {
'''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''',
},
'''tokenizer_file''': {
'''unc-nlp/lxmert-base-uncased''': (
'''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json'''
),
},
}
_UpperCamelCase = {
'''unc-nlp/lxmert-base-uncased''': 512,
}
_UpperCamelCase = {
'''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True},
}
class _A ( snake_case__ ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_INIT_CONFIGURATION
_SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : Dict = LxmertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> List[str]:
'''simple docstring'''
super().__init__(
_A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , )
__UpperCAmelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , _A ) != do_lower_case
or normalizer_state.get("""strip_accents""" , _A ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , _A ) != tokenize_chinese_chars
):
__UpperCAmelCase : int = getattr(_A , normalizer_state.pop("""type""" ) )
__UpperCAmelCase : Dict = do_lower_case
__UpperCAmelCase : str = strip_accents
__UpperCAmelCase : List[Any] = tokenize_chinese_chars
__UpperCAmelCase : Union[str, Any] = normalizer_class(**_A )
__UpperCAmelCase : List[Any] = do_lower_case
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = [self.sep_token_id]
__UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self._tokenizer.model.save(_A , name=_A )
return tuple(_A )
| 363 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''],
'''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''],
'''processing_wav2vec2''': ['''Wav2Vec2Processor'''],
'''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Wav2Vec2ForAudioFrameClassification''',
'''Wav2Vec2ForCTC''',
'''Wav2Vec2ForMaskedLM''',
'''Wav2Vec2ForPreTraining''',
'''Wav2Vec2ForSequenceClassification''',
'''Wav2Vec2ForXVector''',
'''Wav2Vec2Model''',
'''Wav2Vec2PreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWav2Vec2ForCTC''',
'''TFWav2Vec2Model''',
'''TFWav2Vec2PreTrainedModel''',
'''TFWav2Vec2ForSequenceClassification''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FlaxWav2Vec2ForCTC''',
'''FlaxWav2Vec2ForPreTraining''',
'''FlaxWav2Vec2Model''',
'''FlaxWav2Vec2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 0 |
'''simple docstring'''
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
_UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''')
if is_sentencepiece_available():
import sentencepiece as sp
_UpperCamelCase = 5
_UpperCamelCase = 10
@require_sentencepiece
@require_tokenizers
class _A ( a__ , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Dict = SpeechaTextTokenizer
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : Union[str, Any] = True
def __A ( self ) -> Optional[int]:
'''simple docstring'''
super().setUp()
__UpperCAmelCase : Any = sp.SentencePieceProcessor()
spm_model.Load(SCREAMING_SNAKE_CASE_ )
__UpperCAmelCase : Optional[Any] = ['<s>', '<pad>', '</s>', '<unk>']
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(SCREAMING_SNAKE_CASE_ ) )]
__UpperCAmelCase : Tuple = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
__UpperCAmelCase : Any = Path(self.tmpdirname )
save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES["""spm_file"""] )
__UpperCAmelCase : Union[str, Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = '<pad>'
__UpperCAmelCase : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(vocab_keys[-1] , """j""" )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1_001 )
def __A ( self ) -> List[Any]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1_001 )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
__UpperCAmelCase : Optional[int] = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [289, 50, 14, 174, 386] , )
__UpperCAmelCase : Tuple = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , )
__UpperCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
__UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , )
@slow
def __A ( self ) -> List[Any]:
'''simple docstring'''
# fmt: off
__UpperCAmelCase : int = {'input_ids': [[3_791, 797, 31, 11, 64, 797, 31, 2_429, 433, 12, 1_176, 12, 20, 786, 915, 142, 2_413, 240, 37, 3_238, 797, 31, 11, 35, 93, 915, 142, 2_413, 240, 37, 5_540, 567, 1_276, 93, 37, 610, 40, 62, 455, 657, 1_042, 123, 780, 177, 37, 309, 241, 1_298, 514, 20, 292, 2_737, 114, 2_469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3_388, 511, 459, 4, 3_555, 40, 321, 302, 705, 4, 3_388, 511, 583, 326, 5, 5, 5, 62, 3_310, 560, 177, 2_680, 217, 1_508, 32, 31, 853, 418, 64, 583, 511, 1_605, 62, 35, 93, 560, 177, 2_680, 217, 1_508, 1_521, 64, 583, 511, 519, 62, 20, 1_515, 764, 20, 149, 261, 5_625, 7_972, 20, 5_540, 567, 1_276, 93, 3_925, 1_675, 11, 15, 802, 7_972, 576, 217, 1_508, 11, 35, 93, 1_253, 2_441, 15, 289, 652, 31, 416, 321, 3_842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2_681, 1_153, 3_434, 20, 5_540, 37, 567, 126, 1_253, 2_441, 3_376, 449, 210, 431, 1_563, 177, 767, 5_540, 11, 1_203, 472, 11, 2_953, 685, 285, 364, 706, 1_153, 20, 6_799, 20, 2_869, 20, 4_464, 126, 40, 2_429, 20, 1_040, 866, 2_664, 418, 20, 318, 20, 1_726, 186, 20, 265, 522, 35, 93, 2_191, 4_634, 20, 1_040, 12, 6_799, 15, 228, 2_356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_575, 2_666, 684, 1_582, 1_176, 12, 627, 149, 619, 20, 4_902, 563, 11, 20, 149, 261, 3_420, 2_356, 174, 142, 4_714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE_ , model_name="""facebook/s2t-small-mustc-en-de-st""" , revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" , )
@require_sentencepiece
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : int = "valhalla/s2t_mustc_multilinguial_medium"
_SCREAMING_SNAKE_CASE : int = "C'est trop cool"
_SCREAMING_SNAKE_CASE : List[str] = "Esto es genial"
@classmethod
def __A ( cls ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] , 11 )
def __A ( self ) -> str:
'''simple docstring'''
self.assertEqual(self.tokenizer.vocab_size , 10_000 )
def __A ( self ) -> str:
'''simple docstring'''
self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids )
__UpperCAmelCase : int = [ES_CODE, 4, 1_601, 47, 7_647, 2]
__UpperCAmelCase : List[Any] = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__UpperCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = 'fr'
__UpperCAmelCase : Dict = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , SCREAMING_SNAKE_CASE_ )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = 'fr'
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
__UpperCAmelCase : Tuple = 'es'
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 364 |
'''simple docstring'''
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING
_SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING
def __A ( self ) -> Any:
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""},
{"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""},
] , )
__UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is grouped""",
"""score""": 2.1E-05,
"""token""": 38_015,
"""token_str""": """ grouped""",
},
{
"""sequence""": """The largest city in France is accuser""",
"""score""": 2.1E-05,
"""token""": 25_506,
"""token_str""": """ accuser""",
},
] , )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""},
{"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is Maul""",
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
},
{"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""},
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is Maul<mask></s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""},
],
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is<mask> Maul</s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""},
],
] , )
@require_torch_gpu
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" )
# convert model to fp16
pipe.model.half()
__UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
@require_torch
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" )
self.run_large_test(__UpperCAmelCase )
@slow
@require_tf
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" )
self.run_large_test(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""},
{"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{
"""sequence""": """The largest city in France is Paris""",
"""score""": 0.251,
"""token""": 2_201,
"""token_str""": """ Paris""",
},
{
"""sequence""": """The largest city in France is Lyon""",
"""score""": 0.214,
"""token""": 12_790,
"""token_str""": """ Lyon""",
},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" )
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : int = None
self.run_pipeline_test(__UpperCAmelCase , [] )
@require_tf
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : str = None
self.run_pipeline_test(__UpperCAmelCase , [] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" )
__UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = [
f'This is another {tokenizer.mask_token} test',
]
return fill_masker, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = fill_masker.tokenizer
__UpperCAmelCase : Union[str, Any] = fill_masker.model
__UpperCAmelCase : Tuple = fill_masker(
f'This is a {tokenizer.mask_token}' , )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
with self.assertRaises(__UpperCAmelCase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(__UpperCAmelCase ):
fill_masker("""This is""" )
self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Dict = tokenizer.get_vocab()
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:2]
# Pipeline argument
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase )
__UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Any = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Call argument
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Score equivalence
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs]
__UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ) == set(__UpperCAmelCase ):
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
# Raises with invalid
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] )
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 )
__UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : int = tokenizer.get_vocab()
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
# top_k=2, ntargets=3
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
__UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = tokenizer.get_vocab()
# String duplicates + id duplicates
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]]
__UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(__UpperCAmelCase ) , 3 )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Dict = fill_masker(
f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
| 16 | 0 |
'''simple docstring'''
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_MASKED_LM_MAPPING
_SCREAMING_SNAKE_CASE : Optional[int] = TF_MODEL_FOR_MASKED_LM_MAPPING
def __A ( self ) -> Tuple:
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""},
{"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""},
] , )
__UpperCAmelCase : Any = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is grouped""",
"""score""": 2.1E-05,
"""token""": 38_015,
"""token_str""": """ grouped""",
},
{
"""sequence""": """The largest city in France is accuser""",
"""score""": 2.1E-05,
"""token""": 25_506,
"""token_str""": """ accuser""",
},
] , )
__UpperCAmelCase : List[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" )
__UpperCAmelCase : List[Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""},
{"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : List[Any] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is Maul""",
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
},
{"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""},
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
] , )
__UpperCAmelCase : Optional[Any] = unmasker("""My name is <mask> <mask>""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is Maul<mask></s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""},
],
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is<mask> Maul</s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""},
],
] , )
@require_torch_gpu
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" )
# convert model to fp16
pipe.model.half()
__UpperCAmelCase : Optional[int] = pipe("""Paris is the [MASK] of France.""" )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
@require_torch
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" )
self.run_large_test(__UpperCAmelCase )
@slow
@require_tf
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" )
self.run_large_test(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""},
{"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""},
] , )
__UpperCAmelCase : Any = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{
"""sequence""": """The largest city in France is Paris""",
"""score""": 0.251,
"""token""": 2_201,
"""token_str""": """ Paris""",
},
{
"""sequence""": """The largest city in France is Lyon""",
"""score""": 0.214,
"""token""": 12_790,
"""token_str""": """ Lyon""",
},
] , )
__UpperCAmelCase : Dict = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" )
__UpperCAmelCase : List[str] = None
__UpperCAmelCase : Dict = None
self.run_pipeline_test(__UpperCAmelCase , [] )
@require_tf
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" )
__UpperCAmelCase : int = None
__UpperCAmelCase : Union[str, Any] = None
self.run_pipeline_test(__UpperCAmelCase , [] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" )
__UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = [
f'This is another {tokenizer.mask_token} test',
]
return fill_masker, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = fill_masker.tokenizer
__UpperCAmelCase : str = fill_masker.model
__UpperCAmelCase : Optional[int] = fill_masker(
f'This is a {tokenizer.mask_token}' , )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}'] )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : str = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
with self.assertRaises(__UpperCAmelCase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(__UpperCAmelCase ):
fill_masker("""This is""" )
self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = tokenizer.get_vocab()
__UpperCAmelCase : Any = sorted(vocab.keys() )[:2]
# Pipeline argument
__UpperCAmelCase : Optional[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase )
__UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : str = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Call argument
__UpperCAmelCase : Any = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Any = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : List[str] = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Score equivalence
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : Tuple = [top_mask["""token_str"""] for top_mask in outputs]
__UpperCAmelCase : Union[str, Any] = [top_mask["""score"""] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ) == set(__UpperCAmelCase ):
__UpperCAmelCase : List[Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
# Raises with invalid
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] )
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Optional[Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 )
__UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = tokenizer.get_vocab()
__UpperCAmelCase : Tuple = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
# top_k=2, ntargets=3
__UpperCAmelCase : int = sorted(vocab.keys() )[:3]
__UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
__UpperCAmelCase : Dict = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ):
__UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = tokenizer.get_vocab()
# String duplicates + id duplicates
__UpperCAmelCase : Optional[int] = sorted(vocab.keys() )[:3]
__UpperCAmelCase : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]]
__UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(__UpperCAmelCase ) , 3 )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : List[str] = fill_masker(
f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
| 365 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} )
_SCREAMING_SNAKE_CASE : str = "image"
_SCREAMING_SNAKE_CASE : str = "labels"
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(f'Column {self.label_column} is not present in features.' )
if not isinstance(features[self.label_column] , __UpperCAmelCase ):
raise ValueError(f'Column {self.label_column} is not a ClassLabel.' )
__UpperCAmelCase : int = copy.deepcopy(self )
__UpperCAmelCase : str = self.label_schema.copy()
__UpperCAmelCase : Optional[Any] = features[self.label_column]
__UpperCAmelCase : Optional[int] = label_schema
return task_template
@property
def __A ( self ) -> Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 16 | 0 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = 1
__UpperCAmelCase : Optional[Any] = 2
while i * i <= n:
__UpperCAmelCase : str = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Any = 1
__UpperCAmelCase : str = 1
while True:
i += 1
t_num += i
if count_divisors(lowerCAmelCase__ ) > 500:
break
return t_num
if __name__ == "__main__":
print(solution())
| 366 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Tuple = seq_length
__UpperCAmelCase : str = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[Any] = use_token_type_ids
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : str = num_attention_heads
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : Tuple = max_position_embeddings
__UpperCAmelCase : Dict = type_vocab_size
__UpperCAmelCase : List[Any] = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[str] = num_labels
__UpperCAmelCase : str = num_choices
__UpperCAmelCase : List[Any] = scope
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Tuple = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
# first forward pass
__UpperCAmelCase : Optional[int] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCAmelCase : int = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
# select random slice
__UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = config_and_inputs
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : List[str] = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = LlamaModelTester(self )
__UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : str = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Any = 3
__UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[int] = 3
__UpperCAmelCase : Optional[Any] = """single_label_classification"""
__UpperCAmelCase : int = input_dict["""input_ids"""]
__UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = 3
__UpperCAmelCase : str = """multi_label_classification"""
__UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size )
__UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
original_model.to(__UpperCAmelCase )
original_model.eval()
__UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0}
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
scaled_model.to(__UpperCAmelCase )
scaled_model.eval()
__UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
@require_torch
class _A ( unittest.TestCase ):
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" )
__UpperCAmelCase : int = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" )
__UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" )
__UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
@unittest.skip(
"""Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" )
@slow
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" )
__UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) )
__UpperCAmelCase : Dict = torch.tensor(
[[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Model is curently gated""" )
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi"""
__UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """
__UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" )
__UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" )
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained(
"""meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase )
# greedy generation outputs
__UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 16 | 0 |
'''simple docstring'''
_UpperCamelCase = [
999,
800,
799,
600,
599,
500,
400,
399,
377,
355,
333,
311,
288,
266,
244,
222,
200,
199,
177,
155,
133,
111,
88,
66,
44,
22,
0,
]
_UpperCamelCase = [
999,
976,
952,
928,
905,
882,
858,
857,
810,
762,
715,
714,
572,
429,
428,
286,
285,
238,
190,
143,
142,
118,
95,
71,
47,
24,
0,
]
_UpperCamelCase = [
999,
988,
977,
966,
955,
944,
933,
922,
911,
900,
899,
879,
859,
840,
820,
800,
799,
766,
733,
700,
699,
650,
600,
599,
500,
499,
400,
399,
350,
300,
299,
266,
233,
200,
199,
179,
159,
140,
120,
100,
99,
88,
77,
66,
55,
44,
33,
22,
11,
0,
]
_UpperCamelCase = [
999,
995,
992,
989,
985,
981,
978,
975,
971,
967,
964,
961,
957,
956,
951,
947,
942,
937,
933,
928,
923,
919,
914,
913,
908,
903,
897,
892,
887,
881,
876,
871,
870,
864,
858,
852,
846,
840,
834,
828,
827,
820,
813,
806,
799,
792,
785,
784,
777,
770,
763,
756,
749,
742,
741,
733,
724,
716,
707,
699,
698,
688,
677,
666,
656,
655,
645,
634,
623,
613,
612,
598,
584,
570,
569,
555,
541,
527,
526,
505,
484,
483,
462,
440,
439,
396,
395,
352,
351,
308,
307,
264,
263,
220,
219,
176,
132,
88,
44,
0,
]
_UpperCamelCase = [
999,
997,
995,
992,
990,
988,
986,
984,
981,
979,
977,
975,
972,
970,
968,
966,
964,
961,
959,
957,
956,
954,
951,
949,
946,
944,
941,
939,
936,
934,
931,
929,
926,
924,
921,
919,
916,
914,
913,
910,
907,
905,
902,
899,
896,
893,
891,
888,
885,
882,
879,
877,
874,
871,
870,
867,
864,
861,
858,
855,
852,
849,
846,
843,
840,
837,
834,
831,
828,
827,
824,
821,
817,
814,
811,
808,
804,
801,
798,
795,
791,
788,
785,
784,
780,
777,
774,
770,
766,
763,
760,
756,
752,
749,
746,
742,
741,
737,
733,
730,
726,
722,
718,
714,
710,
707,
703,
699,
698,
694,
690,
685,
681,
677,
673,
669,
664,
660,
656,
655,
650,
646,
641,
636,
632,
627,
622,
618,
613,
612,
607,
602,
596,
591,
586,
580,
575,
570,
569,
563,
557,
551,
545,
539,
533,
527,
526,
519,
512,
505,
498,
491,
484,
483,
474,
466,
457,
449,
440,
439,
428,
418,
407,
396,
395,
381,
366,
352,
351,
330,
308,
307,
286,
264,
263,
242,
220,
219,
176,
175,
132,
131,
88,
44,
0,
]
_UpperCamelCase = [
999,
991,
982,
974,
966,
958,
950,
941,
933,
925,
916,
908,
900,
899,
874,
850,
825,
800,
799,
700,
600,
500,
400,
300,
200,
100,
0,
]
_UpperCamelCase = [
999,
992,
985,
978,
971,
964,
957,
949,
942,
935,
928,
921,
914,
907,
900,
899,
879,
859,
840,
820,
800,
799,
766,
733,
700,
699,
650,
600,
599,
500,
499,
400,
399,
300,
299,
200,
199,
100,
99,
0,
]
_UpperCamelCase = [
999,
996,
992,
989,
985,
982,
979,
975,
972,
968,
965,
961,
958,
955,
951,
948,
944,
941,
938,
934,
931,
927,
924,
920,
917,
914,
910,
907,
903,
900,
899,
891,
884,
876,
869,
861,
853,
846,
838,
830,
823,
815,
808,
800,
799,
788,
777,
766,
755,
744,
733,
722,
711,
700,
699,
688,
677,
666,
655,
644,
633,
622,
611,
600,
599,
585,
571,
557,
542,
528,
514,
500,
499,
485,
471,
457,
442,
428,
414,
400,
399,
379,
359,
340,
320,
300,
299,
279,
259,
240,
220,
200,
199,
166,
133,
100,
99,
66,
33,
0,
]
| 367 |
'''simple docstring'''
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
_UpperCamelCase = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ):
"""simple docstring"""
return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths )
def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = []
if args.gold_data_mode == "qa":
__UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ )
for answer_list in data[1]:
__UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ )
answers.append(lowerCAmelCase__ )
else:
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : str = [[reference] for reference in references]
__UpperCAmelCase : Optional[int] = 0
for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
total += 1
em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : int = 100.0 * em / total
__UpperCAmelCase : Dict = 100.0 * fa / total
logger.info(f'F1: {fa:.2f}' )
logger.info(f'EM: {em:.2f}' )
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : Tuple = args.k
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = 0
for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] )
__UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
__UpperCAmelCase : List[str] = 100.0 * em / total
logger.info(f'Precision@{k}: {em: .2f}' )
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ):
"""simple docstring"""
def strip_title(lowerCAmelCase__ : Optional[int] ):
if title.startswith("""\"""" ):
__UpperCAmelCase : List[Any] = title[1:]
if title.endswith("""\"""" ):
__UpperCAmelCase : int = title[:-1]
return title
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device )
__UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ )
__UpperCAmelCase : int = question_enc_outputs[0]
__UpperCAmelCase : Dict = rag_model.retriever(
lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , )
__UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
__UpperCAmelCase : Union[str, Any] = []
for docs in all_docs:
__UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]]
provenance_strings.append("""\t""".join(lowerCAmelCase__ ) )
return provenance_strings
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
with torch.no_grad():
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )
__UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device )
__UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device )
__UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
__UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
if args.print_predictions:
for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) )
return answers
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=(
"""RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the"""
""" model_name_or_path"""
) , )
parser.add_argument(
"""--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , )
parser.add_argument(
"""--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , )
parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" )
parser.add_argument(
"""--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=(
"""Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates"""
""" precision@k."""
) , )
parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" )
parser.add_argument(
"""--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , )
parser.add_argument(
"""--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , )
parser.add_argument(
"""--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=(
"""Format of the gold data file"""
"""qa - a single line in the following format: question [tab] answer_list"""
"""ans - a single line of the gold file contains the expected answer string"""
) , )
parser.add_argument(
"""--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , )
parser.add_argument(
"""--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , )
parser.add_argument(
"""--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , )
parser.add_argument(
"""--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , )
parser.add_argument(
"""--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , )
parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" )
parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" )
parser.add_argument(
"""--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , )
parser.add_argument(
"""--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , )
__UpperCAmelCase : str = parser.parse_args()
__UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
return args
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = {}
if args.model_type is None:
__UpperCAmelCase : str = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration
__UpperCAmelCase : Dict = args.n_docs
if args.index_name is not None:
__UpperCAmelCase : Union[str, Any] = args.index_name
if args.index_path is not None:
__UpperCAmelCase : Dict = args.index_path
else:
__UpperCAmelCase : str = BartForConditionalGeneration
__UpperCAmelCase : str = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k
__UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) )
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
continue
logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) )
logger.info(""" Batch size = %d""" , args.eval_batch_size )
logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) )
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
__UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ )
model.retriever.init_retrieval()
else:
__UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
model.to(args.device )
with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file:
__UpperCAmelCase : Union[str, Any] = []
for line in tqdm(lowerCAmelCase__ ):
questions.append(line.strip() )
if len(lowerCAmelCase__ ) == args.eval_batch_size:
__UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" )
preds_file.flush()
__UpperCAmelCase : List[str] = []
if len(lowerCAmelCase__ ) > 0:
__UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) )
preds_file.flush()
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
_UpperCamelCase = get_args()
main(args)
| 16 | 0 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
_UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
class _A ( _UpperCamelCase ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 100 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , ) -> str:
'''simple docstring'''
if audio_length_in_s is None:
__UpperCAmelCase : str = self.unet.config.sample_size / self.unet.config.sample_rate
__UpperCAmelCase : Any = audio_length_in_s * self.unet.config.sample_rate
__UpperCAmelCase : Tuple = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'
f' {3 * down_scale_factor / self.unet.config.sample_rate}.' )
__UpperCAmelCase : Tuple = int(_UpperCAmelCase )
if sample_size % down_scale_factor != 0:
__UpperCAmelCase : Tuple = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'
f' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'
""" process.""" )
__UpperCAmelCase : List[Any] = int(_UpperCAmelCase )
__UpperCAmelCase : int = next(iter(self.unet.parameters() ) ).dtype
__UpperCAmelCase : int = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size:
raise ValueError(
f'You have passed a list of generators of length {len(_UpperCAmelCase )}, but requested an effective batch'
f' size of {batch_size}. Make sure the batch size matches the length of the generators.' )
__UpperCAmelCase : Union[str, Any] = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase )
# set step values
self.scheduler.set_timesteps(_UpperCAmelCase , device=audio.device )
__UpperCAmelCase : str = self.scheduler.timesteps.to(_UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
__UpperCAmelCase : Any = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample
# 2. compute previous image: x_t -> t_t-1
__UpperCAmelCase : Dict = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
__UpperCAmelCase : List[str] = audio.clamp(-1 , 1 ).float().cpu().numpy()
__UpperCAmelCase : Union[str, Any] = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=_UpperCAmelCase )
| 368 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _A :
@staticmethod
def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = [
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
]
return object_detector, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 )
__UpperCAmelCase : Tuple = len(__UpperCAmelCase )
self.assertGreater(__UpperCAmelCase , 0 )
self.assertEqual(
__UpperCAmelCase , [
{
"""score""": ANY(__UpperCAmelCase ),
"""label""": ANY(__UpperCAmelCase ),
"""box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )},
}
for i in range(__UpperCAmelCase )
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> Tuple:
'''simple docstring'''
pass
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
] , )
__UpperCAmelCase : str = object_detector(
[
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
]
] , )
@require_torch
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
] , )
__UpperCAmelCase : Any = object_detector(
[
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> List[str]:
'''simple docstring'''
pass
@require_torch
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = 0.2
__UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
] , )
@require_torch
@slow
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 2
__UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
] , )
| 16 | 0 |
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def lowercase_ ( lowerCAmelCase__ : Tuple = 8 ):
"""simple docstring"""
__UpperCAmelCase : int = ascii_letters + digits + punctuation
return "".join(secrets.choice(__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ) )
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
i -= len(__SCREAMING_SNAKE_CASE )
__UpperCAmelCase : str = i // 3
__UpperCAmelCase : Dict = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
__UpperCAmelCase : Union[str, Any] = (
chars_incl
+ random(__SCREAMING_SNAKE_CASE , quotient + remainder )
+ random(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
+ random(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
)
__UpperCAmelCase : Union[str, Any] = list(__SCREAMING_SNAKE_CASE )
shuffle(__SCREAMING_SNAKE_CASE )
return "".join(__SCREAMING_SNAKE_CASE )
# random is a generalised function for letters, characters and numbers
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] ):
"""simple docstring"""
return "".join(secrets.choice(__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ) )
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ):
"""simple docstring"""
pass # Put your code here...
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] ):
"""simple docstring"""
pass # Put your code here...
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] ):
"""simple docstring"""
pass # Put your code here...
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] = 8 ):
"""simple docstring"""
if len(__SCREAMING_SNAKE_CASE ) < min_length:
# Your Password must be at least 8 characters long
return False
__UpperCAmelCase : str = any(char in ascii_uppercase for char in password )
__UpperCAmelCase : Dict = any(char in ascii_lowercase for char in password )
__UpperCAmelCase : List[str] = any(char in digits for char in password )
__UpperCAmelCase : Union[str, Any] = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Dict = int(input("""Please indicate the max length of your password: """ ).strip() )
__UpperCAmelCase : Union[str, Any] = input(
"""Please indicate the characters that must be in your password: """ ).strip()
print("""Password generated:""" , password_generator(__SCREAMING_SNAKE_CASE ) )
print(
"""Alternative Password generated:""" , alternative_password_generator(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
print("""[If you are thinking of using this passsword, You better save it.]""" )
if __name__ == "__main__":
main()
| 369 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.txt'''}
_UpperCamelCase = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': 512,
'''YituTech/conv-bert-medium-small''': 512,
'''YituTech/conv-bert-small''': 512,
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION
_SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars
):
__UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) )
__UpperCAmelCase : Union[str, Any] = do_lower_case
__UpperCAmelCase : str = strip_accents
__UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars
__UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase )
__UpperCAmelCase : List[Any] = do_lower_case
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [self.sep_token_id]
__UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 16 | 0 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : int = parent
__UpperCAmelCase : List[Any] = batch_size
__UpperCAmelCase : Union[str, Any] = image_size
__UpperCAmelCase : str = patch_size
__UpperCAmelCase : int = num_channels
__UpperCAmelCase : Tuple = embed_dim
__UpperCAmelCase : List[Any] = depths
__UpperCAmelCase : List[str] = num_heads
__UpperCAmelCase : List[Any] = window_size
__UpperCAmelCase : Union[str, Any] = mlp_ratio
__UpperCAmelCase : Tuple = qkv_bias
__UpperCAmelCase : int = hidden_dropout_prob
__UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
__UpperCAmelCase : List[str] = drop_path_rate
__UpperCAmelCase : Optional[Any] = hidden_act
__UpperCAmelCase : Tuple = use_absolute_embeddings
__UpperCAmelCase : Dict = patch_norm
__UpperCAmelCase : str = layer_norm_eps
__UpperCAmelCase : Any = initializer_range
__UpperCAmelCase : int = is_training
__UpperCAmelCase : Tuple = scope
__UpperCAmelCase : Any = use_labels
__UpperCAmelCase : Tuple = type_sequence_label_size
__UpperCAmelCase : int = encoder_stride
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : Optional[int] = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Dict = self.get_config()
return config, pixel_values, labels
def __A ( self ) -> int:
'''simple docstring'''
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = SwinvaModel(config=__snake_case )
model.to(__snake_case )
model.eval()
__UpperCAmelCase : Dict = model(__snake_case )
__UpperCAmelCase : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__UpperCAmelCase : str = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__snake_case )
model.to(__snake_case )
model.eval()
__UpperCAmelCase : List[str] = model(__snake_case )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__UpperCAmelCase : Dict = 1
__UpperCAmelCase : List[str] = SwinvaForMaskedImageModeling(__snake_case )
model.to(__snake_case )
model.eval()
__UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : int = model(__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.type_sequence_label_size
__UpperCAmelCase : List[str] = SwinvaForImageClassification(__snake_case )
model.to(__snake_case )
model.eval()
__UpperCAmelCase : Dict = model(__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = config_and_inputs
__UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Any = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
_SCREAMING_SNAKE_CASE : List[str] = (
{'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Tuple = False
_SCREAMING_SNAKE_CASE : str = False
_SCREAMING_SNAKE_CASE : Dict = False
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaModelTester(self )
__UpperCAmelCase : Dict = ConfigTester(self , config_class=__snake_case , embed_dim=37 )
def __A ( self ) -> List[Any]:
'''simple docstring'''
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__snake_case )
@unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason="""Swinv2 does not use inputs_embeds""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Tuple = model_class(__snake_case )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCAmelCase : Any = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : str = model_class(__snake_case )
__UpperCAmelCase : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : Optional[int] = [*signature.parameters.keys()]
__UpperCAmelCase : List[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __snake_case )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : int = True
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : List[Any] = True
__UpperCAmelCase : List[str] = model_class(__snake_case )
model.to(__snake_case )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[str] = model(**self._prepare_for_class(__snake_case , __snake_case ) )
__UpperCAmelCase : Tuple = outputs.attentions
__UpperCAmelCase : Optional[Any] = len(self.model_tester.depths )
self.assertEqual(len(__snake_case ) , __snake_case )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__UpperCAmelCase : int = True
__UpperCAmelCase : Tuple = config.window_size**2
__UpperCAmelCase : Any = model_class(__snake_case )
model.to(__snake_case )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(__snake_case , __snake_case ) )
__UpperCAmelCase : str = outputs.attentions
self.assertEqual(len(__snake_case ) , __snake_case )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
__UpperCAmelCase : Dict = len(__snake_case )
# Check attention is always last and order is fine
__UpperCAmelCase : Any = True
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[Any] = model_class(__snake_case )
model.to(__snake_case )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__snake_case , __snake_case ) )
if hasattr(self.model_tester , """num_hidden_states_types""" ):
__UpperCAmelCase : Tuple = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
__UpperCAmelCase : Tuple = 2
self.assertEqual(out_len + added_hidden_states , len(__snake_case ) )
__UpperCAmelCase : Optional[Any] = outputs.attentions
self.assertEqual(len(__snake_case ) , __snake_case )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = model_class(__snake_case )
model.to(__snake_case )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__snake_case , __snake_case ) )
__UpperCAmelCase : Any = outputs.hidden_states
__UpperCAmelCase : Dict = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__snake_case ) , __snake_case )
# Swinv2 has a different seq_length
__UpperCAmelCase : Union[str, Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__UpperCAmelCase : Optional[int] = outputs.reshaped_hidden_states
self.assertEqual(len(__snake_case ) , __snake_case )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape
__UpperCAmelCase : Dict = (
reshaped_hidden_states[0].view(__snake_case , __snake_case , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : int = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__UpperCAmelCase : str = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Dict = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Any = 3
__UpperCAmelCase : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__UpperCAmelCase : Tuple = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__UpperCAmelCase : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__UpperCAmelCase : str = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Optional[int] = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__snake_case )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__snake_case )
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Union[str, Any] = SwinvaModel.from_pretrained(__snake_case )
self.assertIsNotNone(__snake_case )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = _config_zero_init(__snake_case )
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = model_class(config=__snake_case )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class _A ( unittest.TestCase ):
@cached_property
def __A ( self ) -> str:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" )
if is_vision_available()
else None
)
@slow
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to(
__snake_case )
__UpperCAmelCase : Tuple = self.default_image_processor
__UpperCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__UpperCAmelCase : Optional[int] = image_processor(images=__snake_case , return_tensors="""pt""" ).to(__snake_case )
# forward pass
with torch.no_grad():
__UpperCAmelCase : Dict = model(**__snake_case )
# verify the logits
__UpperCAmelCase : int = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , __snake_case )
__UpperCAmelCase : Dict = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__snake_case )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) )
| 370 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_UpperCamelCase = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''OwlViTFeatureExtractor''']
_UpperCamelCase = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( lowerCAmelCase__ : Any ):
"""simple docstring"""
__UpperCAmelCase : Tuple = DPTConfig()
if "large" in checkpoint_url:
__UpperCAmelCase : Optional[int] = 1024
__UpperCAmelCase : Tuple = 4096
__UpperCAmelCase : List[str] = 24
__UpperCAmelCase : Optional[int] = 16
__UpperCAmelCase : Union[str, Any] = [5, 11, 17, 23]
__UpperCAmelCase : str = [256, 512, 1024, 1024]
__UpperCAmelCase : Optional[int] = (1, 384, 384)
if "ade" in checkpoint_url:
__UpperCAmelCase : Union[str, Any] = True
__UpperCAmelCase : Tuple = 150
__UpperCAmelCase : List[Any] = """huggingface/label-files"""
__UpperCAmelCase : int = """ade20k-id2label.json"""
__UpperCAmelCase : str = json.load(open(cached_download(hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) ) , """r""" ) )
__UpperCAmelCase : Dict = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : int = idalabel
__UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()}
__UpperCAmelCase : Optional[int] = [1, 150, 480, 480]
return config, expected_shape
def lowercase_ ( lowerCAmelCase__ : Tuple ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase_ ( lowerCAmelCase__ : Dict ):
"""simple docstring"""
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
__UpperCAmelCase : Tuple = name.replace("""pretrained.model""" , """dpt.encoder""" )
if "pretrained.model" in name:
__UpperCAmelCase : Tuple = name.replace("""pretrained.model""" , """dpt.embeddings""" )
if "patch_embed" in name:
__UpperCAmelCase : Optional[int] = name.replace("""patch_embed""" , """patch_embeddings""" )
if "pos_embed" in name:
__UpperCAmelCase : str = name.replace("""pos_embed""" , """position_embeddings""" )
if "attn.proj" in name:
__UpperCAmelCase : str = name.replace("""attn.proj""" , """attention.output.dense""" )
if "proj" in name and "project" not in name:
__UpperCAmelCase : Tuple = name.replace("""proj""" , """projection""" )
if "blocks" in name:
__UpperCAmelCase : int = name.replace("""blocks""" , """layer""" )
if "mlp.fc1" in name:
__UpperCAmelCase : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
__UpperCAmelCase : List[Any] = name.replace("""mlp.fc2""" , """output.dense""" )
if "norm1" in name:
__UpperCAmelCase : Any = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
__UpperCAmelCase : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" )
if "scratch.output_conv" in name:
__UpperCAmelCase : Any = name.replace("""scratch.output_conv""" , """head""" )
if "scratch" in name:
__UpperCAmelCase : List[Any] = name.replace("""scratch""" , """neck""" )
if "layer1_rn" in name:
__UpperCAmelCase : Optional[Any] = name.replace("""layer1_rn""" , """convs.0""" )
if "layer2_rn" in name:
__UpperCAmelCase : Union[str, Any] = name.replace("""layer2_rn""" , """convs.1""" )
if "layer3_rn" in name:
__UpperCAmelCase : List[Any] = name.replace("""layer3_rn""" , """convs.2""" )
if "layer4_rn" in name:
__UpperCAmelCase : Optional[int] = name.replace("""layer4_rn""" , """convs.3""" )
if "refinenet" in name:
__UpperCAmelCase : int = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
__UpperCAmelCase : int = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' )
if "out_conv" in name:
__UpperCAmelCase : Optional[Any] = name.replace("""out_conv""" , """projection""" )
if "resConfUnit1" in name:
__UpperCAmelCase : Any = name.replace("""resConfUnit1""" , """residual_layer1""" )
if "resConfUnit2" in name:
__UpperCAmelCase : List[Any] = name.replace("""resConfUnit2""" , """residual_layer2""" )
if "conv1" in name:
__UpperCAmelCase : int = name.replace("""conv1""" , """convolution1""" )
if "conv2" in name:
__UpperCAmelCase : str = name.replace("""conv2""" , """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
__UpperCAmelCase : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
__UpperCAmelCase : int = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
__UpperCAmelCase : int = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
__UpperCAmelCase : Tuple = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
__UpperCAmelCase : Optional[int] = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
__UpperCAmelCase : List[str] = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
__UpperCAmelCase : int = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
__UpperCAmelCase : str = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
__UpperCAmelCase : Tuple = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
__UpperCAmelCase : Tuple = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
__UpperCAmelCase : Dict = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
__UpperCAmelCase : Dict = name.replace("""pretrained""" , """dpt""" )
if "bn" in name:
__UpperCAmelCase : List[Any] = name.replace("""bn""" , """batch_norm""" )
if "head" in name:
__UpperCAmelCase : Dict = name.replace("""head""" , """head.head""" )
if "encoder.norm" in name:
__UpperCAmelCase : List[Any] = name.replace("""encoder.norm""" , """layernorm""" )
if "auxlayer" in name:
__UpperCAmelCase : List[str] = name.replace("""auxlayer""" , """auxiliary_head.head""" )
return name
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__UpperCAmelCase : Optional[Any] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' )
__UpperCAmelCase : Optional[Any] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
__UpperCAmelCase : Dict = in_proj_weight[: config.hidden_size, :]
__UpperCAmelCase : str = in_proj_bias[: config.hidden_size]
__UpperCAmelCase : str = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__UpperCAmelCase : Optional[int] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__UpperCAmelCase : str = in_proj_weight[
-config.hidden_size :, :
]
__UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :]
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : Dict = get_dpt_config(lowerCAmelCase__ )
# load original state_dict from URL
__UpperCAmelCase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(lowerCAmelCase__ )
# rename keys
for key in state_dict.copy().keys():
__UpperCAmelCase : int = state_dict.pop(lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = val
# read in qkv matrices
read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ )
# load HuggingFace model
__UpperCAmelCase : Any = DPTForSemanticSegmentation(lowerCAmelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(lowerCAmelCase__ )
model.load_state_dict(lowerCAmelCase__ )
model.eval()
# Check outputs on an image
__UpperCAmelCase : Optional[Any] = 480 if """ade""" in checkpoint_url else 384
__UpperCAmelCase : str = DPTImageProcessor(size=lowerCAmelCase__ )
__UpperCAmelCase : List[Any] = prepare_img()
__UpperCAmelCase : Union[str, Any] = image_processor(lowerCAmelCase__ , return_tensors="""pt""" )
# forward pass
__UpperCAmelCase : Tuple = model(**lowerCAmelCase__ ).logits if """ade""" in checkpoint_url else model(**lowerCAmelCase__ ).predicted_depth
# Assert logits
__UpperCAmelCase : str = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]] )
if "ade" in checkpoint_url:
__UpperCAmelCase : Optional[int] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]] )
assert outputs.shape == torch.Size(lowerCAmelCase__ )
assert (
torch.allclose(outputs[0, 0, :3, :3] , lowerCAmelCase__ , atol=1E-4 )
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , lowerCAmelCase__ )
)
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
print(f'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(lowerCAmelCase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
print("""Pushing model to hub...""" )
model.push_to_hub(
repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase__ , )
image_processor.push_to_hub(
repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase__ , )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
_UpperCamelCase = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 371 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
'''simple docstring'''
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 16 | 0 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Dict:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = 1
__UpperCAmelCase : List[str] = 3
__UpperCAmelCase : Dict = (32, 32)
__UpperCAmelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase )
return image
@property
def __A ( self ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : Any = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
return model
@property
def __A ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def __A ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModel(__UpperCAmelCase )
@property
def __A ( self ) -> Tuple:
'''simple docstring'''
def extract(*__UpperCAmelCase , **__UpperCAmelCase ):
class _A :
def __init__( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : str = torch.ones([0] )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
self.pixel_values.to(__UpperCAmelCase )
return self
return Out()
return extract
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet
__UpperCAmelCase : Optional[int] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
__UpperCAmelCase : int = self.dummy_vae
__UpperCAmelCase : Tuple = self.dummy_text_encoder
__UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
__UpperCAmelCase : List[str] = StableDiffusionPipeline(
unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , )
__UpperCAmelCase : str = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = """A painting of a squirrel eating a burger"""
__UpperCAmelCase : str = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
__UpperCAmelCase : List[Any] = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
__UpperCAmelCase : Union[str, Any] = output.images
__UpperCAmelCase : Tuple = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
__UpperCAmelCase : str = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0]
__UpperCAmelCase : str = image[0, -3:, -3:, -1]
__UpperCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__UpperCAmelCase : List[Any] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : List[str] = self.dummy_cond_unet
__UpperCAmelCase : Union[str, Any] = PNDMScheduler(skip_prk_steps=__UpperCAmelCase )
__UpperCAmelCase : str = self.dummy_vae
__UpperCAmelCase : List[str] = self.dummy_text_encoder
__UpperCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
__UpperCAmelCase : str = StableDiffusionPipeline(
unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , )
__UpperCAmelCase : Union[str, Any] = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Tuple = """A painting of a squirrel eating a burger"""
__UpperCAmelCase : Union[str, Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
__UpperCAmelCase : List[Any] = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
__UpperCAmelCase : Any = output.images
__UpperCAmelCase : Tuple = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
__UpperCAmelCase : Optional[Any] = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0]
__UpperCAmelCase : str = image[0, -3:, -3:, -1]
__UpperCAmelCase : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__UpperCAmelCase : List[str] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(
"""hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__UpperCAmelCase )
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert isinstance(pipe.scheduler , __UpperCAmelCase )
assert pipe.safety_checker is None
__UpperCAmelCase : List[Any] = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__UpperCAmelCase )
__UpperCAmelCase : Dict = StableDiffusionPipeline.from_pretrained(__UpperCAmelCase )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
__UpperCAmelCase : int = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.dummy_cond_unet
__UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.dummy_vae
__UpperCAmelCase : str = self.dummy_text_encoder
__UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# put models in fp16
__UpperCAmelCase : List[Any] = unet.half()
__UpperCAmelCase : List[Any] = vae.half()
__UpperCAmelCase : List[Any] = bert.half()
# make sure here that pndm scheduler skips prk
__UpperCAmelCase : int = StableDiffusionPipeline(
unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , )
__UpperCAmelCase : Any = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : str = """A painting of a squirrel eating a burger"""
__UpperCAmelCase : str = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[int]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__UpperCAmelCase )
__UpperCAmelCase : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
__UpperCAmelCase : List[Any] = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Tuple = (
"""portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"""
""" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"""
""" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"""
""" children from bahnhof zoo, detailed """
)
__UpperCAmelCase : int = 4_003_660_346
__UpperCAmelCase : List[str] = 7
# without safety guidance (sld_guidance_scale = 0)
__UpperCAmelCase : List[str] = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Tuple = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
__UpperCAmelCase : Union[str, Any] = output.images
__UpperCAmelCase : Dict = image[0, -3:, -3:, -1]
__UpperCAmelCase : Union[str, Any] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
__UpperCAmelCase : str = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Tuple = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCAmelCase : Optional[int] = output.images
__UpperCAmelCase : Dict = image[0, -3:, -3:, -1]
__UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__UpperCAmelCase )
__UpperCAmelCase : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
__UpperCAmelCase : int = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Dict = """padme amidala taking a bath artwork, safe for work, no nudity"""
__UpperCAmelCase : Optional[Any] = 2_734_971_755
__UpperCAmelCase : Any = 7
__UpperCAmelCase : List[Any] = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : int = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
__UpperCAmelCase : Optional[Any] = output.images
__UpperCAmelCase : Dict = image[0, -3:, -3:, -1]
__UpperCAmelCase : Optional[Any] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
__UpperCAmelCase : Any = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : str = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCAmelCase : str = output.images
__UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
__UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" )
__UpperCAmelCase : List[Any] = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = (
"""the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."""
""" leyendecker"""
)
__UpperCAmelCase : Optional[int] = 1_044_355_234
__UpperCAmelCase : int = 12
__UpperCAmelCase : Any = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
__UpperCAmelCase : int = output.images
__UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
__UpperCAmelCase : List[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
__UpperCAmelCase : List[str] = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCAmelCase : Tuple = output.images
__UpperCAmelCase : int = image[0, -3:, -3:, -1]
__UpperCAmelCase : List[str] = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 350 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
_UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
_SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" )
__UpperCAmelCase : List[Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] )
__UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
# Legacy behavior
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] )
__UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""label""": """LABEL_0""", """score""": 0.504},
{"""label""": """LABEL_0""", """score""": 0.504},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
import torch
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@require_tf
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@slow
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = pipeline("""text-classification""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
@slow
@require_tf
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : int = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
__UpperCAmelCase : Union[str, Any] = """HuggingFace is in"""
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
__UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""]
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase )
__UpperCAmelCase : Any = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , )
__UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""}
__UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , )
self.assertTrue(outputs["""label"""] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
__UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]]
with self.assertRaises(__UpperCAmelCase ):
text_classifier(__UpperCAmelCase )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
__UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
| 16 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_UpperCamelCase = {
'''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''],
'''processing_layoutlmv2''': ['''LayoutLMv2Processor'''],
'''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''LayoutLMv2TokenizerFast''']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''LayoutLMv2FeatureExtractor''']
_UpperCamelCase = ['''LayoutLMv2ImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''LayoutLMv2ForQuestionAnswering''',
'''LayoutLMv2ForSequenceClassification''',
'''LayoutLMv2ForTokenClassification''',
'''LayoutLMv2Layer''',
'''LayoutLMv2Model''',
'''LayoutLMv2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 351 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
| 16 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : str = StableDiffusionSAGPipeline
_SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS
_SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS
_SCREAMING_SNAKE_CASE : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS
_SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
_SCREAMING_SNAKE_CASE : int = False
def __A ( self ) -> int:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : List[Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
__UpperCAmelCase : Any = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
__UpperCAmelCase : Optional[Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase : int = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__UpperCAmelCase : int = CLIPTextModel(__UpperCAmelCase )
__UpperCAmelCase : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__UpperCAmelCase : int = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Dict:
'''simple docstring'''
if str(__UpperCAmelCase ).startswith("""mps""" ):
__UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCAmelCase : Union[str, Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = {
"""prompt""": """.""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 1.0,
"""sag_scale""": 1.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> List[str]:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Tuple:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" )
__UpperCAmelCase : List[Any] = sag_pipe.to(__UpperCAmelCase )
sag_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Dict = """."""
__UpperCAmelCase : List[str] = torch.manual_seed(0 )
__UpperCAmelCase : Union[str, Any] = sag_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" )
__UpperCAmelCase : List[Any] = output.images
__UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
__UpperCAmelCase : Optional[int] = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
__UpperCAmelCase : str = sag_pipe.to(__UpperCAmelCase )
sag_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = """."""
__UpperCAmelCase : List[Any] = torch.manual_seed(0 )
__UpperCAmelCase : Optional[int] = sag_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" )
__UpperCAmelCase : Any = output.images
__UpperCAmelCase : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
__UpperCAmelCase : Dict = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : str = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
__UpperCAmelCase : List[str] = sag_pipe.to(__UpperCAmelCase )
sag_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = """."""
__UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 )
__UpperCAmelCase : Dict = sag_pipe(
[prompt] , width=768 , height=512 , generator=__UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , )
__UpperCAmelCase : str = output.images
assert image.shape == (1, 512, 768, 3)
| 352 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class _A :
def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase )
__UpperCAmelCase : List[str] = length
__UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa )
__UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ) -> Dict:
'''simple docstring'''
return self.length
def __getitem__( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return {"x": self.x[i], "y": self.y[i]}
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Any = True
def __A ( self , __UpperCAmelCase=None ) -> str:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : Optional[int] = False
return x * self.a[0] + self.b[0]
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : str = True
def __A ( self , __UpperCAmelCase=None ) -> Tuple:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : int = False
return x * self.a + self.b
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
__UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" )
__UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
__UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" )
__UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )}
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCAmelCase : List[Any] = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" )
if "label" in examples:
__UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCAmelCase : Tuple = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCAmelCase__ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 )
__UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 16 | 0 |
'''simple docstring'''
import argparse
import re
import requests
import torch
# git clone https://github.com/salesforce/BLIP.git
from models.blip import blip_decoder
from models.blip_itm import blip_itm
from models.blip_vqa import blip_vqa
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import (
BertTokenizer,
BlipConfig,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
)
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase : List[str] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg"""
__UpperCAmelCase : str = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" )
__UpperCAmelCase : Any = transforms.Compose(
[
transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ),
transforms.ToTensor(),
transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ),
] )
__UpperCAmelCase : int = transform(lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ )
return image
def lowercase_ ( lowerCAmelCase__ : Any ):
"""simple docstring"""
if "visual_encoder" in key:
__UpperCAmelCase : Union[str, Any] = re.sub("""visual_encoder*""" , """vision_model.encoder""" , lowerCAmelCase__ )
if "blocks" in key:
__UpperCAmelCase : str = re.sub(r"""blocks""" , """layers""" , lowerCAmelCase__ )
if "attn" in key:
__UpperCAmelCase : Tuple = re.sub(r"""attn""" , """self_attn""" , lowerCAmelCase__ )
if "norm1" in key:
__UpperCAmelCase : Dict = re.sub(r"""norm1""" , """layer_norm1""" , lowerCAmelCase__ )
if "norm2" in key:
__UpperCAmelCase : Optional[Any] = re.sub(r"""norm2""" , """layer_norm2""" , lowerCAmelCase__ )
if "encoder.norm" in key:
__UpperCAmelCase : str = re.sub(r"""encoder.norm""" , """post_layernorm""" , lowerCAmelCase__ )
if "encoder.patch_embed.proj" in key:
__UpperCAmelCase : Optional[Any] = re.sub(r"""encoder.patch_embed.proj""" , """embeddings.patch_embedding""" , lowerCAmelCase__ )
if "encoder.pos_embed" in key:
__UpperCAmelCase : Optional[int] = re.sub(r"""encoder.pos_embed""" , """embeddings.position_embedding""" , lowerCAmelCase__ )
if "encoder.cls_token" in key:
__UpperCAmelCase : str = re.sub(r"""encoder.cls_token""" , """embeddings.class_embedding""" , lowerCAmelCase__ )
if "self_attn" in key:
__UpperCAmelCase : List[str] = re.sub(r"""self_attn.proj""" , """self_attn.projection""" , lowerCAmelCase__ )
return key
@torch.no_grad()
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : int=None ):
"""simple docstring"""
if config_path is not None:
__UpperCAmelCase : List[Any] = BlipConfig.from_pretrained(lowerCAmelCase__ )
else:
__UpperCAmelCase : Optional[int] = BlipConfig(projection_dim=512 , text_config={} , vision_config={} )
__UpperCAmelCase : Optional[int] = BlipForConditionalGeneration(lowerCAmelCase__ ).eval()
__UpperCAmelCase : str = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth"""
__UpperCAmelCase : Optional[int] = blip_decoder(pretrained=lowerCAmelCase__ , image_size=384 , vit="""base""" )
__UpperCAmelCase : List[str] = pt_model.eval()
__UpperCAmelCase : List[str] = pt_model.state_dict()
for key in modified_state_dict.copy():
__UpperCAmelCase : Tuple = modified_state_dict.pop(lowerCAmelCase__ )
__UpperCAmelCase : int = rename_key(lowerCAmelCase__ )
__UpperCAmelCase : List[Any] = value
hf_model.load_state_dict(lowerCAmelCase__ )
__UpperCAmelCase : Tuple = 384
__UpperCAmelCase : Union[str, Any] = load_demo_image(image_size=lowerCAmelCase__ , device="""cpu""" )
__UpperCAmelCase : List[str] = BertTokenizer.from_pretrained("""bert-base-uncased""" )
__UpperCAmelCase : Optional[Any] = tokenizer(["""a picture of"""] ).input_ids
__UpperCAmelCase : str = hf_model.generate(lowerCAmelCase__ , lowerCAmelCase__ )
assert out[0].tolist() == [30522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
__UpperCAmelCase : int = hf_model.generate(lowerCAmelCase__ )
assert out[0].tolist() == [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
if pytorch_dump_folder_path is not None:
hf_model.save_pretrained(lowerCAmelCase__ )
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
__UpperCAmelCase : Union[str, Any] = (
"""https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth"""
)
__UpperCAmelCase : Optional[Any] = blip_vqa(pretrained=lowerCAmelCase__ , image_size=lowerCAmelCase__ , vit="""base""" )
vqa_model.eval()
__UpperCAmelCase : List[Any] = vqa_model.state_dict()
for key in modified_state_dict.copy():
__UpperCAmelCase : List[Any] = modified_state_dict.pop(lowerCAmelCase__ )
__UpperCAmelCase : str = rename_key(lowerCAmelCase__ )
__UpperCAmelCase : Union[str, Any] = value
__UpperCAmelCase : List[str] = BlipForQuestionAnswering(lowerCAmelCase__ )
hf_vqa_model.load_state_dict(lowerCAmelCase__ )
__UpperCAmelCase : List[Any] = ["""How many dogs are in this image?"""]
__UpperCAmelCase : Optional[Any] = tokenizer(lowerCAmelCase__ , return_tensors="""pt""" ).input_ids
__UpperCAmelCase : str = hf_vqa_model.generate(lowerCAmelCase__ , lowerCAmelCase__ )
print(tokenizer.decode(answer[0] ) )
assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]"
if pytorch_dump_folder_path is not None:
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" )
__UpperCAmelCase : Union[str, Any] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth"""
__UpperCAmelCase : List[str] = blip_itm(pretrained=lowerCAmelCase__ , image_size=lowerCAmelCase__ , vit="""base""" )
itm_model.eval()
__UpperCAmelCase : Dict = itm_model.state_dict()
for key in modified_state_dict.copy():
__UpperCAmelCase : int = modified_state_dict.pop(lowerCAmelCase__ )
__UpperCAmelCase : Tuple = rename_key(lowerCAmelCase__ )
__UpperCAmelCase : List[Any] = value
__UpperCAmelCase : Dict = BlipForImageTextRetrieval(lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = ["""A picture of a woman with a dog sitting in a beach"""]
__UpperCAmelCase : List[str] = tokenizer(
lowerCAmelCase__ , return_tensors="""pt""" , padding="""max_length""" , truncation=lowerCAmelCase__ , max_length=35 , ).input_ids
hf_itm_model.load_state_dict(lowerCAmelCase__ )
hf_itm_model.eval()
__UpperCAmelCase : List[Any] = hf_itm_model(lowerCAmelCase__ , lowerCAmelCase__ , use_itm_head=lowerCAmelCase__ )
__UpperCAmelCase : Any = hf_itm_model(lowerCAmelCase__ , lowerCAmelCase__ , use_itm_head=lowerCAmelCase__ )
assert out[0].item() == 0.2_110_687_494_277_954
assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127
if pytorch_dump_folder_path is not None:
hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
_UpperCamelCase = parser.parse_args()
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 353 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None
@property
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = (3, 32, 128)
__UpperCAmelCase : Tuple = tempfile.mkdtemp()
# fmt: off
__UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
__UpperCAmelCase : List[Any] = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
__UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) )
return image_input
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.get_tokenizer()
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
__UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.prepare_image_inputs()
__UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" )
__UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Dict = """test"""
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = """test"""
__UpperCAmelCase : int = self.prepare_image_inputs()
__UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase )
__UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = self.get_tokenizer()
__UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : str = None
__UpperCAmelCase : Dict = self.prepare_image_inputs()
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Any = self.get_image_processor()
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 )
__UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 )
__UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 )
__UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
| 16 | 0 |
'''simple docstring'''
import os
import re
import warnings
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_ta import TaTokenizer
else:
_UpperCamelCase = None
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
_UpperCamelCase = {
'''vocab_file''': {
'''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''',
'''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''',
'''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''',
'''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''',
'''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''',
},
'''tokenizer_file''': {
'''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''',
'''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''',
'''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''',
'''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''',
'''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''',
},
}
# TODO(PVP) - this should be removed in Transformers v5
_UpperCamelCase = {
'''t5-small''': 512,
'''t5-base''': 512,
'''t5-large''': 512,
'''t5-3b''': 512,
'''t5-11b''': 512,
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : Dict = ["input_ids", "attention_mask"]
_SCREAMING_SNAKE_CASE : List[Any] = TaTokenizer
_SCREAMING_SNAKE_CASE : List[int] = []
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase=100 , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
__UpperCAmelCase : str = [f'<extra_id_{i}>' for i in range(__UpperCAmelCase )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra special tokens
__UpperCAmelCase : Union[str, Any] = len(set(filter(lambda __UpperCAmelCase : bool("""extra_id_""" in str(__UpperCAmelCase ) ) , __UpperCAmelCase ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
""" provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids"""
""" tokens""" )
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , extra_ids=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = vocab_file
__UpperCAmelCase : Any = False if not self.vocab_file else True
__UpperCAmelCase : Tuple = extra_ids
@staticmethod
def __A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes:
__UpperCAmelCase : Optional[int] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
"""This tokenizer was incorrectly instantiated with a model max length of"""
f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'
""" behavior is kept to avoid breaking backwards compatibility when padding/encoding with"""
""" `truncation is True`.\n- Be aware that you SHOULD NOT rely on"""
f' {pretrained_model_name_or_path} automatically truncating your input to'
f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'
f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'
""" `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please"""
""" instantiate this tokenizer with `model_max_length` set to your preferred value.""" , __UpperCAmelCase , )
return max_model_length
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
__UpperCAmelCase : Optional[int] = os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
logger.info(f'Copy vocab file to {out_vocab_file}' )
return (out_vocab_file,)
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Any = token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return self.prefix_tokens + token_ids_a
else:
__UpperCAmelCase : Optional[int] = token_ids_a + [self.eos_token_id]
return self.prefix_tokens + token_ids_a + token_ids_a
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def __A ( self ) -> int:
'''simple docstring'''
return list(
set(filter(lambda __UpperCAmelCase : bool(re.search(r"""<extra_id_\d+>""" , __UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return [self.convert_tokens_to_ids(__UpperCAmelCase ) for token in self.get_sentinel_tokens()]
| 354 |
'''simple docstring'''
from collections.abc import Sequence
def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ):
"""simple docstring"""
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__UpperCAmelCase : Any = nums[0]
for i in range(1 , len(lowerCAmelCase__ ) ):
__UpperCAmelCase : Union[str, Any] = nums[i]
__UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_UpperCamelCase = int(input('''Enter number of elements : ''').strip())
_UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n]
print(max_subsequence_sum(array))
| 16 | 0 |
'''simple docstring'''
import os
from typing import Dict, List, Tuple, TypeVar, Union
_UpperCamelCase = TypeVar('''T''')
_UpperCamelCase = Union[List[T], Tuple[T, ...]]
_UpperCamelCase = Union[T, List[T], Dict[str, T]]
_UpperCamelCase = Union[str, bytes, os.PathLike]
| 355 |
'''simple docstring'''
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = data
__UpperCAmelCase : int = previous
__UpperCAmelCase : Union[str, Any] = next_node
def __str__( self ) -> str:
'''simple docstring'''
return f'{self.data}'
def __A ( self ) -> int:
'''simple docstring'''
return self.data
def __A ( self ) -> List[str]:
'''simple docstring'''
return self.next
def __A ( self ) -> str:
'''simple docstring'''
return self.previous
class _A :
def __init__( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = head
def __iter__( self ) -> str:
'''simple docstring'''
return self
def __A ( self ) -> str:
'''simple docstring'''
if not self.current:
raise StopIteration
else:
__UpperCAmelCase : List[str] = self.current.get_data()
__UpperCAmelCase : int = self.current.get_next()
return value
class _A :
def __init__( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = None # First node in list
__UpperCAmelCase : List[str] = None # Last node in list
def __str__( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.head
__UpperCAmelCase : Optional[int] = []
while current is not None:
nodes.append(current.get_data() )
__UpperCAmelCase : Any = current.get_next()
return " ".join(str(__UpperCAmelCase ) for node in nodes )
def __contains__( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.head
while current:
if current.get_data() == value:
return True
__UpperCAmelCase : Optional[Any] = current.get_next()
return False
def __iter__( self ) -> str:
'''simple docstring'''
return LinkedListIterator(self.head )
def __A ( self ) -> List[Any]:
'''simple docstring'''
if self.head:
return self.head.get_data()
return None
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
if self.tail:
return self.tail.get_data()
return None
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
__UpperCAmelCase : str = node
__UpperCAmelCase : List[str] = node
else:
self.insert_before_node(self.head , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase )
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.set_tail(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Tuple = node
__UpperCAmelCase : List[Any] = node.previous
if node.get_previous() is None:
__UpperCAmelCase : str = node_to_insert
else:
__UpperCAmelCase : Optional[Any] = node_to_insert
__UpperCAmelCase : List[Any] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : List[str] = node
__UpperCAmelCase : Union[str, Any] = node.next
if node.get_next() is None:
__UpperCAmelCase : Dict = node_to_insert
else:
__UpperCAmelCase : Any = node_to_insert
__UpperCAmelCase : List[str] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.head
while node:
if current_position == position:
self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase )
return
current_position += 1
__UpperCAmelCase : int = node.next
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Node:
'''simple docstring'''
__UpperCAmelCase : Dict = self.head
while node:
if node.get_data() == item:
return node
__UpperCAmelCase : List[str] = node.get_next()
raise Exception("""Node not found""" )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
if (node := self.get_node(__UpperCAmelCase )) is not None:
if node == self.head:
__UpperCAmelCase : Optional[int] = self.head.get_next()
if node == self.tail:
__UpperCAmelCase : Union[str, Any] = self.tail.get_previous()
self.remove_node_pointers(__UpperCAmelCase )
@staticmethod
def __A ( __UpperCAmelCase ) -> None:
'''simple docstring'''
if node.get_next():
__UpperCAmelCase : Optional[Any] = node.previous
if node.get_previous():
__UpperCAmelCase : int = node.next
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Union[str, Any] = None
def __A ( self ) -> List[Any]:
'''simple docstring'''
return self.head is None
def lowercase_ ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 0 |
'''simple docstring'''
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = LayoutLMTokenizer
_SCREAMING_SNAKE_CASE : Optional[Any] = LayoutLMTokenizerFast
_SCREAMING_SNAKE_CASE : Dict = True
_SCREAMING_SNAKE_CASE : Optional[Any] = True
def __A ( self ) -> Dict:
'''simple docstring'''
super().setUp()
__UpperCAmelCase : List[Any] = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def __A ( self , **__UpperCAmelCase ) -> int:
'''simple docstring'''
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : str = """UNwant\u00E9d,running"""
__UpperCAmelCase : Optional[Any] = """unwanted, running"""
return input_text, output_text
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.tokenizer_class(self.vocab_file )
__UpperCAmelCase : int = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(__UpperCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] )
def __A ( self ) -> str:
'''simple docstring'''
pass
| 356 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : List[str]
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __call__( self ) -> Any:
'''simple docstring'''
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : Optional[List] = None
_SCREAMING_SNAKE_CASE : Optional[int] = None
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None
__UpperCAmelCase : int = len(self.languages ) if self.languages else None
def __call__( self ) -> Optional[Any]:
'''simple docstring'''
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def __A ( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = set(self.languages )
if self.languages and set(__UpperCAmelCase ) - lang_set:
raise ValueError(
f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__UpperCAmelCase : Dict = []
for lang, text in translation_dict.items():
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 16 | 0 |
_UpperCamelCase = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
_UpperCamelCase = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
_UpperCamelCase = {
0: '''Sunday''',
1: '''Monday''',
2: '''Tuesday''',
3: '''Wednesday''',
4: '''Thursday''',
5: '''Friday''',
6: '''Saturday''',
}
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ):
"""simple docstring"""
assert len(str(lowerCAmelCase__ ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 12, "month should be between 1 to 12"
assert 1 <= day <= 31, "day should be between 1 to 31"
# Doomsday algorithm:
__UpperCAmelCase : List[str] = year // 100
__UpperCAmelCase : int = (5 * (century % 4) + 2) % 7
__UpperCAmelCase : Optional[Any] = year % 100
__UpperCAmelCase : Optional[int] = centurian % 12
__UpperCAmelCase : str = (
(centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
__UpperCAmelCase : List[str] = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0)
else DOOMSDAY_LEAP[month - 1]
)
__UpperCAmelCase : int = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 357 |
'''simple docstring'''
from statistics import mean
import numpy as np
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Tuple = 0
# Number of processes finished
__UpperCAmelCase : Optional[int] = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
__UpperCAmelCase : Tuple = [0] * no_of_process
# List to include calculation results
__UpperCAmelCase : int = [0] * no_of_process
# Sort by arrival time.
__UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )]
__UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )]
arrival_time.sort()
while no_of_process > finished_process_count:
__UpperCAmelCase : Dict = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
__UpperCAmelCase : Any = arrival_time[i]
__UpperCAmelCase : Any = 0
# Index showing the location of the process being performed
__UpperCAmelCase : Any = 0
# Saves the current response ratio.
__UpperCAmelCase : List[str] = 0
for i in range(0 , lowerCAmelCase__ ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
__UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
__UpperCAmelCase : Tuple = temp
__UpperCAmelCase : List[str] = i
# Calculate the turn around time
__UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
__UpperCAmelCase : List[str] = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [0] * no_of_process
for i in range(0 , lowerCAmelCase__ ):
__UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
_UpperCamelCase = 5
_UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E''']
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
_UpperCamelCase = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''')
for i in range(0, no_of_process):
print(
F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'
F'{turn_around_time[i]}\t\t\t{waiting_time[i]}'
)
print(F'average waiting time : {mean(waiting_time):.5f}')
print(F'average turn around time : {mean(turn_around_time):.5f}')
| 16 | 0 |
'''simple docstring'''
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print('''Googling.....''')
_UpperCamelCase = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:])
_UpperCamelCase = requests.get(url, headers={'''UserAgent''': UserAgent().random})
# res.raise_for_status()
with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class
for data in res.iter_content(1_0000):
out_file.write(data)
_UpperCamelCase = BeautifulSoup(res.text, '''html.parser''')
_UpperCamelCase = list(soup.select('''.eZt8xd'''))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get('''href'''))
else:
webbrowser.open(F'https://google.com{link.get("href")}')
| 358 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = parent
__UpperCAmelCase : Any = batch_size
__UpperCAmelCase : Union[str, Any] = seq_length
__UpperCAmelCase : int = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[str] = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Union[str, Any] = num_hidden_layers
__UpperCAmelCase : Optional[int] = num_attention_heads
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_size
__UpperCAmelCase : Dict = type_sequence_label_size
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : Optional[Any] = num_choices
__UpperCAmelCase : int = scope
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : List[Any] = None
if self.use_input_mask:
__UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Any = None
if self.use_token_type_ids:
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Optional[int] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> List[str]:
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_config()
__UpperCAmelCase : List[Any] = 300
return config
def __A ( self ) -> Dict:
'''simple docstring'''
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = self.prepare_config_and_inputs()
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
__UpperCAmelCase : List[str] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Optional[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.num_labels
__UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_choices
__UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : List[str] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
__UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Any = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : int = False
_SCREAMING_SNAKE_CASE : List[str] = False
_SCREAMING_SNAKE_CASE : Dict = ()
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = MraModelTester(self )
__UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : List[Any] = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""MRA does not output attentions""" )
def __A ( self ) -> List[Any]:
'''simple docstring'''
return
@require_torch
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" )
__UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : int = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Union[str, Any] = 50_265
__UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : int = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" )
__UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : Any = model(__UpperCAmelCase )[0]
__UpperCAmelCase : Dict = 50_265
__UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) )
self.assertEqual(output.shape , __UpperCAmelCase )
__UpperCAmelCase : str = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
class _A :
def __init__( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = size
# approximate the overall size of segment tree with given value
__UpperCAmelCase : Dict = [0 for i in range(0 , 4 * size )]
# create array to store lazy update
__UpperCAmelCase : str = [0 for i in range(0 , 4 * size )]
__UpperCAmelCase : List[str] = [0 for i in range(0 , 4 * size )] # flag for lazy update
def __A ( self , __UpperCAmelCase ) -> int:
'''simple docstring'''
return idx * 2
def __A ( self , __UpperCAmelCase ) -> int:
'''simple docstring'''
return idx * 2 + 1
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
if left_element == right_element:
__UpperCAmelCase : Optional[Any] = a[left_element - 1]
else:
__UpperCAmelCase : int = (left_element + right_element) // 2
self.build(self.left(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
self.build(self.right(__UpperCAmelCase ) , mid + 1 , __UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : List[Any] = max(
self.segment_tree[self.left(__UpperCAmelCase )] , self.segment_tree[self.right(__UpperCAmelCase )] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> bool:
'''simple docstring'''
if self.flag[idx] is True:
__UpperCAmelCase : Tuple = self.lazy[idx]
__UpperCAmelCase : List[Any] = False
if left_element != right_element:
__UpperCAmelCase : Any = self.lazy[idx]
__UpperCAmelCase : Optional[Any] = self.lazy[idx]
__UpperCAmelCase : Optional[Any] = True
__UpperCAmelCase : Any = True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
__UpperCAmelCase : Optional[int] = val
if left_element != right_element:
__UpperCAmelCase : Tuple = val
__UpperCAmelCase : Dict = val
__UpperCAmelCase : List[Any] = True
__UpperCAmelCase : int = True
return True
__UpperCAmelCase : List[str] = (left_element + right_element) // 2
self.update(self.left(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
self.update(self.right(__UpperCAmelCase ) , mid + 1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : List[str] = max(
self.segment_tree[self.left(__UpperCAmelCase )] , self.segment_tree[self.right(__UpperCAmelCase )] )
return True
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int | float:
'''simple docstring'''
if self.flag[idx] is True:
__UpperCAmelCase : Dict = self.lazy[idx]
__UpperCAmelCase : List[str] = False
if left_element != right_element:
__UpperCAmelCase : int = self.lazy[idx]
__UpperCAmelCase : Optional[int] = self.lazy[idx]
__UpperCAmelCase : Optional[Any] = True
__UpperCAmelCase : Dict = True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
__UpperCAmelCase : List[str] = (left_element + right_element) // 2
__UpperCAmelCase : List[str] = self.query(self.left(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : int = self.query(self.right(__UpperCAmelCase ) , mid + 1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return max(__UpperCAmelCase , __UpperCAmelCase )
def __str__( self ) -> str:
'''simple docstring'''
return str([self.query(1 , 1 , self.size , __UpperCAmelCase , __UpperCAmelCase ) for i in range(1 , self.size + 1 )] )
if __name__ == "__main__":
_UpperCamelCase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
_UpperCamelCase = 15
_UpperCamelCase = SegmentTree(size)
segt.build(1, 1, size, A)
print(segt.query(1, 1, size, 4, 6))
print(segt.query(1, 1, size, 7, 11))
print(segt.query(1, 1, size, 7, 12))
segt.update(1, 1, size, 1, 3, 111)
print(segt.query(1, 1, size, 1, 15))
segt.update(1, 1, size, 7, 8, 235)
print(segt)
| 359 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Any = image_size
__UpperCAmelCase : Dict = patch_size
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : List[Any] = embed_dim
__UpperCAmelCase : str = depths
__UpperCAmelCase : Dict = num_heads
__UpperCAmelCase : str = window_size
__UpperCAmelCase : int = mlp_ratio
__UpperCAmelCase : Union[str, Any] = qkv_bias
__UpperCAmelCase : Dict = hidden_dropout_prob
__UpperCAmelCase : str = attention_probs_dropout_prob
__UpperCAmelCase : Optional[int] = drop_path_rate
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Optional[int] = use_absolute_embeddings
__UpperCAmelCase : Any = patch_norm
__UpperCAmelCase : Union[str, Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : Any = scope
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : Optional[int] = type_sequence_label_size
__UpperCAmelCase : int = encoder_stride
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : Tuple = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def __A ( self ) -> Dict:
'''simple docstring'''
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
__UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : str = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = self.type_sequence_label_size
__UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs
__UpperCAmelCase : Dict = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
_SCREAMING_SNAKE_CASE : List[str] = (
{"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Dict = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Optional[Any] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[str] = SwinvaModelTester(self )
__UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 )
def __A ( self ) -> Any:
'''simple docstring'''
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
@unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason="""Swinv2 does not use inputs_embeds""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCAmelCase : List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Tuple = model_class(__UpperCAmelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : str = [*signature.parameters.keys()]
__UpperCAmelCase : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = True
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : int = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : str = outputs.attentions
__UpperCAmelCase : Any = len(self.model_tester.depths )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__UpperCAmelCase : Dict = True
__UpperCAmelCase : int = config.window_size**2
__UpperCAmelCase : Any = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : Dict = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
__UpperCAmelCase : Dict = len(__UpperCAmelCase )
# Check attention is always last and order is fine
__UpperCAmelCase : Any = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
if hasattr(self.model_tester , """num_hidden_states_types""" ):
__UpperCAmelCase : Any = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
__UpperCAmelCase : Optional[int] = 2
self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) )
__UpperCAmelCase : Tuple = outputs.attentions
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
__UpperCAmelCase : List[Any] = outputs.hidden_states
__UpperCAmelCase : List[Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# Swinv2 has a different seq_length
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__UpperCAmelCase : int = outputs.reshaped_hidden_states
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape
__UpperCAmelCase : Any = (
reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = 3
__UpperCAmelCase : str = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__UpperCAmelCase : int = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Tuple = True
self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase )
for model_class in self.all_model_classes:
__UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class _A ( unittest.TestCase ):
@cached_property
def __A ( self ) -> int:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" )
if is_vision_available()
else None
)
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to(
__UpperCAmelCase )
__UpperCAmelCase : Tuple = self.default_image_processor
__UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase )
# verify the logits
__UpperCAmelCase : int = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 16 | 0 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
StableDiffusionControlNetImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionControlNetImgaImgPipeline
_SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
_SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
_SCREAMING_SNAKE_CASE : int = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} )
_SCREAMING_SNAKE_CASE : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS
def __A ( self ) -> List[str]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
torch.manual_seed(0 )
__UpperCAmelCase : List[str] = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
torch.manual_seed(0 )
__UpperCAmelCase : str = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
__UpperCAmelCase : List[Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase : List[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__UpperCAmelCase : Any = CLIPTextModel(__UpperCAmelCase )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__UpperCAmelCase : List[Any] = {
"""unet""": unet,
"""controlnet""": controlnet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> List[str]:
'''simple docstring'''
if str(__UpperCAmelCase ).startswith("""mps""" ):
__UpperCAmelCase : List[str] = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCAmelCase : List[Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = 2
__UpperCAmelCase : Any = randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__UpperCAmelCase , device=torch.device(__UpperCAmelCase ) , )
__UpperCAmelCase : Dict = floats_tensor(control_image.shape , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__UpperCAmelCase : List[Any] = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
__UpperCAmelCase : str = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
"""image""": image,
"""control_image""": control_image,
}
return inputs
def __A ( self ) -> Tuple:
'''simple docstring'''
return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 )
def __A ( self ) -> List[str]:
'''simple docstring'''
self._test_inference_batch_single_identical(expected_max_diff=2E-3 )
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionControlNetImgaImgPipeline
_SCREAMING_SNAKE_CASE : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
_SCREAMING_SNAKE_CASE : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
_SCREAMING_SNAKE_CASE : Tuple = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def __A ( self ) -> List[Any]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : List[str] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
torch.manual_seed(0 )
def init_weights(__UpperCAmelCase ):
if isinstance(__UpperCAmelCase , torch.nn.Convad ):
torch.nn.init.normal(m.weight )
m.bias.data.fill_(1.0 )
__UpperCAmelCase : Dict = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(__UpperCAmelCase )
torch.manual_seed(0 )
__UpperCAmelCase : int = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(__UpperCAmelCase )
torch.manual_seed(0 )
__UpperCAmelCase : Any = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
__UpperCAmelCase : Optional[int] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase : str = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__UpperCAmelCase : Optional[int] = CLIPTextModel(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__UpperCAmelCase : Union[str, Any] = MultiControlNetModel([controlneta, controlneta] )
__UpperCAmelCase : Optional[int] = {
"""unet""": unet,
"""controlnet""": controlnet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> str:
'''simple docstring'''
if str(__UpperCAmelCase ).startswith("""mps""" ):
__UpperCAmelCase : List[Any] = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCAmelCase : Optional[int] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Dict = 2
__UpperCAmelCase : Dict = [
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__UpperCAmelCase , device=torch.device(__UpperCAmelCase ) , ),
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__UpperCAmelCase , device=torch.device(__UpperCAmelCase ) , ),
]
__UpperCAmelCase : int = floats_tensor(control_image[0].shape , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
__UpperCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__UpperCAmelCase : Optional[int] = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
__UpperCAmelCase : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
"""image""": image,
"""control_image""": control_image,
}
return inputs
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.get_dummy_components()
__UpperCAmelCase : str = self.pipeline_class(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = 10.0
__UpperCAmelCase : str = 4
__UpperCAmelCase : List[Any] = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = steps
__UpperCAmelCase : Optional[Any] = scale
__UpperCAmelCase : List[str] = pipe(**__UpperCAmelCase )[0]
__UpperCAmelCase : Dict = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : List[str] = steps
__UpperCAmelCase : Optional[Any] = scale
__UpperCAmelCase : int = pipe(**__UpperCAmelCase , control_guidance_start=0.1 , control_guidance_end=0.2 )[0]
__UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : List[str] = steps
__UpperCAmelCase : int = scale
__UpperCAmelCase : List[str] = pipe(**__UpperCAmelCase , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0]
__UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : Tuple = steps
__UpperCAmelCase : Union[str, Any] = scale
__UpperCAmelCase : int = pipe(**__UpperCAmelCase , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
def __A ( self ) -> int:
'''simple docstring'''
return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def __A ( self ) -> Tuple:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 )
def __A ( self ) -> Any:
'''simple docstring'''
self._test_inference_batch_single_identical(expected_max_diff=2E-3 )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : str = self.get_dummy_components()
__UpperCAmelCase : Optional[int] = self.pipeline_class(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdir:
try:
# save_pretrained is not implemented for Multi-ControlNet
pipe.save_pretrained(__UpperCAmelCase )
except NotImplementedError:
pass
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Tuple = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" )
__UpperCAmelCase : str = StableDiffusionControlNetImgaImgPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , safety_checker=__UpperCAmelCase , controlnet=__UpperCAmelCase )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__UpperCAmelCase : List[str] = """evil space-punk bird"""
__UpperCAmelCase : str = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((512, 512) )
__UpperCAmelCase : Any = load_image(
"""https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((512, 512) )
__UpperCAmelCase : Tuple = pipe(
__UpperCAmelCase , __UpperCAmelCase , control_image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , num_inference_steps=50 , strength=0.6 , )
__UpperCAmelCase : Any = output.images[0]
assert image.shape == (512, 512, 3)
__UpperCAmelCase : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" )
assert np.abs(expected_image - image ).max() < 9E-2
| 360 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
_UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f'Could not make batched video from {videos}' )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
__UpperCAmelCase : int = do_resize
__UpperCAmelCase : List[str] = size
__UpperCAmelCase : Any = do_center_crop
__UpperCAmelCase : Any = crop_size
__UpperCAmelCase : Optional[Any] = resample
__UpperCAmelCase : Dict = do_rescale
__UpperCAmelCase : List[str] = rescale_factor
__UpperCAmelCase : Dict = offset
__UpperCAmelCase : List[str] = do_normalize
__UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" in size:
__UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase )
elif "height" in size and "width" in size:
__UpperCAmelCase : Any = (size["""height"""], size["""width"""])
else:
raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = image.astype(np.floataa )
if offset:
__UpperCAmelCase : Tuple = image - (scale / 2)
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
if offset and not do_rescale:
raise ValueError("""For offset, do_rescale must also be set to True.""" )
# All transformations expect numpy arrays.
__UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase )
if do_resize:
__UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase )
if do_center_crop:
__UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase )
if do_rescale:
__UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase )
if do_normalize:
__UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase )
return image
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : List[Any] = resample if resample is not None else self.resample
__UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : List[Any] = offset if offset is not None else self.offset
__UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : int = image_std if image_std is not None else self.image_std
__UpperCAmelCase : Any = size if size is not None else self.size
__UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
__UpperCAmelCase : int = make_batched(__UpperCAmelCase )
__UpperCAmelCase : Tuple = [
[
self._preprocess_image(
image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , )
for img in video
]
for video in videos
]
__UpperCAmelCase : Tuple = {"""pixel_values""": videos}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 16 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_UpperCamelCase = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''EncoderDecoderModel''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''TFEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''FlaxEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_encoder_decoder import EncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encoder_decoder import EncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_encoder_decoder import TFEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 361 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline
_SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
_SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
_SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : Dict = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
__UpperCAmelCase : List[Any] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
__UpperCAmelCase : Any = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__UpperCAmelCase : Dict = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vqvae""": vae,
"""bert""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any:
'''simple docstring'''
if str(__UpperCAmelCase ).startswith("""mps""" ):
__UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCAmelCase : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : Dict = self.get_dummy_components()
__UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
__UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> List[str]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Tuple = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images
__UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
__UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] )
__UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
__UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 50,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0]
__UpperCAmelCase : Tuple = load_numpy(
"""https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" )
__UpperCAmelCase : Dict = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 16 | 0 |
'''simple docstring'''
import argparse
import logging
import pickle
from collections import Counter
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
_UpperCamelCase = logging.getLogger(__name__)
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser(
description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)'''
)
parser.add_argument(
'''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.'''
)
parser.add_argument(
'''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.'''
)
parser.add_argument('''--vocab_size''', default=3_0522, type=int)
_UpperCamelCase = parser.parse_args()
logger.info(F'Loading data from {args.data_file}')
with open(args.data_file, '''rb''') as fp:
_UpperCamelCase = pickle.load(fp)
logger.info('''Counting occurrences for MLM.''')
_UpperCamelCase = Counter()
for tk_ids in data:
counter.update(tk_ids)
_UpperCamelCase = [0] * args.vocab_size
for k, v in counter.items():
_UpperCamelCase = v
logger.info(F'Dump to {args.token_counts_dump}')
with open(args.token_counts_dump, '''wb''') as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
| 362 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column
__UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )]
def __str__( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n'
# Make string identifier
__UpperCAmelCase : Optional[Any] = 0
for row_vector in self.array:
for obj in row_vector:
__UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) )
__UpperCAmelCase : Optional[int] = f'%{max_element_length}s'
# Make string and return
def single_line(__UpperCAmelCase ) -> str:
nonlocal string_format_identifier
__UpperCAmelCase : Any = """["""
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array )
return s
def __repr__( self ) -> str:
'''simple docstring'''
return str(self )
def __A ( self , __UpperCAmelCase ) -> bool:
'''simple docstring'''
if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
return self.array[loc[0]][loc[1]]
def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
assert self.validate_indicies(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = value
def __add__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == another.row and self.column == another.column
# Add
__UpperCAmelCase : Dict = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] + another[r, c]
return result
def __neg__( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : Dict = -self[r, c]
return result
def __sub__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
return self + (-another)
def __mul__( self , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication
__UpperCAmelCase : Optional[int] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[Any] = self[r, c] * another
return result
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication
assert self.column == another.row
__UpperCAmelCase : Dict = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
__UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})'
raise TypeError(__UpperCAmelCase )
def __A ( self ) -> Matrix:
'''simple docstring'''
__UpperCAmelCase : Dict = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase : List[str] = self[r, c]
return result
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
__UpperCAmelCase : Optional[Any] = v.transpose()
__UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Dict = Matrix(3 , 3 , 0 )
for i in range(3 ):
__UpperCAmelCase : Tuple = 1
print(f'a^(-1) is {ainv}' )
# u, v
__UpperCAmelCase : Dict = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3
__UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5
print(f'u is {u}' )
print(f'v is {v}' )
print(f'uv^T is {u * v.transpose()}' )
# Sherman Morrison
print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' )
def lowercase_ ( ):
"""simple docstring"""
import doctest
doctest.testmod()
testa()
| 16 | 0 |
'''simple docstring'''
from math import log
from scipy.constants import Boltzmann, physical_constants
_UpperCamelCase = 300 # TEMPERATURE (unit = K)
def lowercase_ ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ):
"""simple docstring"""
if donor_conc <= 0:
raise ValueError("""Donor concentration should be positive""" )
elif acceptor_conc <= 0:
raise ValueError("""Acceptor concentration should be positive""" )
elif intrinsic_conc <= 0:
raise ValueError("""Intrinsic concentration should be positive""" )
elif donor_conc <= intrinsic_conc:
raise ValueError(
"""Donor concentration should be greater than intrinsic concentration""" )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"""Acceptor concentration should be greater than intrinsic concentration""" )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 363 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''],
'''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''],
'''processing_wav2vec2''': ['''Wav2Vec2Processor'''],
'''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Wav2Vec2ForAudioFrameClassification''',
'''Wav2Vec2ForCTC''',
'''Wav2Vec2ForMaskedLM''',
'''Wav2Vec2ForPreTraining''',
'''Wav2Vec2ForSequenceClassification''',
'''Wav2Vec2ForXVector''',
'''Wav2Vec2Model''',
'''Wav2Vec2PreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWav2Vec2ForCTC''',
'''TFWav2Vec2Model''',
'''TFWav2Vec2PreTrainedModel''',
'''TFWav2Vec2ForSequenceClassification''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FlaxWav2Vec2ForCTC''',
'''FlaxWav2Vec2ForPreTraining''',
'''FlaxWav2Vec2Model''',
'''FlaxWav2Vec2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 0 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : int = 100 ):
"""simple docstring"""
__UpperCAmelCase : int = (n * (n + 1) // 2) ** 2
__UpperCAmelCase : str = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(F'{solution() = }')
| 364 |
'''simple docstring'''
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING
_SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING
def __A ( self ) -> Any:
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""},
{"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""},
] , )
__UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is grouped""",
"""score""": 2.1E-05,
"""token""": 38_015,
"""token_str""": """ grouped""",
},
{
"""sequence""": """The largest city in France is accuser""",
"""score""": 2.1E-05,
"""token""": 25_506,
"""token_str""": """ accuser""",
},
] , )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" )
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""},
{"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{
"""sequence""": """The largest city in France is Maul""",
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
},
{"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""},
] , )
__UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
{"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""},
{"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=6 ) , [
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is Maul<mask></s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""},
],
[
{
"""score""": 2.2E-05,
"""token""": 35_676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is<mask> Maul</s>""",
},
{"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""},
],
] , )
@require_torch_gpu
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" )
# convert model to fp16
pipe.model.half()
__UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
@require_torch
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" )
self.run_large_test(__UpperCAmelCase )
@slow
@require_tf
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" )
self.run_large_test(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""},
{"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{
"""sequence""": """The largest city in France is Paris""",
"""score""": 0.251,
"""token""": 2_201,
"""token_str""": """ Paris""",
},
{
"""sequence""": """The largest city in France is Lyon""",
"""score""": 0.214,
"""token""": 12_790,
"""token_str""": """ Lyon""",
},
] , )
__UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""},
] , )
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" )
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : int = None
self.run_pipeline_test(__UpperCAmelCase , [] )
@require_tf
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : str = None
self.run_pipeline_test(__UpperCAmelCase , [] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" )
__UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = [
f'This is another {tokenizer.mask_token} test',
]
return fill_masker, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = fill_masker.tokenizer
__UpperCAmelCase : Union[str, Any] = fill_masker.model
__UpperCAmelCase : Tuple = fill_masker(
f'This is a {tokenizer.mask_token}' , )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
with self.assertRaises(__UpperCAmelCase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(__UpperCAmelCase ):
fill_masker("""This is""" )
self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase )
self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase )
self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Dict = tokenizer.get_vocab()
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:2]
# Pipeline argument
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase )
__UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : Any = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Call argument
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase )
__UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) )
# Score equivalence
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs]
__UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ) == set(__UpperCAmelCase ):
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase )
__UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
# Raises with invalid
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] )
with self.assertRaises(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 )
__UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
] , )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : int = tokenizer.get_vocab()
__UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
# top_k=2, ntargets=3
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
__UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ):
__UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = tokenizer.get_vocab()
# String duplicates + id duplicates
__UpperCAmelCase : Dict = sorted(vocab.keys() )[:3]
__UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]]
__UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(__UpperCAmelCase ) , 3 )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
__UpperCAmelCase : Dict = fill_masker(
f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 )
self.assertEqual(
__UpperCAmelCase , [
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
[
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
{"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )},
],
] , )
| 16 | 0 |
'''simple docstring'''
from __future__ import annotations
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : list[str] | None = None ):
"""simple docstring"""
__UpperCAmelCase : Any = word_bank or []
# create a table
__UpperCAmelCase : int = len(lowerCAmelCase__ ) + 1
__UpperCAmelCase : list[list[list[str]]] = []
for _ in range(lowerCAmelCase__ ):
table.append([] )
# seed value
__UpperCAmelCase : Optional[int] = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(lowerCAmelCase__ ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(lowerCAmelCase__ )] == word:
__UpperCAmelCase : list[list[str]] = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(lowerCAmelCase__ )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(lowerCAmelCase__ )]:
combination.reverse()
return table[len(lowerCAmelCase__ )]
if __name__ == "__main__":
print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa''']))
print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t''']))
print(
all_construct(
'''hexagonosaurus''',
['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''],
)
)
| 365 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} )
_SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} )
_SCREAMING_SNAKE_CASE : str = "image"
_SCREAMING_SNAKE_CASE : str = "labels"
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(f'Column {self.label_column} is not present in features.' )
if not isinstance(features[self.label_column] , __UpperCAmelCase ):
raise ValueError(f'Column {self.label_column} is not a ClassLabel.' )
__UpperCAmelCase : int = copy.deepcopy(self )
__UpperCAmelCase : str = self.label_schema.copy()
__UpperCAmelCase : Optional[Any] = features[self.label_column]
__UpperCAmelCase : Optional[int] = label_schema
return task_template
@property
def __A ( self ) -> Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 16 | 0 |
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_tensorflow_text_available():
from transformers.models.bert import TFBertTokenizer
_UpperCamelCase = ['''bert-base-uncased''', '''bert-base-cased''']
_UpperCamelCase = '''hf-internal-testing/tiny-bert-tf-only'''
if is_tf_available():
class _A ( tf.keras.Model ):
def __init__( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Dict = tokenizer
__UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(__UpperCAmelCase )
__UpperCAmelCase : str = TFAutoModel.from_config(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.tokenizer(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = self.bert(**__UpperCAmelCase )
return out["pooler_output"]
@require_tf
@require_tensorflow_text
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
super().setUp()
__UpperCAmelCase : List[Any] = [
BertTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2)
] # repeat for when fast_bert_tokenizer=false
__UpperCAmelCase : Optional[int] = [TFBertTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [
TFBertTokenizer.from_pretrained(__UpperCAmelCase , use_fast_bert_tokenizer=__UpperCAmelCase )
for checkpoint in TOKENIZER_CHECKPOINTS
]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
__UpperCAmelCase : Any = [
"""This is a straightforward English test sentence.""",
"""This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""",
"""Now we're going to add some Chinese: 一 二 三 一二三""",
"""And some much more rare Chinese: 齉 堃 齉堃""",
"""Je vais aussi écrire en français pour tester les accents""",
"""Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""",
]
__UpperCAmelCase : Any = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def __A ( self ) -> Dict:
'''simple docstring'''
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in (self.test_sentences, self.paired_sentences):
__UpperCAmelCase : List[str] = tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding="""longest""" )
__UpperCAmelCase : Optional[Any] = tf_tokenizer(__UpperCAmelCase )
for key in python_outputs.keys():
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) )
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
__UpperCAmelCase : Union[str, Any] = tf_tokenizer(self.paired_sentences )
__UpperCAmelCase : List[Any] = tf_tokenizer(
text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , )
for key in merged_outputs.keys():
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) )
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
__UpperCAmelCase : Dict = tf.function(__UpperCAmelCase )
for test_inputs in (self.test_sentences, self.paired_sentences):
__UpperCAmelCase : Tuple = tf.constant(__UpperCAmelCase )
__UpperCAmelCase : Any = compiled_tokenizer(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = tf_tokenizer(__UpperCAmelCase )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
__UpperCAmelCase : Optional[int] = ModelToSave(tokenizer=__UpperCAmelCase )
__UpperCAmelCase : List[str] = tf.convert_to_tensor(self.test_sentences )
__UpperCAmelCase : str = model(__UpperCAmelCase ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
__UpperCAmelCase : Dict = Path(__UpperCAmelCase ) / """saved.model"""
model.save(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = tf.keras.models.load_model(__UpperCAmelCase )
__UpperCAmelCase : Any = loaded_model(__UpperCAmelCase )
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
| 366 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Tuple = seq_length
__UpperCAmelCase : str = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[Any] = use_token_type_ids
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : str = num_attention_heads
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : Tuple = max_position_embeddings
__UpperCAmelCase : Dict = type_vocab_size
__UpperCAmelCase : List[Any] = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[str] = num_labels
__UpperCAmelCase : str = num_choices
__UpperCAmelCase : List[Any] = scope
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Tuple = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
# first forward pass
__UpperCAmelCase : Optional[int] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCAmelCase : int = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
# select random slice
__UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = config_and_inputs
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : List[str] = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = LlamaModelTester(self )
__UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : str = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Any = 3
__UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[int] = 3
__UpperCAmelCase : Optional[Any] = """single_label_classification"""
__UpperCAmelCase : int = input_dict["""input_ids"""]
__UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = 3
__UpperCAmelCase : str = """multi_label_classification"""
__UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size )
__UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
original_model.to(__UpperCAmelCase )
original_model.eval()
__UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0}
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
scaled_model.to(__UpperCAmelCase )
scaled_model.eval()
__UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
@require_torch
class _A ( unittest.TestCase ):
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" )
__UpperCAmelCase : int = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" )
__UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" )
__UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
@unittest.skip(
"""Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" )
@slow
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" )
__UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) )
__UpperCAmelCase : Dict = torch.tensor(
[[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Model is curently gated""" )
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi"""
__UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """
__UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" )
__UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" )
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained(
"""meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase )
# greedy generation outputs
__UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 16 | 0 |
'''simple docstring'''
import argparse
import torch
from transformers import YosoConfig, YosoForMaskedLM
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
if "model" in orig_key:
__UpperCAmelCase : int = orig_key.replace("""model.""" , """""" )
if "norm1" in orig_key:
__UpperCAmelCase : Optional[int] = orig_key.replace("""norm1""" , """attention.output.LayerNorm""" )
if "norm2" in orig_key:
__UpperCAmelCase : List[str] = orig_key.replace("""norm2""" , """output.LayerNorm""" )
if "norm" in orig_key:
__UpperCAmelCase : Any = orig_key.replace("""norm""" , """LayerNorm""" )
if "transformer" in orig_key:
__UpperCAmelCase : int = orig_key.split(""".""" )[0].split("""_""" )[-1]
__UpperCAmelCase : List[str] = orig_key.replace(f'transformer_{layer_num}' , f'encoder.layer.{layer_num}' )
if "mha.attn" in orig_key:
__UpperCAmelCase : List[Any] = orig_key.replace("""mha.attn""" , """attention.self""" )
if "mha" in orig_key:
__UpperCAmelCase : Tuple = orig_key.replace("""mha""" , """attention""" )
if "W_q" in orig_key:
__UpperCAmelCase : Tuple = orig_key.replace("""W_q""" , """self.query""" )
if "W_k" in orig_key:
__UpperCAmelCase : List[str] = orig_key.replace("""W_k""" , """self.key""" )
if "W_v" in orig_key:
__UpperCAmelCase : Union[str, Any] = orig_key.replace("""W_v""" , """self.value""" )
if "ff1" in orig_key:
__UpperCAmelCase : Any = orig_key.replace("""ff1""" , """intermediate.dense""" )
if "ff2" in orig_key:
__UpperCAmelCase : Optional[int] = orig_key.replace("""ff2""" , """output.dense""" )
if "ff" in orig_key:
__UpperCAmelCase : Optional[Any] = orig_key.replace("""ff""" , """output.dense""" )
if "mlm_class" in orig_key:
__UpperCAmelCase : int = orig_key.replace("""mlm.mlm_class""" , """cls.predictions.decoder""" )
if "mlm" in orig_key:
__UpperCAmelCase : List[Any] = orig_key.replace("""mlm""" , """cls.predictions.transform""" )
if "cls" not in orig_key:
__UpperCAmelCase : Optional[int] = """yoso.""" + orig_key
return orig_key
def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
__UpperCAmelCase : str = orig_state_dict.pop(lowerCAmelCase__ )
if ("pooler" in key) or ("sen_class" in key):
continue
else:
__UpperCAmelCase : List[Any] = val
__UpperCAmelCase : Optional[Any] = orig_state_dict["""cls.predictions.decoder.bias"""]
__UpperCAmelCase : str = torch.arange(lowerCAmelCase__ ).expand((1, -1) ) + 2
return orig_state_dict
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model_state_dict"""]
__UpperCAmelCase : List[str] = YosoConfig.from_json_file(lowerCAmelCase__ )
__UpperCAmelCase : str = YosoForMaskedLM(lowerCAmelCase__ )
__UpperCAmelCase : Dict = convert_checkpoint_helper(config.max_position_embeddings , lowerCAmelCase__ )
print(model.load_state_dict(lowerCAmelCase__ ) )
model.eval()
model.save_pretrained(lowerCAmelCase__ )
print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The json file for YOSO model config.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_UpperCamelCase = parser.parse_args()
convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
| 367 |
'''simple docstring'''
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
_UpperCamelCase = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def lowercase_ ( lowerCAmelCase__ : str ):
"""simple docstring"""
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ):
"""simple docstring"""
return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths )
def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = []
if args.gold_data_mode == "qa":
__UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ )
for answer_list in data[1]:
__UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ )
answers.append(lowerCAmelCase__ )
else:
__UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : str = [[reference] for reference in references]
__UpperCAmelCase : Optional[int] = 0
for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
total += 1
em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__UpperCAmelCase : int = 100.0 * em / total
__UpperCAmelCase : Dict = 100.0 * fa / total
logger.info(f'F1: {fa:.2f}' )
logger.info(f'EM: {em:.2f}' )
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : Tuple = args.k
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()]
__UpperCAmelCase : Union[str, Any] = 0
for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
__UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] )
__UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
__UpperCAmelCase : List[str] = 100.0 * em / total
logger.info(f'Precision@{k}: {em: .2f}' )
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ):
"""simple docstring"""
def strip_title(lowerCAmelCase__ : Optional[int] ):
if title.startswith("""\"""" ):
__UpperCAmelCase : List[Any] = title[1:]
if title.endswith("""\"""" ):
__UpperCAmelCase : int = title[:-1]
return title
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device )
__UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ )
__UpperCAmelCase : int = question_enc_outputs[0]
__UpperCAmelCase : Dict = rag_model.retriever(
lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , )
__UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
__UpperCAmelCase : Union[str, Any] = []
for docs in all_docs:
__UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]]
provenance_strings.append("""\t""".join(lowerCAmelCase__ ) )
return provenance_strings
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
with torch.no_grad():
__UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )
__UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device )
__UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device )
__UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
__UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
if args.print_predictions:
for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) )
return answers
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=(
"""RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the"""
""" model_name_or_path"""
) , )
parser.add_argument(
"""--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , )
parser.add_argument(
"""--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , )
parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" )
parser.add_argument(
"""--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=(
"""Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates"""
""" precision@k."""
) , )
parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" )
parser.add_argument(
"""--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , )
parser.add_argument(
"""--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , )
parser.add_argument(
"""--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=(
"""Format of the gold data file"""
"""qa - a single line in the following format: question [tab] answer_list"""
"""ans - a single line of the gold file contains the expected answer string"""
) , )
parser.add_argument(
"""--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , )
parser.add_argument(
"""--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , )
parser.add_argument(
"""--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , )
parser.add_argument(
"""--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , )
parser.add_argument(
"""--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , )
parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" )
parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" )
parser.add_argument(
"""--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , )
parser.add_argument(
"""--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , )
__UpperCAmelCase : str = parser.parse_args()
__UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
return args
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = {}
if args.model_type is None:
__UpperCAmelCase : str = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration
__UpperCAmelCase : Dict = args.n_docs
if args.index_name is not None:
__UpperCAmelCase : Union[str, Any] = args.index_name
if args.index_path is not None:
__UpperCAmelCase : Dict = args.index_path
else:
__UpperCAmelCase : str = BartForConditionalGeneration
__UpperCAmelCase : str = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k
__UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) )
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
continue
logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) )
logger.info(""" Batch size = %d""" , args.eval_batch_size )
logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) )
if args.model_type.startswith("""rag""" ):
__UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
__UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ )
model.retriever.init_retrieval()
else:
__UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
model.to(args.device )
with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file:
__UpperCAmelCase : Union[str, Any] = []
for line in tqdm(lowerCAmelCase__ ):
questions.append(line.strip() )
if len(lowerCAmelCase__ ) == args.eval_batch_size:
__UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" )
preds_file.flush()
__UpperCAmelCase : List[str] = []
if len(lowerCAmelCase__ ) > 0:
__UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
preds_file.write("""\n""".join(lowerCAmelCase__ ) )
preds_file.flush()
score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
_UpperCamelCase = get_args()
main(args)
| 16 | 0 |
'''simple docstring'''
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger()
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : nn.Module
_SCREAMING_SNAKE_CASE : List[nn.Module] = field(default_factory=__SCREAMING_SNAKE_CASE )
_SCREAMING_SNAKE_CASE : list = field(default_factory=__SCREAMING_SNAKE_CASE )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : List[Any] = len(list(m.modules() ) ) == 1 or isinstance(__UpperCAmelCase , nn.Convad ) or isinstance(__UpperCAmelCase , nn.BatchNormad )
if has_not_submodules:
self.traced.append(__UpperCAmelCase )
def __call__( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(__UpperCAmelCase )
[x.remove() for x in self.handles]
return self
@property
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
return list(filter(lambda __UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : nn.Module
_SCREAMING_SNAKE_CASE : nn.Module
_SCREAMING_SNAKE_CASE : int = 1
_SCREAMING_SNAKE_CASE : List = field(default_factory=__SCREAMING_SNAKE_CASE )
_SCREAMING_SNAKE_CASE : List = field(default_factory=__SCREAMING_SNAKE_CASE )
_SCREAMING_SNAKE_CASE : bool = True
def __call__( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : str = Tracker(self.dest )(__UpperCAmelCase ).parametrized
__UpperCAmelCase : int = Tracker(self.src )(__UpperCAmelCase ).parametrized
__UpperCAmelCase : Optional[Any] = list(filter(lambda __UpperCAmelCase : type(__UpperCAmelCase ) not in self.src_skip , __UpperCAmelCase ) )
__UpperCAmelCase : Any = list(filter(lambda __UpperCAmelCase : type(__UpperCAmelCase ) not in self.dest_skip , __UpperCAmelCase ) )
if len(__UpperCAmelCase ) != len(__UpperCAmelCase ) and self.raise_if_mismatch:
raise Exception(
f'Numbers of operations are different. Source module has {len(__UpperCAmelCase )} operations while'
f' destination module has {len(__UpperCAmelCase )}.' )
for dest_m, src_m in zip(__UpperCAmelCase , __UpperCAmelCase ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'Transfered from={src_m} to={dest_m}' )
class _A ( nn.Module ):
def __init__( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : List[Tuple[str, nn.Module]] = []
# - get the stem
feature_blocks.append(("""conv1""", model.stem) )
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith("""block""" ), f'Unexpected layer name {k}'
__UpperCAmelCase : Any = len(__UpperCAmelCase ) + 1
feature_blocks.append((f'res{block_index}', v) )
__UpperCAmelCase : List[Any] = nn.ModuleDict(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
return get_trunk_forward_outputs(
__UpperCAmelCase , out_feat_keys=__UpperCAmelCase , feature_blocks=self._feature_blocks , )
class _A ( __SCREAMING_SNAKE_CASE ):
def __A ( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = x.split("""-""" )
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] )
def __getitem__( self , __UpperCAmelCase ) -> Callable[[], Tuple[nn.Module, Dict]]:
'''simple docstring'''
# default to timm!
if x not in self:
__UpperCAmelCase : List[Any] = self.convert_name_to_timm(__UpperCAmelCase )
__UpperCAmelCase : Tuple = partial(lambda: (timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval(), None) )
else:
__UpperCAmelCase : str = super().__getitem__(__UpperCAmelCase )
return val
class _A ( __SCREAMING_SNAKE_CASE ):
def __getitem__( self , __UpperCAmelCase ) -> Callable[[], nn.Module]:
'''simple docstring'''
if "seer" in x and "in1k" not in x:
__UpperCAmelCase : Tuple = RegNetModel
else:
__UpperCAmelCase : int = RegNetForImageClassification
return val
def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Tuple[str, str]] ):
"""simple docstring"""
for from_key, to_key in keys:
__UpperCAmelCase : int = from_state_dict[from_key].clone()
print(f'Copied key={from_key} to={to_key}' )
return to_state_dict
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Callable[[], nn.Module] , lowerCAmelCase__ : Callable[[], nn.Module] , lowerCAmelCase__ : RegNetConfig , lowerCAmelCase__ : Path , lowerCAmelCase__ : bool = True , ):
"""simple docstring"""
print(f'Converting {name}...' )
with torch.no_grad():
__UpperCAmelCase : Tuple = from_model_func()
__UpperCAmelCase : Optional[int] = our_model_func(lowerCAmelCase__ ).eval()
__UpperCAmelCase : Dict = ModuleTransfer(src=lowerCAmelCase__ , dest=lowerCAmelCase__ , raise_if_mismatch=lowerCAmelCase__ )
__UpperCAmelCase : Union[str, Any] = torch.randn((1, 3, 224, 224) )
module_transfer(lowerCAmelCase__ )
if from_state_dict is not None:
__UpperCAmelCase : List[str] = []
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
__UpperCAmelCase : Tuple = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")]
__UpperCAmelCase : Any = manually_copy_vissl_head(lowerCAmelCase__ , our_model.state_dict() , lowerCAmelCase__ )
our_model.load_state_dict(lowerCAmelCase__ )
__UpperCAmelCase : List[str] = our_model(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ )
__UpperCAmelCase : Optional[int] = (
our_outputs.logits if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else our_outputs.last_hidden_state
)
__UpperCAmelCase : Tuple = from_model(lowerCAmelCase__ )
__UpperCAmelCase : List[Any] = from_output[-1] if type(lowerCAmelCase__ ) is list else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
__UpperCAmelCase : Union[str, Any] = our_outputs.hidden_states[-1]
assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase__ , )
__UpperCAmelCase : Tuple = 224 if """seer""" not in name else 384
# we can use the convnext one
__UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=lowerCAmelCase__ )
image_processor.push_to_hub(
repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase__ , )
print(f'Pushed {name}' )
def lowercase_ ( lowerCAmelCase__ : Path , lowerCAmelCase__ : str = None , lowerCAmelCase__ : bool = True ):
"""simple docstring"""
__UpperCAmelCase : List[str] = """imagenet-1k-id2label.json"""
__UpperCAmelCase : List[str] = 1000
__UpperCAmelCase : Optional[Any] = (1, num_labels)
__UpperCAmelCase : Any = """huggingface/label-files"""
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : Optional[Any] = json.load(open(cached_download(hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) ) , """r""" ) )
__UpperCAmelCase : List[str] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : Tuple = idalabel
__UpperCAmelCase : int = {v: k for k, v in idalabel.items()}
__UpperCAmelCase : Dict = partial(lowerCAmelCase__ , num_labels=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ )
__UpperCAmelCase : Tuple = {
"""regnet-x-002""": ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="""x""" ),
"""regnet-x-004""": ImageNetPreTrainedConfig(
depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="""x""" ),
"""regnet-x-006""": ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="""x""" ),
"""regnet-x-008""": ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="""x""" ),
"""regnet-x-016""": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="""x""" ),
"""regnet-x-032""": ImageNetPreTrainedConfig(
depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="""x""" ),
"""regnet-x-040""": ImageNetPreTrainedConfig(
depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="""x""" ),
"""regnet-x-064""": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="""x""" ),
"""regnet-x-080""": ImageNetPreTrainedConfig(
depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="""x""" ),
"""regnet-x-120""": ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="""x""" ),
"""regnet-x-160""": ImageNetPreTrainedConfig(
depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="""x""" ),
"""regnet-x-320""": ImageNetPreTrainedConfig(
depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="""x""" ),
# y variant
"""regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ),
"""regnet-y-004""": ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ),
"""regnet-y-006""": ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ),
"""regnet-y-008""": ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ),
"""regnet-y-016""": ImageNetPreTrainedConfig(
depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ),
"""regnet-y-032""": ImageNetPreTrainedConfig(
depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ),
"""regnet-y-040""": ImageNetPreTrainedConfig(
depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ),
"""regnet-y-064""": ImageNetPreTrainedConfig(
depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ),
"""regnet-y-080""": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ),
"""regnet-y-120""": ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ),
"""regnet-y-160""": ImageNetPreTrainedConfig(
depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ),
"""regnet-y-320""": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ),
# models created by SEER -> https://arxiv.org/abs/2202.08360
"""regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ),
"""regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ),
"""regnet-y-1280-seer""": RegNetConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ),
"""regnet-y-2560-seer""": RegNetConfig(
depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ),
"""regnet-y-10b-seer""": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ),
# finetuned on imagenet
"""regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ),
"""regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ),
"""regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ),
"""regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig(
depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ),
"""regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ),
}
__UpperCAmelCase : int = NameToOurModelFuncMap()
__UpperCAmelCase : str = NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(lowerCAmelCase__ : str , lowerCAmelCase__ : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]:
__UpperCAmelCase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , model_dir=str(lowerCAmelCase__ ) , map_location="""cpu""" )
__UpperCAmelCase : int = model_func()
# check if we have a head, if yes add it
__UpperCAmelCase : Optional[int] = files["""classy_state_dict"""]["""base_model"""]["""model"""]
__UpperCAmelCase : List[str] = model_state_dict["""trunk"""]
model.load_state_dict(lowerCAmelCase__ )
return model.eval(), model_state_dict["heads"]
# pretrained
__UpperCAmelCase : Any = partial(
lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
__UpperCAmelCase : Optional[Any] = partial(
lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
__UpperCAmelCase : Optional[int] = partial(
lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , )
__UpperCAmelCase : int = partial(
lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , )
# IN1K finetuned
__UpperCAmelCase : List[str] = partial(
lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
__UpperCAmelCase : Optional[int] = partial(
lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
__UpperCAmelCase : str = partial(
lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , )
__UpperCAmelCase : Any = partial(
lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , )
if model_name:
convert_weight_and_push(
lowerCAmelCase__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , lowerCAmelCase__ , lowerCAmelCase__ , )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
lowerCAmelCase__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , )
return config, expected_shape
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default=None,
type=str,
help=(
'''The name of the model you wish to convert, it must be one of the supported regnet* architecture,'''
''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=Path,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
default=True,
type=bool,
required=False,
help='''If True, push model and image processor to the hub.''',
)
_UpperCamelCase = parser.parse_args()
_UpperCamelCase = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 368 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _A :
@staticmethod
def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = [
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
]
return object_detector, examples
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 )
__UpperCAmelCase : Tuple = len(__UpperCAmelCase )
self.assertGreater(__UpperCAmelCase , 0 )
self.assertEqual(
__UpperCAmelCase , [
{
"""score""": ANY(__UpperCAmelCase ),
"""label""": ANY(__UpperCAmelCase ),
"""box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )},
}
for i in range(__UpperCAmelCase )
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> Tuple:
'''simple docstring'''
pass
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
] , )
__UpperCAmelCase : str = object_detector(
[
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
]
] , )
@require_torch
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
] , )
__UpperCAmelCase : Any = object_detector(
[
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
] , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def __A ( self ) -> List[str]:
'''simple docstring'''
pass
@require_torch
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = 0.2
__UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : Optional[int] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
] , )
@require_torch
@slow
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 2
__UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" )
__UpperCAmelCase : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
] , )
| 16 | 0 |
from functools import lru_cache
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Tuple = 2
__UpperCAmelCase : int = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(lowerCAmelCase__ )
if n > 1:
factors.add(lowerCAmelCase__ )
return factors
@lru_cache
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
return len(unique_prime_factors(lowerCAmelCase__ ) )
def lowercase_ ( lowerCAmelCase__ : list ):
"""simple docstring"""
return len(set(lowerCAmelCase__ ) ) in (0, 1)
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = 2
while True:
# Increment each value of a generated range
__UpperCAmelCase : List[str] = [base + i for i in range(lowerCAmelCase__ )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
__UpperCAmelCase : Dict = [upf_len(lowerCAmelCase__ ) for x in group]
checker.append(lowerCAmelCase__ )
# If all numbers in the list are equal, return the group variable.
if equality(lowerCAmelCase__ ):
return group
# Increment our base variable by 1
base += 1
def lowercase_ ( lowerCAmelCase__ : int = 4 ):
"""simple docstring"""
__UpperCAmelCase : int = run(lowerCAmelCase__ )
return results[0] if len(lowerCAmelCase__ ) else None
if __name__ == "__main__":
print(solution())
| 369 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.txt'''}
_UpperCamelCase = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': 512,
'''YituTech/conv-bert-medium-small''': 512,
'''YituTech/conv-bert-small''': 512,
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION
_SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars
):
__UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) )
__UpperCAmelCase : Union[str, Any] = do_lower_case
__UpperCAmelCase : str = strip_accents
__UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars
__UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase )
__UpperCAmelCase : List[Any] = do_lower_case
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [self.sep_token_id]
__UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 16 | 0 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Any = generate_pascal_triangle(lowerCAmelCase__ )
for row_idx in range(lowerCAmelCase__ ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=""" """ )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=""" """ )
else:
print(triangle[row_idx][col_idx] , end="""""" )
print()
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError("""The input value of 'num_rows' should be 'int'""" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"""The input value of 'num_rows' should be greater than or equal to 0""" )
__UpperCAmelCase : list[list[int]] = []
for current_row_idx in range(lowerCAmelCase__ ):
__UpperCAmelCase : Optional[int] = populate_current_row(lowerCAmelCase__ , lowerCAmelCase__ )
triangle.append(lowerCAmelCase__ )
return triangle
def lowercase_ ( lowerCAmelCase__ : list[list[int]] , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
__UpperCAmelCase : Tuple = 1, 1
for current_col_idx in range(1 , lowerCAmelCase__ ):
calculate_current_element(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return current_row
def lowercase_ ( lowerCAmelCase__ : list[list[int]] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx - 1]
__UpperCAmelCase : Dict = triangle[current_row_idx - 1][current_col_idx]
__UpperCAmelCase : List[str] = above_to_left_elt + above_to_right_elt
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError("""The input value of 'num_rows' should be 'int'""" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"""The input value of 'num_rows' should be greater than or equal to 0""" )
__UpperCAmelCase : list[list[int]] = [[1]]
for row_index in range(1 , lowerCAmelCase__ ):
__UpperCAmelCase : Optional[int] = [0] + result[-1] + [0]
__UpperCAmelCase : str = row_index + 1
# Calculate the number of distinct elements in a row
__UpperCAmelCase : Dict = sum(divmod(lowerCAmelCase__ , 2 ) )
__UpperCAmelCase : Tuple = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
__UpperCAmelCase : str = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
__UpperCAmelCase : Any = row_first_half + row_second_half
result.append(lowerCAmelCase__ )
return result
def lowercase_ ( ):
"""simple docstring"""
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(lowerCAmelCase__ : Callable , lowerCAmelCase__ : int ) -> None:
__UpperCAmelCase : Optional[int] = f'{func.__name__}({value})'
__UpperCAmelCase : Optional[Any] = timeit(f'__main__.{call}' , setup="""import __main__""" )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f'{call:38} -- {timing:.4f} seconds' )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(lowerCAmelCase__ , lowerCAmelCase__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 370 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_UpperCamelCase = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''OwlViTFeatureExtractor''']
_UpperCamelCase = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 16 | 0 |
import torch
from torch import nn
class _A ( nn.Module ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 , __UpperCAmelCase=False ) -> List[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Union[str, Any] = n_token
__UpperCAmelCase : Optional[Any] = d_embed
__UpperCAmelCase : int = d_proj
__UpperCAmelCase : Tuple = cutoffs + [n_token]
__UpperCAmelCase : List[Any] = [0] + self.cutoffs
__UpperCAmelCase : int = div_val
__UpperCAmelCase : Optional[int] = self.cutoffs[0]
__UpperCAmelCase : Union[str, Any] = len(self.cutoffs ) - 1
__UpperCAmelCase : Tuple = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
__UpperCAmelCase : Any = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) )
__UpperCAmelCase : Any = nn.Parameter(torch.zeros(self.n_clusters ) )
__UpperCAmelCase : List[str] = nn.ModuleList()
__UpperCAmelCase : Tuple = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs ) ):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(__UpperCAmelCase , __UpperCAmelCase ) ) )
else:
self.out_projs.append(__UpperCAmelCase )
self.out_layers.append(nn.Linear(__UpperCAmelCase , __UpperCAmelCase ) )
else:
for i in range(len(self.cutoffs ) ):
__UpperCAmelCase : str = self.cutoff_ends[i], self.cutoff_ends[i + 1]
__UpperCAmelCase : List[Any] = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(__UpperCAmelCase , __UpperCAmelCase ) ) )
self.out_layers.append(nn.Linear(__UpperCAmelCase , r_idx - l_idx ) )
__UpperCAmelCase : Union[str, Any] = keep_order
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if proj is None:
__UpperCAmelCase : Any = nn.functional.linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase )
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
__UpperCAmelCase : str = nn.functional.linear(__UpperCAmelCase , proj.t().contiguous() )
__UpperCAmelCase : Tuple = nn.functional.linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase )
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
if labels is not None:
# Shift so that tokens < n predict n
__UpperCAmelCase : List[str] = hidden[..., :-1, :].contiguous()
__UpperCAmelCase : int = labels[..., 1:].contiguous()
__UpperCAmelCase : List[str] = hidden.view(-1 , hidden.size(-1 ) )
__UpperCAmelCase : Union[str, Any] = labels.view(-1 )
if hidden.size(0 ) != labels.size(0 ):
raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" )
else:
__UpperCAmelCase : List[Any] = hidden.view(-1 , hidden.size(-1 ) )
if self.n_clusters == 0:
__UpperCAmelCase : Union[str, Any] = self._compute_logit(__UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
if labels is not None:
__UpperCAmelCase : Any = labels != -100
__UpperCAmelCase : Optional[int] = torch.zeros_like(__UpperCAmelCase , dtype=hidden.dtype , device=hidden.device )
__UpperCAmelCase : str = (
-nn.functional.log_softmax(__UpperCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 )
)
else:
__UpperCAmelCase : Optional[int] = nn.functional.log_softmax(__UpperCAmelCase , dim=-1 )
else:
# construct weights and biases
__UpperCAmelCase : Tuple = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
__UpperCAmelCase : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1]
__UpperCAmelCase : Tuple = self.out_layers[0].weight[l_idx:r_idx]
__UpperCAmelCase : Optional[int] = self.out_layers[0].bias[l_idx:r_idx]
else:
__UpperCAmelCase : Tuple = self.out_layers[i].weight
__UpperCAmelCase : int = self.out_layers[i].bias
if i == 0:
__UpperCAmelCase : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 )
__UpperCAmelCase : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(__UpperCAmelCase )
biases.append(__UpperCAmelCase )
__UpperCAmelCase : str = weights[0], biases[0], self.out_projs[0]
__UpperCAmelCase : List[str] = self._compute_logit(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : str = nn.functional.log_softmax(__UpperCAmelCase , dim=1 )
if labels is None:
__UpperCAmelCase : Optional[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) )
else:
__UpperCAmelCase : List[str] = torch.zeros_like(__UpperCAmelCase , dtype=hidden.dtype , device=hidden.device )
__UpperCAmelCase : Optional[Any] = 0
__UpperCAmelCase : int = [0] + self.cutoffs
for i in range(len(__UpperCAmelCase ) - 1 ):
__UpperCAmelCase : int = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
__UpperCAmelCase : Any = (labels >= l_idx) & (labels < r_idx)
__UpperCAmelCase : List[str] = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
__UpperCAmelCase : List[Any] = labels.index_select(0 , __UpperCAmelCase ) - l_idx
__UpperCAmelCase : str = head_logprob.index_select(0 , __UpperCAmelCase )
__UpperCAmelCase : Dict = hidden.index_select(0 , __UpperCAmelCase )
else:
__UpperCAmelCase : List[Any] = hidden
if i == 0:
if labels is not None:
__UpperCAmelCase : int = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 )
else:
__UpperCAmelCase : Union[str, Any] = head_logprob[:, : self.cutoffs[0]]
else:
__UpperCAmelCase : Dict = weights[i], biases[i], self.out_projs[i]
__UpperCAmelCase : Optional[Any] = self._compute_logit(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = nn.functional.log_softmax(__UpperCAmelCase , dim=1 )
__UpperCAmelCase : Dict = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
__UpperCAmelCase : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 , target_i[:, None] ).squeeze(1 )
else:
__UpperCAmelCase : List[Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
__UpperCAmelCase : int = logprob_i
if labels is not None:
if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order:
out.index_copy_(0 , __UpperCAmelCase , -logprob_i )
else:
out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i )
offset += logprob_i.size(0 )
return out
def __A ( self , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if self.n_clusters == 0:
__UpperCAmelCase : Optional[int] = self._compute_logit(__UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
return nn.functional.log_softmax(__UpperCAmelCase , dim=-1 )
else:
# construct weights and biases
__UpperCAmelCase : List[str] = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
__UpperCAmelCase : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
__UpperCAmelCase : int = self.out_layers[0].weight[l_idx:r_idx]
__UpperCAmelCase : List[str] = self.out_layers[0].bias[l_idx:r_idx]
else:
__UpperCAmelCase : Optional[Any] = self.out_layers[i].weight
__UpperCAmelCase : Union[str, Any] = self.out_layers[i].bias
if i == 0:
__UpperCAmelCase : int = torch.cat([weight_i, self.cluster_weight] , dim=0 )
__UpperCAmelCase : Any = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(__UpperCAmelCase )
biases.append(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = weights[0], biases[0], self.out_projs[0]
__UpperCAmelCase : Optional[int] = self._compute_logit(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : List[str] = hidden.new_empty((head_logit.size(0 ), self.n_token) )
__UpperCAmelCase : List[Any] = nn.functional.log_softmax(__UpperCAmelCase , dim=1 )
__UpperCAmelCase : Any = [0] + self.cutoffs
for i in range(len(__UpperCAmelCase ) - 1 ):
__UpperCAmelCase : Dict = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
__UpperCAmelCase : Optional[int] = head_logprob[:, : self.cutoffs[0]]
else:
__UpperCAmelCase : Tuple = weights[i], biases[i], self.out_projs[i]
__UpperCAmelCase : Union[str, Any] = self._compute_logit(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : List[str] = nn.functional.log_softmax(__UpperCAmelCase , dim=1 )
__UpperCAmelCase : str = head_logprob[:, -i] + tail_logprob_i
__UpperCAmelCase : List[str] = logprob_i
return out
| 371 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
'''simple docstring'''
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 16 | 0 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None
@property
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = (3, 32, 128)
__UpperCAmelCase : Tuple = tempfile.mkdtemp()
# fmt: off
__UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
__UpperCAmelCase : List[Any] = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
__UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) )
return image_input
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.get_tokenizer()
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
__UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.prepare_image_inputs()
__UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" )
__UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Dict = """test"""
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = """test"""
__UpperCAmelCase : int = self.prepare_image_inputs()
__UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase )
__UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = self.get_tokenizer()
__UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : str = None
__UpperCAmelCase : Dict = self.prepare_image_inputs()
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Any = self.get_image_processor()
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 )
__UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 )
__UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 )
__UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
| 350 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
_UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
_SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" )
__UpperCAmelCase : List[Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] )
__UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
# Legacy behavior
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
__UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] )
__UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
__UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [
{"""label""": """LABEL_0""", """score""": 0.504},
{"""label""": """LABEL_0""", """score""": 0.504},
] , )
@require_torch
def __A ( self ) -> Dict:
'''simple docstring'''
import torch
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@require_tf
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@slow
@require_torch
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = pipeline("""text-classification""" )
__UpperCAmelCase : int = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
@slow
@require_tf
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" )
__UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__UpperCAmelCase : int = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
__UpperCAmelCase : Union[str, Any] = """HuggingFace is in"""
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
__UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""]
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
__UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase )
__UpperCAmelCase : Any = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , )
__UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""}
__UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , )
self.assertTrue(outputs["""label"""] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
__UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]]
with self.assertRaises(__UpperCAmelCase ):
text_classifier(__UpperCAmelCase )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
__UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
| 16 | 0 |
'''simple docstring'''
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def lowercase_ ( lowerCAmelCase__ : ndarray ):
"""simple docstring"""
return np.dot(lowerCAmelCase__ , lowerCAmelCase__ )
class _A :
"""simple docstring"""
def __init__( self , *,
__UpperCAmelCase = np.inf , __UpperCAmelCase = "linear" , __UpperCAmelCase = 0.0 , ) -> None:
'''simple docstring'''
__UpperCAmelCase : str = regularization
__UpperCAmelCase : int = gamma
if kernel == "linear":
__UpperCAmelCase : Dict = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError("""rbf kernel requires gamma""" )
if not isinstance(self.gamma , (float, int) ):
raise ValueError("""gamma must be float or int""" )
if not self.gamma > 0:
raise ValueError("""gamma must be > 0""" )
__UpperCAmelCase : Tuple = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
__UpperCAmelCase : str = f'Unknown kernel: {kernel}'
raise ValueError(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
return np.dot(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Tuple = observations
__UpperCAmelCase : Optional[Any] = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
(__UpperCAmelCase ) : Dict = np.shape(__UpperCAmelCase )
def to_minimize(__UpperCAmelCase ) -> float:
__UpperCAmelCase : List[Any] = 0
(__UpperCAmelCase ) : Dict = np.shape(__UpperCAmelCase )
for i in range(__UpperCAmelCase ):
for j in range(__UpperCAmelCase ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(__UpperCAmelCase )
__UpperCAmelCase : int = LinearConstraint(__UpperCAmelCase , 0 , 0 )
__UpperCAmelCase : Optional[Any] = Bounds(0 , self.regularization )
__UpperCAmelCase : List[str] = minimize(
__UpperCAmelCase , np.ones(__UpperCAmelCase ) , bounds=__UpperCAmelCase , constraints=[ly_contraint] ).x
__UpperCAmelCase : Tuple = l_star
# calculating mean offset of separation plane to points
__UpperCAmelCase : Optional[Any] = 0
for i in range(__UpperCAmelCase ):
for j in range(__UpperCAmelCase ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
__UpperCAmelCase : Union[str, Any] = s / n
def __A ( self , __UpperCAmelCase ) -> int:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , __UpperCAmelCase )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 351 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : str = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Any = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
class _A ( metaclass=__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"]
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
requires_backends(self , ["""sentencepiece"""] )
| 16 | 0 |
'''simple docstring'''
from math import pi, sqrt
def lowercase_ ( lowerCAmelCase__ : float ):
"""simple docstring"""
if num <= 0:
raise ValueError("""math domain error""" )
if num > 171.5:
raise OverflowError("""math range error""" )
elif num - int(lowerCAmelCase__ ) not in (0, 0.5):
raise NotImplementedError("""num must be an integer or a half-integer""" )
elif num == 0.5:
return sqrt(lowerCAmelCase__ )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def lowercase_ ( ):
"""simple docstring"""
assert gamma(0.5 ) == sqrt(lowerCAmelCase__ )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
_UpperCamelCase = 1.0
while num:
_UpperCamelCase = float(input('''Gamma of: '''))
print(F'gamma({num}) = {gamma(num)}')
print('''\nEnter 0 to exit...''')
| 352 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class _A :
def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase )
__UpperCAmelCase : List[str] = length
__UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa )
__UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ) -> Dict:
'''simple docstring'''
return self.length
def __getitem__( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return {"x": self.x[i], "y": self.y[i]}
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__UpperCAmelCase : Any = True
def __A ( self , __UpperCAmelCase=None ) -> str:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : Optional[int] = False
return x * self.a[0] + self.b[0]
class _A ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() )
__UpperCAmelCase : str = True
def __A ( self , __UpperCAmelCase=None ) -> Tuple:
'''simple docstring'''
if self.first_batch:
print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__UpperCAmelCase : int = False
return x * self.a + self.b
def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
__UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" )
__UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
__UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ )
__UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" )
__UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )}
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCAmelCase : List[Any] = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" )
if "label" in examples:
__UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCAmelCase : Tuple = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(lowerCAmelCase__ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 )
__UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 16 | 0 |
'''simple docstring'''
import os
import pickle
import unittest
from transformers import AutoTokenizer
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.models.bert_japanese.tokenization_bert_japanese import (
VOCAB_FILES_NAMES,
BertJapaneseTokenizer,
CharacterTokenizer,
JumanppTokenizer,
MecabTokenizer,
SudachiTokenizer,
WordpieceTokenizer,
)
from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi
from ...test_tokenization_common import TokenizerTesterMixin
@custom_tokenizers
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = BertJapaneseTokenizer
_SCREAMING_SNAKE_CASE : Optional[Any] = False
_SCREAMING_SNAKE_CASE : List[Any] = True
def __A ( self ) -> Tuple:
'''simple docstring'''
super().setUp()
__UpperCAmelCase : List[str] = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""こんにちは""",
"""こん""",
"""にちは""",
"""ばんは""",
"""##こん""",
"""##にちは""",
"""##ばんは""",
"""世界""",
"""##世界""",
"""、""",
"""##、""",
"""。""",
"""##。""",
]
__UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def __A ( self , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = """こんにちは、世界。 \nこんばんは、世界。"""
__UpperCAmelCase : int = """こんにちは 、 世界 。 こんばんは 、 世界 。"""
return input_text, output_text
def __A ( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = self.get_input_output_texts(__UpperCAmelCase )
__UpperCAmelCase : Dict = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
__UpperCAmelCase : Tuple = tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase )
return text, ids
def __A ( self ) -> List[Any]:
'''simple docstring'''
pass # TODO add if relevant
def __A ( self ) -> str:
'''simple docstring'''
pass # TODO add if relevant
def __A ( self ) -> Dict:
'''simple docstring'''
pass # TODO add if relevant
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Any = self.tokenizer_class(self.vocab_file )
__UpperCAmelCase : int = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" )
self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" )
self.assertIsNotNone(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = """こんにちは、世界。\nこんばんは、世界。"""
__UpperCAmelCase : str = tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
__UpperCAmelCase : Dict = os.path.join(self.tmpdirname , """tokenizer.bin""" )
with open(__UpperCAmelCase , """wb""" ) as handle:
pickle.dump(__UpperCAmelCase , __UpperCAmelCase )
with open(__UpperCAmelCase , """rb""" ) as handle:
__UpperCAmelCase : Union[str, Any] = pickle.load(__UpperCAmelCase )
__UpperCAmelCase : Any = tokenizer_new.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = MecabTokenizer(mecab_dic="""ipadic""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def __A ( self ) -> str:
'''simple docstring'''
try:
__UpperCAmelCase : str = MecabTokenizer(mecab_dic="""unidic_lite""" )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def __A ( self ) -> Dict:
'''simple docstring'''
try:
__UpperCAmelCase : Optional[int] = MecabTokenizer(mecab_dic="""unidic""" )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : str = MecabTokenizer(do_lower_case=__UpperCAmelCase , mecab_dic="""ipadic""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def __A ( self ) -> Dict:
'''simple docstring'''
try:
__UpperCAmelCase : List[str] = MecabTokenizer(
do_lower_case=__UpperCAmelCase , normalize_text=__UpperCAmelCase , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" )
except RuntimeError:
# if dict doesn't exist in the system, previous code raises this error.
return
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = MecabTokenizer(normalize_text=__UpperCAmelCase , mecab_dic="""ipadic""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , )
@require_sudachi
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" )
self.assertIsNotNone(__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = """こんにちは、世界。\nこんばんは、世界。"""
__UpperCAmelCase : List[Any] = tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
__UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , """tokenizer.bin""" )
with open(__UpperCAmelCase , """wb""" ) as handle:
pickle.dump(__UpperCAmelCase , __UpperCAmelCase )
with open(__UpperCAmelCase , """rb""" ) as handle:
__UpperCAmelCase : int = pickle.load(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer_new.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
@require_sudachi
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = SudachiTokenizer(sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , )
@require_sudachi
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" )
self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] )
@require_sudachi
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" )
self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] )
@require_sudachi
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" )
self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] )
@require_sudachi
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = SudachiTokenizer(do_lower_case=__UpperCAmelCase , sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , )
@require_sudachi
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = SudachiTokenizer(normalize_text=__UpperCAmelCase , sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , )
@require_sudachi
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Any = SudachiTokenizer(trim_whitespace=__UpperCAmelCase , sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
@require_jumanpp
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" )
self.assertIsNotNone(__UpperCAmelCase )
__UpperCAmelCase : int = """こんにちは、世界。\nこんばんは、世界。"""
__UpperCAmelCase : int = tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , """tokenizer.bin""" )
with open(__UpperCAmelCase , """wb""" ) as handle:
pickle.dump(__UpperCAmelCase , __UpperCAmelCase )
with open(__UpperCAmelCase , """rb""" ) as handle:
__UpperCAmelCase : List[str] = pickle.load(__UpperCAmelCase )
__UpperCAmelCase : Any = tokenizer_new.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
@require_jumanpp
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
@require_jumanpp
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = JumanppTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
@require_jumanpp
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = JumanppTokenizer(normalize_text=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
@require_jumanpp
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = JumanppTokenizer(trim_whitespace=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , )
@require_jumanpp
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""]
__UpperCAmelCase : Union[str, Any] = {}
for i, token in enumerate(__UpperCAmelCase ):
__UpperCAmelCase : Optional[int] = i
__UpperCAmelCase : str = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] )
self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] )
self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" )
__UpperCAmelCase : List[Any] = tokenizer.subword_tokenizer
__UpperCAmelCase : Union[str, Any] = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" )
self.assertListEqual(__UpperCAmelCase , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] )
__UpperCAmelCase : int = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" )
self.assertListEqual(__UpperCAmelCase , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" )
__UpperCAmelCase : Any = tokenizer.encode("""ありがとう。""" , add_special_tokens=__UpperCAmelCase )
__UpperCAmelCase : Any = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__UpperCAmelCase )
__UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : str = BertJapaneseTokenizer
_SCREAMING_SNAKE_CASE : List[Any] = False
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
__UpperCAmelCase : Union[str, Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""]
__UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def __A ( self , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = """こんにちは、世界。 \nこんばんは、世界。"""
__UpperCAmelCase : List[Any] = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。"""
return input_text, output_text
def __A ( self ) -> Optional[int]:
'''simple docstring'''
pass # TODO add if relevant
def __A ( self ) -> List[str]:
'''simple docstring'''
pass # TODO add if relevant
def __A ( self ) -> Any:
'''simple docstring'''
pass # TODO add if relevant
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" )
__UpperCAmelCase : int = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" )
self.assertListEqual(
__UpperCAmelCase , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""]
__UpperCAmelCase : List[Any] = {}
for i, token in enumerate(__UpperCAmelCase ):
__UpperCAmelCase : List[str] = i
__UpperCAmelCase : List[Any] = CharacterTokenizer(vocab=__UpperCAmelCase , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] )
self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : str = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" )
__UpperCAmelCase : List[str] = tokenizer.encode("""ありがとう。""" , add_special_tokens=__UpperCAmelCase )
__UpperCAmelCase : int = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class _A ( unittest.TestCase ):
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = """cl-tohoku/bert-base-japanese"""
__UpperCAmelCase : str = AutoTokenizer.from_pretrained(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = """cl-tohoku/bert-base-japanese"""
with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm:
BertTokenizer.from_pretrained(__UpperCAmelCase )
self.assertTrue(
cm.records[0].message.startswith(
"""The tokenizer class you load from this checkpoint is not the same type as the class this function"""
""" is called from.""" ) )
__UpperCAmelCase : Optional[Any] = """bert-base-cased"""
with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm:
BertJapaneseTokenizer.from_pretrained(__UpperCAmelCase )
self.assertTrue(
cm.records[0].message.startswith(
"""The tokenizer class you load from this checkpoint is not the same type as the class this function"""
""" is called from.""" ) )
| 353 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None
@property
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = (3, 32, 128)
__UpperCAmelCase : Tuple = tempfile.mkdtemp()
# fmt: off
__UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
__UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
__UpperCAmelCase : List[Any] = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self , **__UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
__UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) )
return image_input
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = self.get_tokenizer()
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
__UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[str] = self.prepare_image_inputs()
__UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" )
__UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Dict = """test"""
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Tuple = self.get_tokenizer()
__UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : List[Any] = """test"""
__UpperCAmelCase : int = self.prepare_image_inputs()
__UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase )
__UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = self.get_image_processor()
__UpperCAmelCase : Optional[Any] = self.get_tokenizer()
__UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : str = None
__UpperCAmelCase : Dict = self.prepare_image_inputs()
__UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Any = self.get_image_processor()
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
__UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 )
__UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 )
__UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 )
__UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
| 16 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''],
'''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''],
'''processing_wav2vec2''': ['''Wav2Vec2Processor'''],
'''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Wav2Vec2ForAudioFrameClassification''',
'''Wav2Vec2ForCTC''',
'''Wav2Vec2ForMaskedLM''',
'''Wav2Vec2ForPreTraining''',
'''Wav2Vec2ForSequenceClassification''',
'''Wav2Vec2ForXVector''',
'''Wav2Vec2Model''',
'''Wav2Vec2PreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWav2Vec2ForCTC''',
'''TFWav2Vec2Model''',
'''TFWav2Vec2PreTrainedModel''',
'''TFWav2Vec2ForSequenceClassification''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FlaxWav2Vec2ForCTC''',
'''FlaxWav2Vec2ForPreTraining''',
'''FlaxWav2Vec2Model''',
'''FlaxWav2Vec2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 354 |
'''simple docstring'''
from collections.abc import Sequence
def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ):
"""simple docstring"""
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__UpperCAmelCase : Any = nums[0]
for i in range(1 , len(lowerCAmelCase__ ) ):
__UpperCAmelCase : Union[str, Any] = nums[i]
__UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_UpperCamelCase = int(input('''Enter number of elements : ''').strip())
_UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n]
print(max_subsequence_sum(array))
| 16 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = '''▁'''
_UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''}
_UpperCamelCase = {
'''vocab_file''': {
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''',
}
}
_UpperCamelCase = {
'''facebook/xglm-564M''': 2048,
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : Optional[int] = ["input_ids", "attention_mask"]
def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
'''simple docstring'''
__UpperCAmelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
__UpperCAmelCase : str = 7
__UpperCAmelCase : List[Any] = [f'<madeupword{i}>' for i in range(self.num_madeup_words )]
__UpperCAmelCase : Any = kwargs.get("""additional_special_tokens""" , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
__UpperCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__UpperCAmelCase ) )
__UpperCAmelCase : List[Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__UpperCAmelCase : List[str] = 1
# Mimic fairseq token-to-id alignment for the first 4 token
__UpperCAmelCase : Dict = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
__UpperCAmelCase : List[Any] = len(self.sp_model )
__UpperCAmelCase : Optional[Any] = {f'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(__UpperCAmelCase )
__UpperCAmelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.__dict__.copy()
__UpperCAmelCase : Dict = None
__UpperCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__UpperCAmelCase : int = {}
__UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
__UpperCAmelCase : Optional[int] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase ))
return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase ))
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def __A ( self ) -> Any:
'''simple docstring'''
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __A ( self , __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__UpperCAmelCase : List[Any] = self.sp_model.PieceToId(__UpperCAmelCase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __A ( self , __UpperCAmelCase ) -> int:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
__UpperCAmelCase : int = os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
__UpperCAmelCase : Dict = self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (out_vocab_file,)
| 355 |
'''simple docstring'''
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = data
__UpperCAmelCase : int = previous
__UpperCAmelCase : Union[str, Any] = next_node
def __str__( self ) -> str:
'''simple docstring'''
return f'{self.data}'
def __A ( self ) -> int:
'''simple docstring'''
return self.data
def __A ( self ) -> List[str]:
'''simple docstring'''
return self.next
def __A ( self ) -> str:
'''simple docstring'''
return self.previous
class _A :
def __init__( self , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = head
def __iter__( self ) -> str:
'''simple docstring'''
return self
def __A ( self ) -> str:
'''simple docstring'''
if not self.current:
raise StopIteration
else:
__UpperCAmelCase : List[str] = self.current.get_data()
__UpperCAmelCase : int = self.current.get_next()
return value
class _A :
def __init__( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = None # First node in list
__UpperCAmelCase : List[str] = None # Last node in list
def __str__( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.head
__UpperCAmelCase : Optional[int] = []
while current is not None:
nodes.append(current.get_data() )
__UpperCAmelCase : Any = current.get_next()
return " ".join(str(__UpperCAmelCase ) for node in nodes )
def __contains__( self , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.head
while current:
if current.get_data() == value:
return True
__UpperCAmelCase : Optional[Any] = current.get_next()
return False
def __iter__( self ) -> str:
'''simple docstring'''
return LinkedListIterator(self.head )
def __A ( self ) -> List[Any]:
'''simple docstring'''
if self.head:
return self.head.get_data()
return None
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
if self.tail:
return self.tail.get_data()
return None
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
__UpperCAmelCase : str = node
__UpperCAmelCase : List[str] = node
else:
self.insert_before_node(self.head , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase )
if self.head is None:
self.set_head(__UpperCAmelCase )
else:
self.set_tail(__UpperCAmelCase )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Tuple = node
__UpperCAmelCase : List[Any] = node.previous
if node.get_previous() is None:
__UpperCAmelCase : str = node_to_insert
else:
__UpperCAmelCase : Optional[Any] = node_to_insert
__UpperCAmelCase : List[Any] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : List[str] = node
__UpperCAmelCase : Union[str, Any] = node.next
if node.get_next() is None:
__UpperCAmelCase : Dict = node_to_insert
else:
__UpperCAmelCase : Any = node_to_insert
__UpperCAmelCase : List[str] = node_to_insert
def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = self.head
while node:
if current_position == position:
self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase )
return
current_position += 1
__UpperCAmelCase : int = node.next
self.insert_after_node(self.tail , __UpperCAmelCase )
def __A ( self , __UpperCAmelCase ) -> Node:
'''simple docstring'''
__UpperCAmelCase : Dict = self.head
while node:
if node.get_data() == item:
return node
__UpperCAmelCase : List[str] = node.get_next()
raise Exception("""Node not found""" )
def __A ( self , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
if (node := self.get_node(__UpperCAmelCase )) is not None:
if node == self.head:
__UpperCAmelCase : Optional[int] = self.head.get_next()
if node == self.tail:
__UpperCAmelCase : Union[str, Any] = self.tail.get_previous()
self.remove_node_pointers(__UpperCAmelCase )
@staticmethod
def __A ( __UpperCAmelCase ) -> None:
'''simple docstring'''
if node.get_next():
__UpperCAmelCase : Optional[Any] = node.previous
if node.get_previous():
__UpperCAmelCase : int = node.next
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Union[str, Any] = None
def __A ( self ) -> List[Any]:
'''simple docstring'''
return self.head is None
def lowercase_ ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
_UpperCamelCase = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''GPTNeoXTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTNeoXForCausalLM''',
'''GPTNeoXForQuestionAnswering''',
'''GPTNeoXForSequenceClassification''',
'''GPTNeoXForTokenClassification''',
'''GPTNeoXLayer''',
'''GPTNeoXModel''',
'''GPTNeoXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox import (
GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXLayer,
GPTNeoXModel,
GPTNeoXPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 356 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : List[str]
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __call__( self ) -> Any:
'''simple docstring'''
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class _A :
_SCREAMING_SNAKE_CASE : Optional[List] = None
_SCREAMING_SNAKE_CASE : Optional[int] = None
_SCREAMING_SNAKE_CASE : Optional[str] = None
# Automatically constructed
_SCREAMING_SNAKE_CASE : ClassVar[str] = "dict"
_SCREAMING_SNAKE_CASE : ClassVar[Any] = None
_SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None
__UpperCAmelCase : int = len(self.languages ) if self.languages else None
def __call__( self ) -> Optional[Any]:
'''simple docstring'''
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def __A ( self , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = set(self.languages )
if self.languages and set(__UpperCAmelCase ) - lang_set:
raise ValueError(
f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__UpperCAmelCase : Dict = []
for lang, text in translation_dict.items():
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 16 | 0 |
from __future__ import annotations
import copy
import tempfile
import unittest
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available
from transformers.testing_utils import (
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tensorflow_probability,
require_tf,
slow,
)
from ..bert.test_modeling_bert import BertModelTester
if is_tf_available():
from transformers import (
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFFunnelBaseModel,
TFFunnelModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
TFTapasForQuestionAnswering,
)
from transformers.models.auto.modeling_tf_auto import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = "new-model"
if is_tf_available():
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Dict = NewModelConfig
@require_tf
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = """bert-base-cased"""
__UpperCAmelCase : Any = AutoConfig.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : List[Any] = """bert-base-cased"""
__UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = TFAutoModelForPreTraining.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : int = AutoConfig.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Optional[int] = TFAutoModelForCausalLM.from_pretrained(__UpperCAmelCase )
__UpperCAmelCase : Tuple = TFAutoModelForCausalLM.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : str = AutoConfig.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : int = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
def __A ( self ) -> List[Any]:
'''simple docstring'''
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Dict = TFAutoModelForMaskedLM.from_pretrained(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
def __A ( self ) -> List[Any]:
'''simple docstring'''
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase )
__UpperCAmelCase : Any = TFAutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
__UpperCAmelCase : Any = AutoConfig.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Tuple = TFAutoModelForSequenceClassification.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
__UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Any = TFAutoModelForQuestionAnswering.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
@require_tensorflow_probability
def __A ( self ) -> int:
'''simple docstring'''
for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
__UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained(__UpperCAmelCase )
__UpperCAmelCase : List[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained(
__UpperCAmelCase , output_loading_info=__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 14_410 )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : List[Any] = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 14_410 )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
__UpperCAmelCase : List[Any] = copy.deepcopy(model.config )
__UpperCAmelCase : Dict = ["""FunnelBaseModel"""]
__UpperCAmelCase : Tuple = TFAutoModel.from_config(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = TFAutoModel.from_pretrained(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
try:
AutoConfig.register("""new-model""" , __UpperCAmelCase )
__UpperCAmelCase : Optional[Any] = [
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSequenceClassification,
TFAutoModelForTokenClassification,
]
for auto_class in auto_classes:
with self.subTest(auto_class.__name__ ):
# Wrong config class will raise an error
with self.assertRaises(__UpperCAmelCase ):
auto_class.register(__UpperCAmelCase , __UpperCAmelCase )
auto_class.register(__UpperCAmelCase , __UpperCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__UpperCAmelCase ):
auto_class.register(__UpperCAmelCase , __UpperCAmelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
__UpperCAmelCase : Tuple = BertModelTester(self ).get_config()
__UpperCAmelCase : Optional[Any] = NewModelConfig(**tiny_config.to_dict() )
__UpperCAmelCase : str = auto_class.from_config(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(__UpperCAmelCase )
__UpperCAmelCase : Dict = auto_class.from_pretrained(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
for mapping in (
TF_MODEL_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
):
if NewModelConfig in mapping._extra_content:
del mapping._extra_content[NewModelConfig]
def __A ( self ) -> Tuple:
'''simple docstring'''
with self.assertRaisesRegex(
__UpperCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ):
__UpperCAmelCase : Union[str, Any] = TFAutoModel.from_pretrained("""bert-base""" )
def __A ( self ) -> Dict:
'''simple docstring'''
with self.assertRaisesRegex(
__UpperCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
__UpperCAmelCase : List[str] = TFAutoModel.from_pretrained(__UpperCAmelCase , revision="""aaaaaa""" )
def __A ( self ) -> List[str]:
'''simple docstring'''
with self.assertRaisesRegex(
__UpperCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ):
__UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" )
def __A ( self ) -> List[Any]:
'''simple docstring'''
with self.assertRaisesRegex(__UpperCAmelCase , """Use `from_pt=True` to load this model""" ):
__UpperCAmelCase : Optional[Any] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
with RequestCounter() as counter:
__UpperCAmelCase : Optional[Any] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
# With a sharded checkpoint
__UpperCAmelCase : List[str] = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" )
with RequestCounter() as counter:
__UpperCAmelCase : List[str] = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 357 |
'''simple docstring'''
from statistics import mean
import numpy as np
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Tuple = 0
# Number of processes finished
__UpperCAmelCase : Optional[int] = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
__UpperCAmelCase : Tuple = [0] * no_of_process
# List to include calculation results
__UpperCAmelCase : int = [0] * no_of_process
# Sort by arrival time.
__UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )]
__UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )]
arrival_time.sort()
while no_of_process > finished_process_count:
__UpperCAmelCase : Dict = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
__UpperCAmelCase : Any = arrival_time[i]
__UpperCAmelCase : Any = 0
# Index showing the location of the process being performed
__UpperCAmelCase : Any = 0
# Saves the current response ratio.
__UpperCAmelCase : List[str] = 0
for i in range(0 , lowerCAmelCase__ ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
__UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
__UpperCAmelCase : Tuple = temp
__UpperCAmelCase : List[str] = i
# Calculate the turn around time
__UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
__UpperCAmelCase : List[str] = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = [0] * no_of_process
for i in range(0 , lowerCAmelCase__ ):
__UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
_UpperCamelCase = 5
_UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E''']
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = [1, 2, 3, 4, 5]
_UpperCamelCase = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
_UpperCamelCase = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''')
for i in range(0, no_of_process):
print(
F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'
F'{turn_around_time[i]}\t\t\t{waiting_time[i]}'
)
print(F'average waiting time : {mean(waiting_time):.5f}')
print(F'average turn around time : {mean(turn_around_time):.5f}')
| 16 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.