code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCamelCase = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
368
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : @staticmethod def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 ) __UpperCAmelCase : Tuple = len(__UpperCAmelCase ) self.assertGreater(__UpperCAmelCase , 0 ) self.assertEqual( __UpperCAmelCase , [ { """score""": ANY(__UpperCAmelCase ), """label""": ANY(__UpperCAmelCase ), """box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )}, } for i in range(__UpperCAmelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> Tuple: '''simple docstring''' pass @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) __UpperCAmelCase : str = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) __UpperCAmelCase : Any = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass @require_torch @slow def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = 0.2 __UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
16
0
def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : int = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator __UpperCAmelCase : Dict = len(lowerCAmelCase__ ) if (len(lowerCAmelCase__ ) > 7) else 7 # Print table header for output print( """Symbol""".center(8 ) , """Stack""".center(lowerCAmelCase__ ) , """Postfix""".center(lowerCAmelCase__ ) , sep=""" | """ , ) print("""-""" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(lowerCAmelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(lowerCAmelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(lowerCAmelCase__ ) == 0: stack.append(lowerCAmelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(lowerCAmelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(lowerCAmelCase__ ) # push x to stack print( x.center(8 ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , sep=""" | """ , ) # Output in tabular format while len(lowerCAmelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( """ """.center(8 ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , sep=""" | """ , ) # Output in tabular format return "".join(lowerCAmelCase__ ) # return Postfix as str def lowercase_ ( lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Any = list(infix[::-1] ) # reverse the infix equation for i in range(len(lowerCAmelCase__ ) ): if infix[i] == "(": __UpperCAmelCase : List[Any] = ")" # change "(" to ")" elif infix[i] == ")": __UpperCAmelCase : Optional[int] = "(" # change ")" to "(" return (infix_2_postfix("""""".join(lowerCAmelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _UpperCamelCase = input('''\nEnter an Infix Equation = ''') # Input an Infix equation _UpperCamelCase = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
369
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.txt'''} _UpperCamelCase = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } _UpperCamelCase = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } _UpperCamelCase = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : Union[str, Any] = do_lower_case __UpperCAmelCase : str = strip_accents __UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars __UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase ) __UpperCAmelCase : List[Any] = do_lower_case def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
16
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( _a , _a , _a , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = StableUnCLIPImgaImgPipeline _SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _SCREAMING_SNAKE_CASE : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _SCREAMING_SNAKE_CASE : Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _SCREAMING_SNAKE_CASE : Tuple = frozenset([] ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = 32 __UpperCAmelCase : int = embedder_hidden_size # image encoding components __UpperCAmelCase : Tuple = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=snake_case_ , projection_dim=snake_case_ , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase : Any = StableUnCLIPImageNormalizer(embedding_dim=snake_case_ ) __UpperCAmelCase : Optional[Any] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) __UpperCAmelCase : List[str] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=snake_case_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase : Dict = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=snake_case_ , layers_per_block=1 , upcast_attention=snake_case_ , use_linear_projection=snake_case_ , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[int] = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=snake_case_ , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase : List[str] = AutoencoderKL() __UpperCAmelCase : List[Any] = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=True ) -> str: '''simple docstring''' if str(snake_case_ ).startswith("""mps""" ): __UpperCAmelCase : int = torch.manual_seed(snake_case_ ) else: __UpperCAmelCase : Tuple = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) __UpperCAmelCase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) if pil_image: __UpperCAmelCase : Tuple = input_image * 0.5 + 0.5 __UpperCAmelCase : Tuple = input_image.clamp(0 , 1 ) __UpperCAmelCase : Tuple = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __UpperCAmelCase : Any = DiffusionPipeline.numpy_to_pil(snake_case_ )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Any = self.get_dummy_components() __UpperCAmelCase : int = StableUnCLIPImgaImgPipeline(**snake_case_ ) __UpperCAmelCase : Any = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) __UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(snake_case_ ) inputs.update({"""image_embeds""": None} ) __UpperCAmelCase : Dict = sd_pipe(**snake_case_ ).images __UpperCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : Union[str, Any] = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=snake_case_ ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=snake_case_ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ) -> str: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=snake_case_ ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Dict: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) __UpperCAmelCase : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" ) __UpperCAmelCase : Dict = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase : Any = torch.Generator(device="""cpu""" ).manual_seed(0 ) __UpperCAmelCase : str = pipe(snake_case_ , """anime turle""" , generator=snake_case_ , output_type="""np""" ) __UpperCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case_ , snake_case_ ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) __UpperCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" ) __UpperCAmelCase : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 ) __UpperCAmelCase : str = pipe(snake_case_ , """anime turle""" , generator=snake_case_ , output_type="""np""" ) __UpperCAmelCase : int = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case_ , snake_case_ ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) __UpperCAmelCase : List[Any] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase : Any = pipe( snake_case_ , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) __UpperCAmelCase : Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
370
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''OwlViTFeatureExtractor'''] _UpperCamelCase = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = k_size // 2 __UpperCAmelCase : int = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __UpperCAmelCase : List[Any] = 1 / (2 * pi * sigma) * exp(-(square(__lowerCAmelCase ) + square(__lowerCAmelCase )) / (2 * square(__lowerCAmelCase )) ) return g def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase : Any = image.shape[0], image.shape[1] # dst image height and width __UpperCAmelCase : str = height - k_size + 1 __UpperCAmelCase : int = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __UpperCAmelCase : str = zeros((dst_height * dst_width, k_size * k_size) ) __UpperCAmelCase : str = 0 for i, j in product(range(__lowerCAmelCase ) , range(__lowerCAmelCase ) ): __UpperCAmelCase : Tuple = ravel(image[i : i + k_size, j : j + k_size] ) __UpperCAmelCase : Optional[Any] = window row += 1 # turn the kernel into shape(k*k, 1) __UpperCAmelCase : Tuple = gen_gaussian_kernel(__lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase : Tuple = ravel(__lowerCAmelCase ) # reshape and get the dst image __UpperCAmelCase : Tuple = dot(__lowerCAmelCase , __lowerCAmelCase ).reshape(__lowerCAmelCase , __lowerCAmelCase ).astype(__lowerCAmelCase ) return dst if __name__ == "__main__": # read original image _UpperCamelCase = imread(r'''../image_data/lena.jpg''') # turn image in gray scale value _UpperCamelCase = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _UpperCamelCase = gaussian_filter(gray, 3, sigma=1) _UpperCamelCase = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
371
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: '''simple docstring''' warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
16
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class _A ( __UpperCamelCase ): _SCREAMING_SNAKE_CASE : str = "levit" def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=3 , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=16 , __UpperCAmelCase=[128, 256, 384] , __UpperCAmelCase=[4, 8, 12] , __UpperCAmelCase=[4, 4, 4] , __UpperCAmelCase=[16, 16, 16] , __UpperCAmelCase=0 , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=0.02 , **__UpperCAmelCase , ) -> Dict: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : Tuple = image_size __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : Union[str, Any] = kernel_size __UpperCAmelCase : Optional[int] = stride __UpperCAmelCase : str = padding __UpperCAmelCase : int = hidden_sizes __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : Union[str, Any] = depths __UpperCAmelCase : Optional[int] = key_dim __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : str = attention_ratio __UpperCAmelCase : Tuple = mlp_ratio __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : str = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class _A ( __UpperCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = version.parse("1.11" ) @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __A ( self ) -> float: '''simple docstring''' return 1E-4
350
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) __UpperCAmelCase : List[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) __UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) __UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' import torch __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = pipeline("""text-classification""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : int = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __UpperCAmelCase : Union[str, Any] = """HuggingFace is in""" __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""] __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase ) __UpperCAmelCase : Any = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , ) __UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(__UpperCAmelCase ): text_classifier(__UpperCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
16
0
'''simple docstring''' import random class _A : """simple docstring""" @staticmethod def __A ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = [ord(__SCREAMING_SNAKE_CASE ) for i in text] __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Tuple = [] for i in plain: __UpperCAmelCase : List[Any] = random.randint(1 , 300 ) __UpperCAmelCase : Dict = (i + k) * k cipher.append(__SCREAMING_SNAKE_CASE ) key.append(__SCREAMING_SNAKE_CASE ) return cipher, key @staticmethod def __A ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : int = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(__SCREAMING_SNAKE_CASE ) ) return "".join(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _UpperCamelCase = Onepad().encrypt('''Hello''') print(c, k) print(Onepad().decrypt(c, k))
351
'''simple docstring''' from ..utils import DummyObject, requires_backends class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
16
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _A : def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase ) __UpperCAmelCase : List[str] = length __UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa ) __UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Dict: '''simple docstring''' return self.length def __getitem__( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int: '''simple docstring''' super().__init__() __UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Any = True def __A ( self , __UpperCAmelCase=None ) -> str: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : Optional[int] = False return x * self.a[0] + self.b[0] class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : str = True def __A ( self , __UpperCAmelCase=None ) -> Tuple: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : int = False return x * self.a + self.b def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer __UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" ) __UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )} def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : List[Any] = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) if "label" in examples: __UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCAmelCase : Tuple = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCAmelCase__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 ) __UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
16
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
353
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None @property def __A ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = (3, 32, 128) __UpperCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) __UpperCAmelCase : List[Any] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) return image_input def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[str] = self.prepare_image_inputs() __UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" ) __UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Dict = """test""" __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = """test""" __UpperCAmelCase : int = self.prepare_image_inputs() __UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase ) __UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Optional[Any] = self.get_tokenizer() __UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : str = None __UpperCAmelCase : Dict = self.prepare_image_inputs() __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 ) __UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 ) __UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 ) __UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
16
0
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _UpperCamelCase = 'src/transformers' _UpperCamelCase = 'docs/source/en/tasks' def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any ): """simple docstring""" with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __UpperCAmelCase : Optional[int] = f.readlines() # Find the start prompt. __UpperCAmelCase : int = 0 while not lines[start_index].startswith(_A ): start_index += 1 start_index += 1 __UpperCAmelCase : List[str] = start_index while not lines[end_index].startswith(_A ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase = direct_transformers_import(TRANSFORMERS_PATH) _UpperCamelCase = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _UpperCamelCase = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def lowercase_ ( lowerCAmelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase : int = TASK_GUIDE_TO_MODELS[task_guide] __UpperCAmelCase : Dict = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_A , set() ) __UpperCAmelCase : Union[str, Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str]=False ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = _find_text_in_file( filename=os.path.join(_A , _A ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) __UpperCAmelCase : List[Any] = get_model_list_for_task(_A ) if current_list != new_list: if overwrite: with open(os.path.join(_A , _A ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' """ to fix this.""" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _UpperCamelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
354
'''simple docstring''' from collections.abc import Sequence def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ): """simple docstring""" if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __UpperCAmelCase : Any = nums[0] for i in range(1 , len(lowerCAmelCase__ ) ): __UpperCAmelCase : Union[str, Any] = nums[i] __UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _UpperCamelCase = int(input('''Enter number of elements : ''').strip()) _UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
16
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class _A ( snake_case_ ): _SCREAMING_SNAKE_CASE : List[Any] = "lilt" def __init__( self , __UpperCAmelCase=30_522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3_072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=None , __UpperCAmelCase=4 , __UpperCAmelCase=1_024 , **__UpperCAmelCase , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : str = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Optional[Any] = classifier_dropout __UpperCAmelCase : Optional[Any] = channel_shrink_ratio __UpperCAmelCase : Tuple = max_ad_position_embeddings
355
'''simple docstring''' class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = data __UpperCAmelCase : int = previous __UpperCAmelCase : Union[str, Any] = next_node def __str__( self ) -> str: '''simple docstring''' return f'{self.data}' def __A ( self ) -> int: '''simple docstring''' return self.data def __A ( self ) -> List[str]: '''simple docstring''' return self.next def __A ( self ) -> str: '''simple docstring''' return self.previous class _A : def __init__( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = head def __iter__( self ) -> str: '''simple docstring''' return self def __A ( self ) -> str: '''simple docstring''' if not self.current: raise StopIteration else: __UpperCAmelCase : List[str] = self.current.get_data() __UpperCAmelCase : int = self.current.get_next() return value class _A : def __init__( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = None # First node in list __UpperCAmelCase : List[str] = None # Last node in list def __str__( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = self.head __UpperCAmelCase : Optional[int] = [] while current is not None: nodes.append(current.get_data() ) __UpperCAmelCase : Any = current.get_next() return " ".join(str(__UpperCAmelCase ) for node in nodes ) def __contains__( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.head while current: if current.get_data() == value: return True __UpperCAmelCase : Optional[Any] = current.get_next() return False def __iter__( self ) -> str: '''simple docstring''' return LinkedListIterator(self.head ) def __A ( self ) -> List[Any]: '''simple docstring''' if self.head: return self.head.get_data() return None def __A ( self ) -> Optional[Any]: '''simple docstring''' if self.tail: return self.tail.get_data() return None def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: __UpperCAmelCase : str = node __UpperCAmelCase : List[str] = node else: self.insert_before_node(self.head , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: self.set_head(__UpperCAmelCase ) else: self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase ) if self.head is None: self.set_head(__UpperCAmelCase ) else: self.set_tail(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Tuple = node __UpperCAmelCase : List[Any] = node.previous if node.get_previous() is None: __UpperCAmelCase : str = node_to_insert else: __UpperCAmelCase : Optional[Any] = node_to_insert __UpperCAmelCase : List[Any] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : List[str] = node __UpperCAmelCase : Union[str, Any] = node.next if node.get_next() is None: __UpperCAmelCase : Dict = node_to_insert else: __UpperCAmelCase : Any = node_to_insert __UpperCAmelCase : List[str] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase ) return current_position += 1 __UpperCAmelCase : int = node.next self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Node: '''simple docstring''' __UpperCAmelCase : Dict = self.head while node: if node.get_data() == item: return node __UpperCAmelCase : List[str] = node.get_next() raise Exception("""Node not found""" ) def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if (node := self.get_node(__UpperCAmelCase )) is not None: if node == self.head: __UpperCAmelCase : Optional[int] = self.head.get_next() if node == self.tail: __UpperCAmelCase : Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(__UpperCAmelCase ) @staticmethod def __A ( __UpperCAmelCase ) -> None: '''simple docstring''' if node.get_next(): __UpperCAmelCase : Optional[Any] = node.previous if node.get_previous(): __UpperCAmelCase : int = node.next __UpperCAmelCase : Tuple = None __UpperCAmelCase : Union[str, Any] = None def __A ( self ) -> List[Any]: '''simple docstring''' return self.head is None def lowercase_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
16
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class _A : def __init__( self , __UpperCAmelCase , ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Optional[Any] = 13 __UpperCAmelCase : Any = 7 __UpperCAmelCase : str = True __UpperCAmelCase : int = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : int = True __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : str = False __UpperCAmelCase : str = False __UpperCAmelCase : Dict = 2 __UpperCAmelCase : int = 99 __UpperCAmelCase : str = 0 __UpperCAmelCase : List[Any] = 32 __UpperCAmelCase : Any = 2 __UpperCAmelCase : Optional[Any] = 4 __UpperCAmelCase : Any = 0.1 __UpperCAmelCase : int = 0.1 __UpperCAmelCase : Optional[Any] = 512 __UpperCAmelCase : Dict = 16 __UpperCAmelCase : Any = 2 __UpperCAmelCase : Any = 0.02 __UpperCAmelCase : Any = 3 __UpperCAmelCase : Union[str, Any] = 4 __UpperCAmelCase : str = '''last''' __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = None __UpperCAmelCase : Dict = 0 def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCAmelCase : str = None if self.use_input_lengths: __UpperCAmelCase : Dict = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCAmelCase : Dict = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Dict = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : List[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = TFFlaubertModel(config=lowerCamelCase__ ) __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} __UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ ) __UpperCAmelCase : List[str] = [input_ids, input_mask] __UpperCAmelCase : Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = TFFlaubertWithLMHeadModel(lowerCamelCase__ ) __UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} __UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase__ ) __UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''lengths''': input_lengths} __UpperCAmelCase : str = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = TFFlaubertForSequenceClassification(lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = {'''input_ids''': input_ids, '''lengths''': input_lengths} __UpperCAmelCase : List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: '''simple docstring''' __UpperCAmelCase : Any = self.num_labels __UpperCAmelCase : Optional[Any] = TFFlaubertForTokenClassification(config=lowerCamelCase__ ) __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCAmelCase : List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = self.num_choices __UpperCAmelCase : int = TFFlaubertForMultipleChoice(config=lowerCamelCase__ ) __UpperCAmelCase : List[str] = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : Tuple = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : int = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : Union[str, Any] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : str = self.prepare_config_and_inputs() ( __UpperCAmelCase ) : Dict = config_and_inputs __UpperCAmelCase : Dict = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class _A ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE : str = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _SCREAMING_SNAKE_CASE : List[str] = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE : List[Any] = False _SCREAMING_SNAKE_CASE : str = False def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = TFFlaubertModelTester(self ) __UpperCAmelCase : List[str] = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 ) def __A ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase__ ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase__ ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase__ ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase__ ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase__ ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase__ ) @slow def __A ( self ) -> List[str]: '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : int = TFFlaubertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) __UpperCAmelCase : str = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCAmelCase : int = model(lowerCamelCase__ )[0] __UpperCAmelCase : List[str] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. __UpperCAmelCase : Optional[int] = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
356
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _A : _SCREAMING_SNAKE_CASE : List[str] _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ) -> Any: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class _A : _SCREAMING_SNAKE_CASE : Optional[List] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None __UpperCAmelCase : int = len(self.languages ) if self.languages else None def __call__( self ) -> Optional[Any]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = set(self.languages ) if self.languages and set(__UpperCAmelCase ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) ) return {"language": languages, "translation": translations} def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
16
0
_UpperCamelCase = 8.3_144_598 def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] ): """simple docstring""" if temperature < 0: raise Exception("""Temperature cannot be less than 0 K""" ) if molar_mass <= 0: raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _UpperCamelCase = 300 _UpperCamelCase = 28 _UpperCamelCase = rms_speed_of_molecule(temperature, molar_mass) print(F'Vrms of Nitrogen gas at 300 K is {vrms} m/s')
357
'''simple docstring''' from statistics import mean import numpy as np def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Tuple = 0 # Number of processes finished __UpperCAmelCase : Optional[int] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __UpperCAmelCase : Tuple = [0] * no_of_process # List to include calculation results __UpperCAmelCase : int = [0] * no_of_process # Sort by arrival time. __UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )] __UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )] arrival_time.sort() while no_of_process > finished_process_count: __UpperCAmelCase : Dict = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __UpperCAmelCase : Any = arrival_time[i] __UpperCAmelCase : Any = 0 # Index showing the location of the process being performed __UpperCAmelCase : Any = 0 # Saves the current response ratio. __UpperCAmelCase : List[str] = 0 for i in range(0 , lowerCAmelCase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __UpperCAmelCase : Tuple = temp __UpperCAmelCase : List[str] = i # Calculate the turn around time __UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __UpperCAmelCase : List[str] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Optional[int] = [0] * no_of_process for i in range(0 , lowerCAmelCase__ ): __UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _UpperCamelCase = 5 _UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E'''] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _UpperCamelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
16
0
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class _A ( SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : str = ComputeEnvironment.AMAZON_SAGEMAKER _SCREAMING_SNAKE_CASE : Tuple = True _SCREAMING_SNAKE_CASE : List[Any] = "ml.p3.2xlarge" _SCREAMING_SNAKE_CASE : Dict = "accelerate_sagemaker_execution_role" _SCREAMING_SNAKE_CASE : Dict = "hf-sm" _SCREAMING_SNAKE_CASE : List[str] = "us-east-1" _SCREAMING_SNAKE_CASE : str = 1 _SCREAMING_SNAKE_CASE : int = "accelerate-sagemaker-1" _SCREAMING_SNAKE_CASE : str = "1.6" _SCREAMING_SNAKE_CASE : Any = "4.4" _SCREAMING_SNAKE_CASE : List[str] = "train.py" _SCREAMING_SNAKE_CASE : Optional[Any] = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] _SCREAMING_SNAKE_CASE : Any = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class _A ( unittest.TestCase ): def __A ( self ) -> int: '''simple docstring''' # If no defaults are changed, `to_kwargs` returns an empty dict. __UpperCAmelCase : List[str] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] , __UpperCAmelCase ) assert isinstance(converted_args["""do_train"""] , __UpperCAmelCase ) assert isinstance(converted_args["""epochs"""] , __UpperCAmelCase ) assert isinstance(converted_args["""learning_rate"""] , __UpperCAmelCase ) assert isinstance(converted_args["""max_steps"""] , __UpperCAmelCase ) with pytest.raises(__UpperCAmelCase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
358
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Union[str, Any] = seq_length __UpperCAmelCase : int = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : int = scope def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = None if self.use_input_mask: __UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> List[str]: '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_config() __UpperCAmelCase : List[Any] = 300 return config def __A ( self ) -> Dict: '''simple docstring''' ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = self.prepare_config_and_inputs() __UpperCAmelCase : Tuple = True __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : List[str] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Dict = () def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = MraModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Any: '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""MRA does not output attentions""" ) def __A ( self ) -> List[Any]: '''simple docstring''' return @require_torch class _A ( unittest.TestCase ): @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0] __UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : int = model(__UpperCAmelCase )[0] __UpperCAmelCase : Union[str, Any] = 50_265 __UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : Any = model(__UpperCAmelCase )[0] __UpperCAmelCase : Dict = 50_265 __UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : str = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
0
'''simple docstring''' from functools import lru_cache @lru_cache def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
359
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : List[Any] = embed_dim __UpperCAmelCase : str = depths __UpperCAmelCase : Dict = num_heads __UpperCAmelCase : str = window_size __UpperCAmelCase : int = mlp_ratio __UpperCAmelCase : Union[str, Any] = qkv_bias __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Optional[int] = use_absolute_embeddings __UpperCAmelCase : Any = patch_norm __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : Any = scope __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : int = encoder_stride def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) __UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = self.type_sequence_label_size __UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = SwinvaModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 ) def __A ( self ) -> Any: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(__UpperCAmelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : str = outputs.attentions __UpperCAmelCase : Any = len(self.model_tester.depths ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : int = config.window_size**2 __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : Dict = len(__UpperCAmelCase ) # Check attention is always last and order is fine __UpperCAmelCase : Any = True __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): __UpperCAmelCase : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : Optional[int] = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) ) __UpperCAmelCase : Tuple = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # Swinv2 has a different seq_length __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : int = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape __UpperCAmelCase : Any = ( reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : int = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Tuple = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> int: '''simple docstring''' return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __UpperCAmelCase ) __UpperCAmelCase : Tuple = self.default_image_processor __UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
0
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _A ( __lowercase ): @slow @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Any = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) __UpperCAmelCase : Any = BertTokenizer.from_pretrained("""bert-base-uncased""" ) __UpperCAmelCase : List[str] = bertabert.config.encoder.vocab_size __UpperCAmelCase : Optional[int] = tokenizer.sep_token_id __UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id __UpperCAmelCase : List[Any] = 128 __UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) __UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) __UpperCAmelCase : Optional[Any] = train_dataset.select(range(32 ) ) __UpperCAmelCase : Optional[int] = val_dataset.select(range(16 ) ) __UpperCAmelCase : Dict = 4 def _map_to_encoder_decoder_inputs(__UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __UpperCAmelCase : List[Any] = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=UpperCAmelCase__ , max_length=512 ) __UpperCAmelCase : str = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=UpperCAmelCase__ , max_length=128 ) __UpperCAmelCase : Optional[int] = inputs.input_ids __UpperCAmelCase : List[str] = inputs.attention_mask __UpperCAmelCase : Union[str, Any] = outputs.input_ids __UpperCAmelCase : Optional[Any] = outputs.input_ids.copy() __UpperCAmelCase : List[str] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] __UpperCAmelCase : Optional[Any] = outputs.attention_mask assert all(len(UpperCAmelCase__ ) == 512 for x in inputs.input_ids ) assert all(len(UpperCAmelCase__ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__UpperCAmelCase ): __UpperCAmelCase : str = pred.label_ids __UpperCAmelCase : str = pred.predictions # all unnecessary tokens are removed __UpperCAmelCase : List[str] = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) __UpperCAmelCase : Dict = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) __UpperCAmelCase : List[Any] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(UpperCAmelCase__ ) )] ) / len(UpperCAmelCase__ ) return {"accuracy": accuracy} # map train dataset __UpperCAmelCase : Optional[int] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset __UpperCAmelCase : Any = val_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) __UpperCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() __UpperCAmelCase : Any = SeqaSeqTrainingArguments( output_dir=UpperCAmelCase__ , per_device_train_batch_size=UpperCAmelCase__ , per_device_eval_batch_size=UpperCAmelCase__ , predict_with_generate=UpperCAmelCase__ , evaluation_strategy="""steps""" , do_train=UpperCAmelCase__ , do_eval=UpperCAmelCase__ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __UpperCAmelCase : str = SeqaSeqTrainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , compute_metrics=_compute_metrics , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , ) # start training trainer.train()
360
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( lowerCAmelCase__ : List[str] ): """simple docstring""" if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : Any = crop_size __UpperCAmelCase : Optional[Any] = resample __UpperCAmelCase : Dict = do_rescale __UpperCAmelCase : List[str] = rescale_factor __UpperCAmelCase : Dict = offset __UpperCAmelCase : List[str] = do_normalize __UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" in size: __UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: __UpperCAmelCase : Any = (size["""height"""], size["""width"""]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = image.astype(np.floataa ) if offset: __UpperCAmelCase : Tuple = image - (scale / 2) return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase ) if do_resize: __UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) if do_center_crop: __UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase ) if do_rescale: __UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase ) if do_normalize: __UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) return image def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' __UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : List[Any] = resample if resample is not None else self.resample __UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : List[Any] = offset if offset is not None else self.offset __UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : int = image_std if image_std is not None else self.image_std __UpperCAmelCase : Any = size if size is not None else self.size __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __UpperCAmelCase : int = make_batched(__UpperCAmelCase ) __UpperCAmelCase : Tuple = [ [ self._preprocess_image( image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , ) for img in video ] for video in videos ] __UpperCAmelCase : Tuple = {"""pixel_values""": videos} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
16
0
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _UpperCamelCase = "base_with_context" def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) __UpperCAmelCase : List[Any] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): __UpperCAmelCase : int = weights[f'layers_{lyr_num}'] __UpperCAmelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) __UpperCAmelCase : str = ly_weight["""attention"""] __UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __UpperCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __UpperCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ): """simple docstring""" __UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) __UpperCAmelCase : Optional[int] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): __UpperCAmelCase : Optional[int] = weights[f'layers_{lyr_num}'] __UpperCAmelCase : Any = ly_weight["""attention"""] __UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __UpperCAmelCase : str = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) __UpperCAmelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __UpperCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __UpperCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : int = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) __UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) __UpperCAmelCase : int = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__lowerCAmelCase ) __UpperCAmelCase : Optional[int] = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): __UpperCAmelCase : Union[str, Any] = weights[f'layers_{lyr_num}'] __UpperCAmelCase : Tuple = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) __UpperCAmelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) __UpperCAmelCase : str = ly_weight["""self_attention"""] __UpperCAmelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __UpperCAmelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __UpperCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __UpperCAmelCase : List[Any] = ly_weight["""MultiHeadDotProductAttention_0"""] __UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __UpperCAmelCase : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __UpperCAmelCase : Tuple = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) __UpperCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __UpperCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) __UpperCAmelCase : Dict = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : List[str] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) __UpperCAmelCase : Optional[int] = jnp.tree_util.tree_map(onp.array , __lowerCAmelCase ) __UpperCAmelCase : Optional[Any] = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] __UpperCAmelCase : Optional[Any] = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) __UpperCAmelCase : List[Any] = inference.parse_training_gin_file(__lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase : List[str] = inference.InferenceModel(args.checkpoint_path , __lowerCAmelCase ) __UpperCAmelCase : Dict = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) __UpperCAmelCase : str = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) __UpperCAmelCase : List[Any] = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) __UpperCAmelCase : List[str] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) __UpperCAmelCase : Union[str, Any] = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , __lowerCAmelCase ) __UpperCAmelCase : List[Any] = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , __lowerCAmelCase ) __UpperCAmelCase : List[Any] = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , __lowerCAmelCase ) __UpperCAmelCase : Union[str, Any] = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) __UpperCAmelCase : Optional[int] = SpectrogramDiffusionPipeline( notes_encoder=__lowerCAmelCase , continuous_encoder=__lowerCAmelCase , decoder=__lowerCAmelCase , scheduler=__lowerCAmelCase , melgan=__lowerCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=F'{MODEL}/checkpoint_500000', type=str, required=False, help='''Path to the original jax model checkpoint.''', ) _UpperCamelCase = parser.parse_args() main(args)
361
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline _SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCAmelCase : Any = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : Dict = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any: '''simple docstring''' if str(__UpperCAmelCase ).startswith("""mps""" ): __UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase ) else: __UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] ) __UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0] __UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __UpperCAmelCase : Dict = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
0
'''simple docstring''' from __future__ import annotations _UpperCamelCase = tuple[int, int, int] _UpperCamelCase = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase _UpperCamelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- _UpperCamelCase = 'EGZWVONAHDCLFQMSIPJBYUKXTR' _UpperCamelCase = 'FOBHMDKEXQNRAULPGSJVTYICZW' _UpperCamelCase = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- _UpperCamelCase = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- _UpperCamelCase = 'RMDJXFUWGISLHVTCQNKYPBEZOA' _UpperCamelCase = 'SGLCPQWZHKXAREONTFBVIYJUDM' _UpperCamelCase = 'HVSICLTYKQUBXDWAJZOMFGPREN' _UpperCamelCase = 'RZWQHFMVDBKICJLNTUXAGYPSOE' _UpperCamelCase = 'LFKIJODBEGAMQPXVUHYSTCZRWN' _UpperCamelCase = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ): """simple docstring""" if (unique_rotsel := len(set(lowercase__ ) )) < 3: __UpperCAmelCase : List[str] = f'Please use 3 unique rotors (not {unique_rotsel})' raise Exception(lowercase__ ) # Checks if rotor positions are valid __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = rotpos if not 0 < rotorposa <= len(lowercase__ ): __UpperCAmelCase : Optional[Any] = f'First rotor position is not within range of 1..26 ({rotorposa}' raise ValueError(lowercase__ ) if not 0 < rotorposa <= len(lowercase__ ): __UpperCAmelCase : List[Any] = f'Second rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(lowercase__ ) if not 0 < rotorposa <= len(lowercase__ ): __UpperCAmelCase : Tuple = f'Third rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(lowercase__ ) # Validates string and returns dict __UpperCAmelCase : str = _plugboard(lowercase__ ) return rotpos, rotsel, pbdict def lowercase_ ( lowerCAmelCase__ : Dict ): """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): __UpperCAmelCase : Dict = f'Plugboard setting isn\'t type string ({type(lowercase__ )})' raise TypeError(lowercase__ ) elif len(lowercase__ ) % 2 != 0: __UpperCAmelCase : Optional[Any] = f'Odd number of symbols ({len(lowercase__ )})' raise Exception(lowercase__ ) elif pbstring == "": return {} pbstring.replace(""" """ , """""" ) # Checks if all characters are unique __UpperCAmelCase : Optional[int] = set() for i in pbstring: if i not in abc: __UpperCAmelCase : Optional[int] = f'\'{i}\' not in list of symbols' raise Exception(lowercase__ ) elif i in tmppbl: __UpperCAmelCase : List[Any] = f'Duplicate symbol ({i})' raise Exception(lowercase__ ) else: tmppbl.add(lowercase__ ) del tmppbl # Created the dictionary __UpperCAmelCase : str = {} for j in range(0 , len(lowercase__ ) - 1 , 2 ): __UpperCAmelCase : int = pbstring[j + 1] __UpperCAmelCase : str = pbstring[j] return pb def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : str = (rotora, rotora, rotora) , lowerCAmelCase__ : int = "" , ): """simple docstring""" __UpperCAmelCase : Tuple = text.upper() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = _validator( lowercase__ , lowercase__ , plugb.upper() ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = rotor_position __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 __UpperCAmelCase : Optional[Any] = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: __UpperCAmelCase : Dict = plugboard[symbol] # rotor ra -------------------------- __UpperCAmelCase : str = abc.index(lowercase__ ) + rotorposa __UpperCAmelCase : Union[str, Any] = rotora[index % len(lowercase__ )] # rotor rb -------------------------- __UpperCAmelCase : int = abc.index(lowercase__ ) + rotorposa __UpperCAmelCase : List[Any] = rotora[index % len(lowercase__ )] # rotor rc -------------------------- __UpperCAmelCase : Optional[int] = abc.index(lowercase__ ) + rotorposa __UpperCAmelCase : str = rotora[index % len(lowercase__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher __UpperCAmelCase : Union[str, Any] = reflector[symbol] # 2nd rotors __UpperCAmelCase : int = abc[rotora.index(lowercase__ ) - rotorposa] __UpperCAmelCase : Optional[int] = abc[rotora.index(lowercase__ ) - rotorposa] __UpperCAmelCase : List[str] = abc[rotora.index(lowercase__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: __UpperCAmelCase : List[str] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(lowercase__ ): __UpperCAmelCase : List[str] = 0 rotorposa += 1 if rotorposa >= len(lowercase__ ): __UpperCAmelCase : Optional[Any] = 0 rotorposa += 1 if rotorposa >= len(lowercase__ ): __UpperCAmelCase : int = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(lowercase__ ) return "".join(lowercase__ ) if __name__ == "__main__": _UpperCamelCase = 'This is my Python script that emulates the Enigma machine from WWII.' _UpperCamelCase = (1, 1, 1) _UpperCamelCase = 'pictures' _UpperCamelCase = (rotora, rotora, rotora) _UpperCamelCase = enigma(message, rotor_pos, rotor_sel, pb) print('''Encrypted message:''', en) print('''Decrypted message:''', enigma(en, rotor_pos, rotor_sel, pb))
362
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column __UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )] def __str__( self ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier __UpperCAmelCase : Optional[Any] = 0 for row_vector in self.array: for obj in row_vector: __UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) ) __UpperCAmelCase : Optional[int] = f'%{max_element_length}s' # Make string and return def single_line(__UpperCAmelCase ) -> str: nonlocal string_format_identifier __UpperCAmelCase : Any = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array ) return s def __repr__( self ) -> str: '''simple docstring''' return str(self ) def __A ( self , __UpperCAmelCase ) -> bool: '''simple docstring''' if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = value def __add__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add __UpperCAmelCase : Dict = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : Dict = -self[r, c] return result def __sub__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' return self + (-another) def __mul__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication __UpperCAmelCase : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] * another return result elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication assert self.column == another.row __UpperCAmelCase : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})' raise TypeError(__UpperCAmelCase ) def __A ( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Dict = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[str] = self[r, c] return result def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __UpperCAmelCase : Optional[Any] = v.transpose() __UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = Matrix(3 , 3 , 0 ) for i in range(3 ): __UpperCAmelCase : Tuple = 1 print(f'a^(-1) is {ainv}' ) # u, v __UpperCAmelCase : Dict = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3 __UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' ) def lowercase_ ( ): """simple docstring""" import doctest doctest.testmod() testa()
16
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : int = "bloom" _SCREAMING_SNAKE_CASE : List[str] = ["past_key_values"] _SCREAMING_SNAKE_CASE : int = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , __UpperCAmelCase=250_880 , __UpperCAmelCase=64 , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = vocab_size # Backward compatibility with n_embed kwarg __UpperCAmelCase : List[str] = kwargs.pop("""n_embed""" , _SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Optional[int] = hidden_size if n_embed is None else n_embed __UpperCAmelCase : Dict = n_layer __UpperCAmelCase : List[Any] = n_head __UpperCAmelCase : Dict = layer_norm_epsilon __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : List[Any] = use_cache __UpperCAmelCase : List[Any] = pretraining_tp __UpperCAmelCase : List[str] = apply_residual_connection_post_layernorm __UpperCAmelCase : Any = hidden_dropout __UpperCAmelCase : Tuple = attention_dropout __UpperCAmelCase : Optional[Any] = bos_token_id __UpperCAmelCase : List[str] = eos_token_id __UpperCAmelCase : Optional[int] = slow_but_exact super().__init__(bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : int = version.parse("1.12" ) def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Dict: '''simple docstring''' super().__init__(_SCREAMING_SNAKE_CASE , task=_SCREAMING_SNAKE_CASE , patching_specs=_SCREAMING_SNAKE_CASE , use_past=_SCREAMING_SNAKE_CASE ) if not getattr(self._config , """pad_token_id""" , _SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __UpperCAmelCase : int = 0 @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __UpperCAmelCase : Any = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction="""inputs""" , inverted_values_shape=_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : int = {0: "batch", 1: "past_sequence + sequence"} else: __UpperCAmelCase : Dict = {0: "batch", 1: "sequence"} return common_inputs @property def __A ( self ) -> int: '''simple docstring''' return self._config.n_layer @property def __A ( self ) -> int: '''simple docstring''' return self._config.n_head @property def __A ( self ) -> float: '''simple docstring''' return 1E-3 def __A ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = super(_SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __UpperCAmelCase : str = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __UpperCAmelCase : Dict = common_inputs["input_ids"].shape # Not using the same length for past_key_values __UpperCAmelCase : int = seqlen + 2 __UpperCAmelCase : Union[str, Any] = self._config.hidden_size // self.num_attention_heads __UpperCAmelCase : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __UpperCAmelCase : int = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __UpperCAmelCase : int = [ (torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __UpperCAmelCase : str = common_inputs["attention_mask"] if self.use_past: __UpperCAmelCase : Any = ordered_inputs["attention_mask"].dtype __UpperCAmelCase : List[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def __A ( self ) -> int: '''simple docstring''' return 13
363
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
0
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class _A : @staticmethod def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' pass def lowercase_ ( lowerCAmelCase__ : Image ): """simple docstring""" __UpperCAmelCase : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = DepthEstimationPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , lowerCamelCase_ ) import datasets __UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) __UpperCAmelCase : List[str] = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] , lowerCamelCase_ , ) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def __A ( self ) -> Any: '''simple docstring''' pass @slow @require_torch def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """Intel/dpt-large""" __UpperCAmelCase : str = pipeline("""depth-estimation""" , model=lowerCamelCase_ ) __UpperCAmelCase : Dict = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) __UpperCAmelCase : Dict = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 ) @require_torch def __A ( self ) -> Any: '''simple docstring''' # This is highly irregular to have no small tests. self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
364
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING _SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def __A ( self ) -> Any: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) __UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() __UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow @require_torch def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(__UpperCAmelCase ) @slow @require_tf def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) __UpperCAmelCase : Tuple = None __UpperCAmelCase : int = None self.run_pipeline_test(__UpperCAmelCase , [] ) @require_tf def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : str = None self.run_pipeline_test(__UpperCAmelCase , [] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) __UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = fill_masker.tokenizer __UpperCAmelCase : Union[str, Any] = fill_masker.model __UpperCAmelCase : Tuple = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , ) with self.assertRaises(__UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__UpperCAmelCase ): fill_masker("""This is""" ) self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = tokenizer.get_vocab() __UpperCAmelCase : Dict = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase ) __UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Any = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Call argument __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Score equivalence __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs] __UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ) == set(__UpperCAmelCase ): __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] ) with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 ) __UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = tokenizer.get_vocab() __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) # top_k=2, ntargets=3 __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__UpperCAmelCase ) , 3 ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Dict = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , )
16
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCamelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _UpperCamelCase = { """bert-base-uncased""": 512, """bert-large-uncased""": 512, """bert-base-cased""": 512, """bert-large-cased""": 512, """bert-base-multilingual-uncased""": 512, """bert-base-multilingual-cased""": 512, """bert-base-chinese""": 512, """bert-base-german-cased""": 512, """bert-large-uncased-whole-word-masking""": 512, """bert-large-cased-whole-word-masking""": 512, """bert-large-uncased-whole-word-masking-finetuned-squad""": 512, """bert-large-cased-whole-word-masking-finetuned-squad""": 512, """bert-base-cased-finetuned-mrpc""": 512, """bert-base-german-dbmdz-cased""": 512, """bert-base-german-dbmdz-uncased""": 512, """TurkuNLP/bert-base-finnish-cased-v1""": 512, """TurkuNLP/bert-base-finnish-uncased-v1""": 512, """wietsedv/bert-base-dutch-cased""": 512, } _UpperCamelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[Any] = BertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) __UpperCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _lowercase ) != tokenize_chinese_chars ): __UpperCAmelCase : str = getattr(_lowercase , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : str = do_lower_case __UpperCAmelCase : Optional[int] = strip_accents __UpperCAmelCase : Optional[Any] = tokenize_chinese_chars __UpperCAmelCase : Tuple = normalizer_class(**_lowercase ) __UpperCAmelCase : Any = do_lower_case def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : str = [self.sep_token_id] __UpperCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : List[Any] = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
365
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} ) _SCREAMING_SNAKE_CASE : str = "image" _SCREAMING_SNAKE_CASE : str = "labels" def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __UpperCAmelCase ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) __UpperCAmelCase : int = copy.deepcopy(self ) __UpperCAmelCase : str = self.label_schema.copy() __UpperCAmelCase : Optional[Any] = features[self.label_column] __UpperCAmelCase : Optional[int] = label_schema return task_template @property def __A ( self ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
16
0
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets _UpperCamelCase = datasets.logging.get_logger(__name__) _UpperCamelCase = '''\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n''' _UpperCamelCase = '''\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n''' _UpperCamelCase = '''\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n''' def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]="dummy_doc" ): """simple docstring""" __UpperCAmelCase : List[str] = {doc: key_lines} __UpperCAmelCase : List[str] = {doc: sys_lines} __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Dict = 0 __UpperCAmelCase : str = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : str = 0 __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Dict = 0 __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = reader.get_doc_mentions(SCREAMING_SNAKE_CASE__ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE__ ) key_singletons_num += singletons_num if NP_only or min_span: __UpperCAmelCase : Dict = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE__ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase , __UpperCAmelCase : int = reader.get_doc_mentions(SCREAMING_SNAKE_CASE__ , sys_doc_lines[doc] , SCREAMING_SNAKE_CASE__ ) sys_singletons_num += singletons_num if NP_only or min_span: __UpperCAmelCase : int = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE__ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if remove_nested: __UpperCAmelCase , __UpperCAmelCase : Optional[int] = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters __UpperCAmelCase , __UpperCAmelCase : List[str] = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters __UpperCAmelCase : int = reader.get_mention_assignments(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Union[str, Any] = reader.get_mention_assignments(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Tuple = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ f'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( """Number of resulting singleton clusters in the key """ f'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( f'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' """files, respectively""" ) return doc_coref_infos def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase : List[Any] = get_coref_infos(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : str = 0 for name, metric in metrics: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = evaluator.evaluate_documents(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f'{name}/recall': recall, f'{name}/precision': precision, f'{name}/f1': fa} ) logger.info( name.ljust(10 ) , f'Recall: {recall * 100:.2f}' , f' Precision: {precision * 100:.2f}' , f' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: __UpperCAmelCase : int = (conll / 3) * 100 logger.info(f'CoNLL score: {conll:.2f}' ) output_scores.update({"""conll_score""": conll} ) return output_scores def lowercase_ ( lowerCAmelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase : Optional[Any] = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: __UpperCAmelCase : List[Any] = line.split()[5] if not parse_col == "-": __UpperCAmelCase : str = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def __A ( self ) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: __UpperCAmelCase : Optional[int] = util.check_gold_parse_annotation(_UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" __UpperCAmelCase : Union[str, Any] = evaluate( key_lines=_UpperCAmelCase , sys_lines=_UpperCAmelCase , metrics=_UpperCAmelCase , NP_only=_UpperCAmelCase , remove_nested=_UpperCAmelCase , keep_singletons=_UpperCAmelCase , min_span=_UpperCAmelCase , ) return score
366
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : str = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : str = num_choices __UpperCAmelCase : List[Any] = scope def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Tuple = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = True __UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass __UpperCAmelCase : Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : List[str] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = LlamaModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : str = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = 3 __UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : Optional[Any] = """single_label_classification""" __UpperCAmelCase : int = input_dict["""input_ids"""] __UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : str = """multi_label_classification""" __UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size ) __UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() __UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0} __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() __UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) @require_torch class _A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __UpperCAmelCase : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) ) __UpperCAmelCase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """ __UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" ) __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase ) # greedy generation outputs __UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
16
0
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class _A ( tf.keras.layers.Layer ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 , __UpperCAmelCase=False , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__lowerCamelCase ) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Tuple = d_embed __UpperCAmelCase : Any = d_proj __UpperCAmelCase : Optional[int] = cutoffs + [vocab_size] __UpperCAmelCase : Optional[int] = [0] + self.cutoffs __UpperCAmelCase : Union[str, Any] = div_val __UpperCAmelCase : List[str] = self.cutoffs[0] __UpperCAmelCase : Tuple = len(self.cutoffs ) - 1 __UpperCAmelCase : Union[str, Any] = self.shortlist_size + self.n_clusters __UpperCAmelCase : int = keep_order __UpperCAmelCase : Dict = [] __UpperCAmelCase : Dict = [] def __A ( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if self.n_clusters > 0: __UpperCAmelCase : Dict = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=__lowerCamelCase , name="""cluster_weight""" ) __UpperCAmelCase : Dict = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=__lowerCamelCase , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: __UpperCAmelCase : Dict = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=__lowerCamelCase , name=f'out_projs_._{i}' , ) self.out_projs.append(__lowerCamelCase ) else: self.out_projs.append(__lowerCamelCase ) __UpperCAmelCase : List[Any] = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=__lowerCamelCase , name=f'out_layers_._{i}_._weight' , ) __UpperCAmelCase : List[Any] = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=__lowerCamelCase , name=f'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): __UpperCAmelCase : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] __UpperCAmelCase : Tuple = self.d_embed // (self.div_val**i) __UpperCAmelCase : Tuple = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=__lowerCamelCase , name=f'out_projs_._{i}' ) self.out_projs.append(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=__lowerCamelCase , name=f'out_layers_._{i}_._weight' , ) __UpperCAmelCase : Union[str, Any] = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=__lowerCamelCase , name=f'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) super().build(__lowerCamelCase ) @staticmethod def __A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[Any] = x if proj is not None: __UpperCAmelCase : Tuple = tf.einsum("""ibd,ed->ibe""" , __lowerCamelCase , __lowerCamelCase ) return tf.einsum("""ibd,nd->ibn""" , __lowerCamelCase , __lowerCamelCase ) + b @staticmethod def __A ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = shape_list(__lowerCamelCase ) __UpperCAmelCase : Dict = tf.range(lp_size[0] , dtype=target.dtype ) __UpperCAmelCase : Optional[Any] = tf.stack([r, target] , 1 ) return tf.gather_nd(__lowerCamelCase , __lowerCamelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = 0 if self.n_clusters == 0: __UpperCAmelCase : List[str] = self._logit(__lowerCamelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: __UpperCAmelCase : Optional[int] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=__lowerCamelCase , logits=__lowerCamelCase ) __UpperCAmelCase : Dict = tf.nn.log_softmax(__lowerCamelCase , axis=-1 ) else: __UpperCAmelCase : Union[str, Any] = shape_list(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Tuple = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): __UpperCAmelCase : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: __UpperCAmelCase : Tuple = (target >= l_idx) & (target < r_idx) __UpperCAmelCase : Union[str, Any] = tf.where(__lowerCamelCase ) __UpperCAmelCase : Tuple = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) - l_idx if self.div_val == 1: __UpperCAmelCase : Optional[Any] = self.out_layers[0][0][l_idx:r_idx] __UpperCAmelCase : Optional[int] = self.out_layers[0][1][l_idx:r_idx] else: __UpperCAmelCase : Optional[int] = self.out_layers[i][0] __UpperCAmelCase : int = self.out_layers[i][1] if i == 0: __UpperCAmelCase : str = tf.concat([cur_W, self.cluster_weight] , 0 ) __UpperCAmelCase : Tuple = tf.concat([cur_b, self.cluster_bias] , 0 ) __UpperCAmelCase : Union[str, Any] = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[0] ) __UpperCAmelCase : List[str] = tf.nn.log_softmax(__lowerCamelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: __UpperCAmelCase : Optional[Any] = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : str = self._gather_logprob(__lowerCamelCase , __lowerCamelCase ) else: __UpperCAmelCase : str = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[i] ) __UpperCAmelCase : Dict = tf.nn.log_softmax(__lowerCamelCase ) __UpperCAmelCase : str = self.cutoffs[0] + i - 1 # No probability for the head cluster __UpperCAmelCase : Optional[Any] = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(__lowerCamelCase ) if target is not None: __UpperCAmelCase : List[Any] = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Any = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Dict = self._gather_logprob(__lowerCamelCase , __lowerCamelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(__lowerCamelCase , -cur_logprob , shape_list(__lowerCamelCase ) ) __UpperCAmelCase : Union[str, Any] = tf.concat(__lowerCamelCase , axis=-1 ) if target is not None: if return_mean: __UpperCAmelCase : List[Any] = tf.reduce_mean(__lowerCamelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(__lowerCamelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(__lowerCamelCase , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
367
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _UpperCamelCase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ): """simple docstring""" return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths ) def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": __UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ ) for answer_list in data[1]: __UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : str = [[reference] for reference in references] __UpperCAmelCase : Optional[int] = 0 for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : int = 100.0 * em / total __UpperCAmelCase : Dict = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = args.k __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = 0 for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] ) __UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __UpperCAmelCase : List[str] = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ): """simple docstring""" def strip_title(lowerCAmelCase__ : Optional[int] ): if title.startswith("""\"""" ): __UpperCAmelCase : List[Any] = title[1:] if title.endswith("""\"""" ): __UpperCAmelCase : int = title[:-1] return title __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device ) __UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ ) __UpperCAmelCase : int = question_enc_outputs[0] __UpperCAmelCase : Dict = rag_model.retriever( lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) __UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __UpperCAmelCase : Union[str, Any] = [] for docs in all_docs: __UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(lowerCAmelCase__ ) ) return provenance_strings def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" with torch.no_grad(): __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) __UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device ) __UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device ) __UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) ) return answers def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) __UpperCAmelCase : str = parser.parse_args() __UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = {} if args.model_type is None: __UpperCAmelCase : str = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration __UpperCAmelCase : Dict = args.n_docs if args.index_name is not None: __UpperCAmelCase : Union[str, Any] = args.index_name if args.index_path is not None: __UpperCAmelCase : Dict = args.index_path else: __UpperCAmelCase : str = BartForConditionalGeneration __UpperCAmelCase : str = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k __UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ ) model.retriever.init_retrieval() else: __UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: __UpperCAmelCase : Union[str, Any] = [] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: __UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" ) preds_file.flush() __UpperCAmelCase : List[str] = [] if len(lowerCAmelCase__ ) > 0: __UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _UpperCamelCase = get_args() main(args)
16
0
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _A ( unittest.TestCase ): @slow def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : str = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) __UpperCAmelCase : str = AutoTokenizer.from_pretrained("""google/mt5-small""" ) __UpperCAmelCase : Union[str, Any] = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids __UpperCAmelCase : Any = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids __UpperCAmelCase : Tuple = shift_tokens_right(lowercase_ , model.config.pad_token_id , model.config.decoder_start_token_id ) __UpperCAmelCase : Tuple = model(lowercase_ , decoder_input_ids=lowercase_ ).logits __UpperCAmelCase : Any = optax.softmax_cross_entropy(lowercase_ , onehot(lowercase_ , logits.shape[-1] ) ).mean() __UpperCAmelCase : List[str] = -(labels.shape[-1] * loss.item()) __UpperCAmelCase : List[Any] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
368
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : @staticmethod def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 ) __UpperCAmelCase : Tuple = len(__UpperCAmelCase ) self.assertGreater(__UpperCAmelCase , 0 ) self.assertEqual( __UpperCAmelCase , [ { """score""": ANY(__UpperCAmelCase ), """label""": ANY(__UpperCAmelCase ), """box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )}, } for i in range(__UpperCAmelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> Tuple: '''simple docstring''' pass @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) __UpperCAmelCase : str = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) __UpperCAmelCase : Any = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass @require_torch @slow def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = 0.2 __UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
16
0
def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""Input value must be a 'int' type""" ) return bin(_lowerCamelCase ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.txt'''} _UpperCamelCase = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } _UpperCamelCase = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } _UpperCamelCase = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : Union[str, Any] = do_lower_case __UpperCAmelCase : str = strip_accents __UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars __UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase ) __UpperCAmelCase : List[Any] = do_lower_case def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
16
0
'''simple docstring''' from collections.abc import Generator def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = 0, 1 while True: __UpperCAmelCase : Optional[int] = b, a + b yield b def lowercase_ ( lowerCAmelCase__ : List[Any] = 1000 ): """simple docstring""" __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Optional[Any] = fibonacci_generator() while len(str(next(lowerCAmelCase__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
370
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''OwlViTFeatureExtractor'''] _UpperCamelCase = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
0
def lowercase_ ( lowerCAmelCase__ : list[list[int | float]] ): """simple docstring""" __UpperCAmelCase : int = len(lowerCamelCase__ ) __UpperCAmelCase : List[Any] = len(matrix[0] ) __UpperCAmelCase : int = min(lowerCamelCase__ , lowerCamelCase__ ) for row in range(lowerCamelCase__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , lowerCamelCase__ ): __UpperCAmelCase : str = matrix[col][row] / matrix[row][row] for i in range(lowerCamelCase__ , lowerCamelCase__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __UpperCAmelCase : Optional[Any] = True for i in range(row + 1 , lowerCamelCase__ ): if matrix[i][row] != 0: __UpperCAmelCase , __UpperCAmelCase : List[str] = matrix[i], matrix[row] __UpperCAmelCase : Dict = False break if reduce: rank -= 1 for i in range(lowerCamelCase__ ): __UpperCAmelCase : Tuple = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: '''simple docstring''' warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
16
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
350
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) __UpperCAmelCase : List[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) __UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) __UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' import torch __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = pipeline("""text-classification""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : int = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __UpperCAmelCase : Union[str, Any] = """HuggingFace is in""" __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""] __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase ) __UpperCAmelCase : Any = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , ) __UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(__UpperCAmelCase ): text_classifier(__UpperCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
16
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _UpperCamelCase = 25_0004 _UpperCamelCase = 25_0020 @require_sentencepiece @require_tokenizers class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = MBartaaTokenizer _SCREAMING_SNAKE_CASE : int = MBartaaTokenizerFast _SCREAMING_SNAKE_CASE : List[Any] = True _SCREAMING_SNAKE_CASE : str = True def __A ( self ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : str = MBartaaTokenizer(__UpperCAmelCase , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[Any] = '''<s>''' __UpperCAmelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__UpperCAmelCase ) , 1_054 ) def __A ( self ) -> Optional[int]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_054 ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : str = MBartaaTokenizer(__UpperCAmelCase , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=__UpperCAmelCase ) __UpperCAmelCase : str = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __UpperCAmelCase : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __UpperCAmelCase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) __UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def __A ( self ) -> int: '''simple docstring''' # fmt: off __UpperCAmelCase : int = {'''input_ids''': [[250_004, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [250_004, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250_004, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def __A ( self ) -> Any: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCAmelCase : Optional[int] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) __UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) __UpperCAmelCase : int = tempfile.mkdtemp() __UpperCAmelCase : Dict = tokenizer_r.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = tokenizer_p.save_pretrained(__UpperCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) __UpperCAmelCase : List[Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__UpperCAmelCase , __UpperCAmelCase ) # Checks everything loads correctly in the same way __UpperCAmelCase : List[str] = tokenizer_r.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer_p.from_pretrained(__UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCAmelCase , __UpperCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__UpperCAmelCase ) # Save tokenizer rust, legacy_format=True __UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() __UpperCAmelCase : int = tokenizer_r.save_pretrained(__UpperCAmelCase , legacy_format=__UpperCAmelCase ) __UpperCAmelCase : Tuple = tokenizer_p.save_pretrained(__UpperCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(__UpperCAmelCase , __UpperCAmelCase ) # Checks everything loads correctly in the same way __UpperCAmelCase : Optional[int] = tokenizer_r.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Any = tokenizer_p.from_pretrained(__UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCAmelCase , __UpperCAmelCase ) ) shutil.rmtree(__UpperCAmelCase ) # Save tokenizer rust, legacy_format=False __UpperCAmelCase : List[str] = tempfile.mkdtemp() __UpperCAmelCase : int = tokenizer_r.save_pretrained(__UpperCAmelCase , legacy_format=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer_p.save_pretrained(__UpperCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCAmelCase : Dict = tokenizer_r.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer_p.from_pretrained(__UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCAmelCase , __UpperCAmelCase ) ) shutil.rmtree(__UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = "facebook/mbart-large-50-one-to-many-mmt" _SCREAMING_SNAKE_CASE : Dict = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] _SCREAMING_SNAKE_CASE : Tuple = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] _SCREAMING_SNAKE_CASE : List[str] = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def __A ( cls ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) __UpperCAmelCase : List[str] = 1 return cls def __A ( self ) -> List[str]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250_020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 250_038 ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' self.assertIn(__UpperCAmelCase , self.tokenizer.all_special_ids ) __UpperCAmelCase : Optional[Any] = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] __UpperCAmelCase : Tuple = self.tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __UpperCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , __UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : str = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = 10 __UpperCAmelCase : int = self.tokenizer(__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase ).input_ids[0] self.assertEqual(ids[0] , __UpperCAmelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250_053, 250_001] ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = tempfile.mkdtemp() __UpperCAmelCase : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : List[str] = MBartaaTokenizer.from_pretrained(__UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __UpperCAmelCase ) @require_torch def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__UpperCAmelCase , return_tensors="""pt""" ) __UpperCAmelCase : Dict = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) __UpperCAmelCase : Dict = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __UpperCAmelCase : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = self.tokenizer(self.src_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=3 , return_tensors="""pt""" ) __UpperCAmelCase : int = self.tokenizer( text_target=self.tgt_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=10 , return_tensors="""pt""" ) __UpperCAmelCase : int = targets['''input_ids'''] __UpperCAmelCase : List[str] = shift_tokens_right(__UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , { # en_XX, A, test, EOS """input_ids""": [[250_004, 62, 3_034, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250_001, } , )
351
'''simple docstring''' from ..utils import DummyObject, requires_backends class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
16
0
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging _UpperCamelCase = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = "linear" _SCREAMING_SNAKE_CASE : List[str] = "cosine" _SCREAMING_SNAKE_CASE : Optional[int] = "cosine_with_restarts" _SCREAMING_SNAKE_CASE : Dict = "polynomial" _SCREAMING_SNAKE_CASE : Any = "constant" _SCREAMING_SNAKE_CASE : List[str] = "constant_with_warmup" _SCREAMING_SNAKE_CASE : List[str] = "piecewise_constant" def lowercase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int = -1 ): """simple docstring""" return LambdaLR(UpperCAmelCase_ , lambda lowerCAmelCase__ : 1 , last_epoch=UpperCAmelCase_ ) def lowercase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int , lowerCAmelCase__ : int = -1 ): """simple docstring""" def lr_lambda(lowerCAmelCase__ : int ): if current_step < num_warmup_steps: return float(UpperCAmelCase_ ) / float(max(1.0 , UpperCAmelCase_ ) ) return 1.0 return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , last_epoch=UpperCAmelCase_ ) def lowercase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : str , lowerCAmelCase__ : int = -1 ): """simple docstring""" __UpperCAmelCase : str = {} __UpperCAmelCase : int = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase : str = rule_str.split(""":""" ) __UpperCAmelCase : Optional[int] = int(UpperCAmelCase_ ) __UpperCAmelCase : Any = float(UpperCAmelCase_ ) __UpperCAmelCase : str = value __UpperCAmelCase : str = float(rule_list[-1] ) def create_rules_function(lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] ): def rule_func(lowerCAmelCase__ : int ) -> float: __UpperCAmelCase : Any = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(UpperCAmelCase_ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase : str = create_rules_function(UpperCAmelCase_ , UpperCAmelCase_ ) return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , last_epoch=UpperCAmelCase_ ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : int=-1 ): """simple docstring""" def lr_lambda(lowerCAmelCase__ : int ): if current_step < num_warmup_steps: return float(UpperCAmelCase_ ) / float(max(1 , UpperCAmelCase_ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : float = 0.5 , lowerCAmelCase__ : int = -1 ): """simple docstring""" def lr_lambda(lowerCAmelCase__ : int ): if current_step < num_warmup_steps: return float(UpperCAmelCase_ ) / float(max(1 , UpperCAmelCase_ ) ) __UpperCAmelCase : Tuple = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(UpperCAmelCase_ ) * 2.0 * progress )) ) return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : int = -1 ): """simple docstring""" def lr_lambda(lowerCAmelCase__ : Any ): if current_step < num_warmup_steps: return float(UpperCAmelCase_ ) / float(max(1 , UpperCAmelCase_ ) ) __UpperCAmelCase : Any = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(UpperCAmelCase_ ) * progress) % 1.0) )) ) return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any]=1E-7 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : List[str]=-1 ): """simple docstring""" __UpperCAmelCase : str = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' ) def lr_lambda(lowerCAmelCase__ : int ): if current_step < num_warmup_steps: return float(UpperCAmelCase_ ) / float(max(1 , UpperCAmelCase_ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase : Optional[int] = lr_init - lr_end __UpperCAmelCase : Any = num_training_steps - num_warmup_steps __UpperCAmelCase : Union[str, Any] = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase : Tuple = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowercase_ ( lowerCAmelCase__ : Union[str, SchedulerType] , lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : float = 1.0 , lowerCAmelCase__ : int = -1 , ): """simple docstring""" __UpperCAmelCase : Optional[int] = SchedulerType(UpperCAmelCase_ ) __UpperCAmelCase : Optional[int] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(UpperCAmelCase_ , last_epoch=UpperCAmelCase_ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(UpperCAmelCase_ , step_rules=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'{name} requires `num_warmup_steps`, please provide that argument.' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(UpperCAmelCase_ , num_warmup_steps=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'{name} requires `num_training_steps`, please provide that argument.' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( UpperCAmelCase_ , num_warmup_steps=UpperCAmelCase_ , num_training_steps=UpperCAmelCase_ , num_cycles=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( UpperCAmelCase_ , num_warmup_steps=UpperCAmelCase_ , num_training_steps=UpperCAmelCase_ , power=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ , ) return schedule_func( UpperCAmelCase_ , num_warmup_steps=UpperCAmelCase_ , num_training_steps=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ )
352
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _A : def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase ) __UpperCAmelCase : List[str] = length __UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa ) __UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Dict: '''simple docstring''' return self.length def __getitem__( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int: '''simple docstring''' super().__init__() __UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Any = True def __A ( self , __UpperCAmelCase=None ) -> str: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : Optional[int] = False return x * self.a[0] + self.b[0] class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : str = True def __A ( self , __UpperCAmelCase=None ) -> Tuple: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : int = False return x * self.a + self.b def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer __UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" ) __UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )} def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : List[Any] = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) if "label" in examples: __UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCAmelCase : Tuple = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCAmelCase__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 ) __UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
16
0
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : Optional[Any] = len(_lowerCAmelCase ) + 1 __UpperCAmelCase : Optional[int] = len(_lowerCAmelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __UpperCAmelCase : List[Any] = [[0 for i in range(_lowerCAmelCase )] for j in range(_lowerCAmelCase )] # since string of zero length match pattern of zero length __UpperCAmelCase : Union[str, Any] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowerCAmelCase ): __UpperCAmelCase : Optional[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowerCAmelCase ): __UpperCAmelCase : List[str] = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowerCAmelCase ): for j in range(1 , _lowerCAmelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __UpperCAmelCase : Optional[Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __UpperCAmelCase : Union[str, Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __UpperCAmelCase : List[str] = dp[i - 1][j] else: __UpperCAmelCase : List[str] = 0 else: __UpperCAmelCase : Optional[int] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _UpperCamelCase = '''aab''' _UpperCamelCase = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'{input_string} matches the given pattern {pattern}') else: print(F'{input_string} does not match with the given pattern {pattern}')
353
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None @property def __A ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = (3, 32, 128) __UpperCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) __UpperCAmelCase : List[Any] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) return image_input def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[str] = self.prepare_image_inputs() __UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" ) __UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Dict = """test""" __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = """test""" __UpperCAmelCase : int = self.prepare_image_inputs() __UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase ) __UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Optional[Any] = self.get_tokenizer() __UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : str = None __UpperCAmelCase : Dict = self.prepare_image_inputs() __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 ) __UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 ) __UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 ) __UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
16
0
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _UpperCamelCase = "\\n Text data.\n Second line of data." _UpperCamelCase = "file" @pytest.fixture(scope="""session""" ) def lowercase_ ( lowerCAmelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase : Tuple = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") __UpperCAmelCase : Tuple = bytes(lowerCAmelCase__ , """utf-8""" ) with zstd.open(lowerCAmelCase__ , """wb""" ) as f: f.write(lowerCAmelCase__ ) return path @pytest.fixture def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , lowerCAmelCase__ ) , """w""" ) as f: f.write(lowerCAmelCase__ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase : int = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} __UpperCAmelCase : Dict = input_paths[compression_format] __UpperCAmelCase : Tuple = tmp_path / """cache""" __UpperCAmelCase : int = DownloadConfig(cache_dir=lowerCAmelCase__ , extract_compressed_file=lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = cached_path(lowerCAmelCase__ , download_config=lowerCAmelCase__ ) with open(lowerCAmelCase__ ) as f: __UpperCAmelCase : Optional[int] = f.read() with open(lowerCAmelCase__ ) as f: __UpperCAmelCase : Optional[Any] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def lowercase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase : Optional[Any] = """custom_cache""" __UpperCAmelCase : str = """custom_extracted_dir""" __UpperCAmelCase : Optional[Any] = tmp_path / """custom_extracted_path""" if default_extracted: __UpperCAmelCase : List[str] = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , lowerCAmelCase__ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(lowerCAmelCase__ ) ) __UpperCAmelCase : List[str] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __UpperCAmelCase : Optional[int] = xz_file __UpperCAmelCase : Optional[Any] = ( DownloadConfig(extract_compressed_file=lowerCAmelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowerCAmelCase__ ) ) __UpperCAmelCase : Optional[int] = cached_path(lowerCAmelCase__ , download_config=lowerCAmelCase__ ) assert Path(lowerCAmelCase__ ).parent.parts[-2:] == expected def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : str = str(Path(lowerCAmelCase__ ).resolve() ) assert cached_path(lowerCAmelCase__ ) == text_file # relative path __UpperCAmelCase : Optional[int] = str(Path(lowerCAmelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCAmelCase__ ) == text_file def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : str = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(lowerCAmelCase__ ): cached_path(lowerCAmelCase__ ) # relative path __UpperCAmelCase : str = """./__missing_file__.txt""" with pytest.raises(lowerCAmelCase__ ): cached_path(lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = get_from_cache(f'tmp://{tmpfs_file}' ) with open(lowerCAmelCase__ ) as f: __UpperCAmelCase : List[str] = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowerCAmelCase__ ) def lowercase_ ( ): """simple docstring""" with pytest.raises(lowerCAmelCase__ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase : int = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(lowerCAmelCase__ ): http_get("""https://huggingface.co""" , temp_file=lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase : str = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(lowerCAmelCase__ ): ftp_get("""ftp://huggingface.co""" , temp_file=lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : Any ): """simple docstring""" __UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(lowerCAmelCase__ ): fsspec_get("""s3://huggingface.co""" , temp_file=lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ ): fsspec_head("""s3://huggingface.co""" )
354
'''simple docstring''' from collections.abc import Sequence def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ): """simple docstring""" if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __UpperCAmelCase : Any = nums[0] for i in range(1 , len(lowerCAmelCase__ ) ): __UpperCAmelCase : Union[str, Any] = nums[i] __UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _UpperCamelCase = int(input('''Enter number of elements : ''').strip()) _UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
16
0
'''simple docstring''' import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _UpperCamelCase = get_logger(__name__) _UpperCamelCase = Path(__file__).parent / 'model_card_template.md' _UpperCamelCase = uuida().hex _UpperCamelCase = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES _UpperCamelCase = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES _UpperCamelCase = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def lowercase_ ( lowerCAmelCase__ : Dict = None ): """simple docstring""" __UpperCAmelCase : str = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'; torch/{_torch_version}' if is_flax_available(): ua += f'; jax/{_jax_version}' ua += f'; flax/{_flax_version}' if is_onnx_available(): ua += f'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get("""DIFFUSERS_IS_CI""" , """""" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__UpperCAmelCase , __UpperCAmelCase ): ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): ua += "; " + user_agent return ua def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any = None , lowerCAmelCase__ : Union[str, Any] = None ): """simple docstring""" if token is None: __UpperCAmelCase : Tuple = HfFolder.get_token() if organization is None: __UpperCAmelCase : str = whoami(__UpperCAmelCase )["""name"""] return f'{username}/{model_id}' else: return f'{organization}/{model_id}' def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): """simple docstring""" if not is_jinja_available(): raise ValueError( """Modelcard rendering is based on Jinja templates.""" """ Please make sure to have `jinja` installed before using `create_model_card`.""" """ To install it, please run `pip install Jinja2`.""" ) if hasattr(__UpperCAmelCase , """local_rank""" ) and args.local_rank not in [-1, 0]: return __UpperCAmelCase : str = args.hub_token if hasattr(__UpperCAmelCase , """hub_token""" ) else None __UpperCAmelCase : Optional[int] = get_full_repo_name(__UpperCAmelCase , token=__UpperCAmelCase ) __UpperCAmelCase : str = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="""en""" , license="""apache-2.0""" , library_name="""diffusers""" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__UpperCAmelCase , model_name=__UpperCAmelCase , repo_name=__UpperCAmelCase , dataset_name=args.dataset_name if hasattr(__UpperCAmelCase , """dataset_name""" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__UpperCAmelCase , """gradient_accumulation_steps""" ) else None ) , adam_betaa=args.adam_betaa if hasattr(__UpperCAmelCase , """adam_beta1""" ) else None , adam_betaa=args.adam_betaa if hasattr(__UpperCAmelCase , """adam_beta2""" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__UpperCAmelCase , """adam_weight_decay""" ) else None , adam_epsilon=args.adam_epsilon if hasattr(__UpperCAmelCase , """adam_epsilon""" ) else None , lr_scheduler=args.lr_scheduler if hasattr(__UpperCAmelCase , """lr_scheduler""" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__UpperCAmelCase , """lr_warmup_steps""" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__UpperCAmelCase , """ema_inv_gamma""" ) else None , ema_power=args.ema_power if hasattr(__UpperCAmelCase , """ema_power""" ) else None , ema_max_decay=args.ema_max_decay if hasattr(__UpperCAmelCase , """ema_max_decay""" ) else None , mixed_precision=args.mixed_precision , ) __UpperCAmelCase : Union[str, Any] = os.path.join(args.output_dir , """README.md""" ) model_card.save(__UpperCAmelCase ) def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash __UpperCAmelCase : Any = str(Path(__UpperCAmelCase ).as_posix() ) __UpperCAmelCase : str = re.search(r"""snapshots/([^/]+)/""" , __UpperCAmelCase ) if search is None: return None __UpperCAmelCase : List[Any] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__UpperCAmelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _UpperCamelCase = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) _UpperCamelCase = os.path.join(hf_cache_home, '''diffusers''') def lowercase_ ( lowerCAmelCase__ : int = None , lowerCAmelCase__ : str = None ): """simple docstring""" if new_cache_dir is None: __UpperCAmelCase : List[Any] = DIFFUSERS_CACHE if old_cache_dir is None: __UpperCAmelCase : Tuple = old_diffusers_cache __UpperCAmelCase : Dict = Path(__UpperCAmelCase ).expanduser() __UpperCAmelCase : Dict = Path(__UpperCAmelCase ).expanduser() for old_blob_path in old_cache_dir.glob("""**/blobs/*""" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __UpperCAmelCase : Tuple = new_cache_dir / old_blob_path.relative_to(__UpperCAmelCase ) new_blob_path.parent.mkdir(parents=__UpperCAmelCase , exist_ok=__UpperCAmelCase ) os.replace(__UpperCAmelCase , __UpperCAmelCase ) try: os.symlink(__UpperCAmelCase , __UpperCAmelCase ) except OSError: logger.warning( """Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""" ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _UpperCamelCase = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): _UpperCamelCase = 0 else: with open(cache_version_file) as f: try: _UpperCamelCase = int(f.read()) except ValueError: _UpperCamelCase = 0 if cache_version < 1: _UpperCamelCase = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: _UpperCamelCase = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] = None ): """simple docstring""" if variant is not None: __UpperCAmelCase : Tuple = weights_name.split(""".""" ) __UpperCAmelCase : List[Any] = splits[:-1] + [variant] + splits[-1:] __UpperCAmelCase : int = """.""".join(__UpperCAmelCase ) return weights_name def lowercase_ ( lowerCAmelCase__ : Optional[int] , *, lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=None , ): """simple docstring""" __UpperCAmelCase : List[str] = str(__UpperCAmelCase ) if os.path.isfile(__UpperCAmelCase ): return pretrained_model_name_or_path elif os.path.isdir(__UpperCAmelCase ): if os.path.isfile(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ): # Load from a PyTorch checkpoint __UpperCAmelCase : Optional[int] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ): __UpperCAmelCase : List[Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return model_file else: raise EnvironmentError( f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__UpperCAmelCase ).base_version ) >= version.parse("""0.20.0""" ) ): try: __UpperCAmelCase : Dict = hf_hub_download( __UpperCAmelCase , filename=_add_variant(__UpperCAmelCase , __UpperCAmelCase ) , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , user_agent=__UpperCAmelCase , subfolder=__UpperCAmelCase , revision=revision or commit_hash , ) warnings.warn( f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , __UpperCAmelCase , ) return model_file except: # noqa: E722 warnings.warn( f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__UpperCAmelCase , __UpperCAmelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__UpperCAmelCase , __UpperCAmelCase )}\' so that the correct variant file can be added.' , __UpperCAmelCase , ) try: # 2. Load model file as usual __UpperCAmelCase : Dict = hf_hub_download( __UpperCAmelCase , filename=__UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , user_agent=__UpperCAmelCase , subfolder=__UpperCAmelCase , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' """listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a """ """token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """ """login`.""" ) except RevisionNotFoundError: raise EnvironmentError( f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' """this model name. Check the model page at """ f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' f' directory containing a file named {weights_name} or' """ \nCheckout your internet connection or see how to run the library in""" """ offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.""" ) except EnvironmentError: raise EnvironmentError( f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' """\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. """ f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' f'containing a file named {weights_name}' )
355
'''simple docstring''' class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = data __UpperCAmelCase : int = previous __UpperCAmelCase : Union[str, Any] = next_node def __str__( self ) -> str: '''simple docstring''' return f'{self.data}' def __A ( self ) -> int: '''simple docstring''' return self.data def __A ( self ) -> List[str]: '''simple docstring''' return self.next def __A ( self ) -> str: '''simple docstring''' return self.previous class _A : def __init__( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = head def __iter__( self ) -> str: '''simple docstring''' return self def __A ( self ) -> str: '''simple docstring''' if not self.current: raise StopIteration else: __UpperCAmelCase : List[str] = self.current.get_data() __UpperCAmelCase : int = self.current.get_next() return value class _A : def __init__( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = None # First node in list __UpperCAmelCase : List[str] = None # Last node in list def __str__( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = self.head __UpperCAmelCase : Optional[int] = [] while current is not None: nodes.append(current.get_data() ) __UpperCAmelCase : Any = current.get_next() return " ".join(str(__UpperCAmelCase ) for node in nodes ) def __contains__( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.head while current: if current.get_data() == value: return True __UpperCAmelCase : Optional[Any] = current.get_next() return False def __iter__( self ) -> str: '''simple docstring''' return LinkedListIterator(self.head ) def __A ( self ) -> List[Any]: '''simple docstring''' if self.head: return self.head.get_data() return None def __A ( self ) -> Optional[Any]: '''simple docstring''' if self.tail: return self.tail.get_data() return None def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: __UpperCAmelCase : str = node __UpperCAmelCase : List[str] = node else: self.insert_before_node(self.head , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: self.set_head(__UpperCAmelCase ) else: self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase ) if self.head is None: self.set_head(__UpperCAmelCase ) else: self.set_tail(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Tuple = node __UpperCAmelCase : List[Any] = node.previous if node.get_previous() is None: __UpperCAmelCase : str = node_to_insert else: __UpperCAmelCase : Optional[Any] = node_to_insert __UpperCAmelCase : List[Any] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : List[str] = node __UpperCAmelCase : Union[str, Any] = node.next if node.get_next() is None: __UpperCAmelCase : Dict = node_to_insert else: __UpperCAmelCase : Any = node_to_insert __UpperCAmelCase : List[str] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase ) return current_position += 1 __UpperCAmelCase : int = node.next self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Node: '''simple docstring''' __UpperCAmelCase : Dict = self.head while node: if node.get_data() == item: return node __UpperCAmelCase : List[str] = node.get_next() raise Exception("""Node not found""" ) def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if (node := self.get_node(__UpperCAmelCase )) is not None: if node == self.head: __UpperCAmelCase : Optional[int] = self.head.get_next() if node == self.tail: __UpperCAmelCase : Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(__UpperCAmelCase ) @staticmethod def __A ( __UpperCAmelCase ) -> None: '''simple docstring''' if node.get_next(): __UpperCAmelCase : Optional[Any] = node.previous if node.get_previous(): __UpperCAmelCase : int = node.next __UpperCAmelCase : Tuple = None __UpperCAmelCase : Union[str, Any] = None def __A ( self ) -> List[Any]: '''simple docstring''' return self.head is None def lowercase_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
16
0
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.txt'''} _UpperCamelCase = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } _UpperCamelCase = { '''openbmb/cpm-ant-10b''': 1024, } def lowercase_ ( lowerCAmelCase__ : Any ): """simple docstring""" __UpperCAmelCase : Optional[int] = collections.OrderedDict() with open(lowercase_ , """r""" , encoding="""utf-8""" ) as reader: __UpperCAmelCase : Optional[Any] = reader.readlines() for index, token in enumerate(lowercase_ ): __UpperCAmelCase : str = token.rstrip("""\n""" ) __UpperCAmelCase : Optional[Any] = index return vocab class _A ( A__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<unk>" , __UpperCAmelCase=200 ) -> int: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = vocab __UpperCAmelCase : Optional[Any] = unk_token __UpperCAmelCase : Optional[Any] = max_input_chars_per_word def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = list(lowerCamelCase__ ) if len(lowerCamelCase__ ) > self.max_input_chars_per_word: return [self.unk_token] __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = [] while start < len(lowerCamelCase__ ): __UpperCAmelCase : Optional[int] = len(lowerCamelCase__ ) __UpperCAmelCase : List[Any] = None while start < end: __UpperCAmelCase : Dict = """""".join(chars[start:end] ) if substr in self.vocab: __UpperCAmelCase : Tuple = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = end return sub_tokens class _A ( A__ ): _SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[str] = ['input_ids', 'attention_mask'] _SCREAMING_SNAKE_CASE : int = False def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<d>" , __UpperCAmelCase="</d>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="</n>" , __UpperCAmelCase="</_>" , __UpperCAmelCase="left" , **__UpperCAmelCase , ) -> Any: '''simple docstring''' requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=lowerCamelCase__ , eod_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , line_token=lowerCamelCase__ , space_token=lowerCamelCase__ , padding_side=lowerCamelCase__ , **lowerCamelCase__ , ) __UpperCAmelCase : List[Any] = bod_token __UpperCAmelCase : Any = eod_token __UpperCAmelCase : int = load_vocab(lowerCamelCase__ ) __UpperCAmelCase : List[Any] = self.encoder[space_token] __UpperCAmelCase : Union[str, Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __UpperCAmelCase : str = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __UpperCAmelCase : x[1] ) ) __UpperCAmelCase : List[Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __A ( self ) -> List[str]: '''simple docstring''' return self.encoder[self.bod_token] @property def __A ( self ) -> int: '''simple docstring''' return self.encoder[self.eod_token] @property def __A ( self ) -> Dict: '''simple docstring''' return self.encoder["\n"] @property def __A ( self ) -> str: '''simple docstring''' return len(self.encoder ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = [] for x in jieba.cut(lowerCamelCase__ , cut_all=lowerCamelCase__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase__ ) ) return output_tokens def __A ( self , __UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = [i for i in token_ids if i >= 0] __UpperCAmelCase : int = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase__ , **lowerCamelCase__ ) def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' return token in self.encoder def __A ( self , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' return "".join(lowerCamelCase__ ) def __A ( self , __UpperCAmelCase ) -> Dict: '''simple docstring''' return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCamelCase__ , self.unk_token ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[Any]: '''simple docstring''' if os.path.isdir(lowerCamelCase__ ): __UpperCAmelCase : int = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: __UpperCAmelCase : Union[str, Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory __UpperCAmelCase : Union[str, Any] = 0 if " " in self.encoder: __UpperCAmelCase : List[str] = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: __UpperCAmelCase : int = self.encoder["""\n"""] del self.encoder["\n"] __UpperCAmelCase : List[str] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __UpperCAmelCase : x[1] ) ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' """ Please check that the vocabulary is not corrupted!""" ) __UpperCAmelCase : Any = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Optional[Any]: '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> Optional[Any]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) return [1] + ([0] * len(lowerCamelCase__ ))
356
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _A : _SCREAMING_SNAKE_CASE : List[str] _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ) -> Any: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class _A : _SCREAMING_SNAKE_CASE : Optional[List] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None __UpperCAmelCase : int = len(self.languages ) if self.languages else None def __call__( self ) -> Optional[Any]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = set(self.languages ) if self.languages and set(__UpperCAmelCase ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) ) return {"language": languages, "translation": translations} def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
16
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class _A ( a_ ): _SCREAMING_SNAKE_CASE : Any = "unispeech-sat" def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3_072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=(512, 512, 512, 512, 1_500) , __UpperCAmelCase=(5, 3, 3, 1, 1) , __UpperCAmelCase=(1, 2, 3, 1, 1) , __UpperCAmelCase=512 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=504 , **__UpperCAmelCase , ) -> str: '''simple docstring''' super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : Union[str, Any] = feat_extract_norm __UpperCAmelCase : Dict = feat_extract_activation __UpperCAmelCase : Optional[Any] = list(lowercase_ ) __UpperCAmelCase : str = list(lowercase_ ) __UpperCAmelCase : Optional[int] = list(lowercase_ ) __UpperCAmelCase : Dict = conv_bias __UpperCAmelCase : Dict = num_conv_pos_embeddings __UpperCAmelCase : List[Any] = num_conv_pos_embedding_groups __UpperCAmelCase : Dict = len(self.conv_dim ) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : str = hidden_dropout __UpperCAmelCase : List[str] = attention_dropout __UpperCAmelCase : Any = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Any = final_dropout __UpperCAmelCase : Tuple = layerdrop __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Any = num_clusters __UpperCAmelCase : str = do_stable_layer_norm __UpperCAmelCase : Dict = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : List[str] = apply_spec_augment __UpperCAmelCase : Optional[int] = mask_time_prob __UpperCAmelCase : Tuple = mask_time_length __UpperCAmelCase : Union[str, Any] = mask_time_min_masks __UpperCAmelCase : List[Any] = mask_feature_prob __UpperCAmelCase : Optional[Any] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCAmelCase : Dict = num_codevectors_per_group __UpperCAmelCase : Tuple = num_codevector_groups __UpperCAmelCase : int = contrastive_logits_temperature __UpperCAmelCase : Dict = feat_quantizer_dropout __UpperCAmelCase : Any = num_negatives __UpperCAmelCase : Dict = codevector_dim __UpperCAmelCase : Dict = proj_codevector_dim __UpperCAmelCase : Union[str, Any] = diversity_loss_weight # ctc loss __UpperCAmelCase : List[str] = ctc_loss_reduction __UpperCAmelCase : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCAmelCase : List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCAmelCase : Dict = list(lowercase_ ) __UpperCAmelCase : int = list(lowercase_ ) __UpperCAmelCase : Dict = list(lowercase_ ) __UpperCAmelCase : Tuple = xvector_output_dim @property def __A ( self ) -> List[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
357
'''simple docstring''' from statistics import mean import numpy as np def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Tuple = 0 # Number of processes finished __UpperCAmelCase : Optional[int] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __UpperCAmelCase : Tuple = [0] * no_of_process # List to include calculation results __UpperCAmelCase : int = [0] * no_of_process # Sort by arrival time. __UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )] __UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )] arrival_time.sort() while no_of_process > finished_process_count: __UpperCAmelCase : Dict = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __UpperCAmelCase : Any = arrival_time[i] __UpperCAmelCase : Any = 0 # Index showing the location of the process being performed __UpperCAmelCase : Any = 0 # Saves the current response ratio. __UpperCAmelCase : List[str] = 0 for i in range(0 , lowerCAmelCase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __UpperCAmelCase : Tuple = temp __UpperCAmelCase : List[str] = i # Calculate the turn around time __UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __UpperCAmelCase : List[str] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Optional[int] = [0] * no_of_process for i in range(0 , lowerCAmelCase__ ): __UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _UpperCamelCase = 5 _UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E'''] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _UpperCamelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
16
0
'''simple docstring''' from __future__ import annotations def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Union[str, Any] = seq_length __UpperCAmelCase : int = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : int = scope def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = None if self.use_input_mask: __UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> List[str]: '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_config() __UpperCAmelCase : List[Any] = 300 return config def __A ( self ) -> Dict: '''simple docstring''' ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = self.prepare_config_and_inputs() __UpperCAmelCase : Tuple = True __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : List[str] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Dict = () def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = MraModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Any: '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""MRA does not output attentions""" ) def __A ( self ) -> List[Any]: '''simple docstring''' return @require_torch class _A ( unittest.TestCase ): @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0] __UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : int = model(__UpperCAmelCase )[0] __UpperCAmelCase : Union[str, Any] = 50_265 __UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : Any = model(__UpperCAmelCase )[0] __UpperCAmelCase : Dict = 50_265 __UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : str = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
0
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _UpperCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) __UpperCAmelCase : List[Any] = [] for num in range(len(lowerCAmelCase__ ) ): __UpperCAmelCase : int = 0 while 2 * i * i <= odd_composites[num]: __UpperCAmelCase : int = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase__ ) == n: return list_nums return [] def lowercase_ ( ): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
359
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : List[Any] = embed_dim __UpperCAmelCase : str = depths __UpperCAmelCase : Dict = num_heads __UpperCAmelCase : str = window_size __UpperCAmelCase : int = mlp_ratio __UpperCAmelCase : Union[str, Any] = qkv_bias __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Optional[int] = use_absolute_embeddings __UpperCAmelCase : Any = patch_norm __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : Any = scope __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : int = encoder_stride def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) __UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = self.type_sequence_label_size __UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = SwinvaModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 ) def __A ( self ) -> Any: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(__UpperCAmelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : str = outputs.attentions __UpperCAmelCase : Any = len(self.model_tester.depths ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : int = config.window_size**2 __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : Dict = len(__UpperCAmelCase ) # Check attention is always last and order is fine __UpperCAmelCase : Any = True __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): __UpperCAmelCase : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : Optional[int] = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) ) __UpperCAmelCase : Tuple = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # Swinv2 has a different seq_length __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : int = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape __UpperCAmelCase : Any = ( reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : int = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Tuple = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> int: '''simple docstring''' return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __UpperCAmelCase ) __UpperCAmelCase : Tuple = self.default_image_processor __UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
0
'''simple docstring''' _UpperCamelCase = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
360
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( lowerCAmelCase__ : List[str] ): """simple docstring""" if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : Any = crop_size __UpperCAmelCase : Optional[Any] = resample __UpperCAmelCase : Dict = do_rescale __UpperCAmelCase : List[str] = rescale_factor __UpperCAmelCase : Dict = offset __UpperCAmelCase : List[str] = do_normalize __UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" in size: __UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: __UpperCAmelCase : Any = (size["""height"""], size["""width"""]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = image.astype(np.floataa ) if offset: __UpperCAmelCase : Tuple = image - (scale / 2) return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase ) if do_resize: __UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) if do_center_crop: __UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase ) if do_rescale: __UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase ) if do_normalize: __UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) return image def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' __UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : List[Any] = resample if resample is not None else self.resample __UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : List[Any] = offset if offset is not None else self.offset __UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : int = image_std if image_std is not None else self.image_std __UpperCAmelCase : Any = size if size is not None else self.size __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __UpperCAmelCase : int = make_batched(__UpperCAmelCase ) __UpperCAmelCase : Tuple = [ [ self._preprocess_image( image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , ) for img in video ] for video in videos ] __UpperCAmelCase : Tuple = {"""pixel_values""": videos} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
16
0
'''simple docstring''' import string def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : List[Any] = '''''' for i in sequence: __UpperCAmelCase : str = ord(__lowerCAmelCase ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = string.ascii_letters __UpperCAmelCase : int = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(__lowerCAmelCase )] if c in letters else c for c in sequence ) def lowercase_ ( ): """simple docstring""" from timeit import timeit print("""Running performance benchmarks...""" ) __UpperCAmelCase : List[Any] = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(f'> atbash_slow(): {timeit("atbash_slow(printable)" , setup=__lowerCAmelCase )} seconds' ) print(f'> atbash(): {timeit("atbash(printable)" , setup=__lowerCAmelCase )} seconds' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'{example} encrypted in atbash: {atbash(example)}') benchmark()
361
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline _SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCAmelCase : Any = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : Dict = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any: '''simple docstring''' if str(__UpperCAmelCase ).startswith("""mps""" ): __UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase ) else: __UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] ) __UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0] __UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __UpperCAmelCase : Dict = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
0
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 7 , lowerCAmelCase__ : int = 1000000 ): """simple docstring""" __UpperCAmelCase : Dict = 0 __UpperCAmelCase : int = 1 for current_denominator in range(1 , limit + 1 ): __UpperCAmelCase : Tuple = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __UpperCAmelCase : Union[str, Any] = current_numerator __UpperCAmelCase : Union[str, Any] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
362
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column __UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )] def __str__( self ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier __UpperCAmelCase : Optional[Any] = 0 for row_vector in self.array: for obj in row_vector: __UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) ) __UpperCAmelCase : Optional[int] = f'%{max_element_length}s' # Make string and return def single_line(__UpperCAmelCase ) -> str: nonlocal string_format_identifier __UpperCAmelCase : Any = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array ) return s def __repr__( self ) -> str: '''simple docstring''' return str(self ) def __A ( self , __UpperCAmelCase ) -> bool: '''simple docstring''' if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = value def __add__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add __UpperCAmelCase : Dict = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : Dict = -self[r, c] return result def __sub__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' return self + (-another) def __mul__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication __UpperCAmelCase : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] * another return result elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication assert self.column == another.row __UpperCAmelCase : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})' raise TypeError(__UpperCAmelCase ) def __A ( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Dict = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[str] = self[r, c] return result def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __UpperCAmelCase : Optional[Any] = v.transpose() __UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = Matrix(3 , 3 , 0 ) for i in range(3 ): __UpperCAmelCase : Tuple = 1 print(f'a^(-1) is {ainv}' ) # u, v __UpperCAmelCase : Dict = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3 __UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' ) def lowercase_ ( ): """simple docstring""" import doctest doctest.testmod() testa()
16
0
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _UpperCamelCase = """sshleifer/bart-tiny-random""" _UpperCamelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> Union[str, Any]: '''simple docstring''' return AutoConfig.from_pretrained(a__ ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , *__UpperCAmelCase : List[Any] = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase , *__UpperCAmelCase : Optional[Any] = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=a__ ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , *__UpperCAmelCase : str = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=a__ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase , *__UpperCAmelCase : Optional[int] = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def __A ( self ) -> Optional[Any]: '''simple docstring''' with self.assertRaises(a__ ): create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=a__ , d=a__ )
363
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''', } class _A ( __lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Any = '''timesformer''' def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=8 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3_072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-6 , __UpperCAmelCase=True , __UpperCAmelCase="divided_space_time" , __UpperCAmelCase=0 , **__UpperCAmelCase , ) -> List[str]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) __UpperCAmelCase : Tuple = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : Tuple = num_frames __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : Any = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : str = initializer_range __UpperCAmelCase : Tuple = layer_norm_eps __UpperCAmelCase : List[str] = qkv_bias __UpperCAmelCase : Optional[Any] = attention_type __UpperCAmelCase : Optional[Any] = drop_path_rate
364
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING _SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def __A ( self ) -> Any: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) __UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() __UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow @require_torch def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(__UpperCAmelCase ) @slow @require_tf def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) __UpperCAmelCase : Tuple = None __UpperCAmelCase : int = None self.run_pipeline_test(__UpperCAmelCase , [] ) @require_tf def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : str = None self.run_pipeline_test(__UpperCAmelCase , [] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) __UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = fill_masker.tokenizer __UpperCAmelCase : Union[str, Any] = fill_masker.model __UpperCAmelCase : Tuple = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , ) with self.assertRaises(__UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__UpperCAmelCase ): fill_masker("""This is""" ) self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = tokenizer.get_vocab() __UpperCAmelCase : Dict = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase ) __UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Any = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Call argument __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Score equivalence __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs] __UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ) == set(__UpperCAmelCase ): __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] ) with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 ) __UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = tokenizer.get_vocab() __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) # top_k=2, ntargets=3 __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__UpperCAmelCase ) , 3 ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Dict = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , )
16
0
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any ): """simple docstring""" __UpperCAmelCase : List[str] = XCLIPTextConfig() # derive patch size from model name __UpperCAmelCase : int = model_name.find("""patch""" ) __UpperCAmelCase : Optional[int] = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) __UpperCAmelCase : List[Any] = XCLIPVisionConfig(patch_size=lowerCAmelCase__ , num_frames=lowerCAmelCase__ ) if "large" in model_name: __UpperCAmelCase : Tuple = 768 __UpperCAmelCase : Dict = 3072 __UpperCAmelCase : Any = 12 __UpperCAmelCase : Union[str, Any] = 1024 __UpperCAmelCase : Dict = 4096 __UpperCAmelCase : int = 16 __UpperCAmelCase : int = 24 __UpperCAmelCase : Any = 768 __UpperCAmelCase : int = 3072 if model_name == "xclip-large-patch14-16-frames": __UpperCAmelCase : List[Any] = 336 __UpperCAmelCase : List[str] = XCLIPConfig.from_text_vision_configs(lowerCAmelCase__ , lowerCAmelCase__ ) if "large" in model_name: __UpperCAmelCase : str = 768 return config def lowercase_ ( lowerCAmelCase__ : Dict ): """simple docstring""" if name == "token_embedding.weight": __UpperCAmelCase : Any = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": __UpperCAmelCase : str = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: __UpperCAmelCase : List[Any] = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __UpperCAmelCase : Optional[int] = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __UpperCAmelCase : List[Any] = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __UpperCAmelCase : Union[str, Any] = name.replace("""c_proj""" , """fc2""" ) if name.startswith("""transformer.resblocks""" ): __UpperCAmelCase : Dict = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: __UpperCAmelCase : List[Any] = name.replace("""attn.out_proj""" , """self_attn.out_proj""" ) if "ln_final" in name: __UpperCAmelCase : Dict = name.replace("""ln_final""" , """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": __UpperCAmelCase : Optional[int] = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": __UpperCAmelCase : Tuple = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): __UpperCAmelCase : Union[str, Any] = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" ) if "visual.conv1" in name: __UpperCAmelCase : str = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: __UpperCAmelCase : Any = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: __UpperCAmelCase : Optional[Any] = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" ) if "visual.proj" in name: __UpperCAmelCase : Optional[int] = name.replace("""visual.proj""" , """visual_projection.weight""" ) if "text_projection" in name: __UpperCAmelCase : str = name.replace("""text_projection""" , """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: __UpperCAmelCase : List[Any] = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" ) if "prompts_visual_ln" in name: __UpperCAmelCase : str = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": __UpperCAmelCase : Optional[int] = name.replace("""positional""" , """position""" ) if name.startswith("""mit.resblocks""" ): __UpperCAmelCase : Dict = name.replace("""mit.resblocks""" , """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): __UpperCAmelCase : Tuple = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" ) return name def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] ): """simple docstring""" for key in orig_state_dict.copy().keys(): __UpperCAmelCase : str = orig_state_dict.pop(lowerCAmelCase__ ) if "attn.in_proj" in key: __UpperCAmelCase : str = key.split(""".""" ) if key.startswith("""visual""" ): __UpperCAmelCase : Optional[int] = key_split[3] __UpperCAmelCase : Union[str, Any] = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __UpperCAmelCase : List[str] = val[ :dim, : ] __UpperCAmelCase : str = val[ dim : dim * 2, : ] __UpperCAmelCase : List[str] = val[ -dim:, : ] else: __UpperCAmelCase : List[str] = val[ :dim ] __UpperCAmelCase : List[Any] = val[ dim : dim * 2 ] __UpperCAmelCase : Optional[int] = val[ -dim: ] else: if "weight" in key: __UpperCAmelCase : str = val[ :dim, : ] __UpperCAmelCase : str = val[ dim : dim * 2, : ] __UpperCAmelCase : List[str] = val[ -dim:, : ] else: __UpperCAmelCase : str = val[:dim] __UpperCAmelCase : Any = val[ dim : dim * 2 ] __UpperCAmelCase : List[Any] = val[-dim:] elif key.startswith("""mit""" ): __UpperCAmelCase : Dict = key_split[2] __UpperCAmelCase : List[Any] = config.vision_config.mit_hidden_size if "weight" in key: __UpperCAmelCase : Optional[Any] = val[:dim, :] __UpperCAmelCase : List[str] = val[dim : dim * 2, :] __UpperCAmelCase : int = val[-dim:, :] else: __UpperCAmelCase : Dict = val[:dim] __UpperCAmelCase : str = val[dim : dim * 2] __UpperCAmelCase : Optional[Any] = val[-dim:] else: __UpperCAmelCase : List[Any] = key_split[2] __UpperCAmelCase : Tuple = config.text_config.hidden_size if "weight" in key: __UpperCAmelCase : int = val[:dim, :] __UpperCAmelCase : List[Any] = val[ dim : dim * 2, : ] __UpperCAmelCase : int = val[-dim:, :] else: __UpperCAmelCase : List[str] = val[:dim] __UpperCAmelCase : Optional[int] = val[ dim : dim * 2 ] __UpperCAmelCase : Union[str, Any] = val[-dim:] else: __UpperCAmelCase : Tuple = rename_key(lowerCAmelCase__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __UpperCAmelCase : int = val.T __UpperCAmelCase : str = val return orig_state_dict def lowercase_ ( lowerCAmelCase__ : Optional[Any] ): """simple docstring""" if num_frames == 8: __UpperCAmelCase : List[Any] = """eating_spaghetti_8_frames.npy""" elif num_frames == 16: __UpperCAmelCase : Tuple = """eating_spaghetti.npy""" elif num_frames == 32: __UpperCAmelCase : Tuple = """eating_spaghetti_32_frames.npy""" __UpperCAmelCase : Optional[int] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename=lowerCAmelCase__ , repo_type="""dataset""" , ) __UpperCAmelCase : Optional[Any] = np.load(lowerCAmelCase__ ) return list(lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Tuple=False ): """simple docstring""" __UpperCAmelCase : List[str] = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } __UpperCAmelCase : Optional[int] = model_to_url[model_name] __UpperCAmelCase : Union[str, Any] = 8 if "16-frames" in model_name: __UpperCAmelCase : Tuple = 16 elif "shot" in model_name: __UpperCAmelCase : List[str] = 32 __UpperCAmelCase : List[Any] = get_xclip_config(lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : Tuple = XCLIPModel(lowerCAmelCase__ ) model.eval() if "drive" in checkpoint_url: __UpperCAmelCase : Optional[Any] = """pytorch_model.bin""" gdown.cached_download(lowerCAmelCase__ , lowerCAmelCase__ , quiet=lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] else: __UpperCAmelCase : List[str] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ )["""model"""] __UpperCAmelCase : str = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : str = XCLIPModel(lowerCAmelCase__ ) __UpperCAmelCase : Dict = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __UpperCAmelCase : Tuple = 336 if model_name == """xclip-large-patch14-16-frames""" else 224 __UpperCAmelCase : str = VideoMAEImageProcessor(size=lowerCAmelCase__ ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) __UpperCAmelCase : int = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) __UpperCAmelCase : List[str] = XCLIPProcessor(image_processor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = prepare_video(lowerCAmelCase__ ) __UpperCAmelCase : Any = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ ) print("""Shape of pixel values:""" , inputs.pixel_values.shape ) with torch.no_grad(): __UpperCAmelCase : Dict = model(**lowerCAmelCase__ ) # Verify outputs __UpperCAmelCase : Optional[int] = outputs.logits_per_video __UpperCAmelCase : List[str] = logits_per_video.softmax(dim=1 ) print("""Probs:""" , lowerCAmelCase__ ) # kinetics-400 if model_name == "xclip-base-patch32": __UpperCAmelCase : List[Any] = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": __UpperCAmelCase : str = torch.tensor([[7.09_99E-04, 9.98_83E-01, 4.55_80E-04]] ) elif model_name == "xclip-base-patch16": __UpperCAmelCase : Optional[Any] = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": __UpperCAmelCase : int = torch.tensor([[7.69_37E-04, 9.97_28E-01, 1.94_73E-03]] ) elif model_name == "xclip-large-patch14": __UpperCAmelCase : Union[str, Any] = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": __UpperCAmelCase : int = torch.tensor([[3.38_77E-04, 9.99_37E-01, 2.88_88E-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __UpperCAmelCase : Any = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __UpperCAmelCase : Tuple = torch.tensor([[3.85_54E-04, 9.99_29E-01, 3.27_54E-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": __UpperCAmelCase : Any = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __UpperCAmelCase : List[str] = torch.tensor([[7.18_90E-06, 9.99_94E-01, 5.65_59E-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __UpperCAmelCase : str = torch.tensor([[1.03_20E-05, 9.99_93E-01, 6.24_35E-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __UpperCAmelCase : Optional[int] = torch.tensor([[4.13_77E-06, 9.99_90E-01, 9.83_86E-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __UpperCAmelCase : int = torch.tensor([[4.13_47E-05, 9.99_62E-01, 3.34_11E-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __UpperCAmelCase : Tuple = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __UpperCAmelCase : Union[str, Any] = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __UpperCAmelCase : List[str] = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __UpperCAmelCase : Union[str, Any] = torch.tensor([[9.82_19E-04, 9.95_93E-01, 3.08_63E-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __UpperCAmelCase : int = torch.tensor([[3.50_82E-04, 9.97_85E-01, 1.79_66E-03]] ) else: raise ValueError(f'Model name {model_name} not supported' ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) slow_tokenizer.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _UpperCamelCase = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
365
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} ) _SCREAMING_SNAKE_CASE : str = "image" _SCREAMING_SNAKE_CASE : str = "labels" def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __UpperCAmelCase ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) __UpperCAmelCase : int = copy.deepcopy(self ) __UpperCAmelCase : str = self.label_schema.copy() __UpperCAmelCase : Optional[Any] = features[self.label_column] __UpperCAmelCase : Optional[int] = label_schema return task_template @property def __A ( self ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
16
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : int = """megatron-bert""" def __init__( self , __UpperCAmelCase=29_056 , __UpperCAmelCase=1_024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4_096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> str: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : int = initializer_range __UpperCAmelCase : int = layer_norm_eps __UpperCAmelCase : Tuple = position_embedding_type __UpperCAmelCase : List[Any] = use_cache
366
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : str = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : str = num_choices __UpperCAmelCase : List[Any] = scope def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Tuple = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = True __UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass __UpperCAmelCase : Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : List[str] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = LlamaModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : str = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = 3 __UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : Optional[Any] = """single_label_classification""" __UpperCAmelCase : int = input_dict["""input_ids"""] __UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : str = """multi_label_classification""" __UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size ) __UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() __UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0} __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() __UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) @require_torch class _A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __UpperCAmelCase : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) ) __UpperCAmelCase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """ __UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" ) __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase ) # greedy generation outputs __UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
16
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) class _A ( _a ): _SCREAMING_SNAKE_CASE : str = ["""pixel_values"""] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : Tuple = size if size is not None else {'shortest_edge': 384} __UpperCAmelCase : Union[str, Any] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = do_resize __UpperCAmelCase : str = size # Default value set here for backwards compatibility where the value in config is None __UpperCAmelCase : List[Any] = crop_pct if crop_pct is not None else 224 / 256 __UpperCAmelCase : Tuple = resample __UpperCAmelCase : List[str] = do_rescale __UpperCAmelCase : Dict = rescale_factor __UpperCAmelCase : List[str] = do_normalize __UpperCAmelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Dict = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) __UpperCAmelCase : Tuple = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __UpperCAmelCase : str = int(shortest_edge / crop_pct ) __UpperCAmelCase : int = get_resize_output_image_size(__UpperCAmelCase , size=__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : List[str] = resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( __UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Any: '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' __UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Any = crop_pct if crop_pct is not None else self.crop_pct __UpperCAmelCase : List[Any] = resample if resample is not None else self.resample __UpperCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : List[str] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : List[str] = image_std if image_std is not None else self.image_std __UpperCAmelCase : Dict = size if size is not None else self.size __UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Dict = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : int = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: __UpperCAmelCase : Union[str, Any] = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , crop_pct=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_rescale: __UpperCAmelCase : Any = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: __UpperCAmelCase : Tuple = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] __UpperCAmelCase : List[str] = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCAmelCase : str = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
367
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _UpperCamelCase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ): """simple docstring""" return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths ) def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": __UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ ) for answer_list in data[1]: __UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : str = [[reference] for reference in references] __UpperCAmelCase : Optional[int] = 0 for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : int = 100.0 * em / total __UpperCAmelCase : Dict = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = args.k __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = 0 for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] ) __UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __UpperCAmelCase : List[str] = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ): """simple docstring""" def strip_title(lowerCAmelCase__ : Optional[int] ): if title.startswith("""\"""" ): __UpperCAmelCase : List[Any] = title[1:] if title.endswith("""\"""" ): __UpperCAmelCase : int = title[:-1] return title __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device ) __UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ ) __UpperCAmelCase : int = question_enc_outputs[0] __UpperCAmelCase : Dict = rag_model.retriever( lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) __UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __UpperCAmelCase : Union[str, Any] = [] for docs in all_docs: __UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(lowerCAmelCase__ ) ) return provenance_strings def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" with torch.no_grad(): __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) __UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device ) __UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device ) __UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) ) return answers def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) __UpperCAmelCase : str = parser.parse_args() __UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = {} if args.model_type is None: __UpperCAmelCase : str = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration __UpperCAmelCase : Dict = args.n_docs if args.index_name is not None: __UpperCAmelCase : Union[str, Any] = args.index_name if args.index_path is not None: __UpperCAmelCase : Dict = args.index_path else: __UpperCAmelCase : str = BartForConditionalGeneration __UpperCAmelCase : str = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k __UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ ) model.retriever.init_retrieval() else: __UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: __UpperCAmelCase : Union[str, Any] = [] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: __UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" ) preds_file.flush() __UpperCAmelCase : List[str] = [] if len(lowerCAmelCase__ ) > 0: __UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _UpperCamelCase = get_args() main(args)
16
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _A ( __a ): _SCREAMING_SNAKE_CASE : Optional[Any] = "gpt_neox" def __init__( self , __UpperCAmelCase=50_432 , __UpperCAmelCase=6_144 , __UpperCAmelCase=44 , __UpperCAmelCase=64 , __UpperCAmelCase=24_576 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.25 , __UpperCAmelCase=10_000 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=2_048 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> List[str]: '''simple docstring''' super().__init__(bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) __UpperCAmelCase : Optional[int] = vocab_size __UpperCAmelCase : Optional[int] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : str = hidden_act __UpperCAmelCase : List[Any] = rotary_pct __UpperCAmelCase : Optional[int] = rotary_emb_base __UpperCAmelCase : Optional[int] = attention_dropout __UpperCAmelCase : str = hidden_dropout __UpperCAmelCase : Union[str, Any] = classifier_dropout __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Optional[Any] = layer_norm_eps __UpperCAmelCase : Tuple = use_cache __UpperCAmelCase : Union[str, Any] = tie_word_embeddings __UpperCAmelCase : int = use_parallel_residual __UpperCAmelCase : Optional[int] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def __A ( self ) -> Tuple: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCamelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'got {self.rope_scaling}' ) __UpperCAmelCase : int = self.rope_scaling.get("""type""" , UpperCamelCase__ ) __UpperCAmelCase : Optional[int] = self.rope_scaling.get("""factor""" , UpperCamelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
368
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : @staticmethod def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 ) __UpperCAmelCase : Tuple = len(__UpperCAmelCase ) self.assertGreater(__UpperCAmelCase , 0 ) self.assertEqual( __UpperCAmelCase , [ { """score""": ANY(__UpperCAmelCase ), """label""": ANY(__UpperCAmelCase ), """box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )}, } for i in range(__UpperCAmelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> Tuple: '''simple docstring''' pass @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) __UpperCAmelCase : str = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) __UpperCAmelCase : Any = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass @require_torch @slow def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = 0.2 __UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
16
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) _UpperCamelCase = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
369
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.txt'''} _UpperCamelCase = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } _UpperCamelCase = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } _UpperCamelCase = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : Union[str, Any] = do_lower_case __UpperCAmelCase : str = strip_accents __UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars __UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase ) __UpperCAmelCase : List[Any] = do_lower_case def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
16
0
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def lowercase_ ( lowerCAmelCase__ : Vector , lowerCAmelCase__ : Vector ): """simple docstring""" return np.sqrt(np.sum((np.asarray(a__ ) - np.asarray(a__ )) ** 2 ) ) def lowercase_ ( lowerCAmelCase__ : Vector , lowerCAmelCase__ : Vector ): """simple docstring""" return sum((va - va) ** 2 for va, va in zip(a__ , a__ ) ) ** (1 / 2) if __name__ == "__main__": def lowercase_ ( ): """simple docstring""" from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) ) benchmark()
370
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''OwlViTFeatureExtractor'''] _UpperCamelCase = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
0
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" return 1 if input_a == input_a else 0 def lowercase_ ( ): """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
371
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: '''simple docstring''' warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
16
0
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowercase_ ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(A__ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def lowercase_ ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def lowercase_ ( ): """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(A__ ): http_head("""https://huggingface.co""" )
350
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) __UpperCAmelCase : List[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) __UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) __UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' import torch __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = pipeline("""text-classification""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : int = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __UpperCAmelCase : Union[str, Any] = """HuggingFace is in""" __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""] __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase ) __UpperCAmelCase : Any = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , ) __UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(__UpperCAmelCase ): text_classifier(__UpperCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
16
0
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _A : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=sys.maxsize ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = '''bilinear''' __UpperCAmelCase : List[str] = max_size __UpperCAmelCase : List[Any] = short_edge_length def __call__( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = [] for img in imgs: __UpperCAmelCase : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __UpperCAmelCase : str = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img __UpperCAmelCase : List[Any] = size * 1.0 / min(snake_case_ , snake_case_ ) if h < w: __UpperCAmelCase : Dict = size, scale * w else: __UpperCAmelCase : Optional[Any] = scale * h, size if max(snake_case_ , snake_case_ ) > self.max_size: __UpperCAmelCase : Tuple = self.max_size * 1.0 / max(snake_case_ , snake_case_ ) __UpperCAmelCase : List[Any] = newh * scale __UpperCAmelCase : int = neww * scale __UpperCAmelCase : Dict = int(neww + 0.5 ) __UpperCAmelCase : Dict = int(newh + 0.5 ) if img.dtype == np.uinta: __UpperCAmelCase : Optional[Any] = Image.fromarray(snake_case_ ) __UpperCAmelCase : str = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) __UpperCAmelCase : Optional[Any] = np.asarray(snake_case_ ) else: __UpperCAmelCase : Tuple = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw __UpperCAmelCase : Any = nn.functional.interpolate( snake_case_ , (newh, neww) , mode=self.interp_method , align_corners=snake_case_ ).squeeze(0 ) img_augs.append(snake_case_ ) return img_augs class _A : """simple docstring""" def __init__( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) __UpperCAmelCase : Union[str, Any] = cfg.INPUT.FORMAT __UpperCAmelCase : Dict = cfg.SIZE_DIVISIBILITY __UpperCAmelCase : List[Any] = cfg.PAD_VALUE __UpperCAmelCase : Dict = cfg.INPUT.MAX_SIZE_TEST __UpperCAmelCase : List[Any] = cfg.MODEL.DEVICE __UpperCAmelCase : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __UpperCAmelCase : int = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __UpperCAmelCase : Union[str, Any] = lambda __UpperCAmelCase : (x - self.pixel_mean) / self.pixel_std def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = tuple(max(snake_case_ ) for s in zip(*[img.shape for img in images] ) ) __UpperCAmelCase : List[Any] = [im.shape[-2:] for im in images] __UpperCAmelCase : Optional[int] = [ nn.functional.pad( snake_case_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case_ , snake_case_ ) ] return torch.stack(snake_case_ ), torch.tensor(snake_case_ ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase=False ) -> int: '''simple docstring''' with torch.no_grad(): if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase : str = [images] if single_image: assert len(snake_case_ ) == 1 for i in range(len(snake_case_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case_ , images.pop(snake_case_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case_ , torch.as_tensor(img_tensorize(images.pop(snake_case_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge __UpperCAmelCase : Optional[Any] = torch.tensor([im.shape[:2] for im in images] ) __UpperCAmelCase : int = self.aug(snake_case_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __UpperCAmelCase : str = [self.normalizer(snake_case_ ) for x in images] # now pad them to do the following operations __UpperCAmelCase : List[Any] = self.pad(snake_case_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __UpperCAmelCase : str = torch.true_divide(snake_case_ , snake_case_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple[int, int] ): """simple docstring""" assert torch.isfinite(lowerCAmelCase__ ).all(), "Box tensor contains infinite or NaN!" __UpperCAmelCase : Optional[Any] = box_size tensor[:, 0].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 1].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 2].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 3].clamp_(min=0 , max=lowerCAmelCase__ )
351
'''simple docstring''' from ..utils import DummyObject, requires_backends class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
16
0
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
352
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _A : def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase ) __UpperCAmelCase : List[str] = length __UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa ) __UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Dict: '''simple docstring''' return self.length def __getitem__( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int: '''simple docstring''' super().__init__() __UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Any = True def __A ( self , __UpperCAmelCase=None ) -> str: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : Optional[int] = False return x * self.a[0] + self.b[0] class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : str = True def __A ( self , __UpperCAmelCase=None ) -> Tuple: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : int = False return x * self.a + self.b def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer __UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" ) __UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )} def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : List[Any] = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) if "label" in examples: __UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCAmelCase : Tuple = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCAmelCase__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 ) __UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
16
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( lowerCAmelCase__ : Any ): """simple docstring""" if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class _A ( lowercase_ ): _SCREAMING_SNAKE_CASE : List[Any] = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**a__ ) __UpperCAmelCase : Any = size if size is not None else {"""shortest_edge""": 224} __UpperCAmelCase : int = get_size_dict(a__ , default_to_square=a__ ) __UpperCAmelCase : List[str] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : str = get_size_dict(a__ , param_name="""crop_size""" ) __UpperCAmelCase : Tuple = do_resize __UpperCAmelCase : str = size __UpperCAmelCase : List[str] = do_center_crop __UpperCAmelCase : List[Any] = crop_size __UpperCAmelCase : str = resample __UpperCAmelCase : Dict = do_rescale __UpperCAmelCase : Optional[Any] = rescale_factor __UpperCAmelCase : Tuple = do_normalize __UpperCAmelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Optional[int] = get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" in size: __UpperCAmelCase : Optional[Any] = get_resize_output_image_size(a__ , size["""shortest_edge"""] , default_to_square=a__ ) elif "height" in size and "width" in size: __UpperCAmelCase : Optional[int] = (size["""height"""], size["""width"""]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : List[str] = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(a__ , size=(size["""height"""], size["""width"""]) , data_format=a__ , **a__ ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[str]: '''simple docstring''' return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : Union[str, Any] = to_numpy_array(a__ ) if do_resize: __UpperCAmelCase : int = self.resize(image=a__ , size=a__ , resample=a__ ) if do_center_crop: __UpperCAmelCase : Optional[int] = self.center_crop(a__ , size=a__ ) if do_rescale: __UpperCAmelCase : List[Any] = self.rescale(image=a__ , scale=a__ ) if do_normalize: __UpperCAmelCase : Union[str, Any] = self.normalize(image=a__ , mean=a__ , std=a__ ) __UpperCAmelCase : int = to_channel_dimension_format(a__ , a__ ) return image def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' __UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : str = resample if resample is not None else self.resample __UpperCAmelCase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : List[str] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Optional[Any] = image_std if image_std is not None else self.image_std __UpperCAmelCase : List[Any] = size if size is not None else self.size __UpperCAmelCase : List[str] = get_size_dict(a__ , default_to_square=a__ ) __UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Union[str, Any] = get_size_dict(a__ , param_name="""crop_size""" ) if not valid_images(a__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __UpperCAmelCase : Union[str, Any] = make_batched(a__ ) __UpperCAmelCase : List[str] = [ [ self._preprocess_image( image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , ) for img in video ] for video in videos ] __UpperCAmelCase : Tuple = {"""pixel_values""": videos} return BatchFeature(data=a__ , tensor_type=a__ )
353
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None @property def __A ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = (3, 32, 128) __UpperCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) __UpperCAmelCase : List[Any] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) return image_input def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[str] = self.prepare_image_inputs() __UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" ) __UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Dict = """test""" __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = """test""" __UpperCAmelCase : int = self.prepare_image_inputs() __UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase ) __UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Optional[Any] = self.get_tokenizer() __UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : str = None __UpperCAmelCase : Dict = self.prepare_image_inputs() __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 ) __UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 ) __UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 ) __UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
16
0
'''simple docstring''' from collections.abc import Sequence from queue import Queue class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = start __UpperCAmelCase : List[Any] = end __UpperCAmelCase : str = val __UpperCAmelCase : Union[str, Any] = (start + end) // 2 __UpperCAmelCase : Any = left __UpperCAmelCase : Tuple = right def __repr__( self ) -> Optional[Any]: '''simple docstring''' return f'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = collection __UpperCAmelCase : Dict = function if self.collection: __UpperCAmelCase : Any = self._build_tree(0 , len(UpperCamelCase_ ) - 1 ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' self._update_tree(self.root , UpperCamelCase_ , UpperCamelCase_ ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return self._query_range(self.root , UpperCamelCase_ , UpperCamelCase_ ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' if start == end: return SegmentTreeNode(UpperCamelCase_ , UpperCamelCase_ , self.collection[start] ) __UpperCAmelCase : Dict = (start + end) // 2 __UpperCAmelCase : Optional[Any] = self._build_tree(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self._build_tree(mid + 1 , UpperCamelCase_ ) return SegmentTreeNode(UpperCamelCase_ , UpperCamelCase_ , self.fn(left.val , right.val ) , UpperCamelCase_ , UpperCamelCase_ ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' if node.start == i and node.end == i: __UpperCAmelCase : Optional[int] = val return if i <= node.mid: self._update_tree(node.left , UpperCamelCase_ , UpperCamelCase_ ) else: self._update_tree(node.right , UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Dict = self.fn(node.left.val , node.right.val ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , UpperCamelCase_ , UpperCamelCase_ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , UpperCamelCase_ , node.mid ) , self._query_range(node.right , node.mid + 1 , UpperCamelCase_ ) , ) else: # range in right child tree return self._query_range(node.right , UpperCamelCase_ , UpperCamelCase_ ) def __A ( self ) -> str: '''simple docstring''' if self.root is not None: __UpperCAmelCase : Optional[Any] = Queue() queue.put(self.root ) while not queue.empty(): __UpperCAmelCase : Any = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) _UpperCamelCase = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
354
'''simple docstring''' from collections.abc import Sequence def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ): """simple docstring""" if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __UpperCAmelCase : Any = nums[0] for i in range(1 , len(lowerCAmelCase__ ) ): __UpperCAmelCase : Union[str, Any] = nums[i] __UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _UpperCamelCase = int(input('''Enter number of elements : ''').strip()) _UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
16
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _A ( unittest.TestCase ): def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [[1, 2, 4], [1, 2, 3, 4]] __UpperCAmelCase : Tuple = DisjunctiveConstraint(__lowerCamelCase ) self.assertTrue(isinstance(dc.token_ids , __lowerCamelCase ) ) with self.assertRaises(__lowerCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowerCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowerCamelCase ): DisjunctiveConstraint(__lowerCamelCase ) # fails here def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = [[1, 2, 3], [1, 2, 4]] __UpperCAmelCase : Dict = DisjunctiveConstraint(__lowerCamelCase ) __UpperCAmelCase : List[str] = dc.update(1 ) __UpperCAmelCase : str = stepped is True and completed is False and reset is False self.assertTrue(__lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __UpperCAmelCase : Any = dc.update(2 ) __UpperCAmelCase : Union[str, Any] = stepped is True and completed is False and reset is False self.assertTrue(__lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCAmelCase : List[Any] = dc.update(3 ) __UpperCAmelCase : List[str] = stepped is True and completed is True and reset is False self.assertTrue(__lowerCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __UpperCAmelCase : Any = DisjunctiveConstraint(__lowerCamelCase ) __UpperCAmelCase : int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __UpperCAmelCase : Union[str, Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCAmelCase : Tuple = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __UpperCAmelCase : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __UpperCAmelCase : Optional[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __UpperCAmelCase : Union[str, Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCAmelCase : Union[str, Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
355
'''simple docstring''' class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = data __UpperCAmelCase : int = previous __UpperCAmelCase : Union[str, Any] = next_node def __str__( self ) -> str: '''simple docstring''' return f'{self.data}' def __A ( self ) -> int: '''simple docstring''' return self.data def __A ( self ) -> List[str]: '''simple docstring''' return self.next def __A ( self ) -> str: '''simple docstring''' return self.previous class _A : def __init__( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = head def __iter__( self ) -> str: '''simple docstring''' return self def __A ( self ) -> str: '''simple docstring''' if not self.current: raise StopIteration else: __UpperCAmelCase : List[str] = self.current.get_data() __UpperCAmelCase : int = self.current.get_next() return value class _A : def __init__( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = None # First node in list __UpperCAmelCase : List[str] = None # Last node in list def __str__( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = self.head __UpperCAmelCase : Optional[int] = [] while current is not None: nodes.append(current.get_data() ) __UpperCAmelCase : Any = current.get_next() return " ".join(str(__UpperCAmelCase ) for node in nodes ) def __contains__( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.head while current: if current.get_data() == value: return True __UpperCAmelCase : Optional[Any] = current.get_next() return False def __iter__( self ) -> str: '''simple docstring''' return LinkedListIterator(self.head ) def __A ( self ) -> List[Any]: '''simple docstring''' if self.head: return self.head.get_data() return None def __A ( self ) -> Optional[Any]: '''simple docstring''' if self.tail: return self.tail.get_data() return None def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: __UpperCAmelCase : str = node __UpperCAmelCase : List[str] = node else: self.insert_before_node(self.head , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: self.set_head(__UpperCAmelCase ) else: self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase ) if self.head is None: self.set_head(__UpperCAmelCase ) else: self.set_tail(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Tuple = node __UpperCAmelCase : List[Any] = node.previous if node.get_previous() is None: __UpperCAmelCase : str = node_to_insert else: __UpperCAmelCase : Optional[Any] = node_to_insert __UpperCAmelCase : List[Any] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : List[str] = node __UpperCAmelCase : Union[str, Any] = node.next if node.get_next() is None: __UpperCAmelCase : Dict = node_to_insert else: __UpperCAmelCase : Any = node_to_insert __UpperCAmelCase : List[str] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase ) return current_position += 1 __UpperCAmelCase : int = node.next self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Node: '''simple docstring''' __UpperCAmelCase : Dict = self.head while node: if node.get_data() == item: return node __UpperCAmelCase : List[str] = node.get_next() raise Exception("""Node not found""" ) def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if (node := self.get_node(__UpperCAmelCase )) is not None: if node == self.head: __UpperCAmelCase : Optional[int] = self.head.get_next() if node == self.tail: __UpperCAmelCase : Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(__UpperCAmelCase ) @staticmethod def __A ( __UpperCAmelCase ) -> None: '''simple docstring''' if node.get_next(): __UpperCAmelCase : Optional[Any] = node.previous if node.get_previous(): __UpperCAmelCase : int = node.next __UpperCAmelCase : Tuple = None __UpperCAmelCase : Union[str, Any] = None def __A ( self ) -> List[Any]: '''simple docstring''' return self.head is None def lowercase_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
16
0
'''simple docstring''' _UpperCamelCase = 8.3_144_598 def lowercase_ ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ): """simple docstring""" if temperature < 0: raise Exception("""Temperature cannot be less than 0 K""" ) if molar_mass <= 0: raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _UpperCamelCase = 300 _UpperCamelCase = 28 _UpperCamelCase = rms_speed_of_molecule(temperature, molar_mass) print(F'Vrms of Nitrogen gas at 300 K is {vrms} m/s')
356
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _A : _SCREAMING_SNAKE_CASE : List[str] _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ) -> Any: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class _A : _SCREAMING_SNAKE_CASE : Optional[List] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None __UpperCAmelCase : int = len(self.languages ) if self.languages else None def __call__( self ) -> Optional[Any]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = set(self.languages ) if self.languages and set(__UpperCAmelCase ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) ) return {"language": languages, "translation": translations} def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
16
0
from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES _UpperCamelCase = 'tiny-wmt19-en-ru' # Build # borrowed from a test _UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _UpperCamelCase = dict(zip(vocab, range(len(vocab)))) _UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(tmpdirname) _UpperCamelCase = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] _UpperCamelCase = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] _UpperCamelCase = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) _UpperCamelCase = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) _UpperCamelCase = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) _UpperCamelCase = FSMTForConditionalGeneration(config) print(F'num of params {tiny_model.num_parameters()}') # Test _UpperCamelCase = tokenizer(['''Making tiny model'''], return_tensors='''pt''') _UpperCamelCase = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-ru
357
'''simple docstring''' from statistics import mean import numpy as np def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Tuple = 0 # Number of processes finished __UpperCAmelCase : Optional[int] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __UpperCAmelCase : Tuple = [0] * no_of_process # List to include calculation results __UpperCAmelCase : int = [0] * no_of_process # Sort by arrival time. __UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )] __UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )] arrival_time.sort() while no_of_process > finished_process_count: __UpperCAmelCase : Dict = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __UpperCAmelCase : Any = arrival_time[i] __UpperCAmelCase : Any = 0 # Index showing the location of the process being performed __UpperCAmelCase : Any = 0 # Saves the current response ratio. __UpperCAmelCase : List[str] = 0 for i in range(0 , lowerCAmelCase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __UpperCAmelCase : Tuple = temp __UpperCAmelCase : List[str] = i # Calculate the turn around time __UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __UpperCAmelCase : List[str] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Optional[int] = [0] * no_of_process for i in range(0 , lowerCAmelCase__ ): __UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _UpperCamelCase = 5 _UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E'''] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _UpperCamelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
16
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _UpperCamelCase = pd.read_csv('''sample_data.csv''', header=None) _UpperCamelCase = df.shape[:1][0] # If you're using some other dataset input the target column _UpperCamelCase = df.iloc[:, 1:2] _UpperCamelCase = actual_data.values.reshape(len_data, 1) _UpperCamelCase = MinMaxScaler().fit_transform(actual_data) _UpperCamelCase = 10 _UpperCamelCase = 5 _UpperCamelCase = 20 _UpperCamelCase = len_data - periods * look_back _UpperCamelCase = actual_data[:division] _UpperCamelCase = actual_data[division - look_back :] _UpperCamelCase = [], [] _UpperCamelCase = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _UpperCamelCase = np.array(train_x) _UpperCamelCase = np.array(test_x) _UpperCamelCase = np.array([list(i.ravel()) for i in train_y]) _UpperCamelCase = np.array([list(i.ravel()) for i in test_y]) _UpperCamelCase = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') _UpperCamelCase = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) _UpperCamelCase = model.predict(x_test)
358
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Union[str, Any] = seq_length __UpperCAmelCase : int = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : int = scope def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = None if self.use_input_mask: __UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> List[str]: '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_config() __UpperCAmelCase : List[Any] = 300 return config def __A ( self ) -> Dict: '''simple docstring''' ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = self.prepare_config_and_inputs() __UpperCAmelCase : Tuple = True __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : List[str] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Dict = () def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = MraModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Any: '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""MRA does not output attentions""" ) def __A ( self ) -> List[Any]: '''simple docstring''' return @require_torch class _A ( unittest.TestCase ): @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0] __UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : int = model(__UpperCAmelCase )[0] __UpperCAmelCase : Union[str, Any] = 50_265 __UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : Any = model(__UpperCAmelCase )[0] __UpperCAmelCase : Dict = 50_265 __UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : str = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
0
'''simple docstring''' import functools from typing import Any def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict ): """simple docstring""" if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or len(lowerCAmelCase__ ) == 0: raise ValueError("""the string should be not empty string""" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not all( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) > 0 for item in words ): raise ValueError("""the words should be a list of non-empty strings""" ) # Build trie __UpperCAmelCase : int = {} __UpperCAmelCase : Union[str, Any] = """WORD_KEEPER""" for word in words: __UpperCAmelCase : Optional[int] = trie for c in word: if c not in trie_node: __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : int = trie_node[c] __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : str = len(lowerCAmelCase__ ) # Dynamic programming method @functools.cache def is_breakable(lowerCAmelCase__ : str ) -> bool: if index == len_string: return True __UpperCAmelCase : Dict = trie for i in range(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCAmelCase : List[str] = trie_node.get(string[i] , lowerCAmelCase__ ) if trie_node is None: return False if trie_node.get(lowerCAmelCase__ , lowerCAmelCase__ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
359
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : List[Any] = embed_dim __UpperCAmelCase : str = depths __UpperCAmelCase : Dict = num_heads __UpperCAmelCase : str = window_size __UpperCAmelCase : int = mlp_ratio __UpperCAmelCase : Union[str, Any] = qkv_bias __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Optional[int] = use_absolute_embeddings __UpperCAmelCase : Any = patch_norm __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : Any = scope __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : int = encoder_stride def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) __UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = self.type_sequence_label_size __UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = SwinvaModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 ) def __A ( self ) -> Any: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(__UpperCAmelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : str = outputs.attentions __UpperCAmelCase : Any = len(self.model_tester.depths ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : int = config.window_size**2 __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : Dict = len(__UpperCAmelCase ) # Check attention is always last and order is fine __UpperCAmelCase : Any = True __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): __UpperCAmelCase : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : Optional[int] = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) ) __UpperCAmelCase : Tuple = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # Swinv2 has a different seq_length __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : int = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape __UpperCAmelCase : Any = ( reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : int = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Tuple = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> int: '''simple docstring''' return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __UpperCAmelCase ) __UpperCAmelCase : Tuple = self.default_image_processor __UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( lowerCamelCase__ ): _SCREAMING_SNAKE_CASE : List[Any] = "ClapFeatureExtractor" _SCREAMING_SNAKE_CASE : Dict = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__(__A , __A ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = kwargs.pop("""sampling_rate""" , __A ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: __UpperCAmelCase : Optional[Any] = self.tokenizer(__A , return_tensors=__A , **__A ) if audios is not None: __UpperCAmelCase : Any = self.feature_extractor( __A , sampling_rate=__A , return_tensors=__A , **__A ) if text is not None and audios is not None: __UpperCAmelCase : int = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' return self.tokenizer.batch_decode(*__A , **__A ) def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*__A , **__A ) @property def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.tokenizer.model_input_names __UpperCAmelCase : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
360
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( lowerCAmelCase__ : List[str] ): """simple docstring""" if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : Any = crop_size __UpperCAmelCase : Optional[Any] = resample __UpperCAmelCase : Dict = do_rescale __UpperCAmelCase : List[str] = rescale_factor __UpperCAmelCase : Dict = offset __UpperCAmelCase : List[str] = do_normalize __UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" in size: __UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: __UpperCAmelCase : Any = (size["""height"""], size["""width"""]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = image.astype(np.floataa ) if offset: __UpperCAmelCase : Tuple = image - (scale / 2) return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase ) if do_resize: __UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) if do_center_crop: __UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase ) if do_rescale: __UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase ) if do_normalize: __UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) return image def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' __UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : List[Any] = resample if resample is not None else self.resample __UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : List[Any] = offset if offset is not None else self.offset __UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : int = image_std if image_std is not None else self.image_std __UpperCAmelCase : Any = size if size is not None else self.size __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __UpperCAmelCase : int = make_batched(__UpperCAmelCase ) __UpperCAmelCase : Tuple = [ [ self._preprocess_image( image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , ) for img in video ] for video in videos ] __UpperCAmelCase : Tuple = {"""pixel_values""": videos} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
16
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["image_processor", "tokenizer"] _SCREAMING_SNAKE_CASE : Optional[Any] = "LayoutLMv2ImageProcessor" _SCREAMING_SNAKE_CASE : Dict = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __a , ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("""feature_extractor""" ) __UpperCAmelCase : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__a , __a ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> BatchEncoding: '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor __UpperCAmelCase : Optional[Any] = self.image_processor(images=__a , return_tensors=__a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__a , __a ): __UpperCAmelCase : List[str] = [text] # add batch dimension (as the image processor always adds a batch dimension) __UpperCAmelCase : Optional[int] = features["""words"""] __UpperCAmelCase : Optional[int] = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) # add pixel values __UpperCAmelCase : Dict = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: __UpperCAmelCase : Optional[int] = self.get_overflowing_images(__a , encoded_inputs["""overflow_to_sample_mapping"""] ) __UpperCAmelCase : List[Any] = images return encoded_inputs def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__a ) != len(__a ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f' {len(__a )} and {len(__a )}' ) return images_with_overflow def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a ) def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*__a , **__a ) @property def __A ( self ) -> Union[str, Any]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def __A ( self ) -> Any: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __a , ) return self.image_processor_class @property def __A ( self ) -> List[str]: '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __a , ) return self.image_processor
361
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline _SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCAmelCase : Any = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : Dict = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any: '''simple docstring''' if str(__UpperCAmelCase ).startswith("""mps""" ): __UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase ) else: __UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] ) __UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0] __UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __UpperCAmelCase : Dict = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _A ( _snake_case ): _SCREAMING_SNAKE_CASE : List[str] = "decision_transformer" _SCREAMING_SNAKE_CASE : Dict = ["past_key_values"] _SCREAMING_SNAKE_CASE : Union[str, Any] = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4_096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1_024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50_256 , __UpperCAmelCase=50_256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : Any = state_dim __UpperCAmelCase : Optional[Any] = act_dim __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[str] = max_ep_len __UpperCAmelCase : Union[str, Any] = action_tanh __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Optional[Any] = n_positions __UpperCAmelCase : Optional[int] = n_layer __UpperCAmelCase : int = n_head __UpperCAmelCase : List[Any] = n_inner __UpperCAmelCase : Optional[Any] = activation_function __UpperCAmelCase : Dict = resid_pdrop __UpperCAmelCase : Dict = embd_pdrop __UpperCAmelCase : Optional[int] = attn_pdrop __UpperCAmelCase : Tuple = layer_norm_epsilon __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Any = scale_attn_weights __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : Optional[Any] = scale_attn_by_inverse_layer_idx __UpperCAmelCase : Optional[int] = reorder_and_upcast_attn __UpperCAmelCase : Dict = bos_token_id __UpperCAmelCase : Union[str, Any] = eos_token_id super().__init__(bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
362
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column __UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )] def __str__( self ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier __UpperCAmelCase : Optional[Any] = 0 for row_vector in self.array: for obj in row_vector: __UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) ) __UpperCAmelCase : Optional[int] = f'%{max_element_length}s' # Make string and return def single_line(__UpperCAmelCase ) -> str: nonlocal string_format_identifier __UpperCAmelCase : Any = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array ) return s def __repr__( self ) -> str: '''simple docstring''' return str(self ) def __A ( self , __UpperCAmelCase ) -> bool: '''simple docstring''' if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = value def __add__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add __UpperCAmelCase : Dict = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : Dict = -self[r, c] return result def __sub__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' return self + (-another) def __mul__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication __UpperCAmelCase : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] * another return result elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication assert self.column == another.row __UpperCAmelCase : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})' raise TypeError(__UpperCAmelCase ) def __A ( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Dict = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[str] = self[r, c] return result def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __UpperCAmelCase : Optional[Any] = v.transpose() __UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = Matrix(3 , 3 , 0 ) for i in range(3 ): __UpperCAmelCase : Tuple = 1 print(f'a^(-1) is {ainv}' ) # u, v __UpperCAmelCase : Dict = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3 __UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' ) def lowercase_ ( ): """simple docstring""" import doctest doctest.testmod() testa()
16
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } _UpperCamelCase = { '''unc-nlp/lxmert-base-uncased''': 512, } _UpperCamelCase = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class _A ( snake_case__ ): _SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Dict = LxmertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> List[str]: '''simple docstring''' super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) __UpperCAmelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _A ) != do_lower_case or normalizer_state.get("""strip_accents""" , _A ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _A ) != tokenize_chinese_chars ): __UpperCAmelCase : int = getattr(_A , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : Dict = do_lower_case __UpperCAmelCase : str = strip_accents __UpperCAmelCase : List[Any] = tokenize_chinese_chars __UpperCAmelCase : Union[str, Any] = normalizer_class(**_A ) __UpperCAmelCase : List[Any] = do_lower_case def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]: '''simple docstring''' __UpperCAmelCase : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
363
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
0
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_sentencepiece_available(): import sentencepiece as sp _UpperCamelCase = 5 _UpperCamelCase = 10 @require_sentencepiece @require_tokenizers class _A ( a__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = SpeechaTextTokenizer _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = True def __A ( self ) -> Optional[int]: '''simple docstring''' super().setUp() __UpperCAmelCase : Any = sp.SentencePieceProcessor() spm_model.Load(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase : Optional[Any] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(SCREAMING_SNAKE_CASE_ ) )] __UpperCAmelCase : Tuple = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __UpperCAmelCase : Any = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) __UpperCAmelCase : Union[str, Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '<pad>' __UpperCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1_001 ) def __A ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_001 ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __UpperCAmelCase : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [289, 50, 14, 174, 386] , ) __UpperCAmelCase : Tuple = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) __UpperCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) __UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' # fmt: off __UpperCAmelCase : int = {'input_ids': [[3_791, 797, 31, 11, 64, 797, 31, 2_429, 433, 12, 1_176, 12, 20, 786, 915, 142, 2_413, 240, 37, 3_238, 797, 31, 11, 35, 93, 915, 142, 2_413, 240, 37, 5_540, 567, 1_276, 93, 37, 610, 40, 62, 455, 657, 1_042, 123, 780, 177, 37, 309, 241, 1_298, 514, 20, 292, 2_737, 114, 2_469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3_388, 511, 459, 4, 3_555, 40, 321, 302, 705, 4, 3_388, 511, 583, 326, 5, 5, 5, 62, 3_310, 560, 177, 2_680, 217, 1_508, 32, 31, 853, 418, 64, 583, 511, 1_605, 62, 35, 93, 560, 177, 2_680, 217, 1_508, 1_521, 64, 583, 511, 519, 62, 20, 1_515, 764, 20, 149, 261, 5_625, 7_972, 20, 5_540, 567, 1_276, 93, 3_925, 1_675, 11, 15, 802, 7_972, 576, 217, 1_508, 11, 35, 93, 1_253, 2_441, 15, 289, 652, 31, 416, 321, 3_842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2_681, 1_153, 3_434, 20, 5_540, 37, 567, 126, 1_253, 2_441, 3_376, 449, 210, 431, 1_563, 177, 767, 5_540, 11, 1_203, 472, 11, 2_953, 685, 285, 364, 706, 1_153, 20, 6_799, 20, 2_869, 20, 4_464, 126, 40, 2_429, 20, 1_040, 866, 2_664, 418, 20, 318, 20, 1_726, 186, 20, 265, 522, 35, 93, 2_191, 4_634, 20, 1_040, 12, 6_799, 15, 228, 2_356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_575, 2_666, 684, 1_582, 1_176, 12, 627, 149, 619, 20, 4_902, 563, 11, 20, 149, 261, 3_420, 2_356, 174, 142, 4_714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name="""facebook/s2t-small-mustc-en-de-st""" , revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" , ) @require_sentencepiece class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = "valhalla/s2t_mustc_multilinguial_medium" _SCREAMING_SNAKE_CASE : int = "C'est trop cool" _SCREAMING_SNAKE_CASE : List[str] = "Esto es genial" @classmethod def __A ( cls ) -> List[str]: '''simple docstring''' __UpperCAmelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __A ( self ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] , 11 ) def __A ( self ) -> str: '''simple docstring''' self.assertEqual(self.tokenizer.vocab_size , 10_000 ) def __A ( self ) -> str: '''simple docstring''' self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) __UpperCAmelCase : int = [ES_CODE, 4, 1_601, 47, 7_647, 2] __UpperCAmelCase : List[Any] = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = 'fr' __UpperCAmelCase : Dict = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) __UpperCAmelCase : Tuple = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
364
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING _SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def __A ( self ) -> Any: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) __UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() __UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow @require_torch def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(__UpperCAmelCase ) @slow @require_tf def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) __UpperCAmelCase : Tuple = None __UpperCAmelCase : int = None self.run_pipeline_test(__UpperCAmelCase , [] ) @require_tf def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : str = None self.run_pipeline_test(__UpperCAmelCase , [] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) __UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = fill_masker.tokenizer __UpperCAmelCase : Union[str, Any] = fill_masker.model __UpperCAmelCase : Tuple = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , ) with self.assertRaises(__UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__UpperCAmelCase ): fill_masker("""This is""" ) self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = tokenizer.get_vocab() __UpperCAmelCase : Dict = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase ) __UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Any = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Call argument __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Score equivalence __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs] __UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ) == set(__UpperCAmelCase ): __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] ) with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 ) __UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = tokenizer.get_vocab() __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) # top_k=2, ntargets=3 __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__UpperCAmelCase ) , 3 ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Dict = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , )
16
0
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_MASKED_LM_MAPPING _SCREAMING_SNAKE_CASE : Optional[int] = TF_MODEL_FOR_MASKED_LM_MAPPING def __A ( self ) -> Tuple: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) __UpperCAmelCase : Any = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) __UpperCAmelCase : List[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) __UpperCAmelCase : List[Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : List[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) __UpperCAmelCase : Optional[Any] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() __UpperCAmelCase : Optional[int] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow @require_torch def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(__UpperCAmelCase ) @slow @require_tf def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) __UpperCAmelCase : Any = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) __UpperCAmelCase : Dict = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) __UpperCAmelCase : List[str] = None __UpperCAmelCase : Dict = None self.run_pipeline_test(__UpperCAmelCase , [] ) @require_tf def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) __UpperCAmelCase : int = None __UpperCAmelCase : Union[str, Any] = None self.run_pipeline_test(__UpperCAmelCase , [] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) __UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = fill_masker.tokenizer __UpperCAmelCase : str = fill_masker.model __UpperCAmelCase : Optional[int] = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : str = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , ) with self.assertRaises(__UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__UpperCAmelCase ): fill_masker("""This is""" ) self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = tokenizer.get_vocab() __UpperCAmelCase : Any = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCAmelCase : Optional[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase ) __UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : str = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Call argument __UpperCAmelCase : Any = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Any = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : List[str] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Score equivalence __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [top_mask["""token_str"""] for top_mask in outputs] __UpperCAmelCase : Union[str, Any] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ) == set(__UpperCAmelCase ): __UpperCAmelCase : List[Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] ) with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Optional[Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 ) __UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[Any] = tokenizer.get_vocab() __UpperCAmelCase : Tuple = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) # top_k=2, ntargets=3 __UpperCAmelCase : int = sorted(vocab.keys() )[:3] __UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCAmelCase : Dict = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ): __UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCAmelCase : Optional[int] = sorted(vocab.keys() )[:3] __UpperCAmelCase : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__UpperCAmelCase ) , 3 ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : List[str] = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , )
365
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} ) _SCREAMING_SNAKE_CASE : str = "image" _SCREAMING_SNAKE_CASE : str = "labels" def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __UpperCAmelCase ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) __UpperCAmelCase : int = copy.deepcopy(self ) __UpperCAmelCase : str = self.label_schema.copy() __UpperCAmelCase : Optional[Any] = features[self.label_column] __UpperCAmelCase : Optional[int] = label_schema return task_template @property def __A ( self ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
16
0
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Optional[Any] = 2 while i * i <= n: __UpperCAmelCase : str = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Any = 1 __UpperCAmelCase : str = 1 while True: i += 1 t_num += i if count_divisors(lowerCAmelCase__ ) > 500: break return t_num if __name__ == "__main__": print(solution())
366
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : str = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : str = num_choices __UpperCAmelCase : List[Any] = scope def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Tuple = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = True __UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass __UpperCAmelCase : Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : List[str] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = LlamaModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : str = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = 3 __UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : Optional[Any] = """single_label_classification""" __UpperCAmelCase : int = input_dict["""input_ids"""] __UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : str = """multi_label_classification""" __UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size ) __UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() __UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0} __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() __UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) @require_torch class _A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __UpperCAmelCase : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) ) __UpperCAmelCase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """ __UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" ) __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase ) # greedy generation outputs __UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
16
0
'''simple docstring''' _UpperCamelCase = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] _UpperCamelCase = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] _UpperCamelCase = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] _UpperCamelCase = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] _UpperCamelCase = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] _UpperCamelCase = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] _UpperCamelCase = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] _UpperCamelCase = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
367
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _UpperCamelCase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ): """simple docstring""" return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths ) def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": __UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ ) for answer_list in data[1]: __UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : str = [[reference] for reference in references] __UpperCAmelCase : Optional[int] = 0 for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : int = 100.0 * em / total __UpperCAmelCase : Dict = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = args.k __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = 0 for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] ) __UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __UpperCAmelCase : List[str] = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ): """simple docstring""" def strip_title(lowerCAmelCase__ : Optional[int] ): if title.startswith("""\"""" ): __UpperCAmelCase : List[Any] = title[1:] if title.endswith("""\"""" ): __UpperCAmelCase : int = title[:-1] return title __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device ) __UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ ) __UpperCAmelCase : int = question_enc_outputs[0] __UpperCAmelCase : Dict = rag_model.retriever( lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) __UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __UpperCAmelCase : Union[str, Any] = [] for docs in all_docs: __UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(lowerCAmelCase__ ) ) return provenance_strings def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" with torch.no_grad(): __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) __UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device ) __UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device ) __UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) ) return answers def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) __UpperCAmelCase : str = parser.parse_args() __UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = {} if args.model_type is None: __UpperCAmelCase : str = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration __UpperCAmelCase : Dict = args.n_docs if args.index_name is not None: __UpperCAmelCase : Union[str, Any] = args.index_name if args.index_path is not None: __UpperCAmelCase : Dict = args.index_path else: __UpperCAmelCase : str = BartForConditionalGeneration __UpperCAmelCase : str = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k __UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ ) model.retriever.init_retrieval() else: __UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: __UpperCAmelCase : Union[str, Any] = [] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: __UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" ) preds_file.flush() __UpperCAmelCase : List[str] = [] if len(lowerCAmelCase__ ) > 0: __UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _UpperCamelCase = get_args() main(args)
16
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( _UpperCamelCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 100 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , ) -> str: '''simple docstring''' if audio_length_in_s is None: __UpperCAmelCase : str = self.unet.config.sample_size / self.unet.config.sample_rate __UpperCAmelCase : Any = audio_length_in_s * self.unet.config.sample_rate __UpperCAmelCase : Tuple = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to' f' {3 * down_scale_factor / self.unet.config.sample_rate}.' ) __UpperCAmelCase : Tuple = int(_UpperCAmelCase ) if sample_size % down_scale_factor != 0: __UpperCAmelCase : Tuple = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled' f' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising' """ process.""" ) __UpperCAmelCase : List[Any] = int(_UpperCAmelCase ) __UpperCAmelCase : int = next(iter(self.unet.parameters() ) ).dtype __UpperCAmelCase : int = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(_UpperCAmelCase )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) __UpperCAmelCase : Union[str, Any] = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase , device=audio.device ) __UpperCAmelCase : str = self.scheduler.timesteps.to(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __UpperCAmelCase : Any = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample # 2. compute previous image: x_t -> t_t-1 __UpperCAmelCase : Dict = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample __UpperCAmelCase : List[str] = audio.clamp(-1 , 1 ).float().cpu().numpy() __UpperCAmelCase : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_UpperCAmelCase )
368
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : @staticmethod def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 ) __UpperCAmelCase : Tuple = len(__UpperCAmelCase ) self.assertGreater(__UpperCAmelCase , 0 ) self.assertEqual( __UpperCAmelCase , [ { """score""": ANY(__UpperCAmelCase ), """label""": ANY(__UpperCAmelCase ), """box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )}, } for i in range(__UpperCAmelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> Tuple: '''simple docstring''' pass @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) __UpperCAmelCase : str = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) __UpperCAmelCase : Any = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass @require_torch @slow def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = 0.2 __UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
16
0
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def lowercase_ ( lowerCAmelCase__ : Tuple = 8 ): """simple docstring""" __UpperCAmelCase : int = ascii_letters + digits + punctuation return "".join(secrets.choice(__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ) ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple ): """simple docstring""" i -= len(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : str = i // 3 __UpperCAmelCase : Dict = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) __UpperCAmelCase : Union[str, Any] = ( chars_incl + random(__SCREAMING_SNAKE_CASE , quotient + remainder ) + random(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) + random(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase : Union[str, Any] = list(__SCREAMING_SNAKE_CASE ) shuffle(__SCREAMING_SNAKE_CASE ) return "".join(__SCREAMING_SNAKE_CASE ) # random is a generalised function for letters, characters and numbers def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" return "".join(secrets.choice(__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ) ) def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ): """simple docstring""" pass # Put your code here... def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" pass # Put your code here... def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] ): """simple docstring""" pass # Put your code here... def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] = 8 ): """simple docstring""" if len(__SCREAMING_SNAKE_CASE ) < min_length: # Your Password must be at least 8 characters long return False __UpperCAmelCase : str = any(char in ascii_uppercase for char in password ) __UpperCAmelCase : Dict = any(char in ascii_lowercase for char in password ) __UpperCAmelCase : List[str] = any(char in digits for char in password ) __UpperCAmelCase : Union[str, Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = int(input("""Please indicate the max length of your password: """ ).strip() ) __UpperCAmelCase : Union[str, Any] = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(__SCREAMING_SNAKE_CASE ) ) print( """Alternative Password generated:""" , alternative_password_generator(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
369
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.txt'''} _UpperCamelCase = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } _UpperCamelCase = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } _UpperCamelCase = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : Union[str, Any] = do_lower_case __UpperCAmelCase : str = strip_accents __UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars __UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase ) __UpperCAmelCase : List[Any] = do_lower_case def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
16
0
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Union[str, Any] = image_size __UpperCAmelCase : str = patch_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : Tuple = embed_dim __UpperCAmelCase : List[Any] = depths __UpperCAmelCase : List[str] = num_heads __UpperCAmelCase : List[Any] = window_size __UpperCAmelCase : Union[str, Any] = mlp_ratio __UpperCAmelCase : Tuple = qkv_bias __UpperCAmelCase : int = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = drop_path_rate __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = use_absolute_embeddings __UpperCAmelCase : Dict = patch_norm __UpperCAmelCase : str = layer_norm_eps __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : int = is_training __UpperCAmelCase : Tuple = scope __UpperCAmelCase : Any = use_labels __UpperCAmelCase : Tuple = type_sequence_label_size __UpperCAmelCase : int = encoder_stride def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Dict = self.get_config() return config, pixel_values, labels def __A ( self ) -> int: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[int] = SwinvaModel(config=__snake_case ) model.to(__snake_case ) model.eval() __UpperCAmelCase : Dict = model(__snake_case ) __UpperCAmelCase : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : str = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__snake_case ) model.to(__snake_case ) model.eval() __UpperCAmelCase : List[str] = model(__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Dict = 1 __UpperCAmelCase : List[str] = SwinvaForMaskedImageModeling(__snake_case ) model.to(__snake_case ) model.eval() __UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : int = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.type_sequence_label_size __UpperCAmelCase : List[str] = SwinvaForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() __UpperCAmelCase : Dict = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = config_and_inputs __UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Tuple = False _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaModelTester(self ) __UpperCAmelCase : Dict = ConfigTester(self , config_class=__snake_case , embed_dim=37 ) def __A ( self ) -> List[Any]: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__snake_case ) __UpperCAmelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Optional[int] = [*signature.parameters.keys()] __UpperCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : int = True for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : List[str] = False __UpperCAmelCase : List[Any] = True __UpperCAmelCase : List[str] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) __UpperCAmelCase : Tuple = outputs.attentions __UpperCAmelCase : Optional[Any] = len(self.model_tester.depths ) self.assertEqual(len(__snake_case ) , __snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : int = True __UpperCAmelCase : Tuple = config.window_size**2 __UpperCAmelCase : Any = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) __UpperCAmelCase : str = outputs.attentions self.assertEqual(len(__snake_case ) , __snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : Dict = len(__snake_case ) # Check attention is always last and order is fine __UpperCAmelCase : Any = True __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): __UpperCAmelCase : Tuple = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : Tuple = 2 self.assertEqual(out_len + added_hidden_states , len(__snake_case ) ) __UpperCAmelCase : Optional[Any] = outputs.attentions self.assertEqual(len(__snake_case ) , __snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) __UpperCAmelCase : Any = outputs.hidden_states __UpperCAmelCase : Dict = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # Swinv2 has a different seq_length __UpperCAmelCase : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : Optional[int] = outputs.reshaped_hidden_states self.assertEqual(len(__snake_case ) , __snake_case ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape __UpperCAmelCase : Dict = ( reshaped_hidden_states[0].view(__snake_case , __snake_case , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : str = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Dict = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = 3 __UpperCAmelCase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : str = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[int] = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__snake_case ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def __A ( self ) -> Tuple: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = SwinvaModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = _config_zero_init(__snake_case ) for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(config=__snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> str: '''simple docstring''' return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __snake_case ) __UpperCAmelCase : Tuple = self.default_image_processor __UpperCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : Optional[int] = image_processor(images=__snake_case , return_tensors="""pt""" ).to(__snake_case ) # forward pass with torch.no_grad(): __UpperCAmelCase : Dict = model(**__snake_case ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __snake_case ) __UpperCAmelCase : Dict = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) )
370
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''OwlViTFeatureExtractor'''] _UpperCamelCase = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( lowerCAmelCase__ : Any ): """simple docstring""" __UpperCAmelCase : Tuple = DPTConfig() if "large" in checkpoint_url: __UpperCAmelCase : Optional[int] = 1024 __UpperCAmelCase : Tuple = 4096 __UpperCAmelCase : List[str] = 24 __UpperCAmelCase : Optional[int] = 16 __UpperCAmelCase : Union[str, Any] = [5, 11, 17, 23] __UpperCAmelCase : str = [256, 512, 1024, 1024] __UpperCAmelCase : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Tuple = 150 __UpperCAmelCase : List[Any] = """huggingface/label-files""" __UpperCAmelCase : int = """ade20k-id2label.json""" __UpperCAmelCase : str = json.load(open(cached_download(hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) ) , """r""" ) ) __UpperCAmelCase : Dict = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} __UpperCAmelCase : int = idalabel __UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( lowerCAmelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : Dict ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __UpperCAmelCase : Tuple = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: __UpperCAmelCase : Tuple = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: __UpperCAmelCase : Optional[int] = name.replace("""patch_embed""" , """patch_embeddings""" ) if "pos_embed" in name: __UpperCAmelCase : str = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: __UpperCAmelCase : str = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: __UpperCAmelCase : Tuple = name.replace("""proj""" , """projection""" ) if "blocks" in name: __UpperCAmelCase : int = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: __UpperCAmelCase : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __UpperCAmelCase : List[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name: __UpperCAmelCase : Any = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __UpperCAmelCase : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: __UpperCAmelCase : Any = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: __UpperCAmelCase : List[Any] = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: __UpperCAmelCase : Optional[Any] = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: __UpperCAmelCase : Union[str, Any] = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: __UpperCAmelCase : List[Any] = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: __UpperCAmelCase : Optional[int] = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: __UpperCAmelCase : int = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __UpperCAmelCase : int = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: __UpperCAmelCase : Optional[Any] = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: __UpperCAmelCase : Any = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: __UpperCAmelCase : List[Any] = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: __UpperCAmelCase : int = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: __UpperCAmelCase : str = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __UpperCAmelCase : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: __UpperCAmelCase : int = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: __UpperCAmelCase : int = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: __UpperCAmelCase : Tuple = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: __UpperCAmelCase : Optional[int] = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: __UpperCAmelCase : List[str] = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: __UpperCAmelCase : int = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: __UpperCAmelCase : str = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: __UpperCAmelCase : Tuple = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: __UpperCAmelCase : Tuple = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: __UpperCAmelCase : Dict = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: __UpperCAmelCase : Dict = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: __UpperCAmelCase : List[Any] = name.replace("""bn""" , """batch_norm""" ) if "head" in name: __UpperCAmelCase : Dict = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: __UpperCAmelCase : List[Any] = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: __UpperCAmelCase : List[str] = name.replace("""auxlayer""" , """auxiliary_head.head""" ) return name def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __UpperCAmelCase : Optional[Any] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) __UpperCAmelCase : Optional[Any] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : Dict = in_proj_weight[: config.hidden_size, :] __UpperCAmelCase : str = in_proj_bias[: config.hidden_size] __UpperCAmelCase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCAmelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __UpperCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] __UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Dict = get_dpt_config(lowerCAmelCase__ ) # load original state_dict from URL __UpperCAmelCase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(lowerCAmelCase__ ) # rename keys for key in state_dict.copy().keys(): __UpperCAmelCase : int = state_dict.pop(lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = val # read in qkv matrices read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # load HuggingFace model __UpperCAmelCase : Any = DPTForSemanticSegmentation(lowerCAmelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # Check outputs on an image __UpperCAmelCase : Optional[Any] = 480 if """ade""" in checkpoint_url else 384 __UpperCAmelCase : str = DPTImageProcessor(size=lowerCAmelCase__ ) __UpperCAmelCase : List[Any] = prepare_img() __UpperCAmelCase : Union[str, Any] = image_processor(lowerCAmelCase__ , return_tensors="""pt""" ) # forward pass __UpperCAmelCase : Tuple = model(**lowerCAmelCase__ ).logits if """ade""" in checkpoint_url else model(**lowerCAmelCase__ ).predicted_depth # Assert logits __UpperCAmelCase : str = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]] ) if "ade" in checkpoint_url: __UpperCAmelCase : Optional[int] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]] ) assert outputs.shape == torch.Size(lowerCAmelCase__ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCAmelCase__ ) ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase__ , ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) _UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
371
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: '''simple docstring''' warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
16
0
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 1 __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Dict = (32, 32) __UpperCAmelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase ) return image @property def __A ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def __A ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __A ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(__UpperCAmelCase ) @property def __A ( self ) -> Tuple: '''simple docstring''' def extract(*__UpperCAmelCase , **__UpperCAmelCase ): class _A : def __init__( self ) -> Any: '''simple docstring''' __UpperCAmelCase : str = torch.ones([0] ) def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' self.pixel_values.to(__UpperCAmelCase ) return self return Out() return extract def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet __UpperCAmelCase : Optional[int] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) __UpperCAmelCase : int = self.dummy_vae __UpperCAmelCase : Tuple = self.dummy_text_encoder __UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __UpperCAmelCase : List[str] = StableDiffusionPipeline( unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , ) __UpperCAmelCase : str = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = """A painting of a squirrel eating a burger""" __UpperCAmelCase : str = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) __UpperCAmelCase : List[Any] = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __UpperCAmelCase : Union[str, Any] = output.images __UpperCAmelCase : Tuple = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) __UpperCAmelCase : str = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0] __UpperCAmelCase : str = image[0, -3:, -3:, -1] __UpperCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase : List[Any] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : List[str] = self.dummy_cond_unet __UpperCAmelCase : Union[str, Any] = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) __UpperCAmelCase : str = self.dummy_vae __UpperCAmelCase : List[str] = self.dummy_text_encoder __UpperCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __UpperCAmelCase : str = StableDiffusionPipeline( unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , ) __UpperCAmelCase : Union[str, Any] = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Tuple = """A painting of a squirrel eating a burger""" __UpperCAmelCase : Union[str, Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) __UpperCAmelCase : List[Any] = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __UpperCAmelCase : Any = output.images __UpperCAmelCase : Tuple = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) __UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0] __UpperCAmelCase : str = image[0, -3:, -3:, -1] __UpperCAmelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase : List[str] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__UpperCAmelCase ) assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert isinstance(pipe.scheduler , __UpperCAmelCase ) assert pipe.safety_checker is None __UpperCAmelCase : List[Any] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Dict = StableDiffusionPipeline.from_pretrained(__UpperCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __UpperCAmelCase : int = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[str] = self.dummy_cond_unet __UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) __UpperCAmelCase : List[str] = self.dummy_vae __UpperCAmelCase : str = self.dummy_text_encoder __UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 __UpperCAmelCase : List[Any] = unet.half() __UpperCAmelCase : List[Any] = vae.half() __UpperCAmelCase : List[Any] = bert.half() # make sure here that pndm scheduler skips prk __UpperCAmelCase : int = StableDiffusionPipeline( unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , ) __UpperCAmelCase : Any = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : str = """A painting of a squirrel eating a burger""" __UpperCAmelCase : str = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__UpperCAmelCase ) __UpperCAmelCase : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCAmelCase : List[Any] = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Tuple = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) __UpperCAmelCase : int = 4_003_660_346 __UpperCAmelCase : List[str] = 7 # without safety guidance (sld_guidance_scale = 0) __UpperCAmelCase : List[str] = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Tuple = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) __UpperCAmelCase : Union[str, Any] = output.images __UpperCAmelCase : Dict = image[0, -3:, -3:, -1] __UpperCAmelCase : Union[str, Any] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) __UpperCAmelCase : str = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Tuple = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCAmelCase : Optional[int] = output.images __UpperCAmelCase : Dict = image[0, -3:, -3:, -1] __UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__UpperCAmelCase ) __UpperCAmelCase : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCAmelCase : int = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Dict = """padme amidala taking a bath artwork, safe for work, no nudity""" __UpperCAmelCase : Optional[Any] = 2_734_971_755 __UpperCAmelCase : Any = 7 __UpperCAmelCase : List[Any] = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : int = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) __UpperCAmelCase : Optional[Any] = output.images __UpperCAmelCase : Dict = image[0, -3:, -3:, -1] __UpperCAmelCase : Optional[Any] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 __UpperCAmelCase : Any = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : str = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCAmelCase : str = output.images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] __UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) __UpperCAmelCase : List[Any] = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) __UpperCAmelCase : Optional[int] = 1_044_355_234 __UpperCAmelCase : int = 12 __UpperCAmelCase : Any = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) __UpperCAmelCase : int = output.images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] __UpperCAmelCase : List[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 __UpperCAmelCase : List[str] = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCAmelCase : Tuple = output.images __UpperCAmelCase : int = image[0, -3:, -3:, -1] __UpperCAmelCase : List[str] = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
350
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) __UpperCAmelCase : List[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) __UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) __UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' import torch __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = pipeline("""text-classification""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : int = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __UpperCAmelCase : Union[str, Any] = """HuggingFace is in""" __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""] __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase ) __UpperCAmelCase : Any = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , ) __UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(__UpperCAmelCase ): text_classifier(__UpperCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
16
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''LayoutLMv2FeatureExtractor'''] _UpperCamelCase = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
351
'''simple docstring''' from ..utils import DummyObject, requires_backends class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
16
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = StableDiffusionSAGPipeline _SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS _SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE : int = False def __A ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __UpperCAmelCase : Any = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCAmelCase : int = CLIPTextModel(__UpperCAmelCase ) __UpperCAmelCase : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Dict: '''simple docstring''' if str(__UpperCAmelCase ).startswith("""mps""" ): __UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase ) else: __UpperCAmelCase : Union[str, Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> List[str]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) __UpperCAmelCase : List[Any] = sag_pipe.to(__UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Dict = """.""" __UpperCAmelCase : List[str] = torch.manual_seed(0 ) __UpperCAmelCase : Union[str, Any] = sag_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) __UpperCAmelCase : List[Any] = output.images __UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase : Optional[int] = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) __UpperCAmelCase : str = sag_pipe.to(__UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = """.""" __UpperCAmelCase : List[Any] = torch.manual_seed(0 ) __UpperCAmelCase : Optional[int] = sag_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) __UpperCAmelCase : Any = output.images __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase : Dict = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : str = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) __UpperCAmelCase : List[str] = sag_pipe.to(__UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = """.""" __UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) __UpperCAmelCase : Dict = sag_pipe( [prompt] , width=768 , height=512 , generator=__UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) __UpperCAmelCase : str = output.images assert image.shape == (1, 512, 768, 3)
352
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _A : def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase ) __UpperCAmelCase : List[str] = length __UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa ) __UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Dict: '''simple docstring''' return self.length def __getitem__( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int: '''simple docstring''' super().__init__() __UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Any = True def __A ( self , __UpperCAmelCase=None ) -> str: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : Optional[int] = False return x * self.a[0] + self.b[0] class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : str = True def __A ( self , __UpperCAmelCase=None ) -> Tuple: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : int = False return x * self.a + self.b def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer __UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" ) __UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )} def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : List[Any] = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) if "label" in examples: __UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCAmelCase : Tuple = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCAmelCase__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 ) __UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
16
0
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : List[str] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg""" __UpperCAmelCase : str = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) __UpperCAmelCase : Any = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) __UpperCAmelCase : int = transform(lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ ) return image def lowercase_ ( lowerCAmelCase__ : Any ): """simple docstring""" if "visual_encoder" in key: __UpperCAmelCase : Union[str, Any] = re.sub("""visual_encoder*""" , """vision_model.encoder""" , lowerCAmelCase__ ) if "blocks" in key: __UpperCAmelCase : str = re.sub(r"""blocks""" , """layers""" , lowerCAmelCase__ ) if "attn" in key: __UpperCAmelCase : Tuple = re.sub(r"""attn""" , """self_attn""" , lowerCAmelCase__ ) if "norm1" in key: __UpperCAmelCase : Dict = re.sub(r"""norm1""" , """layer_norm1""" , lowerCAmelCase__ ) if "norm2" in key: __UpperCAmelCase : Optional[Any] = re.sub(r"""norm2""" , """layer_norm2""" , lowerCAmelCase__ ) if "encoder.norm" in key: __UpperCAmelCase : str = re.sub(r"""encoder.norm""" , """post_layernorm""" , lowerCAmelCase__ ) if "encoder.patch_embed.proj" in key: __UpperCAmelCase : Optional[Any] = re.sub(r"""encoder.patch_embed.proj""" , """embeddings.patch_embedding""" , lowerCAmelCase__ ) if "encoder.pos_embed" in key: __UpperCAmelCase : Optional[int] = re.sub(r"""encoder.pos_embed""" , """embeddings.position_embedding""" , lowerCAmelCase__ ) if "encoder.cls_token" in key: __UpperCAmelCase : str = re.sub(r"""encoder.cls_token""" , """embeddings.class_embedding""" , lowerCAmelCase__ ) if "self_attn" in key: __UpperCAmelCase : List[str] = re.sub(r"""self_attn.proj""" , """self_attn.projection""" , lowerCAmelCase__ ) return key @torch.no_grad() def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : int=None ): """simple docstring""" if config_path is not None: __UpperCAmelCase : List[Any] = BlipConfig.from_pretrained(lowerCAmelCase__ ) else: __UpperCAmelCase : Optional[int] = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) __UpperCAmelCase : Optional[int] = BlipForConditionalGeneration(lowerCAmelCase__ ).eval() __UpperCAmelCase : str = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth""" __UpperCAmelCase : Optional[int] = blip_decoder(pretrained=lowerCAmelCase__ , image_size=384 , vit="""base""" ) __UpperCAmelCase : List[str] = pt_model.eval() __UpperCAmelCase : List[str] = pt_model.state_dict() for key in modified_state_dict.copy(): __UpperCAmelCase : Tuple = modified_state_dict.pop(lowerCAmelCase__ ) __UpperCAmelCase : int = rename_key(lowerCAmelCase__ ) __UpperCAmelCase : List[Any] = value hf_model.load_state_dict(lowerCAmelCase__ ) __UpperCAmelCase : Tuple = 384 __UpperCAmelCase : Union[str, Any] = load_demo_image(image_size=lowerCAmelCase__ , device="""cpu""" ) __UpperCAmelCase : List[str] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) __UpperCAmelCase : Optional[Any] = tokenizer(["""a picture of"""] ).input_ids __UpperCAmelCase : str = hf_model.generate(lowerCAmelCase__ , lowerCAmelCase__ ) assert out[0].tolist() == [30522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] __UpperCAmelCase : int = hf_model.generate(lowerCAmelCase__ ) assert out[0].tolist() == [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCAmelCase__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __UpperCAmelCase : Union[str, Any] = ( """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth""" ) __UpperCAmelCase : Optional[Any] = blip_vqa(pretrained=lowerCAmelCase__ , image_size=lowerCAmelCase__ , vit="""base""" ) vqa_model.eval() __UpperCAmelCase : List[Any] = vqa_model.state_dict() for key in modified_state_dict.copy(): __UpperCAmelCase : List[Any] = modified_state_dict.pop(lowerCAmelCase__ ) __UpperCAmelCase : str = rename_key(lowerCAmelCase__ ) __UpperCAmelCase : Union[str, Any] = value __UpperCAmelCase : List[str] = BlipForQuestionAnswering(lowerCAmelCase__ ) hf_vqa_model.load_state_dict(lowerCAmelCase__ ) __UpperCAmelCase : List[Any] = ["""How many dogs are in this image?"""] __UpperCAmelCase : Optional[Any] = tokenizer(lowerCAmelCase__ , return_tensors="""pt""" ).input_ids __UpperCAmelCase : str = hf_vqa_model.generate(lowerCAmelCase__ , lowerCAmelCase__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" ) __UpperCAmelCase : Union[str, Any] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth""" __UpperCAmelCase : List[str] = blip_itm(pretrained=lowerCAmelCase__ , image_size=lowerCAmelCase__ , vit="""base""" ) itm_model.eval() __UpperCAmelCase : Dict = itm_model.state_dict() for key in modified_state_dict.copy(): __UpperCAmelCase : int = modified_state_dict.pop(lowerCAmelCase__ ) __UpperCAmelCase : Tuple = rename_key(lowerCAmelCase__ ) __UpperCAmelCase : List[Any] = value __UpperCAmelCase : Dict = BlipForImageTextRetrieval(lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = ["""A picture of a woman with a dog sitting in a beach"""] __UpperCAmelCase : List[str] = tokenizer( lowerCAmelCase__ , return_tensors="""pt""" , padding="""max_length""" , truncation=lowerCAmelCase__ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCAmelCase__ ) hf_itm_model.eval() __UpperCAmelCase : List[Any] = hf_itm_model(lowerCAmelCase__ , lowerCAmelCase__ , use_itm_head=lowerCAmelCase__ ) __UpperCAmelCase : Any = hf_itm_model(lowerCAmelCase__ , lowerCAmelCase__ , use_itm_head=lowerCAmelCase__ ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') _UpperCamelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
353
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None @property def __A ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = (3, 32, 128) __UpperCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) __UpperCAmelCase : List[Any] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) return image_input def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[str] = self.prepare_image_inputs() __UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" ) __UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Dict = """test""" __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = """test""" __UpperCAmelCase : int = self.prepare_image_inputs() __UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase ) __UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Optional[Any] = self.get_tokenizer() __UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : str = None __UpperCAmelCase : Dict = self.prepare_image_inputs() __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 ) __UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 ) __UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 ) __UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
16
0
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 _UpperCamelCase = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Dict = ["input_ids", "attention_mask"] _SCREAMING_SNAKE_CASE : List[Any] = TaTokenizer _SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase=100 , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __UpperCAmelCase : str = [f'<extra_id_{i}>' for i in range(__UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __UpperCAmelCase : Union[str, Any] = len(set(filter(lambda __UpperCAmelCase : bool("""extra_id_""" in str(__UpperCAmelCase ) ) , __UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , extra_ids=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = vocab_file __UpperCAmelCase : Any = False if not self.vocab_file else True __UpperCAmelCase : Tuple = extra_ids @staticmethod def __A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __UpperCAmelCase : Optional[int] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , __UpperCAmelCase , ) return max_model_length def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCAmelCase : Optional[int] = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) logger.info(f'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Any = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __UpperCAmelCase : Optional[int] = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Dict = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self ) -> int: '''simple docstring''' return list( set(filter(lambda __UpperCAmelCase : bool(re.search(r"""<extra_id_\d+>""" , __UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def __A ( self ) -> Optional[Any]: '''simple docstring''' return [self.convert_tokens_to_ids(__UpperCAmelCase ) for token in self.get_sentinel_tokens()]
354
'''simple docstring''' from collections.abc import Sequence def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ): """simple docstring""" if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __UpperCAmelCase : Any = nums[0] for i in range(1 , len(lowerCAmelCase__ ) ): __UpperCAmelCase : Union[str, Any] = nums[i] __UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _UpperCamelCase = int(input('''Enter number of elements : ''').strip()) _UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
16
0
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union _UpperCamelCase = TypeVar('''T''') _UpperCamelCase = Union[List[T], Tuple[T, ...]] _UpperCamelCase = Union[T, List[T], Dict[str, T]] _UpperCamelCase = Union[str, bytes, os.PathLike]
355
'''simple docstring''' class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = data __UpperCAmelCase : int = previous __UpperCAmelCase : Union[str, Any] = next_node def __str__( self ) -> str: '''simple docstring''' return f'{self.data}' def __A ( self ) -> int: '''simple docstring''' return self.data def __A ( self ) -> List[str]: '''simple docstring''' return self.next def __A ( self ) -> str: '''simple docstring''' return self.previous class _A : def __init__( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = head def __iter__( self ) -> str: '''simple docstring''' return self def __A ( self ) -> str: '''simple docstring''' if not self.current: raise StopIteration else: __UpperCAmelCase : List[str] = self.current.get_data() __UpperCAmelCase : int = self.current.get_next() return value class _A : def __init__( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = None # First node in list __UpperCAmelCase : List[str] = None # Last node in list def __str__( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = self.head __UpperCAmelCase : Optional[int] = [] while current is not None: nodes.append(current.get_data() ) __UpperCAmelCase : Any = current.get_next() return " ".join(str(__UpperCAmelCase ) for node in nodes ) def __contains__( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.head while current: if current.get_data() == value: return True __UpperCAmelCase : Optional[Any] = current.get_next() return False def __iter__( self ) -> str: '''simple docstring''' return LinkedListIterator(self.head ) def __A ( self ) -> List[Any]: '''simple docstring''' if self.head: return self.head.get_data() return None def __A ( self ) -> Optional[Any]: '''simple docstring''' if self.tail: return self.tail.get_data() return None def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: __UpperCAmelCase : str = node __UpperCAmelCase : List[str] = node else: self.insert_before_node(self.head , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: self.set_head(__UpperCAmelCase ) else: self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase ) if self.head is None: self.set_head(__UpperCAmelCase ) else: self.set_tail(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Tuple = node __UpperCAmelCase : List[Any] = node.previous if node.get_previous() is None: __UpperCAmelCase : str = node_to_insert else: __UpperCAmelCase : Optional[Any] = node_to_insert __UpperCAmelCase : List[Any] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : List[str] = node __UpperCAmelCase : Union[str, Any] = node.next if node.get_next() is None: __UpperCAmelCase : Dict = node_to_insert else: __UpperCAmelCase : Any = node_to_insert __UpperCAmelCase : List[str] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase ) return current_position += 1 __UpperCAmelCase : int = node.next self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Node: '''simple docstring''' __UpperCAmelCase : Dict = self.head while node: if node.get_data() == item: return node __UpperCAmelCase : List[str] = node.get_next() raise Exception("""Node not found""" ) def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if (node := self.get_node(__UpperCAmelCase )) is not None: if node == self.head: __UpperCAmelCase : Optional[int] = self.head.get_next() if node == self.tail: __UpperCAmelCase : Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(__UpperCAmelCase ) @staticmethod def __A ( __UpperCAmelCase ) -> None: '''simple docstring''' if node.get_next(): __UpperCAmelCase : Optional[Any] = node.previous if node.get_previous(): __UpperCAmelCase : int = node.next __UpperCAmelCase : Tuple = None __UpperCAmelCase : Union[str, Any] = None def __A ( self ) -> List[Any]: '''simple docstring''' return self.head is None def lowercase_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
16
0
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = LayoutLMTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = LayoutLMTokenizerFast _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : Optional[Any] = True def __A ( self ) -> Dict: '''simple docstring''' super().setUp() __UpperCAmelCase : List[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def __A ( self , **__UpperCAmelCase ) -> int: '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : str = """UNwant\u00E9d,running""" __UpperCAmelCase : Optional[Any] = """unwanted, running""" return input_text, output_text def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.tokenizer_class(self.vocab_file ) __UpperCAmelCase : int = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__UpperCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def __A ( self ) -> str: '''simple docstring''' pass
356
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _A : _SCREAMING_SNAKE_CASE : List[str] _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ) -> Any: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class _A : _SCREAMING_SNAKE_CASE : Optional[List] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None __UpperCAmelCase : int = len(self.languages ) if self.languages else None def __call__( self ) -> Optional[Any]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = set(self.languages ) if self.languages and set(__UpperCAmelCase ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) ) return {"language": languages, "translation": translations} def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
16
0
_UpperCamelCase = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _UpperCamelCase = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _UpperCamelCase = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ): """simple docstring""" assert len(str(lowerCAmelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __UpperCAmelCase : List[str] = year // 100 __UpperCAmelCase : int = (5 * (century % 4) + 2) % 7 __UpperCAmelCase : Optional[Any] = year % 100 __UpperCAmelCase : Optional[int] = centurian % 12 __UpperCAmelCase : str = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __UpperCAmelCase : List[str] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) __UpperCAmelCase : int = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
357
'''simple docstring''' from statistics import mean import numpy as np def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Tuple = 0 # Number of processes finished __UpperCAmelCase : Optional[int] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __UpperCAmelCase : Tuple = [0] * no_of_process # List to include calculation results __UpperCAmelCase : int = [0] * no_of_process # Sort by arrival time. __UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )] __UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )] arrival_time.sort() while no_of_process > finished_process_count: __UpperCAmelCase : Dict = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __UpperCAmelCase : Any = arrival_time[i] __UpperCAmelCase : Any = 0 # Index showing the location of the process being performed __UpperCAmelCase : Any = 0 # Saves the current response ratio. __UpperCAmelCase : List[str] = 0 for i in range(0 , lowerCAmelCase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __UpperCAmelCase : Tuple = temp __UpperCAmelCase : List[str] = i # Calculate the turn around time __UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __UpperCAmelCase : List[str] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Optional[int] = [0] * no_of_process for i in range(0 , lowerCAmelCase__ ): __UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _UpperCamelCase = 5 _UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E'''] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _UpperCamelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
16
0
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') _UpperCamelCase = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:]) _UpperCamelCase = requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(1_0000): out_file.write(data) _UpperCamelCase = BeautifulSoup(res.text, '''html.parser''') _UpperCamelCase = list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(F'https://google.com{link.get("href")}')
358
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Union[str, Any] = seq_length __UpperCAmelCase : int = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : int = scope def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = None if self.use_input_mask: __UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> List[str]: '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_config() __UpperCAmelCase : List[Any] = 300 return config def __A ( self ) -> Dict: '''simple docstring''' ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = self.prepare_config_and_inputs() __UpperCAmelCase : Tuple = True __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : List[str] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Dict = () def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = MraModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Any: '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""MRA does not output attentions""" ) def __A ( self ) -> List[Any]: '''simple docstring''' return @require_torch class _A ( unittest.TestCase ): @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0] __UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : int = model(__UpperCAmelCase )[0] __UpperCAmelCase : Union[str, Any] = 50_265 __UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : Any = model(__UpperCAmelCase )[0] __UpperCAmelCase : Dict = 50_265 __UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : str = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
0
'''simple docstring''' from __future__ import annotations import math class _A : def __init__( self , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[Any] = size # approximate the overall size of segment tree with given value __UpperCAmelCase : Dict = [0 for i in range(0 , 4 * size )] # create array to store lazy update __UpperCAmelCase : str = [0 for i in range(0 , 4 * size )] __UpperCAmelCase : List[str] = [0 for i in range(0 , 4 * size )] # flag for lazy update def __A ( self , __UpperCAmelCase ) -> int: '''simple docstring''' return idx * 2 def __A ( self , __UpperCAmelCase ) -> int: '''simple docstring''' return idx * 2 + 1 def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' if left_element == right_element: __UpperCAmelCase : Optional[Any] = a[left_element - 1] else: __UpperCAmelCase : int = (left_element + right_element) // 2 self.build(self.left(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.build(self.right(__UpperCAmelCase ) , mid + 1 , __UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = max( self.segment_tree[self.left(__UpperCAmelCase )] , self.segment_tree[self.right(__UpperCAmelCase )] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' if self.flag[idx] is True: __UpperCAmelCase : Tuple = self.lazy[idx] __UpperCAmelCase : List[Any] = False if left_element != right_element: __UpperCAmelCase : Any = self.lazy[idx] __UpperCAmelCase : Optional[Any] = self.lazy[idx] __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Any = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __UpperCAmelCase : Optional[int] = val if left_element != right_element: __UpperCAmelCase : Tuple = val __UpperCAmelCase : Dict = val __UpperCAmelCase : List[Any] = True __UpperCAmelCase : int = True return True __UpperCAmelCase : List[str] = (left_element + right_element) // 2 self.update(self.left(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.update(self.right(__UpperCAmelCase ) , mid + 1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : List[str] = max( self.segment_tree[self.left(__UpperCAmelCase )] , self.segment_tree[self.right(__UpperCAmelCase )] ) return True def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int | float: '''simple docstring''' if self.flag[idx] is True: __UpperCAmelCase : Dict = self.lazy[idx] __UpperCAmelCase : List[str] = False if left_element != right_element: __UpperCAmelCase : int = self.lazy[idx] __UpperCAmelCase : Optional[int] = self.lazy[idx] __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Dict = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __UpperCAmelCase : List[str] = (left_element + right_element) // 2 __UpperCAmelCase : List[str] = self.query(self.left(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : int = self.query(self.right(__UpperCAmelCase ) , mid + 1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return max(__UpperCAmelCase , __UpperCAmelCase ) def __str__( self ) -> str: '''simple docstring''' return str([self.query(1 , 1 , self.size , __UpperCAmelCase , __UpperCAmelCase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _UpperCamelCase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _UpperCamelCase = 15 _UpperCamelCase = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
359
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : List[Any] = embed_dim __UpperCAmelCase : str = depths __UpperCAmelCase : Dict = num_heads __UpperCAmelCase : str = window_size __UpperCAmelCase : int = mlp_ratio __UpperCAmelCase : Union[str, Any] = qkv_bias __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Optional[int] = use_absolute_embeddings __UpperCAmelCase : Any = patch_norm __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : Any = scope __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : int = encoder_stride def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) __UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = self.type_sequence_label_size __UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = SwinvaModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 ) def __A ( self ) -> Any: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(__UpperCAmelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : str = outputs.attentions __UpperCAmelCase : Any = len(self.model_tester.depths ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : int = config.window_size**2 __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : Dict = len(__UpperCAmelCase ) # Check attention is always last and order is fine __UpperCAmelCase : Any = True __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): __UpperCAmelCase : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : Optional[int] = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) ) __UpperCAmelCase : Tuple = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # Swinv2 has a different seq_length __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : int = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape __UpperCAmelCase : Any = ( reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : int = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Tuple = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> int: '''simple docstring''' return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __UpperCAmelCase ) __UpperCAmelCase : Tuple = self.default_image_processor __UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
0
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionControlNetImgaImgPipeline _SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} _SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _SCREAMING_SNAKE_CASE : int = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) _SCREAMING_SNAKE_CASE : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS def __A ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) __UpperCAmelCase : List[str] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) __UpperCAmelCase : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCAmelCase : Any = CLIPTextModel(__UpperCAmelCase ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : List[Any] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> List[str]: '''simple docstring''' if str(__UpperCAmelCase ).startswith("""mps""" ): __UpperCAmelCase : List[str] = torch.manual_seed(__UpperCAmelCase ) else: __UpperCAmelCase : List[Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : Any = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__UpperCAmelCase , device=torch.device(__UpperCAmelCase ) , ) __UpperCAmelCase : Dict = floats_tensor(control_image.shape , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCAmelCase : List[Any] = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) __UpperCAmelCase : str = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def __A ( self ) -> Tuple: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ) -> Optional[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __A ( self ) -> List[str]: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionControlNetImgaImgPipeline _SCREAMING_SNAKE_CASE : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} _SCREAMING_SNAKE_CASE : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _SCREAMING_SNAKE_CASE : Tuple = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def __A ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(__UpperCAmelCase ): if isinstance(__UpperCAmelCase , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) __UpperCAmelCase : Dict = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__UpperCAmelCase ) torch.manual_seed(0 ) __UpperCAmelCase : int = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__UpperCAmelCase ) torch.manual_seed(0 ) __UpperCAmelCase : Any = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCAmelCase : Optional[int] = CLIPTextModel(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : Union[str, Any] = MultiControlNetModel([controlneta, controlneta] ) __UpperCAmelCase : Optional[int] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> str: '''simple docstring''' if str(__UpperCAmelCase ).startswith("""mps""" ): __UpperCAmelCase : List[Any] = torch.manual_seed(__UpperCAmelCase ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Dict = 2 __UpperCAmelCase : Dict = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__UpperCAmelCase , device=torch.device(__UpperCAmelCase ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__UpperCAmelCase , device=torch.device(__UpperCAmelCase ) , ), ] __UpperCAmelCase : int = floats_tensor(control_image[0].shape , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCAmelCase : Optional[int] = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) __UpperCAmelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.get_dummy_components() __UpperCAmelCase : str = self.pipeline_class(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = 10.0 __UpperCAmelCase : str = 4 __UpperCAmelCase : List[Any] = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = steps __UpperCAmelCase : Optional[Any] = scale __UpperCAmelCase : List[str] = pipe(**__UpperCAmelCase )[0] __UpperCAmelCase : Dict = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCAmelCase : List[str] = steps __UpperCAmelCase : Optional[Any] = scale __UpperCAmelCase : int = pipe(**__UpperCAmelCase , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] __UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCAmelCase : List[str] = steps __UpperCAmelCase : int = scale __UpperCAmelCase : List[str] = pipe(**__UpperCAmelCase , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] __UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCAmelCase : Tuple = steps __UpperCAmelCase : Union[str, Any] = scale __UpperCAmelCase : int = pipe(**__UpperCAmelCase , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def __A ( self ) -> int: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ) -> Tuple: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __A ( self ) -> Any: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : str = self.get_dummy_components() __UpperCAmelCase : Optional[int] = self.pipeline_class(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(__UpperCAmelCase ) except NotImplementedError: pass @slow @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Tuple = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) __UpperCAmelCase : str = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=__UpperCAmelCase , controlnet=__UpperCAmelCase ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __UpperCAmelCase : List[str] = """evil space-punk bird""" __UpperCAmelCase : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((512, 512) ) __UpperCAmelCase : Any = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((512, 512) ) __UpperCAmelCase : Tuple = pipe( __UpperCAmelCase , __UpperCAmelCase , control_image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , num_inference_steps=50 , strength=0.6 , ) __UpperCAmelCase : Any = output.images[0] assert image.shape == (512, 512, 3) __UpperCAmelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9E-2
360
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( lowerCAmelCase__ : List[str] ): """simple docstring""" if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : Any = crop_size __UpperCAmelCase : Optional[Any] = resample __UpperCAmelCase : Dict = do_rescale __UpperCAmelCase : List[str] = rescale_factor __UpperCAmelCase : Dict = offset __UpperCAmelCase : List[str] = do_normalize __UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" in size: __UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: __UpperCAmelCase : Any = (size["""height"""], size["""width"""]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = image.astype(np.floataa ) if offset: __UpperCAmelCase : Tuple = image - (scale / 2) return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase ) if do_resize: __UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) if do_center_crop: __UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase ) if do_rescale: __UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase ) if do_normalize: __UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) return image def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' __UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : List[Any] = resample if resample is not None else self.resample __UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : List[Any] = offset if offset is not None else self.offset __UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : int = image_std if image_std is not None else self.image_std __UpperCAmelCase : Any = size if size is not None else self.size __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __UpperCAmelCase : int = make_batched(__UpperCAmelCase ) __UpperCAmelCase : Tuple = [ [ self._preprocess_image( image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , ) for img in video ] for video in videos ] __UpperCAmelCase : Tuple = {"""pixel_values""": videos} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
16
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
361
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline _SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCAmelCase : Any = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : Dict = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any: '''simple docstring''' if str(__UpperCAmelCase ).startswith("""mps""" ): __UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase ) else: __UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] ) __UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0] __UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __UpperCAmelCase : Dict = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
0
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) _UpperCamelCase = logging.getLogger(__name__) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_0522, type=int) _UpperCamelCase = parser.parse_args() logger.info(F'Loading data from {args.data_file}') with open(args.data_file, '''rb''') as fp: _UpperCamelCase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') _UpperCamelCase = Counter() for tk_ids in data: counter.update(tk_ids) _UpperCamelCase = [0] * args.vocab_size for k, v in counter.items(): _UpperCamelCase = v logger.info(F'Dump to {args.token_counts_dump}') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
362
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column __UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )] def __str__( self ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier __UpperCAmelCase : Optional[Any] = 0 for row_vector in self.array: for obj in row_vector: __UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) ) __UpperCAmelCase : Optional[int] = f'%{max_element_length}s' # Make string and return def single_line(__UpperCAmelCase ) -> str: nonlocal string_format_identifier __UpperCAmelCase : Any = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array ) return s def __repr__( self ) -> str: '''simple docstring''' return str(self ) def __A ( self , __UpperCAmelCase ) -> bool: '''simple docstring''' if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = value def __add__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add __UpperCAmelCase : Dict = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : Dict = -self[r, c] return result def __sub__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' return self + (-another) def __mul__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication __UpperCAmelCase : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] * another return result elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication assert self.column == another.row __UpperCAmelCase : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})' raise TypeError(__UpperCAmelCase ) def __A ( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Dict = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[str] = self[r, c] return result def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __UpperCAmelCase : Optional[Any] = v.transpose() __UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = Matrix(3 , 3 , 0 ) for i in range(3 ): __UpperCAmelCase : Tuple = 1 print(f'a^(-1) is {ainv}' ) # u, v __UpperCAmelCase : Dict = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3 __UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' ) def lowercase_ ( ): """simple docstring""" import doctest doctest.testmod() testa()
16
0
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants _UpperCamelCase = 300 # TEMPERATURE (unit = K) def lowercase_ ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ): """simple docstring""" if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
363
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
0
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int = 100 ): """simple docstring""" __UpperCAmelCase : int = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : str = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'{solution() = }')
364
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING _SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def __A ( self ) -> Any: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) __UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() __UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow @require_torch def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(__UpperCAmelCase ) @slow @require_tf def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) __UpperCAmelCase : Tuple = None __UpperCAmelCase : int = None self.run_pipeline_test(__UpperCAmelCase , [] ) @require_tf def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : str = None self.run_pipeline_test(__UpperCAmelCase , [] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) __UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = fill_masker.tokenizer __UpperCAmelCase : Union[str, Any] = fill_masker.model __UpperCAmelCase : Tuple = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , ) with self.assertRaises(__UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__UpperCAmelCase ): fill_masker("""This is""" ) self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = tokenizer.get_vocab() __UpperCAmelCase : Dict = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase ) __UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Any = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Call argument __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Score equivalence __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs] __UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ) == set(__UpperCAmelCase ): __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] ) with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 ) __UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = tokenizer.get_vocab() __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) # top_k=2, ntargets=3 __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__UpperCAmelCase ) , 3 ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Dict = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , )
16
0
'''simple docstring''' from __future__ import annotations def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : list[str] | None = None ): """simple docstring""" __UpperCAmelCase : Any = word_bank or [] # create a table __UpperCAmelCase : int = len(lowerCAmelCase__ ) + 1 __UpperCAmelCase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase__ ): table.append([] ) # seed value __UpperCAmelCase : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase__ )] == word: __UpperCAmelCase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase__ )]: combination.reverse() return table[len(lowerCAmelCase__ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
365
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} ) _SCREAMING_SNAKE_CASE : str = "image" _SCREAMING_SNAKE_CASE : str = "labels" def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __UpperCAmelCase ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) __UpperCAmelCase : int = copy.deepcopy(self ) __UpperCAmelCase : str = self.label_schema.copy() __UpperCAmelCase : Optional[Any] = features[self.label_column] __UpperCAmelCase : Optional[int] = label_schema return task_template @property def __A ( self ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
16
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer _UpperCamelCase = ['''bert-base-uncased''', '''bert-base-cased'''] _UpperCamelCase = '''hf-internal-testing/tiny-bert-tf-only''' if is_tf_available(): class _A ( tf.keras.Model ): def __init__( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase : Dict = tokenizer __UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase : str = TFAutoModel.from_config(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.tokenizer(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = self.bert(**__UpperCAmelCase ) return out["pooler_output"] @require_tf @require_tensorflow_text class _A ( unittest.TestCase ): def __A ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() __UpperCAmelCase : List[Any] = [ BertTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false __UpperCAmelCase : Optional[int] = [TFBertTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__UpperCAmelCase , use_fast_bert_tokenizer=__UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __UpperCAmelCase : Any = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] __UpperCAmelCase : Any = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def __A ( self ) -> Dict: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): __UpperCAmelCase : List[str] = tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding="""longest""" ) __UpperCAmelCase : Optional[Any] = tf_tokenizer(__UpperCAmelCase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase : Union[str, Any] = tf_tokenizer(self.paired_sentences ) __UpperCAmelCase : List[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def __A ( self ) -> Tuple: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase : Dict = tf.function(__UpperCAmelCase ) for test_inputs in (self.test_sentences, self.paired_sentences): __UpperCAmelCase : Tuple = tf.constant(__UpperCAmelCase ) __UpperCAmelCase : Any = compiled_tokenizer(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = tf_tokenizer(__UpperCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __A ( self ) -> Any: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase : Optional[int] = ModelToSave(tokenizer=__UpperCAmelCase ) __UpperCAmelCase : List[str] = tf.convert_to_tensor(self.test_sentences ) __UpperCAmelCase : str = model(__UpperCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __UpperCAmelCase : Dict = Path(__UpperCAmelCase ) / """saved.model""" model.save(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = tf.keras.models.load_model(__UpperCAmelCase ) __UpperCAmelCase : Any = loaded_model(__UpperCAmelCase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
366
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : str = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : str = num_choices __UpperCAmelCase : List[Any] = scope def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Tuple = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = True __UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass __UpperCAmelCase : Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : List[str] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = LlamaModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : str = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = 3 __UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : Optional[Any] = """single_label_classification""" __UpperCAmelCase : int = input_dict["""input_ids"""] __UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : str = """multi_label_classification""" __UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size ) __UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() __UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0} __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() __UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) @require_torch class _A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __UpperCAmelCase : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) ) __UpperCAmelCase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """ __UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" ) __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase ) # greedy generation outputs __UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
16
0
'''simple docstring''' import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" if "model" in orig_key: __UpperCAmelCase : int = orig_key.replace("""model.""" , """""" ) if "norm1" in orig_key: __UpperCAmelCase : Optional[int] = orig_key.replace("""norm1""" , """attention.output.LayerNorm""" ) if "norm2" in orig_key: __UpperCAmelCase : List[str] = orig_key.replace("""norm2""" , """output.LayerNorm""" ) if "norm" in orig_key: __UpperCAmelCase : Any = orig_key.replace("""norm""" , """LayerNorm""" ) if "transformer" in orig_key: __UpperCAmelCase : int = orig_key.split(""".""" )[0].split("""_""" )[-1] __UpperCAmelCase : List[str] = orig_key.replace(f'transformer_{layer_num}' , f'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: __UpperCAmelCase : List[Any] = orig_key.replace("""mha.attn""" , """attention.self""" ) if "mha" in orig_key: __UpperCAmelCase : Tuple = orig_key.replace("""mha""" , """attention""" ) if "W_q" in orig_key: __UpperCAmelCase : Tuple = orig_key.replace("""W_q""" , """self.query""" ) if "W_k" in orig_key: __UpperCAmelCase : List[str] = orig_key.replace("""W_k""" , """self.key""" ) if "W_v" in orig_key: __UpperCAmelCase : Union[str, Any] = orig_key.replace("""W_v""" , """self.value""" ) if "ff1" in orig_key: __UpperCAmelCase : Any = orig_key.replace("""ff1""" , """intermediate.dense""" ) if "ff2" in orig_key: __UpperCAmelCase : Optional[int] = orig_key.replace("""ff2""" , """output.dense""" ) if "ff" in orig_key: __UpperCAmelCase : Optional[Any] = orig_key.replace("""ff""" , """output.dense""" ) if "mlm_class" in orig_key: __UpperCAmelCase : int = orig_key.replace("""mlm.mlm_class""" , """cls.predictions.decoder""" ) if "mlm" in orig_key: __UpperCAmelCase : List[Any] = orig_key.replace("""mlm""" , """cls.predictions.transform""" ) if "cls" not in orig_key: __UpperCAmelCase : Optional[int] = """yoso.""" + orig_key return orig_key def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple ): """simple docstring""" for key in orig_state_dict.copy().keys(): __UpperCAmelCase : str = orig_state_dict.pop(lowerCAmelCase__ ) if ("pooler" in key) or ("sen_class" in key): continue else: __UpperCAmelCase : List[Any] = val __UpperCAmelCase : Optional[Any] = orig_state_dict["""cls.predictions.decoder.bias"""] __UpperCAmelCase : str = torch.arange(lowerCAmelCase__ ).expand((1, -1) ) + 2 return orig_state_dict def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model_state_dict"""] __UpperCAmelCase : List[str] = YosoConfig.from_json_file(lowerCAmelCase__ ) __UpperCAmelCase : str = YosoForMaskedLM(lowerCAmelCase__ ) __UpperCAmelCase : Dict = convert_checkpoint_helper(config.max_position_embeddings , lowerCAmelCase__ ) print(model.load_state_dict(lowerCAmelCase__ ) ) model.eval() model.save_pretrained(lowerCAmelCase__ ) print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _UpperCamelCase = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
367
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _UpperCamelCase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ): """simple docstring""" return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths ) def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": __UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ ) for answer_list in data[1]: __UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : str = [[reference] for reference in references] __UpperCAmelCase : Optional[int] = 0 for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : int = 100.0 * em / total __UpperCAmelCase : Dict = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = args.k __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = 0 for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] ) __UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __UpperCAmelCase : List[str] = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ): """simple docstring""" def strip_title(lowerCAmelCase__ : Optional[int] ): if title.startswith("""\"""" ): __UpperCAmelCase : List[Any] = title[1:] if title.endswith("""\"""" ): __UpperCAmelCase : int = title[:-1] return title __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device ) __UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ ) __UpperCAmelCase : int = question_enc_outputs[0] __UpperCAmelCase : Dict = rag_model.retriever( lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) __UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __UpperCAmelCase : Union[str, Any] = [] for docs in all_docs: __UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(lowerCAmelCase__ ) ) return provenance_strings def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" with torch.no_grad(): __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) __UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device ) __UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device ) __UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) ) return answers def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) __UpperCAmelCase : str = parser.parse_args() __UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = {} if args.model_type is None: __UpperCAmelCase : str = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration __UpperCAmelCase : Dict = args.n_docs if args.index_name is not None: __UpperCAmelCase : Union[str, Any] = args.index_name if args.index_path is not None: __UpperCAmelCase : Dict = args.index_path else: __UpperCAmelCase : str = BartForConditionalGeneration __UpperCAmelCase : str = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k __UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ ) model.retriever.init_retrieval() else: __UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: __UpperCAmelCase : Union[str, Any] = [] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: __UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" ) preds_file.flush() __UpperCAmelCase : List[str] = [] if len(lowerCAmelCase__ ) > 0: __UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _UpperCamelCase = get_args() main(args)
16
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger() @dataclass class _A : _SCREAMING_SNAKE_CASE : nn.Module _SCREAMING_SNAKE_CASE : List[nn.Module] = field(default_factory=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : list = field(default_factory=__SCREAMING_SNAKE_CASE ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[Any] = len(list(m.modules() ) ) == 1 or isinstance(__UpperCAmelCase , nn.Convad ) or isinstance(__UpperCAmelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase ) -> str: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__UpperCAmelCase ) [x.remove() for x in self.handles] return self @property def __A ( self ) -> Union[str, Any]: '''simple docstring''' return list(filter(lambda __UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _A : _SCREAMING_SNAKE_CASE : nn.Module _SCREAMING_SNAKE_CASE : nn.Module _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : List = field(default_factory=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : List = field(default_factory=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : bool = True def __call__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : str = Tracker(self.dest )(__UpperCAmelCase ).parametrized __UpperCAmelCase : int = Tracker(self.src )(__UpperCAmelCase ).parametrized __UpperCAmelCase : Optional[Any] = list(filter(lambda __UpperCAmelCase : type(__UpperCAmelCase ) not in self.src_skip , __UpperCAmelCase ) ) __UpperCAmelCase : Any = list(filter(lambda __UpperCAmelCase : type(__UpperCAmelCase ) not in self.dest_skip , __UpperCAmelCase ) ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(__UpperCAmelCase )} operations while' f' destination module has {len(__UpperCAmelCase )}.' ) for dest_m, src_m in zip(__UpperCAmelCase , __UpperCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class _A ( nn.Module ): def __init__( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' super().__init__() __UpperCAmelCase : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), f'Unexpected layer name {k}' __UpperCAmelCase : Any = len(__UpperCAmelCase ) + 1 feature_blocks.append((f'res{block_index}', v) ) __UpperCAmelCase : List[Any] = nn.ModuleDict(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' return get_trunk_forward_outputs( __UpperCAmelCase , out_feat_keys=__UpperCAmelCase , feature_blocks=self._feature_blocks , ) class _A ( __SCREAMING_SNAKE_CASE ): def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , __UpperCAmelCase ) -> Callable[[], Tuple[nn.Module, Dict]]: '''simple docstring''' # default to timm! if x not in self: __UpperCAmelCase : List[Any] = self.convert_name_to_timm(__UpperCAmelCase ) __UpperCAmelCase : Tuple = partial(lambda: (timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval(), None) ) else: __UpperCAmelCase : str = super().__getitem__(__UpperCAmelCase ) return val class _A ( __SCREAMING_SNAKE_CASE ): def __getitem__( self , __UpperCAmelCase ) -> Callable[[], nn.Module]: '''simple docstring''' if "seer" in x and "in1k" not in x: __UpperCAmelCase : Tuple = RegNetModel else: __UpperCAmelCase : int = RegNetForImageClassification return val def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Tuple[str, str]] ): """simple docstring""" for from_key, to_key in keys: __UpperCAmelCase : int = from_state_dict[from_key].clone() print(f'Copied key={from_key} to={to_key}' ) return to_state_dict def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Callable[[], nn.Module] , lowerCAmelCase__ : Callable[[], nn.Module] , lowerCAmelCase__ : RegNetConfig , lowerCAmelCase__ : Path , lowerCAmelCase__ : bool = True , ): """simple docstring""" print(f'Converting {name}...' ) with torch.no_grad(): __UpperCAmelCase : Tuple = from_model_func() __UpperCAmelCase : Optional[int] = our_model_func(lowerCAmelCase__ ).eval() __UpperCAmelCase : Dict = ModuleTransfer(src=lowerCAmelCase__ , dest=lowerCAmelCase__ , raise_if_mismatch=lowerCAmelCase__ ) __UpperCAmelCase : Union[str, Any] = torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase__ ) if from_state_dict is not None: __UpperCAmelCase : List[str] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __UpperCAmelCase : Tuple = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] __UpperCAmelCase : Any = manually_copy_vissl_head(lowerCAmelCase__ , our_model.state_dict() , lowerCAmelCase__ ) our_model.load_state_dict(lowerCAmelCase__ ) __UpperCAmelCase : List[str] = our_model(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = ( our_outputs.logits if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else our_outputs.last_hidden_state ) __UpperCAmelCase : Tuple = from_model(lowerCAmelCase__ ) __UpperCAmelCase : List[Any] = from_output[-1] if type(lowerCAmelCase__ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __UpperCAmelCase : Union[str, Any] = our_outputs.hidden_states[-1] assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase__ , ) __UpperCAmelCase : Tuple = 224 if """seer""" not in name else 384 # we can use the convnext one __UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=lowerCAmelCase__ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase__ , ) print(f'Pushed {name}' ) def lowercase_ ( lowerCAmelCase__ : Path , lowerCAmelCase__ : str = None , lowerCAmelCase__ : bool = True ): """simple docstring""" __UpperCAmelCase : List[str] = """imagenet-1k-id2label.json""" __UpperCAmelCase : List[str] = 1000 __UpperCAmelCase : Optional[Any] = (1, num_labels) __UpperCAmelCase : Any = """huggingface/label-files""" __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[Any] = json.load(open(cached_download(hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) ) , """r""" ) ) __UpperCAmelCase : List[str] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = idalabel __UpperCAmelCase : int = {v: k for k, v in idalabel.items()} __UpperCAmelCase : Dict = partial(lowerCAmelCase__ , num_labels=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ ) __UpperCAmelCase : Tuple = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), } __UpperCAmelCase : int = NameToOurModelFuncMap() __UpperCAmelCase : str = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase__ : str , lowerCAmelCase__ : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: __UpperCAmelCase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , model_dir=str(lowerCAmelCase__ ) , map_location="""cpu""" ) __UpperCAmelCase : int = model_func() # check if we have a head, if yes add it __UpperCAmelCase : Optional[int] = files["""classy_state_dict"""]["""base_model"""]["""model"""] __UpperCAmelCase : List[str] = model_state_dict["""trunk"""] model.load_state_dict(lowerCAmelCase__ ) return model.eval(), model_state_dict["heads"] # pretrained __UpperCAmelCase : Any = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __UpperCAmelCase : Optional[Any] = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __UpperCAmelCase : Optional[int] = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __UpperCAmelCase : int = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __UpperCAmelCase : List[str] = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __UpperCAmelCase : Optional[int] = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __UpperCAmelCase : str = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __UpperCAmelCase : Any = partial( lowerCAmelCase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( lowerCAmelCase__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , lowerCAmelCase__ , lowerCAmelCase__ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCAmelCase__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) return config, expected_shape if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
368
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : @staticmethod def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 ) __UpperCAmelCase : Tuple = len(__UpperCAmelCase ) self.assertGreater(__UpperCAmelCase , 0 ) self.assertEqual( __UpperCAmelCase , [ { """score""": ANY(__UpperCAmelCase ), """label""": ANY(__UpperCAmelCase ), """box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )}, } for i in range(__UpperCAmelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> Tuple: '''simple docstring''' pass @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) __UpperCAmelCase : str = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) __UpperCAmelCase : Any = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass @require_torch @slow def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = 0.2 __UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
16
0
from functools import lru_cache def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Tuple = 2 __UpperCAmelCase : int = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(lowerCAmelCase__ ) if n > 1: factors.add(lowerCAmelCase__ ) return factors @lru_cache def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" return len(unique_prime_factors(lowerCAmelCase__ ) ) def lowercase_ ( lowerCAmelCase__ : list ): """simple docstring""" return len(set(lowerCAmelCase__ ) ) in (0, 1) def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = 2 while True: # Increment each value of a generated range __UpperCAmelCase : List[str] = [base + i for i in range(lowerCAmelCase__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. __UpperCAmelCase : Dict = [upf_len(lowerCAmelCase__ ) for x in group] checker.append(lowerCAmelCase__ ) # If all numbers in the list are equal, return the group variable. if equality(lowerCAmelCase__ ): return group # Increment our base variable by 1 base += 1 def lowercase_ ( lowerCAmelCase__ : int = 4 ): """simple docstring""" __UpperCAmelCase : int = run(lowerCAmelCase__ ) return results[0] if len(lowerCAmelCase__ ) else None if __name__ == "__main__": print(solution())
369
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.txt'''} _UpperCamelCase = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } _UpperCamelCase = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } _UpperCamelCase = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : Union[str, Any] = do_lower_case __UpperCAmelCase : str = strip_accents __UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars __UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase ) __UpperCAmelCase : List[Any] = do_lower_case def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
16
0
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Any = generate_pascal_triangle(lowerCAmelCase__ ) for row_idx in range(lowerCAmelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) __UpperCAmelCase : list[list[int]] = [] for current_row_idx in range(lowerCAmelCase__ ): __UpperCAmelCase : Optional[int] = populate_current_row(lowerCAmelCase__ , lowerCAmelCase__ ) triangle.append(lowerCAmelCase__ ) return triangle def lowercase_ ( lowerCAmelCase__ : list[list[int]] , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : List[Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCAmelCase : Tuple = 1, 1 for current_col_idx in range(1 , lowerCAmelCase__ ): calculate_current_element( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return current_row def lowercase_ ( lowerCAmelCase__ : list[list[int]] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCAmelCase : Dict = triangle[current_row_idx - 1][current_col_idx] __UpperCAmelCase : List[str] = above_to_left_elt + above_to_right_elt def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) __UpperCAmelCase : list[list[int]] = [[1]] for row_index in range(1 , lowerCAmelCase__ ): __UpperCAmelCase : Optional[int] = [0] + result[-1] + [0] __UpperCAmelCase : str = row_index + 1 # Calculate the number of distinct elements in a row __UpperCAmelCase : Dict = sum(divmod(lowerCAmelCase__ , 2 ) ) __UpperCAmelCase : Tuple = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCAmelCase : str = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCAmelCase : Any = row_first_half + row_second_half result.append(lowerCAmelCase__ ) return result def lowercase_ ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ : Callable , lowerCAmelCase__ : int ) -> None: __UpperCAmelCase : Optional[int] = f'{func.__name__}({value})' __UpperCAmelCase : Optional[Any] = timeit(f'__main__.{call}' , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'{call:38} -- {timing:.4f} seconds' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase__ , lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
370
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''OwlViTFeatureExtractor'''] _UpperCamelCase = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
0
import torch from torch import nn class _A ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase : Union[str, Any] = n_token __UpperCAmelCase : Optional[Any] = d_embed __UpperCAmelCase : int = d_proj __UpperCAmelCase : Tuple = cutoffs + [n_token] __UpperCAmelCase : List[Any] = [0] + self.cutoffs __UpperCAmelCase : int = div_val __UpperCAmelCase : Optional[int] = self.cutoffs[0] __UpperCAmelCase : Union[str, Any] = len(self.cutoffs ) - 1 __UpperCAmelCase : Tuple = self.shortlist_size + self.n_clusters if self.n_clusters > 0: __UpperCAmelCase : Any = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) __UpperCAmelCase : Any = nn.Parameter(torch.zeros(self.n_clusters ) ) __UpperCAmelCase : List[str] = nn.ModuleList() __UpperCAmelCase : Tuple = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__UpperCAmelCase , __UpperCAmelCase ) ) ) else: self.out_projs.append(__UpperCAmelCase ) self.out_layers.append(nn.Linear(__UpperCAmelCase , __UpperCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): __UpperCAmelCase : str = self.cutoff_ends[i], self.cutoff_ends[i + 1] __UpperCAmelCase : List[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__UpperCAmelCase , __UpperCAmelCase ) ) ) self.out_layers.append(nn.Linear(__UpperCAmelCase , r_idx - l_idx ) ) __UpperCAmelCase : Union[str, Any] = keep_order def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' if proj is None: __UpperCAmelCase : Any = nn.functional.linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: __UpperCAmelCase : str = nn.functional.linear(__UpperCAmelCase , proj.t().contiguous() ) __UpperCAmelCase : Tuple = nn.functional.linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n __UpperCAmelCase : List[str] = hidden[..., :-1, :].contiguous() __UpperCAmelCase : int = labels[..., 1:].contiguous() __UpperCAmelCase : List[str] = hidden.view(-1 , hidden.size(-1 ) ) __UpperCAmelCase : Union[str, Any] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: __UpperCAmelCase : List[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: __UpperCAmelCase : Union[str, Any] = self._compute_logit(__UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: __UpperCAmelCase : Any = labels != -100 __UpperCAmelCase : Optional[int] = torch.zeros_like(__UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) __UpperCAmelCase : str = ( -nn.functional.log_softmax(__UpperCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: __UpperCAmelCase : Optional[int] = nn.functional.log_softmax(__UpperCAmelCase , dim=-1 ) else: # construct weights and biases __UpperCAmelCase : Tuple = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __UpperCAmelCase : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] __UpperCAmelCase : Tuple = self.out_layers[0].weight[l_idx:r_idx] __UpperCAmelCase : Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: __UpperCAmelCase : Tuple = self.out_layers[i].weight __UpperCAmelCase : int = self.out_layers[i].bias if i == 0: __UpperCAmelCase : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __UpperCAmelCase : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__UpperCAmelCase ) biases.append(__UpperCAmelCase ) __UpperCAmelCase : str = weights[0], biases[0], self.out_projs[0] __UpperCAmelCase : List[str] = self._compute_logit(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : str = nn.functional.log_softmax(__UpperCAmelCase , dim=1 ) if labels is None: __UpperCAmelCase : Optional[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: __UpperCAmelCase : List[str] = torch.zeros_like(__UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : int = [0] + self.cutoffs for i in range(len(__UpperCAmelCase ) - 1 ): __UpperCAmelCase : int = cutoff_values[i], cutoff_values[i + 1] if labels is not None: __UpperCAmelCase : Any = (labels >= l_idx) & (labels < r_idx) __UpperCAmelCase : List[str] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue __UpperCAmelCase : List[Any] = labels.index_select(0 , __UpperCAmelCase ) - l_idx __UpperCAmelCase : str = head_logprob.index_select(0 , __UpperCAmelCase ) __UpperCAmelCase : Dict = hidden.index_select(0 , __UpperCAmelCase ) else: __UpperCAmelCase : List[Any] = hidden if i == 0: if labels is not None: __UpperCAmelCase : int = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: __UpperCAmelCase : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: __UpperCAmelCase : Dict = weights[i], biases[i], self.out_projs[i] __UpperCAmelCase : Optional[Any] = self._compute_logit(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = nn.functional.log_softmax(__UpperCAmelCase , dim=1 ) __UpperCAmelCase : Dict = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: __UpperCAmelCase : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: __UpperCAmelCase : List[Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i __UpperCAmelCase : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , __UpperCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def __A ( self , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if self.n_clusters == 0: __UpperCAmelCase : Optional[int] = self._compute_logit(__UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__UpperCAmelCase , dim=-1 ) else: # construct weights and biases __UpperCAmelCase : List[str] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __UpperCAmelCase : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1] __UpperCAmelCase : int = self.out_layers[0].weight[l_idx:r_idx] __UpperCAmelCase : List[str] = self.out_layers[0].bias[l_idx:r_idx] else: __UpperCAmelCase : Optional[Any] = self.out_layers[i].weight __UpperCAmelCase : Union[str, Any] = self.out_layers[i].bias if i == 0: __UpperCAmelCase : int = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __UpperCAmelCase : Any = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__UpperCAmelCase ) biases.append(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = weights[0], biases[0], self.out_projs[0] __UpperCAmelCase : Optional[int] = self._compute_logit(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : List[str] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) __UpperCAmelCase : List[Any] = nn.functional.log_softmax(__UpperCAmelCase , dim=1 ) __UpperCAmelCase : Any = [0] + self.cutoffs for i in range(len(__UpperCAmelCase ) - 1 ): __UpperCAmelCase : Dict = cutoff_values[i], cutoff_values[i + 1] if i == 0: __UpperCAmelCase : Optional[int] = head_logprob[:, : self.cutoffs[0]] else: __UpperCAmelCase : Tuple = weights[i], biases[i], self.out_projs[i] __UpperCAmelCase : Union[str, Any] = self._compute_logit(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : List[str] = nn.functional.log_softmax(__UpperCAmelCase , dim=1 ) __UpperCAmelCase : str = head_logprob[:, -i] + tail_logprob_i __UpperCAmelCase : List[str] = logprob_i return out
371
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: '''simple docstring''' warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
16
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None @property def __A ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = (3, 32, 128) __UpperCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) __UpperCAmelCase : List[Any] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) return image_input def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[str] = self.prepare_image_inputs() __UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" ) __UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Dict = """test""" __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = """test""" __UpperCAmelCase : int = self.prepare_image_inputs() __UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase ) __UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Optional[Any] = self.get_tokenizer() __UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : str = None __UpperCAmelCase : Dict = self.prepare_image_inputs() __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 ) __UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 ) __UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 ) __UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
350
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) __UpperCAmelCase : List[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) __UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) __UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' import torch __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = pipeline("""text-classification""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : int = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __UpperCAmelCase : Union[str, Any] = """HuggingFace is in""" __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""] __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase ) __UpperCAmelCase : Any = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , ) __UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(__UpperCAmelCase ): text_classifier(__UpperCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
16
0
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowercase_ ( lowerCAmelCase__ : ndarray ): """simple docstring""" return np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) class _A : """simple docstring""" def __init__( self , *, __UpperCAmelCase = np.inf , __UpperCAmelCase = "linear" , __UpperCAmelCase = 0.0 , ) -> None: '''simple docstring''' __UpperCAmelCase : str = regularization __UpperCAmelCase : int = gamma if kernel == "linear": __UpperCAmelCase : Dict = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("""gamma must be float or int""" ) if not self.gamma > 0: raise ValueError("""gamma must be > 0""" ) __UpperCAmelCase : Tuple = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __UpperCAmelCase : str = f'Unknown kernel: {kernel}' raise ValueError(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' return np.dot(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Tuple = observations __UpperCAmelCase : Optional[Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations (__UpperCAmelCase ) : Dict = np.shape(__UpperCAmelCase ) def to_minimize(__UpperCAmelCase ) -> float: __UpperCAmelCase : List[Any] = 0 (__UpperCAmelCase ) : Dict = np.shape(__UpperCAmelCase ) for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(__UpperCAmelCase ) __UpperCAmelCase : int = LinearConstraint(__UpperCAmelCase , 0 , 0 ) __UpperCAmelCase : Optional[Any] = Bounds(0 , self.regularization ) __UpperCAmelCase : List[str] = minimize( __UpperCAmelCase , np.ones(__UpperCAmelCase ) , bounds=__UpperCAmelCase , constraints=[ly_contraint] ).x __UpperCAmelCase : Tuple = l_star # calculating mean offset of separation plane to points __UpperCAmelCase : Optional[Any] = 0 for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __UpperCAmelCase : Union[str, Any] = s / n def __A ( self , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[Any] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , __UpperCAmelCase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' from ..utils import DummyObject, requires_backends class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
16
0
'''simple docstring''' from math import pi, sqrt def lowercase_ ( lowerCAmelCase__ : float ): """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(lowerCAmelCase__ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(lowerCAmelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase_ ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(lowerCAmelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _UpperCamelCase = 1.0 while num: _UpperCamelCase = float(input('''Gamma of: ''')) print(F'gamma({num}) = {gamma(num)}') print('''\nEnter 0 to exit...''')
352
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _A : def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase ) __UpperCAmelCase : List[str] = length __UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa ) __UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Dict: '''simple docstring''' return self.length def __getitem__( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int: '''simple docstring''' super().__init__() __UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Any = True def __A ( self , __UpperCAmelCase=None ) -> str: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : Optional[int] = False return x * self.a[0] + self.b[0] class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : str = True def __A ( self , __UpperCAmelCase=None ) -> Tuple: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : int = False return x * self.a + self.b def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer __UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" ) __UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )} def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : List[Any] = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) if "label" in examples: __UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCAmelCase : Tuple = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCAmelCase__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 ) __UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
16
0
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = BertJapaneseTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : List[Any] = True def __A ( self ) -> Tuple: '''simple docstring''' super().setUp() __UpperCAmelCase : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] __UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def __A ( self , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = """こんにちは、世界。 \nこんばんは、世界。""" __UpperCAmelCase : int = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : int = self.get_input_output_texts(__UpperCAmelCase ) __UpperCAmelCase : Dict = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __UpperCAmelCase : Tuple = tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) return text, ids def __A ( self ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def __A ( self ) -> str: '''simple docstring''' pass # TODO add if relevant def __A ( self ) -> Dict: '''simple docstring''' pass # TODO add if relevant def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Any = self.tokenizer_class(self.vocab_file ) __UpperCAmelCase : int = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" ) self.assertIsNotNone(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = """こんにちは、世界。\nこんばんは、世界。""" __UpperCAmelCase : str = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __UpperCAmelCase : Dict = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__UpperCAmelCase , """wb""" ) as handle: pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , """rb""" ) as handle: __UpperCAmelCase : Union[str, Any] = pickle.load(__UpperCAmelCase ) __UpperCAmelCase : Any = tokenizer_new.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def __A ( self ) -> str: '''simple docstring''' try: __UpperCAmelCase : str = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def __A ( self ) -> Dict: '''simple docstring''' try: __UpperCAmelCase : Optional[int] = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : str = MecabTokenizer(do_lower_case=__UpperCAmelCase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def __A ( self ) -> Dict: '''simple docstring''' try: __UpperCAmelCase : List[str] = MecabTokenizer( do_lower_case=__UpperCAmelCase , normalize_text=__UpperCAmelCase , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = MecabTokenizer(normalize_text=__UpperCAmelCase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = """こんにちは、世界。\nこんばんは、世界。""" __UpperCAmelCase : List[Any] = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__UpperCAmelCase , """wb""" ) as handle: pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , """rb""" ) as handle: __UpperCAmelCase : int = pickle.load(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer_new.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @require_sudachi def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : int = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] ) @require_sudachi def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[Any] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] ) @require_sudachi def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = SudachiTokenizer(do_lower_case=__UpperCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = SudachiTokenizer(normalize_text=__UpperCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Any = SudachiTokenizer(trim_whitespace=__UpperCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(__UpperCAmelCase ) __UpperCAmelCase : int = """こんにちは、世界。\nこんばんは、世界。""" __UpperCAmelCase : int = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__UpperCAmelCase , """wb""" ) as handle: pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , """rb""" ) as handle: __UpperCAmelCase : List[str] = pickle.load(__UpperCAmelCase ) __UpperCAmelCase : Any = tokenizer_new.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @require_jumanpp def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Dict = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = JumanppTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Tuple = JumanppTokenizer(normalize_text=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = JumanppTokenizer(trim_whitespace=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] __UpperCAmelCase : Union[str, Any] = {} for i, token in enumerate(__UpperCAmelCase ): __UpperCAmelCase : Optional[int] = i __UpperCAmelCase : str = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) __UpperCAmelCase : List[Any] = tokenizer.subword_tokenizer __UpperCAmelCase : Union[str, Any] = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(__UpperCAmelCase , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) __UpperCAmelCase : int = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(__UpperCAmelCase , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) __UpperCAmelCase : Any = tokenizer.encode("""ありがとう。""" , add_special_tokens=__UpperCAmelCase ) __UpperCAmelCase : Any = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__UpperCAmelCase ) __UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = BertJapaneseTokenizer _SCREAMING_SNAKE_CASE : List[Any] = False def __A ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __UpperCAmelCase : Union[str, Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def __A ( self , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = """こんにちは、世界。 \nこんばんは、世界。""" __UpperCAmelCase : List[Any] = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def __A ( self ) -> Optional[int]: '''simple docstring''' pass # TODO add if relevant def __A ( self ) -> List[str]: '''simple docstring''' pass # TODO add if relevant def __A ( self ) -> Any: '''simple docstring''' pass # TODO add if relevant def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" ) __UpperCAmelCase : int = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( __UpperCAmelCase , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __UpperCAmelCase : List[Any] = {} for i, token in enumerate(__UpperCAmelCase ): __UpperCAmelCase : List[str] = i __UpperCAmelCase : List[Any] = CharacterTokenizer(vocab=__UpperCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : str = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) __UpperCAmelCase : List[str] = tokenizer.encode("""ありがとう。""" , add_special_tokens=__UpperCAmelCase ) __UpperCAmelCase : int = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _A ( unittest.TestCase ): def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[Any] = """cl-tohoku/bert-base-japanese""" __UpperCAmelCase : str = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) class _A ( unittest.TestCase ): def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(__UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) __UpperCAmelCase : Optional[Any] = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(__UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
353
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None @property def __A ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = (3, 32, 128) __UpperCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) __UpperCAmelCase : List[Any] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) return image_input def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[str] = self.prepare_image_inputs() __UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" ) __UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Dict = """test""" __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = """test""" __UpperCAmelCase : int = self.prepare_image_inputs() __UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase ) __UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Optional[Any] = self.get_tokenizer() __UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : str = None __UpperCAmelCase : Dict = self.prepare_image_inputs() __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 ) __UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 ) __UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 ) __UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
16
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
'''simple docstring''' from collections.abc import Sequence def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ): """simple docstring""" if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __UpperCAmelCase : Any = nums[0] for i in range(1 , len(lowerCAmelCase__ ) ): __UpperCAmelCase : Union[str, Any] = nums[i] __UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _UpperCamelCase = int(input('''Enter number of elements : ''').strip()) _UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
16
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = '''▁''' _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _UpperCamelCase = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } _UpperCamelCase = { '''facebook/xglm-564M''': 2048, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[int] = ["input_ids", "attention_mask"] def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: '''simple docstring''' __UpperCAmelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __UpperCAmelCase : str = 7 __UpperCAmelCase : List[Any] = [f'<madeupword{i}>' for i in range(self.num_madeup_words )] __UpperCAmelCase : Any = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) __UpperCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[str] = 1 # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Dict = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} __UpperCAmelCase : List[Any] = len(self.sp_model ) __UpperCAmelCase : Optional[Any] = {f'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__UpperCAmelCase ) __UpperCAmelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.__dict__.copy() __UpperCAmelCase : Dict = None __UpperCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __UpperCAmelCase : int = {} __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a __UpperCAmelCase : Optional[int] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Tuple = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __A ( self ) -> Any: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __A ( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : List[Any] = self.sp_model.PieceToId(__UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __A ( self , __UpperCAmelCase ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCAmelCase : int = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: __UpperCAmelCase : Dict = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
355
'''simple docstring''' class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = data __UpperCAmelCase : int = previous __UpperCAmelCase : Union[str, Any] = next_node def __str__( self ) -> str: '''simple docstring''' return f'{self.data}' def __A ( self ) -> int: '''simple docstring''' return self.data def __A ( self ) -> List[str]: '''simple docstring''' return self.next def __A ( self ) -> str: '''simple docstring''' return self.previous class _A : def __init__( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = head def __iter__( self ) -> str: '''simple docstring''' return self def __A ( self ) -> str: '''simple docstring''' if not self.current: raise StopIteration else: __UpperCAmelCase : List[str] = self.current.get_data() __UpperCAmelCase : int = self.current.get_next() return value class _A : def __init__( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = None # First node in list __UpperCAmelCase : List[str] = None # Last node in list def __str__( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = self.head __UpperCAmelCase : Optional[int] = [] while current is not None: nodes.append(current.get_data() ) __UpperCAmelCase : Any = current.get_next() return " ".join(str(__UpperCAmelCase ) for node in nodes ) def __contains__( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.head while current: if current.get_data() == value: return True __UpperCAmelCase : Optional[Any] = current.get_next() return False def __iter__( self ) -> str: '''simple docstring''' return LinkedListIterator(self.head ) def __A ( self ) -> List[Any]: '''simple docstring''' if self.head: return self.head.get_data() return None def __A ( self ) -> Optional[Any]: '''simple docstring''' if self.tail: return self.tail.get_data() return None def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: __UpperCAmelCase : str = node __UpperCAmelCase : List[str] = node else: self.insert_before_node(self.head , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' if self.head is None: self.set_head(__UpperCAmelCase ) else: self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = Node(__UpperCAmelCase ) if self.head is None: self.set_head(__UpperCAmelCase ) else: self.set_tail(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Tuple = node __UpperCAmelCase : List[Any] = node.previous if node.get_previous() is None: __UpperCAmelCase : str = node_to_insert else: __UpperCAmelCase : Optional[Any] = node_to_insert __UpperCAmelCase : List[Any] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : List[str] = node __UpperCAmelCase : Union[str, Any] = node.next if node.get_next() is None: __UpperCAmelCase : Dict = node_to_insert else: __UpperCAmelCase : Any = node_to_insert __UpperCAmelCase : List[str] = node_to_insert def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Optional[Any] = Node(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase ) return current_position += 1 __UpperCAmelCase : int = node.next self.insert_after_node(self.tail , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Node: '''simple docstring''' __UpperCAmelCase : Dict = self.head while node: if node.get_data() == item: return node __UpperCAmelCase : List[str] = node.get_next() raise Exception("""Node not found""" ) def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if (node := self.get_node(__UpperCAmelCase )) is not None: if node == self.head: __UpperCAmelCase : Optional[int] = self.head.get_next() if node == self.tail: __UpperCAmelCase : Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(__UpperCAmelCase ) @staticmethod def __A ( __UpperCAmelCase ) -> None: '''simple docstring''' if node.get_next(): __UpperCAmelCase : Optional[Any] = node.previous if node.get_previous(): __UpperCAmelCase : int = node.next __UpperCAmelCase : Tuple = None __UpperCAmelCase : Union[str, Any] = None def __A ( self ) -> List[Any]: '''simple docstring''' return self.head is None def lowercase_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
16
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable _UpperCamelCase = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''GPTNeoXTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXForCausalLM''', '''GPTNeoXForQuestionAnswering''', '''GPTNeoXForSequenceClassification''', '''GPTNeoXForTokenClassification''', '''GPTNeoXLayer''', '''GPTNeoXModel''', '''GPTNeoXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _A : _SCREAMING_SNAKE_CASE : List[str] _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ) -> Any: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class _A : _SCREAMING_SNAKE_CASE : Optional[List] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None __UpperCAmelCase : int = len(self.languages ) if self.languages else None def __call__( self ) -> Optional[Any]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = set(self.languages ) if self.languages and set(__UpperCAmelCase ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) ) return {"language": languages, "translation": translations} def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
16
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "new-model" if is_tf_available(): class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = NewModelConfig @require_tf class _A ( unittest.TestCase ): @slow def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = """bert-base-cased""" __UpperCAmelCase : Any = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[Any] = """bert-base-cased""" __UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = TFAutoModelForPreTraining.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Tuple: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : int = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[int] = TFAutoModelForCausalLM.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Tuple = TFAutoModelForCausalLM.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : str = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : int = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Dict = TFAutoModelForMaskedLM.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Any = TFAutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Dict: '''simple docstring''' # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __UpperCAmelCase : Any = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Tuple = TFAutoModelForSequenceClassification.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Any = TFAutoModelForQuestionAnswering.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow @require_tensorflow_probability def __A ( self ) -> int: '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained( __UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 14_410 ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[Any] = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 14_410 ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = copy.deepcopy(model.config ) __UpperCAmelCase : Dict = ["""FunnelBaseModel"""] __UpperCAmelCase : Tuple = TFAutoModel.from_config(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = TFAutoModel.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' try: AutoConfig.register("""new-model""" , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__UpperCAmelCase ): auto_class.register(__UpperCAmelCase , __UpperCAmelCase ) auto_class.register(__UpperCAmelCase , __UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCAmelCase ): auto_class.register(__UpperCAmelCase , __UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCAmelCase : Tuple = BertModelTester(self ).get_config() __UpperCAmelCase : Optional[Any] = NewModelConfig(**tiny_config.to_dict() ) __UpperCAmelCase : str = auto_class.from_config(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Dict = auto_class.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __A ( self ) -> Tuple: '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ): __UpperCAmelCase : Union[str, Any] = TFAutoModel.from_pretrained("""bert-base""" ) def __A ( self ) -> Dict: '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __UpperCAmelCase : List[str] = TFAutoModel.from_pretrained(__UpperCAmelCase , revision="""aaaaaa""" ) def __A ( self ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ): __UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def __A ( self ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex(__UpperCAmelCase , """Use `from_pt=True` to load this model""" ): __UpperCAmelCase : Optional[Any] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Tuple = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: __UpperCAmelCase : Optional[Any] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __UpperCAmelCase : List[str] = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) with RequestCounter() as counter: __UpperCAmelCase : List[str] = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
357
'''simple docstring''' from statistics import mean import numpy as np def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Tuple = 0 # Number of processes finished __UpperCAmelCase : Optional[int] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __UpperCAmelCase : Tuple = [0] * no_of_process # List to include calculation results __UpperCAmelCase : int = [0] * no_of_process # Sort by arrival time. __UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )] __UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )] arrival_time.sort() while no_of_process > finished_process_count: __UpperCAmelCase : Dict = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __UpperCAmelCase : Any = arrival_time[i] __UpperCAmelCase : Any = 0 # Index showing the location of the process being performed __UpperCAmelCase : Any = 0 # Saves the current response ratio. __UpperCAmelCase : List[str] = 0 for i in range(0 , lowerCAmelCase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __UpperCAmelCase : Tuple = temp __UpperCAmelCase : List[str] = i # Calculate the turn around time __UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __UpperCAmelCase : List[str] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Optional[int] = [0] * no_of_process for i in range(0 , lowerCAmelCase__ ): __UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _UpperCamelCase = 5 _UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E'''] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _UpperCamelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
16
0