code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
from typing import Dict, Optional
import numpy as np
import datasets
lowercase_ = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n"
lowercase_ = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n"
lowercase_ = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}"
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : Optional[Dict[int, int]] = None , __SCREAMING_SNAKE_CASE : bool = False , ):
'''simple docstring'''
if label_map is not None:
for old_id, new_id in label_map.items():
__snake_case : List[Any] = new_id
# turn into Numpy arrays
__snake_case : int = np.array(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = np.array(__SCREAMING_SNAKE_CASE )
if reduce_labels:
__snake_case : int = 2_5_5
__snake_case : Dict = label - 1
__snake_case : Optional[int] = 2_5_5
__snake_case : int = label != ignore_index
__snake_case : int = np.not_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = pred_label[mask]
__snake_case : str = np.array(__SCREAMING_SNAKE_CASE )[mask]
__snake_case : List[str] = pred_label[pred_label == label]
__snake_case : str = np.histogram(__SCREAMING_SNAKE_CASE , bins=__SCREAMING_SNAKE_CASE , range=(0, num_labels - 1) )[0]
__snake_case : Tuple = np.histogram(__SCREAMING_SNAKE_CASE , bins=__SCREAMING_SNAKE_CASE , range=(0, num_labels - 1) )[0]
__snake_case : Union[str, Any] = np.histogram(__SCREAMING_SNAKE_CASE , bins=__SCREAMING_SNAKE_CASE , range=(0, num_labels - 1) )[0]
__snake_case : Optional[int] = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : Optional[Dict[int, int]] = None , __SCREAMING_SNAKE_CASE : bool = False , ):
'''simple docstring'''
__snake_case : int = np.zeros((num_labels,) , dtype=np.floataa )
__snake_case : Union[str, Any] = np.zeros((num_labels,) , dtype=np.floataa )
__snake_case : Optional[int] = np.zeros((num_labels,) , dtype=np.floataa )
__snake_case : List[Any] = np.zeros((num_labels,) , dtype=np.floataa )
for result, gt_seg_map in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__snake_case , __snake_case , __snake_case , __snake_case : Tuple = intersect_and_union(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[Dict[int, int]] = None , __SCREAMING_SNAKE_CASE : bool = False , ):
'''simple docstring'''
__snake_case , __snake_case , __snake_case , __snake_case : int = total_intersect_and_union(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# compute metrics
__snake_case : Tuple = {}
__snake_case : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum()
__snake_case : List[Any] = total_area_intersect / total_area_union
__snake_case : List[Any] = total_area_intersect / total_area_label
__snake_case : Optional[int] = np.nanmean(__SCREAMING_SNAKE_CASE )
__snake_case : Union[str, Any] = np.nanmean(__SCREAMING_SNAKE_CASE )
__snake_case : Union[str, Any] = all_acc
__snake_case : Dict = iou
__snake_case : Union[str, Any] = acc
if nan_to_num is not None:
__snake_case : Optional[Any] = {metric: np.nan_to_num(__SCREAMING_SNAKE_CASE , nan=__SCREAMING_SNAKE_CASE ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
def snake_case__ ( self : Optional[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
"""predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ),
"""references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ),
} ) , reference_urls=[
"""https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py"""
] , )
def snake_case__ ( self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : bool , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[Dict[int, int]] = None , _lowerCAmelCase : bool = False , ):
__snake_case : str = mean_iou(
results=_lowerCAmelCase , gt_seg_maps=_lowerCAmelCase , num_labels=_lowerCAmelCase , ignore_index=_lowerCAmelCase , nan_to_num=_lowerCAmelCase , label_map=_lowerCAmelCase , reduce_labels=_lowerCAmelCase , )
return iou_result
| 20 | import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
lowercase_ = None
lowercase_ = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
lowercase_ = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : bool = True
A : Optional[str] = None
# Automatically constructed
A : ClassVar[str] = "PIL.Image.Image"
A : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} )
A : str = field(default="Image" , init=__UpperCamelCase , repr=__UpperCamelCase )
def __call__( self : Any ):
return self.pa_type
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
__snake_case : str = np.array(_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": value, "bytes": None}
elif isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": None, "bytes": value}
elif isinstance(_lowerCAmelCase , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(_lowerCAmelCase )
elif isinstance(_lowerCAmelCase , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(_lowerCAmelCase )
elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("""path""" )}
elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )}
else:
raise ValueError(
f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def snake_case__ ( self : List[str] , _lowerCAmelCase : dict , _lowerCAmelCase : Dict=None ):
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support decoding images, please install 'Pillow'.""" )
if token_per_repo_id is None:
__snake_case : Tuple = {}
__snake_case , __snake_case : str = value["""path"""], value["""bytes"""]
if bytes_ is None:
if path is None:
raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
else:
if is_local_path(_lowerCAmelCase ):
__snake_case : str = PIL.Image.open(_lowerCAmelCase )
else:
__snake_case : List[str] = path.split("""::""" )[-1]
try:
__snake_case : Dict = string_to_dict(_lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""]
__snake_case : int = token_per_repo_id.get(_lowerCAmelCase )
except ValueError:
__snake_case : List[Any] = None
with xopen(_lowerCAmelCase , """rb""" , use_auth_token=_lowerCAmelCase ) as f:
__snake_case : Union[str, Any] = BytesIO(f.read() )
__snake_case : Dict = PIL.Image.open(bytes_ )
else:
__snake_case : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def snake_case__ ( self : Union[str, Any] ):
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("""binary""" ),
"path": Value("""string""" ),
}
)
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ):
if pa.types.is_string(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("""bytes""" ) >= 0:
__snake_case : List[str] = storage.field("""bytes""" )
else:
__snake_case : List[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
if storage.type.get_field_index("""path""" ) >= 0:
__snake_case : Optional[int] = storage.field("""path""" )
else:
__snake_case : int = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
__snake_case : Optional[Any] = pa.array(
[encode_np_array(np.array(_lowerCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
__snake_case : Optional[int] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays(
[bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : pa.StructArray ):
@no_op_if_value_is_null
def path_to_bytes(_lowerCAmelCase : Tuple ):
with xopen(_lowerCAmelCase , """rb""" ) as f:
__snake_case : Optional[int] = f.read()
return bytes_
__snake_case : Tuple = pa.array(
[
(path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
__snake_case : Optional[Any] = pa.array(
[os.path.basename(_lowerCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def __lowerCAmelCase ( ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
__snake_case : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
__snake_case : List[Any] = BytesIO()
if image.format in list_image_compression_formats():
__snake_case : Union[str, Any] = image.format
else:
__snake_case : List[Any] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF"""
image.save(__SCREAMING_SNAKE_CASE , format=__SCREAMING_SNAKE_CASE )
return buffer.getvalue()
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
if hasattr(__SCREAMING_SNAKE_CASE , """filename""" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
__snake_case : List[Any] = array.dtype
__snake_case : List[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER
__snake_case : Dict = dtype.kind
__snake_case : Union[str, Any] = dtype.itemsize
__snake_case : Tuple = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
__snake_case : int = np.dtype("""|u1""" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' )
if dtype is not dest_dtype:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
__snake_case : List[str] = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
__snake_case : int = dtype_byteorder + dtype_kind + str(__SCREAMING_SNAKE_CASE )
__snake_case : Any = np.dtype(__SCREAMING_SNAKE_CASE )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' )
__snake_case : Optional[int] = PIL.Image.fromarray(array.astype(__SCREAMING_SNAKE_CASE ) )
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if objs:
__snake_case , __snake_case : Any = first_non_null_value(__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
__snake_case : int = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ):
__snake_case : List[str] = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
else:
return objs
else:
return objs
| 20 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = "▁"
lowercase_ = {"vocab_file": "sentencepiece.bpe.model"}
lowercase_ = {
"vocab_file": {
"facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model",
}
}
lowercase_ = {
"facebook/xglm-564M": 20_48,
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Tuple = VOCAB_FILES_NAMES
A : Dict = PRETRAINED_VOCAB_FILES_MAP
A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : str = ["input_ids", "attention_mask"]
def __init__( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : Any="</s>" , _lowerCAmelCase : str="<s>" , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Union[str, Any]="<pad>" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Dict , ):
__snake_case : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
__snake_case : Dict = 7
__snake_case : List[Any] = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )]
__snake_case : int = kwargs.get("""additional_special_tokens""" , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , )
__snake_case : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_lowerCAmelCase ) )
__snake_case : List[Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__snake_case : Optional[Any] = 1
# Mimic fairseq token-to-id alignment for the first 4 token
__snake_case : Optional[int] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
__snake_case : Optional[int] = len(self.sp_model )
__snake_case : Optional[Any] = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(_lowerCAmelCase )
__snake_case : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : str ):
__snake_case : int = self.__dict__.copy()
__snake_case : List[Any] = None
__snake_case : int = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : Optional[Any] , _lowerCAmelCase : Tuple ):
__snake_case : Tuple = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__snake_case : Optional[int] = {}
__snake_case : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def snake_case__ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
__snake_case : Optional[Any] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def snake_case__ ( self : Dict , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None , _lowerCAmelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(_lowerCAmelCase ))
return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase ))
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
__snake_case : str = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def snake_case__ ( self : Union[str, Any] ):
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def snake_case__ ( self : str ):
__snake_case : Tuple = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ):
return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase )
def snake_case__ ( self : Any , _lowerCAmelCase : Tuple ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__snake_case : Dict = self.sp_model.PieceToId(_lowerCAmelCase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Optional[int] ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def snake_case__ ( self : str , _lowerCAmelCase : Tuple ):
__snake_case : str = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
if not os.path.isdir(_lowerCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__snake_case : List[Any] = os.path.join(
_lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCAmelCase , """wb""" ) as fi:
__snake_case : Dict = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (out_vocab_file,)
| 20 | from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(__UpperCamelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ):
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = {}
__snake_case : int = {}
if prompt is not None:
__snake_case : Dict = prompt
if generate_kwargs is not None:
__snake_case : List[Any] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__snake_case : Optional[int] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
__snake_case : Any = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ):
return super().__call__(_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = load_image(_lowerCAmelCase )
if prompt is not None:
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
raise ValueError(
f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
__snake_case : Tuple = self.model.config.model_type
if model_type == "git":
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids
__snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids
__snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
__snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework )
model_inputs.update(_lowerCAmelCase )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
__snake_case : int = None
return model_inputs
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ):
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase )
and all(x is None for x in model_inputs["""input_ids"""] )
):
__snake_case : List[Any] = None
if generate_kwargs is None:
__snake_case : Dict = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__snake_case : Dict = model_inputs.pop(self.model.main_input_name )
__snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase )
return model_outputs
def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ):
__snake_case : Union[str, Any] = []
for output_ids in model_outputs:
__snake_case : Union[str, Any] = {
"""generated_text""": self.tokenizer.decode(
_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , )
}
records.append(_lowerCAmelCase )
return records
| 20 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[Any] = "openai/whisper-base"
A : Union[str, Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
A : Any = "transcriber"
A : Tuple = WhisperProcessor
A : Union[str, Any] = WhisperForConditionalGeneration
A : int = ["audio"]
A : Optional[Any] = ["text"]
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Any ):
return self.pre_processor(_lowerCAmelCase , return_tensors="""pt""" ).input_features
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] ):
return self.model.generate(inputs=_lowerCAmelCase )
def snake_case__ ( self : Tuple , _lowerCAmelCase : Any ):
return self.pre_processor.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )[0]
| 20 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowercase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["YolosFeatureExtractor"]
lowercase_ = ["YolosImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST",
"YolosForObjectDetection",
"YolosModel",
"YolosPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : BigBirdConfig
A : jnp.dtype = jnp.floataa
A : bool = True
def snake_case__ ( self : str ):
super().setup()
__snake_case : int = nn.Dense(5 , dtype=self.dtype )
def __call__( self : str , *_lowerCAmelCase : int , **_lowerCAmelCase : List[str] ):
__snake_case : str = super().__call__(*_lowerCAmelCase , **_lowerCAmelCase )
__snake_case : List[Any] = self.cls(outputs[2] )
return outputs[:2] + (cls_out,)
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = FlaxBigBirdForNaturalQuestionsModule
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
def cross_entropy(__SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int]=None ):
__snake_case : Dict = logits.shape[-1]
__snake_case : List[str] = (labels[..., None] == jnp.arange(__SCREAMING_SNAKE_CASE )[None]).astype("""f4""" )
__snake_case : Dict = jax.nn.log_softmax(__SCREAMING_SNAKE_CASE , axis=-1 )
__snake_case : Tuple = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
__snake_case : List[Any] = reduction(__SCREAMING_SNAKE_CASE )
return loss
__snake_case : Union[str, Any] = partial(__SCREAMING_SNAKE_CASE , reduction=jnp.mean )
__snake_case : List[str] = cross_entropy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = cross_entropy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Tuple = cross_entropy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : str = "google/bigbird-roberta-base"
A : int = 3000
A : int = 10500
A : int = 128
A : int = 3
A : int = 1
A : int = 5
# tx_args
A : float = 3e-5
A : float = 0.0
A : int = 20000
A : float = 0.00_95
A : str = "bigbird-roberta-natural-questions"
A : str = "training-expt"
A : str = "data/nq-training.jsonl"
A : str = "data/nq-validation.jsonl"
def snake_case__ ( self : Tuple ):
os.makedirs(self.base_dir , exist_ok=_lowerCAmelCase )
__snake_case : Union[str, Any] = os.path.join(self.base_dir , self.save_dir )
__snake_case : Union[str, Any] = self.batch_size_per_device * jax.device_count()
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : int
A : int = 4096 # no dynamic padding on TPUs
def __call__( self : Tuple , _lowerCAmelCase : int ):
__snake_case : Union[str, Any] = self.collate_fn(_lowerCAmelCase )
__snake_case : List[Any] = jax.tree_util.tree_map(_lowerCAmelCase , _lowerCAmelCase )
return batch
def snake_case__ ( self : List[str] , _lowerCAmelCase : Tuple ):
__snake_case , __snake_case : Any = self.fetch_inputs(features["""input_ids"""] )
__snake_case : Optional[int] = {
"""input_ids""": jnp.array(_lowerCAmelCase , dtype=jnp.intaa ),
"""attention_mask""": jnp.array(_lowerCAmelCase , dtype=jnp.intaa ),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ),
}
return batch
def snake_case__ ( self : Any , _lowerCAmelCase : list ):
__snake_case : Any = [self._fetch_inputs(_lowerCAmelCase ) for ids in input_ids]
return zip(*_lowerCAmelCase )
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : list ):
__snake_case : Tuple = [1 for _ in range(len(_lowerCAmelCase ) )]
while len(_lowerCAmelCase ) < self.max_length:
input_ids.append(self.pad_id )
attention_mask.append(0 )
return input_ids, attention_mask
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None ):
'''simple docstring'''
if seed is not None:
__snake_case : int = dataset.shuffle(seed=__SCREAMING_SNAKE_CASE )
for i in range(len(__SCREAMING_SNAKE_CASE ) // batch_size ):
__snake_case : Dict = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(__SCREAMING_SNAKE_CASE )
@partial(jax.pmap , axis_name="""batch""" )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
def loss_fn(__SCREAMING_SNAKE_CASE : str ):
__snake_case : Tuple = model_inputs.pop("""start_labels""" )
__snake_case : str = model_inputs.pop("""end_labels""" )
__snake_case : Dict = model_inputs.pop("""pooled_labels""" )
__snake_case : Optional[Any] = state.apply_fn(**__SCREAMING_SNAKE_CASE , params=__SCREAMING_SNAKE_CASE , dropout_rng=__SCREAMING_SNAKE_CASE , train=__SCREAMING_SNAKE_CASE )
__snake_case , __snake_case , __snake_case : int = outputs
return state.loss_fn(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , )
__snake_case , __snake_case : Optional[Any] = jax.random.split(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = jax.value_and_grad(__SCREAMING_SNAKE_CASE )
__snake_case , __snake_case : Tuple = grad_fn(state.params )
__snake_case : str = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
__snake_case : Optional[Any] = jax.lax.pmean(__SCREAMING_SNAKE_CASE , """batch""" )
__snake_case : Union[str, Any] = state.apply_gradients(grads=__SCREAMING_SNAKE_CASE )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
__snake_case : Union[str, Any] = model_inputs.pop("""start_labels""" )
__snake_case : List[str] = model_inputs.pop("""end_labels""" )
__snake_case : Optional[Any] = model_inputs.pop("""pooled_labels""" )
__snake_case : Dict = state.apply_fn(**__SCREAMING_SNAKE_CASE , params=state.params , train=__SCREAMING_SNAKE_CASE )
__snake_case , __snake_case , __snake_case : Dict = outputs
__snake_case : str = state.loss_fn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Any = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class SCREAMING_SNAKE_CASE__ ( train_state.TrainState ):
A : Callable = struct.field(pytree_node=__UpperCamelCase )
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : Args
A : Callable
A : Callable
A : Callable
A : Callable
A : wandb
A : Callable = None
def snake_case__ ( self : str , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=None ):
__snake_case : List[str] = model.params
__snake_case : List[Any] = TrainState.create(
apply_fn=model.__call__ , params=_lowerCAmelCase , tx=_lowerCAmelCase , loss_fn=_lowerCAmelCase , )
if ckpt_dir is not None:
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Any = restore_checkpoint(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : Any = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
__snake_case , __snake_case : Any = build_tx(**_lowerCAmelCase )
__snake_case : Tuple = train_state.TrainState(
step=_lowerCAmelCase , apply_fn=model.__call__ , params=_lowerCAmelCase , tx=_lowerCAmelCase , opt_state=_lowerCAmelCase , )
__snake_case : Optional[Any] = args
__snake_case : Optional[int] = data_collator
__snake_case : List[str] = lr
__snake_case : Optional[Any] = params
__snake_case : List[Any] = jax_utils.replicate(_lowerCAmelCase )
return state
def snake_case__ ( self : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ):
__snake_case : str = self.args
__snake_case : Optional[Any] = len(_lowerCAmelCase ) // args.batch_size
__snake_case : List[Any] = jax.random.PRNGKey(0 )
__snake_case : Union[str, Any] = jax.random.split(_lowerCAmelCase , jax.device_count() )
for epoch in range(args.max_epochs ):
__snake_case : Tuple = jnp.array(0 , dtype=jnp.floataa )
__snake_case : Tuple = get_batched_dataset(_lowerCAmelCase , args.batch_size , seed=_lowerCAmelCase )
__snake_case : Optional[int] = 0
for batch in tqdm(_lowerCAmelCase , total=_lowerCAmelCase , desc=f'''Running EPOCH-{epoch}''' ):
__snake_case : Union[str, Any] = self.data_collator(_lowerCAmelCase )
__snake_case , __snake_case , __snake_case : Optional[Any] = self.train_step_fn(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
running_loss += jax_utils.unreplicate(metrics["""loss"""] )
i += 1
if i % args.logging_steps == 0:
__snake_case : List[str] = jax_utils.unreplicate(state.step )
__snake_case : Optional[Any] = running_loss.item() / i
__snake_case : Union[str, Any] = self.scheduler_fn(state_step - 1 )
__snake_case : Dict = self.evaluate(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : Tuple = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(_lowerCAmelCase ) )
self.logger.log(_lowerCAmelCase , commit=_lowerCAmelCase )
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=_lowerCAmelCase )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ):
__snake_case : str = get_batched_dataset(_lowerCAmelCase , self.args.batch_size )
__snake_case : Optional[int] = len(_lowerCAmelCase ) // self.args.batch_size
__snake_case : List[Any] = jnp.array(0 , dtype=jnp.floataa )
__snake_case : Optional[Any] = 0
for batch in tqdm(_lowerCAmelCase , total=_lowerCAmelCase , desc="""Evaluating ... """ ):
__snake_case : Optional[Any] = self.data_collator(_lowerCAmelCase )
__snake_case : Union[str, Any] = self.val_step_fn(_lowerCAmelCase , **_lowerCAmelCase )
running_loss += jax_utils.unreplicate(metrics["""loss"""] )
i += 1
return running_loss / i
def snake_case__ ( self : str , _lowerCAmelCase : str , _lowerCAmelCase : str ):
__snake_case : str = jax_utils.unreplicate(_lowerCAmelCase )
print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ )
self.model_save_fn(_lowerCAmelCase , params=state.params )
with open(os.path.join(_lowerCAmelCase , """opt_state.msgpack""" ) , """wb""" ) as f:
f.write(to_bytes(state.opt_state ) )
joblib.dump(self.args , os.path.join(_lowerCAmelCase , """args.joblib""" ) )
joblib.dump(self.data_collator , os.path.join(_lowerCAmelCase , """data_collator.joblib""" ) )
with open(os.path.join(_lowerCAmelCase , """training_state.json""" ) , """w""" ) as f:
json.dump({"""step""": state.step.item()} , _lowerCAmelCase )
print("""DONE""" )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
print(F'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ )
with open(os.path.join(__SCREAMING_SNAKE_CASE , """flax_model.msgpack""" ) , """rb""" ) as f:
__snake_case : List[str] = from_bytes(state.params , f.read() )
with open(os.path.join(__SCREAMING_SNAKE_CASE , """opt_state.msgpack""" ) , """rb""" ) as f:
__snake_case : List[Any] = from_bytes(state.opt_state , f.read() )
__snake_case : Optional[int] = joblib.load(os.path.join(__SCREAMING_SNAKE_CASE , """args.joblib""" ) )
__snake_case : Tuple = joblib.load(os.path.join(__SCREAMING_SNAKE_CASE , """data_collator.joblib""" ) )
with open(os.path.join(__SCREAMING_SNAKE_CASE , """training_state.json""" ) , """r""" ) as f:
__snake_case : int = json.load(__SCREAMING_SNAKE_CASE )
__snake_case : str = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
__snake_case : str = num_train_steps - warmup_steps
__snake_case : Optional[int] = optax.linear_schedule(init_value=__SCREAMING_SNAKE_CASE , end_value=__SCREAMING_SNAKE_CASE , transition_steps=__SCREAMING_SNAKE_CASE )
__snake_case : Any = optax.linear_schedule(init_value=__SCREAMING_SNAKE_CASE , end_value=1E-7 , transition_steps=__SCREAMING_SNAKE_CASE )
__snake_case : Union[str, Any] = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
def weight_decay_mask(__SCREAMING_SNAKE_CASE : Dict ):
__snake_case : Dict = traverse_util.flatten_dict(__SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(__SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = scheduler_fn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Any = optax.adamw(learning_rate=__SCREAMING_SNAKE_CASE , weight_decay=__SCREAMING_SNAKE_CASE , mask=__SCREAMING_SNAKE_CASE )
return tx, lr
| 20 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = "microsoft/speecht5_tts"
A : List[Any] = (
"This is a tool that reads an English text out loud. It takes an input named `text` which should contain the "
"text to read (in English) and returns a waveform object containing the sound."
)
A : str = "text_reader"
A : Optional[Any] = SpeechTaProcessor
A : Any = SpeechTaForTextToSpeech
A : Optional[Any] = SpeechTaHifiGan
A : str = ["text"]
A : Union[str, Any] = ["audio"]
def snake_case__ ( self : List[Any] ):
if self.post_processor is None:
__snake_case : Tuple = """microsoft/speecht5_hifigan"""
super().setup()
def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ):
__snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" )
__snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" )
__snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ):
with torch.no_grad():
return self.model.generate_speech(**_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
with torch.no_grad():
return self.post_processor(_lowerCAmelCase ).cpu().detach()
| 20 | 1 |
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ):
A : List[Any] = IFInpaintingSuperResolutionPipeline
A : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"}
A : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} )
A : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"latents"}
def snake_case__ ( self : List[str] ):
return self._get_superresolution_dummy_components()
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any]=0 ):
if str(_lowerCAmelCase ).startswith("""mps""" ):
__snake_case : int = torch.manual_seed(_lowerCAmelCase )
else:
__snake_case : List[Any] = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
__snake_case : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase )
__snake_case : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase )
__snake_case : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase )
__snake_case : Tuple = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""original_image""": original_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def snake_case__ ( self : Any ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def snake_case__ ( self : str ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def snake_case__ ( self : Tuple ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def snake_case__ ( self : Union[str, Any] ):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def snake_case__ ( self : Tuple ):
self._test_save_load_local()
def snake_case__ ( self : Optional[int] ):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 20 | import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * power_factor
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | 1 |
from arguments import InitializationArguments
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
# Configuration
lowercase_ = HfArgumentParser(InitializationArguments)
lowercase_ = parser.parse_args()
# Load codeparrot tokenizer trained for Python code tokenization
lowercase_ = AutoTokenizer.from_pretrained(args.tokenizer_name)
# Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks
lowercase_ = {
"vocab_size": len(tokenizer),
"scale_attn_by_inverse_layer_idx": True,
"reorder_and_upcast_attn": True,
}
# Load model config (GPT-2 large in this case)
lowercase_ = AutoConfig.from_pretrained(args.config_name, **config_kwargs)
# Initialize new model with config
lowercase_ = AutoModelForCausalLM.from_config(config)
# Save model to the hub
model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
| 20 | from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 20 | 1 |
import mpmath # for roots of unity
import numpy as np
class SCREAMING_SNAKE_CASE__ :
def __init__( self : str , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Any=None ):
# Input as list
__snake_case : Optional[int] = list(poly_a or [0] )[:]
__snake_case : Dict = list(poly_b or [0] )[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
__snake_case : Optional[Any] = len(self.polyA )
while self.polyB[-1] == 0:
self.polyB.pop()
__snake_case : List[str] = len(self.polyB )
# Add 0 to make lengths equal a power of 2
__snake_case : str = int(
2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) )
while len(self.polyA ) < self.c_max_length:
self.polyA.append(0 )
while len(self.polyB ) < self.c_max_length:
self.polyB.append(0 )
# A complex root used for the fourier transform
__snake_case : List[Any] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) )
# The product
__snake_case : Any = self.__multiply()
def snake_case__ ( self : Any , _lowerCAmelCase : Union[str, Any] ):
__snake_case : List[str] = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB]
# Corner case
if len(_lowerCAmelCase ) <= 1:
return dft[0]
#
__snake_case : Any = self.c_max_length // 2
while next_ncol > 0:
__snake_case : List[str] = [[] for i in range(_lowerCAmelCase )]
__snake_case : Any = self.root**next_ncol
# First half of next step
__snake_case : Optional[Any] = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(_lowerCAmelCase ):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] )
current_root *= root
# Second half of next step
__snake_case : List[str] = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(_lowerCAmelCase ):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] )
current_root *= root
# Update
__snake_case : List[Any] = new_dft
__snake_case : Union[str, Any] = next_ncol // 2
return dft[0]
def snake_case__ ( self : Union[str, Any] ):
__snake_case : str = self.__dft("""A""" )
__snake_case : Optional[int] = self.__dft("""B""" )
__snake_case : Tuple = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0] ) <= 1:
return inverce_c[0]
# Inverse DFT
__snake_case : Tuple = 2
while next_ncol <= self.c_max_length:
__snake_case : Dict = [[] for i in range(_lowerCAmelCase )]
__snake_case : Dict = self.root ** (next_ncol // 2)
__snake_case : Optional[Any] = 1
# First half of next step
for j in range(self.c_max_length // next_ncol ):
for i in range(next_ncol // 2 ):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2 )
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root) )
current_root *= root
# Update
__snake_case : Any = new_inverse_c
next_ncol *= 2
# Unpack
__snake_case : Any = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self : Optional[int] ):
__snake_case : Any = """A = """ + """ + """.join(
f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) )
__snake_case : Dict = """B = """ + """ + """.join(
f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) )
__snake_case : Optional[Any] = """A*B = """ + """ + """.join(
f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) )
return f'''{a}\n{b}\n{c}'''
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {
"configuration_blenderbot_small": [
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotSmallConfig",
"BlenderbotSmallOnnxConfig",
],
"tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["BlenderbotSmallTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
"BlenderbotSmallPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFBlenderbotSmallForConditionalGeneration",
"TFBlenderbotSmallModel",
"TFBlenderbotSmallPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxBlenderbotSmallForConditionalGeneration",
"FlaxBlenderbotSmallModel",
"FlaxBlenderbotSmallPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
import random
from typing import Any
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
for _ in range(len(__SCREAMING_SNAKE_CASE ) ):
__snake_case : List[Any] = random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )
__snake_case : str = random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )
__snake_case , __snake_case : str = data[b], data[a]
return data
if __name__ == "__main__":
lowercase_ = [0, 1, 2, 3, 4, 5, 6, 7]
lowercase_ = ["python", "says", "hello", "!"]
print("Fisher-Yates Shuffle:")
print("List", integers, strings)
print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
| 20 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase_ = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["ViTFeatureExtractor"]
lowercase_ = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_tensorflow_text_available():
from transformers.models.bert import TFBertTokenizer
lowercase_ = ["bert-base-uncased", "bert-base-cased"]
lowercase_ = "hf-internal-testing/tiny-bert-tf-only"
if is_tf_available():
class SCREAMING_SNAKE_CASE__ ( tf.keras.Model ):
def __init__( self : List[Any] , _lowerCAmelCase : Dict ):
super().__init__()
__snake_case : List[Any] = tokenizer
__snake_case : List[str] = AutoConfig.from_pretrained(_lowerCAmelCase )
__snake_case : Optional[Any] = TFAutoModel.from_config(_lowerCAmelCase )
def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] ):
__snake_case : Dict = self.tokenizer(_lowerCAmelCase )
__snake_case : Tuple = self.bert(**_lowerCAmelCase )
return out["pooler_output"]
@require_tf
@require_tensorflow_text
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : List[str] ):
super().setUp()
__snake_case : Tuple = [
BertTokenizer.from_pretrained(_lowerCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2)
] # repeat for when fast_bert_tokenizer=false
__snake_case : List[Any] = [TFBertTokenizer.from_pretrained(_lowerCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [
TFBertTokenizer.from_pretrained(_lowerCAmelCase , use_fast_bert_tokenizer=_lowerCAmelCase )
for checkpoint in TOKENIZER_CHECKPOINTS
]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
__snake_case : Any = [
"""This is a straightforward English test sentence.""",
"""This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""",
"""Now we're going to add some Chinese: 一 二 三 一二三""",
"""And some much more rare Chinese: 齉 堃 齉堃""",
"""Je vais aussi écrire en français pour tester les accents""",
"""Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""",
]
__snake_case : List[str] = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def snake_case__ ( self : str ):
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in (self.test_sentences, self.paired_sentences):
__snake_case : Dict = tokenizer(_lowerCAmelCase , return_tensors="""tf""" , padding="""longest""" )
__snake_case : Optional[int] = tf_tokenizer(_lowerCAmelCase )
for key in python_outputs.keys():
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) )
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) )
@slow
def snake_case__ ( self : Optional[int] ):
for tf_tokenizer in self.tf_tokenizers:
__snake_case : Dict = tf_tokenizer(self.paired_sentences )
__snake_case : Dict = tf_tokenizer(
text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , )
for key in merged_outputs.keys():
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) )
@slow
def snake_case__ ( self : Dict ):
for tf_tokenizer in self.tf_tokenizers:
__snake_case : Union[str, Any] = tf.function(_lowerCAmelCase )
for test_inputs in (self.test_sentences, self.paired_sentences):
__snake_case : Optional[int] = tf.constant(_lowerCAmelCase )
__snake_case : List[Any] = compiled_tokenizer(_lowerCAmelCase )
__snake_case : Optional[int] = tf_tokenizer(_lowerCAmelCase )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def snake_case__ ( self : Optional[Any] ):
for tf_tokenizer in self.tf_tokenizers:
__snake_case : int = ModelToSave(tokenizer=_lowerCAmelCase )
__snake_case : Union[str, Any] = tf.convert_to_tensor(self.test_sentences )
__snake_case : Tuple = model(_lowerCAmelCase ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
__snake_case : Optional[Any] = Path(_lowerCAmelCase ) / """saved.model"""
model.save(_lowerCAmelCase )
__snake_case : List[str] = tf.keras.models.load_model(_lowerCAmelCase )
__snake_case : Union[str, Any] = loaded_model(_lowerCAmelCase )
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
| 20 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if (direction == 1 and array[indexa] > array[indexa]) or (
direction == 0 and array[indexa] < array[indexa]
):
__snake_case , __snake_case : str = array[indexa], array[indexa]
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Tuple = int(length / 2 )
for i in range(__SCREAMING_SNAKE_CASE , low + middle ):
comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Optional[Any] = int(length / 2 )
bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 )
bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
bitonic_sort(unsorted, 0, len(unsorted), 1)
print("\nSorted array in ascending order is: ", end="")
print(*unsorted, sep=", ")
bitonic_merge(unsorted, 0, len(unsorted), 0)
print("Sorted array in descending order is: ", end="")
print(*unsorted, sep=", ")
| 20 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["FNetTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["FNetTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"FNetForMaskedLM",
"FNetForMultipleChoice",
"FNetForNextSentencePrediction",
"FNetForPreTraining",
"FNetForQuestionAnswering",
"FNetForSequenceClassification",
"FNetForTokenClassification",
"FNetLayer",
"FNetModel",
"FNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ):
'''simple docstring'''
__snake_case : Optional[int] = {
"""7z""": (seven_zip_file, SevenZipExtractor),
"""bz2""": (bza_file, BzipaExtractor),
"""gzip""": (gz_file, GzipExtractor),
"""lz4""": (lza_file, LzaExtractor),
"""tar""": (tar_file, TarExtractor),
"""xz""": (xz_file, XzExtractor),
"""zip""": (zip_file, ZipExtractor),
"""zstd""": (zstd_file, ZstdExtractor),
}
__snake_case , __snake_case : Tuple = input_paths_and_base_extractors[compression_format]
if input_path is None:
__snake_case : Tuple = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE )
__snake_case : List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : List[str] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Optional[Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : int = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ):
'''simple docstring'''
__snake_case : Union[str, Any] = {
"""7z""": seven_zip_file,
"""bz2""": bza_file,
"""gzip""": gz_file,
"""lz4""": lza_file,
"""tar""": tar_file,
"""xz""": xz_file,
"""zip""": zip_file,
"""zstd""": zstd_file,
}
__snake_case : int = input_paths[compression_format]
if input_path is None:
__snake_case : int = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
__snake_case : Any = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE )
assert extractor_format is not None
__snake_case : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : Union[str, Any] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Union[str, Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : Optional[Any] = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
import tarfile
__snake_case : List[str] = tmp_path / """data_dot_dot"""
directory.mkdir()
__snake_case : Optional[Any] = directory / """tar_file_with_dot_dot.tar"""
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) )
return path
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
import tarfile
__snake_case : Dict = tmp_path / """data_sym_link"""
directory.mkdir()
__snake_case : Tuple = directory / """tar_file_with_sym_link.tar"""
os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE )
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
"""insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
__snake_case : Any = {
"""tar_file_with_dot_dot""": tar_file_with_dot_dot,
"""tar_file_with_sym_link""": tar_file_with_sym_link,
}
__snake_case : int = insecure_tar_files[insecure_tar_file]
__snake_case : Optional[int] = tmp_path / """extracted"""
TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
# We should have less false positives than zipfile.is_zipfile
# We do that by checking only the magic number
__snake_case : Optional[Any] = tmpdir / """not_a_zip_file"""
# From: https://github.com/python/cpython/pull/5053
__snake_case : List[str] = (
b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"""
b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"""
b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"""
b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"""
)
with not_a_zip_file.open("""wb""" ) as f:
f.write(__SCREAMING_SNAKE_CASE )
assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
| 20 | 1 |
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput, deprecate
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : torch.FloatTensor
A : Optional[torch.FloatTensor] = None
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=0.9_99 , __SCREAMING_SNAKE_CASE : List[str]="cosine" , ):
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(__SCREAMING_SNAKE_CASE : Dict ):
return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__SCREAMING_SNAKE_CASE : int ):
return math.exp(t * -12.0 )
else:
raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
__snake_case : Optional[Any] = []
for i in range(__SCREAMING_SNAKE_CASE ):
__snake_case : int = i / num_diffusion_timesteps
__snake_case : Dict = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__SCREAMING_SNAKE_CASE ) / alpha_bar_fn(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) )
return torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.floataa )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase ):
A : Any = 1
@register_to_config
def __init__( self : Optional[Any] , _lowerCAmelCase : int = 10_00 , _lowerCAmelCase : float = 0.0001 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : str = "linear" , _lowerCAmelCase : Optional[Union[np.ndarray, List[float]]] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 0 , _lowerCAmelCase : str = "epsilon" , _lowerCAmelCase : float = 1.0 , **_lowerCAmelCase : List[Any] , ):
if kwargs.get("""set_alpha_to_one""" , _lowerCAmelCase ) is not None:
__snake_case : str = (
"""The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead."""
)
deprecate("""set_alpha_to_one""" , """1.0.0""" , _lowerCAmelCase , standard_warn=_lowerCAmelCase )
__snake_case : List[Any] = kwargs["""set_alpha_to_one"""]
if trained_betas is not None:
__snake_case : Optional[int] = torch.tensor(_lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "linear":
__snake_case : Tuple = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__snake_case : List[Any] = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__snake_case : int = betas_for_alpha_bar(_lowerCAmelCase )
else:
raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' )
__snake_case : Any = 1.0 - self.betas
__snake_case : List[Any] = torch.cumprod(self.alphas , dim=0 )
# At every step in inverted ddim, we are looking into the next alphas_cumprod
# For the final step, there is no next alphas_cumprod, and the index is out of bounds
# `set_alpha_to_zero` decides whether we set this parameter simply to zero
# in this case, self.step() just output the predicted noise
# or whether we use the final alpha of the "non-previous" one.
__snake_case : int = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1]
# standard deviation of the initial noise distribution
__snake_case : Dict = 1.0
# setable values
__snake_case : List[str] = None
__snake_case : str = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : Optional[int] = None ):
return sample
def snake_case__ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, torch.device] = None ):
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:'''
f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle'''
f''' maximal {self.config.num_train_timesteps} timesteps.''' )
__snake_case : Any = num_inference_steps
__snake_case : Any = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__snake_case : str = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa )
__snake_case : Optional[int] = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase )
self.timesteps += self.config.steps_offset
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : int , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : float = 0.0 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[torch.FloatTensor] = None , _lowerCAmelCase : bool = True , ):
# 1. get previous step value (=t+1)
__snake_case : str = timestep + self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
# change original implementation to exactly match noise levels for analogous forward process
__snake_case : Any = self.alphas_cumprod[timestep]
__snake_case : Union[str, Any] = (
self.alphas_cumprod[prev_timestep]
if prev_timestep < self.config.num_train_timesteps
else self.final_alpha_cumprod
)
__snake_case : Optional[int] = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon":
__snake_case : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
__snake_case : int = model_output
elif self.config.prediction_type == "sample":
__snake_case : Any = model_output
__snake_case : List[Any] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
elif self.config.prediction_type == "v_prediction":
__snake_case : List[str] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
__snake_case : Any = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or'''
""" `v_prediction`""" )
# 4. Clip or threshold "predicted x_0"
if self.config.clip_sample:
__snake_case : Tuple = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
# 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__snake_case : int = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon
# 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__snake_case : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if not return_dict:
return (prev_sample, pred_original_sample)
return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase )
def __len__( self : int ):
return self.config.num_train_timesteps
| 20 | import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : Any ):
__snake_case : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split()
__snake_case : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
__snake_case : List[str] = {
"""unk_token""": """<unk>""",
"""bos_token""": """<s>""",
"""eos_token""": """</s>""",
}
__snake_case : str = {
"""feature_size""": 1,
"""padding_value""": 0.0,
"""sampling_rate""": 1_60_00,
"""return_attention_mask""": False,
"""do_normalize""": True,
}
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__snake_case : Any = os.path.join(self.tmpdirname , _lowerCAmelCase )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
# load decoder from hub
__snake_case : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder"""
def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Tuple ):
__snake_case : int = self.add_kwargs_tokens_map.copy()
kwargs.update(_lowerCAmelCase )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , **_lowerCAmelCase : Optional[int] ):
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Dict , **_lowerCAmelCase : Tuple ):
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase )
def snake_case__ ( self : List[str] ):
shutil.rmtree(self.tmpdirname )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : Tuple = self.get_feature_extractor()
__snake_case : Dict = self.get_decoder()
__snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
__snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowerCAmelCase )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , _lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : Tuple = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
__snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def snake_case__ ( self : int ):
__snake_case : Tuple = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(["""xx"""] )
with self.assertRaisesRegex(_lowerCAmelCase , """include""" ):
WavaVecaProcessorWithLM(
tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def snake_case__ ( self : Dict ):
__snake_case : int = self.get_feature_extractor()
__snake_case : str = self.get_tokenizer()
__snake_case : Dict = self.get_decoder()
__snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : List[Any] = floats_list((3, 10_00) )
__snake_case : Optional[Any] = feature_extractor(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Tuple = processor(_lowerCAmelCase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def snake_case__ ( self : Optional[int] ):
__snake_case : Any = self.get_feature_extractor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : int = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Optional[int] = """This is a test string"""
__snake_case : Union[str, Any] = processor(text=_lowerCAmelCase )
__snake_case : Dict = tokenizer(_lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[Any]=(2, 10, 16) , _lowerCAmelCase : str=77 ):
np.random.seed(_lowerCAmelCase )
return np.random.rand(*_lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : List[str] = self.get_feature_extractor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : List[str] = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 )
__snake_case : int = processor.decode(_lowerCAmelCase )
__snake_case : Optional[int] = decoder.decode_beams(_lowerCAmelCase )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual("""</s> <s> </s>""" , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ["""fork"""], ["""spawn"""]] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] ):
__snake_case : int = self.get_feature_extractor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : int = self.get_decoder()
__snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : int = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
__snake_case : Tuple = processor.batch_decode(_lowerCAmelCase )
else:
with get_context(_lowerCAmelCase ).Pool() as pool:
__snake_case : int = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : int = list(_lowerCAmelCase )
with get_context("""fork""" ).Pool() as p:
__snake_case : Tuple = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase )
__snake_case , __snake_case , __snake_case : List[Any] = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(_lowerCAmelCase , decoded_processor.text )
self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text )
self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score )
self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score )
def snake_case__ ( self : Optional[int] ):
__snake_case : Optional[Any] = self.get_feature_extractor()
__snake_case : int = self.get_tokenizer()
__snake_case : str = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : int = self._get_dummy_logits()
__snake_case : List[str] = 15
__snake_case : Optional[Any] = -20.0
__snake_case : Tuple = -4.0
__snake_case : List[Any] = processor.batch_decode(
_lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , )
__snake_case : List[str] = decoded_processor_out.text
__snake_case : str = list(_lowerCAmelCase )
with get_context("""fork""" ).Pool() as pool:
__snake_case : Dict = decoder.decode_beams_batch(
_lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , )
__snake_case : int = [d[0][0] for d in decoded_decoder_out]
__snake_case : List[Any] = [d[0][2] for d in decoded_decoder_out]
__snake_case : List[Any] = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase )
self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1e-3 ) )
self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1e-3 ) )
def snake_case__ ( self : Any ):
__snake_case : List[Any] = self.get_feature_extractor()
__snake_case : Any = self.get_tokenizer()
__snake_case : Union[str, Any] = self.get_decoder()
__snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Any = self._get_dummy_logits()
__snake_case : Any = 2.0
__snake_case : int = 5.0
__snake_case : Optional[int] = -20.0
__snake_case : Optional[int] = True
__snake_case : Any = processor.batch_decode(
_lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , )
__snake_case : str = decoded_processor_out.text
__snake_case : int = list(_lowerCAmelCase )
decoder.reset_params(
alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , )
with get_context("""fork""" ).Pool() as pool:
__snake_case : Tuple = decoder.decode_beams_batch(
_lowerCAmelCase , _lowerCAmelCase , )
__snake_case : int = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase )
__snake_case : List[str] = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , _lowerCAmelCase )
def snake_case__ ( self : Dict ):
__snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key]
__snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute()
__snake_case : Union[str, Any] = os.listdir(_lowerCAmelCase )
__snake_case : List[str] = ["""alphabet.json""", """language_model"""]
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" )
__snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase )
__snake_case : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key]
__snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute()
__snake_case : List[str] = os.listdir(_lowerCAmelCase )
__snake_case : List[Any] = os.listdir(_lowerCAmelCase )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Optional[int] = floats_list((3, 10_00) )
__snake_case : Union[str, Any] = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Union[str, Any] = processor_auto(_lowerCAmelCase , return_tensors="""np""" )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 )
__snake_case : Dict = self._get_dummy_logits()
__snake_case : List[Any] = processor_wavaveca.batch_decode(_lowerCAmelCase )
__snake_case : List[Any] = processor_auto.batch_decode(_lowerCAmelCase )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def snake_case__ ( self : str ):
__snake_case : int = self.get_feature_extractor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : Optional[Any] = self.get_decoder()
__snake_case : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
@staticmethod
def snake_case__ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ):
__snake_case : Union[str, Any] = [d[key] for d in offsets]
return retrieved_list
def snake_case__ ( self : Dict ):
__snake_case : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : List[str] = self._get_dummy_logits()[0]
__snake_case : str = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""word_offsets""" in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] )
def snake_case__ ( self : List[str] ):
__snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Optional[int] = self._get_dummy_logits()
__snake_case : int = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""word_offsets""" in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertListEqual(
[""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def snake_case__ ( self : Optional[Any] ):
import torch
__snake_case : Optional[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase )
__snake_case : Any = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) )
__snake_case : List[Any] = iter(_lowerCAmelCase )
__snake_case : Optional[int] = next(_lowerCAmelCase )
__snake_case : str = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" )
__snake_case : str = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
__snake_case : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values
with torch.no_grad():
__snake_case : Dict = model(_lowerCAmelCase ).logits.cpu().numpy()
__snake_case : Any = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase )
__snake_case : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
__snake_case : Dict = [
{
"""start_time""": d["""start_offset"""] * time_offset,
"""end_time""": d["""end_offset"""] * time_offset,
"""word""": d["""word"""],
}
for d in output["""word_offsets"""]
]
__snake_case : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL"""
# output words
self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase )
self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text )
# output times
__snake_case : Dict = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) )
__snake_case : Optional[Any] = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) )
# fmt: off
__snake_case : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] )
__snake_case : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
| 20 | 1 |
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json",
"facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[Any] = "encodec"
def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase : Tuple=2_40_00 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : int=1_28 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Union[str, Any]=[8, 5, 4, 2] , _lowerCAmelCase : str="weight_norm" , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict="reflect" , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : Optional[int]=10_24 , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , **_lowerCAmelCase : List[Any] , ):
__snake_case : Optional[int] = target_bandwidths
__snake_case : int = sampling_rate
__snake_case : List[Any] = audio_channels
__snake_case : str = normalize
__snake_case : Union[str, Any] = chunk_length_s
__snake_case : Union[str, Any] = overlap
__snake_case : Union[str, Any] = hidden_size
__snake_case : Union[str, Any] = num_filters
__snake_case : Optional[Any] = num_residual_layers
__snake_case : List[Any] = upsampling_ratios
__snake_case : List[str] = norm_type
__snake_case : Union[str, Any] = kernel_size
__snake_case : Optional[int] = last_kernel_size
__snake_case : Optional[Any] = residual_kernel_size
__snake_case : Dict = dilation_growth_rate
__snake_case : int = use_causal_conv
__snake_case : Tuple = pad_mode
__snake_case : str = compress
__snake_case : Optional[Any] = num_lstm_layers
__snake_case : List[Any] = trim_right_ratio
__snake_case : Any = codebook_size
__snake_case : int = codebook_dim if codebook_dim is not None else hidden_size
__snake_case : int = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' )
super().__init__(**_lowerCAmelCase )
@property
def snake_case__ ( self : int ):
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def snake_case__ ( self : int ):
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def snake_case__ ( self : Union[str, Any] ):
__snake_case : List[str] = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def snake_case__ ( self : Tuple ):
return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 20 | import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowercase_ = {
"text_branch": "text_model",
"audio_branch": "audio_model.audio_encoder",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc")
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ):
'''simple docstring'''
__snake_case , __snake_case : str = create_model(
"""HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , )
return model, model_cfg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : Union[str, Any] = {}
__snake_case : List[Any] = R""".*sequential.(\d+).*"""
__snake_case : Union[str, Any] = R""".*_projection.(\d+).*"""
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
__snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# replace sequential layers with list
__snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 )
__snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' )
elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
__snake_case : List[Any] = 1 if projecton_layer == 0 else 2
__snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' )
if "audio" and "qkv" in key:
# split qkv into query key and value
__snake_case : Optional[int] = value
__snake_case : Any = mixed_qkv.size(0 ) // 3
__snake_case : List[Any] = mixed_qkv[:qkv_dim]
__snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2]
__snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :]
__snake_case : Any = query_layer
__snake_case : Dict = key_layer
__snake_case : Optional[Any] = value_layer
else:
__snake_case : List[str] = value
return model_state_dict
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ):
'''simple docstring'''
__snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE )
clap_model.eval()
__snake_case : Tuple = clap_model.state_dict()
__snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = ClapConfig()
__snake_case : Tuple = enable_fusion
__snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE )
# ignore the spectrogram embedding layer
model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not")
lowercase_ = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 20 | 1 |
lowercase_ = 8.314_462 # Unit - J mol-1 K-1
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if moles < 0 or kelvin < 0 or volume < 0:
raise ValueError("""Invalid inputs. Enter positive value.""" )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if moles < 0 or kelvin < 0 or pressure < 0:
raise ValueError("""Invalid inputs. Enter positive value.""" )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure
if __name__ == "__main__":
from doctest import testmod
testmod()
| 20 | import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = "▁"
lowercase_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
lowercase_ = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
lowercase_ = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
lowercase_ = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
lowercase_ = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = ["input_ids"]
A : Tuple = VOCAB_FILES_NAMES
A : List[Any] = PRETRAINED_INIT_CONFIGURATION
A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
A : Optional[Any] = RESOURCE_FILES_NAMES
def __init__( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]="utf8" , _lowerCAmelCase : Optional[Any]="[UNK]" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : List[Any]="[MASK]" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Any , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , vocab_file=_lowerCAmelCase , encoding=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , )
__snake_case : List[Any] = do_lower_case
__snake_case : Any = sentencepiece_model_ckpt
__snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCAmelCase )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
__snake_case : int = self.load_vocab(filepath=_lowerCAmelCase )
else:
__snake_case : Tuple = {self.sp_model.id_to_piece(_lowerCAmelCase ): id for id in range(self.sp_model.get_piece_size() )}
__snake_case : str = {v: k for k, v in self.vocab.items()}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[Any] ):
if text is None:
return None
__snake_case : List[Any] = self.tokenize(_lowerCAmelCase )
__snake_case , __snake_case : Optional[Any] = """""", []
for i, ch in enumerate(_lowerCAmelCase ):
if ch in self.SP_CHAR_MAPPING:
__snake_case : Any = self.SP_CHAR_MAPPING.get(_lowerCAmelCase )
else:
__snake_case : Dict = unicodedata.normalize("""NFKC""" , _lowerCAmelCase )
if self.is_whitespace(_lowerCAmelCase ):
continue
normalized_text += ch
char_mapping.extend([i] * len(_lowerCAmelCase ) )
__snake_case , __snake_case , __snake_case : str = normalized_text, [], 0
if self.do_lower_case:
__snake_case : int = text.lower()
for token in split_tokens:
if token[:1] == "▁":
__snake_case : int = token[1:]
__snake_case : Optional[int] = text[offset:].index(_lowerCAmelCase ) + offset
__snake_case : int = start + len(_lowerCAmelCase )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
__snake_case : str = end
return token_mapping
@property
def snake_case__ ( self : Tuple ):
return len(self.vocab )
def snake_case__ ( self : Dict ):
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : int ):
__snake_case : str = self.__dict__.copy()
__snake_case : Union[str, Any] = None
return state
def __setstate__( self : Optional[Any] , _lowerCAmelCase : List[str] ):
__snake_case : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__snake_case : Optional[Any] = {}
__snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] ):
return "".join((self.SP_CHAR_MAPPING.get(_lowerCAmelCase , _lowerCAmelCase ) for c in text) )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[int]=0.1 ):
if self.sp_model_kwargs.get("""enable_sampling""" ) is True:
__snake_case : List[str] = True
if self.sp_model_kwargs.get("""alpha""" ) is not None:
__snake_case : Dict = self.sp_model_kwargs.get("""alpha""" )
if self.sp_model_kwargs.get("""nbest_size""" ) is not None:
__snake_case : List[Any] = self.sp_model_kwargs.get("""nbest_size""" )
if not enable_sampling:
__snake_case : str = self.sp_model.EncodeAsPieces(_lowerCAmelCase )
else:
__snake_case : Tuple = self.sp_model.SampleEncodeAsPieces(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : Union[str, Any] = []
for pi, piece in enumerate(_lowerCAmelCase ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(_lowerCAmelCase ) and pi != 0:
new_pieces.append(_lowerCAmelCase )
continue
else:
continue
__snake_case : Optional[int] = 0
for i, chunk in enumerate(_lowerCAmelCase ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(_lowerCAmelCase ) or self.is_punct(_lowerCAmelCase ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(_lowerCAmelCase )
__snake_case : Tuple = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : Tuple = i
if len(_lowerCAmelCase ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
__snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
__snake_case : int = self.convert_ids_to_tokens(_lowerCAmelCase )
__snake_case : Any = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict ):
return self.reverse_vocab.get(_lowerCAmelCase , self.unk_token )
def snake_case__ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
__snake_case : Optional[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ):
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1]
return [1] + ([0] * len(_lowerCAmelCase )) + [1]
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(_lowerCAmelCase ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(_lowerCAmelCase ) + 1) + [1] * (len(_lowerCAmelCase ) + 3)
def snake_case__ ( self : Tuple , _lowerCAmelCase : List[str] ):
if "\u4e00" <= char <= "\u9fff":
return True
return False
def snake_case__ ( self : List[str] , _lowerCAmelCase : Any ):
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def snake_case__ ( self : int , _lowerCAmelCase : List[Any] ):
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def snake_case__ ( self : str , _lowerCAmelCase : Optional[Any] ):
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(_lowerCAmelCase ) == 1:
__snake_case : Dict = unicodedata.category(_lowerCAmelCase )
if cat == "Zs":
return True
return False
def snake_case__ ( self : str , _lowerCAmelCase : List[Any] ):
__snake_case : Dict = {}
with io.open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for index, line in enumerate(_lowerCAmelCase ):
__snake_case : Tuple = line.rstrip("""\n""" )
__snake_case : List[str] = int(_lowerCAmelCase )
return token_to_idx
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : Optional[int] = 0
if os.path.isdir(_lowerCAmelCase ):
__snake_case : int = os.path.join(
_lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
else:
__snake_case : Optional[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory
with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
""" Please check that the vocabulary is not corrupted!""" )
__snake_case : Union[str, Any] = token_index
writer.write(token + """\n""" )
index += 1
__snake_case : List[Any] = os.path.join(_lowerCAmelCase , """sentencepiece.bpe.model""" )
with open(_lowerCAmelCase , """wb""" ) as fi:
__snake_case : List[Any] = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (vocab_file,)
| 20 | 1 |
from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if partitions <= 0:
raise ValueError("""partitions must be a positive number!""" )
if partitions > number_of_bytes:
raise ValueError("""partitions can not > number_of_bytes!""" )
__snake_case : int = number_of_bytes // partitions
__snake_case : Tuple = []
for i in range(__SCREAMING_SNAKE_CASE ):
__snake_case : Union[str, Any] = i * bytes_per_partition + 1
__snake_case : Dict = (
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(F'''{start_bytes}-{end_bytes}''' )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json",
"xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json",
"xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json",
"xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json",
"xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json",
"xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json",
"xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json",
"xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json",
"xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json",
"xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = "xlm"
A : List[str] = {
"hidden_size": "emb_dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
"n_words": "vocab_size", # For backward compatibility
}
def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any]=3_01_45 , _lowerCAmelCase : Optional[Any]=20_48 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : int=16 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=5_12 , _lowerCAmelCase : List[Any]=20_48**-0.5 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple="first" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Tuple , ):
__snake_case : Optional[Any] = vocab_size
__snake_case : Tuple = emb_dim
__snake_case : int = n_layers
__snake_case : List[str] = n_heads
__snake_case : Union[str, Any] = dropout
__snake_case : Optional[int] = attention_dropout
__snake_case : Optional[Any] = gelu_activation
__snake_case : Tuple = sinusoidal_embeddings
__snake_case : List[Any] = causal
__snake_case : Dict = asm
__snake_case : int = n_langs
__snake_case : str = use_lang_emb
__snake_case : Dict = layer_norm_eps
__snake_case : List[Any] = bos_index
__snake_case : Union[str, Any] = eos_index
__snake_case : Dict = pad_index
__snake_case : Any = unk_index
__snake_case : Dict = mask_index
__snake_case : Any = is_encoder
__snake_case : Dict = max_position_embeddings
__snake_case : Optional[Any] = embed_init_std
__snake_case : List[Any] = init_std
__snake_case : str = summary_type
__snake_case : Optional[Any] = summary_use_proj
__snake_case : str = summary_activation
__snake_case : Optional[int] = summary_proj_to_labels
__snake_case : Dict = summary_first_dropout
__snake_case : Dict = start_n_top
__snake_case : int = end_n_top
__snake_case : str = mask_token_id
__snake_case : int = lang_id
if "n_words" in kwargs:
__snake_case : Dict = kwargs["""n_words"""]
super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
@property
def snake_case__ ( self : Dict ):
if self.task == "multiple-choice":
__snake_case : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__snake_case : Tuple = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 20 | 1 |
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@property
def snake_case__ ( self : Optional[int] ):
torch.manual_seed(0 )
__snake_case : List[str] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
@property
def snake_case__ ( self : int ):
torch.manual_seed(0 )
__snake_case : Any = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , )
return model
@property
def snake_case__ ( self : Dict ):
torch.manual_seed(0 )
__snake_case : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModel(_lowerCAmelCase )
def snake_case__ ( self : Optional[int] ):
__snake_case : List[Any] = self.dummy_uncond_unet
__snake_case : Dict = DDIMScheduler()
__snake_case : Any = self.dummy_vq_model
__snake_case : Any = LDMPipeline(unet=_lowerCAmelCase , vqvae=_lowerCAmelCase , scheduler=_lowerCAmelCase )
ldm.to(_lowerCAmelCase )
ldm.set_progress_bar_config(disable=_lowerCAmelCase )
__snake_case : int = torch.manual_seed(0 )
__snake_case : Tuple = ldm(generator=_lowerCAmelCase , num_inference_steps=2 , output_type="""numpy""" ).images
__snake_case : Optional[int] = torch.manual_seed(0 )
__snake_case : Optional[int] = ldm(generator=_lowerCAmelCase , num_inference_steps=2 , output_type="""numpy""" , return_dict=_lowerCAmelCase )[0]
__snake_case : Optional[Any] = image[0, -3:, -3:, -1]
__snake_case : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] )
__snake_case : Any = 1e-2 if torch_device != """mps""" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : Tuple ):
__snake_case : List[Any] = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" )
ldm.to(_lowerCAmelCase )
ldm.set_progress_bar_config(disable=_lowerCAmelCase )
__snake_case : List[Any] = torch.manual_seed(0 )
__snake_case : Any = ldm(generator=_lowerCAmelCase , num_inference_steps=5 , output_type="""numpy""" ).images
__snake_case : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
__snake_case : Optional[Any] = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447] )
__snake_case : Tuple = 1e-2 if torch_device != """mps""" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
| 20 | import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json",
"facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[Any] = "encodec"
def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase : Tuple=2_40_00 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : int=1_28 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Union[str, Any]=[8, 5, 4, 2] , _lowerCAmelCase : str="weight_norm" , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict="reflect" , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : Optional[int]=10_24 , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , **_lowerCAmelCase : List[Any] , ):
__snake_case : Optional[int] = target_bandwidths
__snake_case : int = sampling_rate
__snake_case : List[Any] = audio_channels
__snake_case : str = normalize
__snake_case : Union[str, Any] = chunk_length_s
__snake_case : Union[str, Any] = overlap
__snake_case : Union[str, Any] = hidden_size
__snake_case : Union[str, Any] = num_filters
__snake_case : Optional[Any] = num_residual_layers
__snake_case : List[Any] = upsampling_ratios
__snake_case : List[str] = norm_type
__snake_case : Union[str, Any] = kernel_size
__snake_case : Optional[int] = last_kernel_size
__snake_case : Optional[Any] = residual_kernel_size
__snake_case : Dict = dilation_growth_rate
__snake_case : int = use_causal_conv
__snake_case : Tuple = pad_mode
__snake_case : str = compress
__snake_case : Optional[Any] = num_lstm_layers
__snake_case : List[Any] = trim_right_ratio
__snake_case : Any = codebook_size
__snake_case : int = codebook_dim if codebook_dim is not None else hidden_size
__snake_case : int = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' )
super().__init__(**_lowerCAmelCase )
@property
def snake_case__ ( self : int ):
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def snake_case__ ( self : int ):
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def snake_case__ ( self : Union[str, Any] ):
__snake_case : List[str] = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def snake_case__ ( self : Tuple ):
return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 20 | 1 |
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
return abs(__SCREAMING_SNAKE_CASE ) if a == 0 else greatest_common_divisor(b % a , __SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
while y: # --> when y=0 then loop will terminate and return x as final GCD.
__snake_case , __snake_case : Dict = y, x % y
return abs(__SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( ):
'''simple docstring'''
try:
__snake_case : Union[str, Any] = input("""Enter two integers separated by comma (,): """ ).split(""",""" )
__snake_case : Optional[int] = int(nums[0] )
__snake_case : Dict = int(nums[1] )
print(
F'''greatest_common_divisor({num_a}, {num_a}) = '''
F'''{greatest_common_divisor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}''' )
print(F'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}''' )
except (IndexError, UnboundLocalError, ValueError):
print("""Wrong input""" )
if __name__ == "__main__":
main()
| 20 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : str = []
__snake_case , __snake_case : List[str] = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
__snake_case : List[Any] = result + left + right
return input_list
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
if len(__SCREAMING_SNAKE_CASE ) <= 1:
return input_list
__snake_case : Union[str, Any] = list(__SCREAMING_SNAKE_CASE )
# iteration for two-way merging
__snake_case : Tuple = 2
while p <= len(__SCREAMING_SNAKE_CASE ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = i
__snake_case : str = i + p - 1
__snake_case : Optional[Any] = (low + high + 1) // 2
__snake_case : str = merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# final merge of last two parts
if p * 2 >= len(__SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = i
__snake_case : str = merge(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
if user_input == "":
lowercase_ = []
else:
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
print(iter_merge_sort(unsorted))
| 20 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = "mgp-str"
def __init__( self : str , _lowerCAmelCase : Optional[int]=[32, 1_28] , _lowerCAmelCase : List[Any]=4 , _lowerCAmelCase : str=3 , _lowerCAmelCase : List[str]=27 , _lowerCAmelCase : List[Any]=38 , _lowerCAmelCase : Dict=5_02_57 , _lowerCAmelCase : Tuple=3_05_22 , _lowerCAmelCase : List[str]=7_68 , _lowerCAmelCase : Any=12 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Dict=4.0 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Any=1e-5 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : int=False , _lowerCAmelCase : Dict=0.02 , **_lowerCAmelCase : Dict , ):
super().__init__(**_lowerCAmelCase )
__snake_case : int = image_size
__snake_case : Tuple = patch_size
__snake_case : int = num_channels
__snake_case : Union[str, Any] = max_token_length
__snake_case : Any = num_character_labels
__snake_case : Tuple = num_bpe_labels
__snake_case : Any = num_wordpiece_labels
__snake_case : Union[str, Any] = hidden_size
__snake_case : Optional[Any] = num_hidden_layers
__snake_case : List[Any] = num_attention_heads
__snake_case : Optional[Any] = mlp_ratio
__snake_case : List[Any] = distilled
__snake_case : List[str] = layer_norm_eps
__snake_case : Union[str, Any] = drop_rate
__snake_case : Tuple = qkv_bias
__snake_case : str = attn_drop_rate
__snake_case : Any = drop_path_rate
__snake_case : Optional[int] = output_aa_attentions
__snake_case : Dict = initializer_range
| 20 | import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
lowercase_ = "Usage of script: script_name <size_of_canvas:int>"
lowercase_ = [0] * 1_00 + [1] * 10
random.shuffle(choice)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : List[str] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )]
return canvas
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
for i, row in enumerate(__SCREAMING_SNAKE_CASE ):
for j, _ in enumerate(__SCREAMING_SNAKE_CASE ):
__snake_case : int = bool(random.getrandbits(1 ) )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
__snake_case : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) )
for r, row in enumerate(__SCREAMING_SNAKE_CASE ):
for c, pt in enumerate(__SCREAMING_SNAKE_CASE ):
__snake_case : Optional[Any] = __judge_point(
__SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] )
__snake_case : List[str] = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
__snake_case : list[list[bool]] = current_canvas.tolist()
return return_canvas
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
__snake_case : Any = 0
__snake_case : Dict = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status:
alive += 1
else:
dead += 1
# handling duplicate entry for focus pt.
if pt:
alive -= 1
else:
dead -= 1
# running the rules of game here.
__snake_case : str = pt
if pt:
if alive < 2:
__snake_case : Optional[Any] = False
elif alive == 2 or alive == 3:
__snake_case : Union[str, Any] = True
elif alive > 3:
__snake_case : Optional[int] = False
else:
if alive == 3:
__snake_case : List[Any] = True
return state
if __name__ == "__main__":
if len(sys.argv) != 2:
raise Exception(usage_doc)
lowercase_ = int(sys.argv[1])
# main working structure of this module.
lowercase_ = create_canvas(canvas_size)
seed(c)
lowercase_ , lowercase_ = plt.subplots()
fig.show()
lowercase_ = ListedColormap(["w", "k"])
try:
while True:
lowercase_ = run(c)
ax.matshow(c, cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass
| 20 | 1 |
from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ): # noqa: E741
'''simple docstring'''
while r - l > 1:
__snake_case : Dict = (l + r) // 2
if v[m] >= key:
__snake_case : Dict = m
else:
__snake_case : List[str] = m # noqa: E741
return r
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] ):
'''simple docstring'''
if len(__SCREAMING_SNAKE_CASE ) == 0:
return 0
__snake_case : str = [0] * len(__SCREAMING_SNAKE_CASE )
__snake_case : int = 1
__snake_case : Optional[Any] = v[0]
for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ):
if v[i] < tail[0]:
__snake_case : Tuple = v[i]
elif v[i] > tail[length - 1]:
__snake_case : int = v[i]
length += 1
else:
__snake_case : Optional[int] = v[i]
return length
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Union[Dict, Any]] = None , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : int=2 ):
'''simple docstring'''
from .. import __version__
__snake_case : List[Any] = take_from
__snake_case : List[Any] = ()
if not isinstance(args[0] , __SCREAMING_SNAKE_CASE ):
__snake_case : str = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(__SCREAMING_SNAKE_CASE ):
raise ValueError(
F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''''
F''' version {__version__} is >= {version_name}''' )
__snake_case : Optional[Any] = None
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__SCREAMING_SNAKE_CASE ),)
__snake_case : Optional[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''
elif hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
values += (getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),)
__snake_case : Any = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''
elif deprecated_kwargs is None:
__snake_case : Tuple = F'''`{attribute}` is deprecated and will be removed in version {version_name}.'''
if warning is not None:
__snake_case : Optional[Any] = warning + """ """ if standard_warn else """"""
warnings.warn(warning + message , __SCREAMING_SNAKE_CASE , stacklevel=__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) > 0:
__snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1]
__snake_case : int = call_frame.filename
__snake_case : int = call_frame.lineno
__snake_case : List[str] = call_frame.function
__snake_case , __snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' )
if len(__SCREAMING_SNAKE_CASE ) == 0:
return
elif len(__SCREAMING_SNAKE_CASE ) == 1:
return values[0]
return values
| 20 | 1 |
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ):
return image
elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ):
__snake_case : List[str] = [image]
if isinstance(image[0] , PIL.Image.Image ):
__snake_case : Optional[int] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image]
__snake_case : Optional[Any] = np.concatenate(__SCREAMING_SNAKE_CASE , axis=0 )
__snake_case : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 2_55.0
__snake_case : List[Any] = image.transpose(0 , 3 , 1 , 2 )
__snake_case : Optional[Any] = 2.0 * image - 1.0
__snake_case : str = torch.from_numpy(__SCREAMING_SNAKE_CASE )
elif isinstance(image[0] , torch.Tensor ):
__snake_case : Optional[int] = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 )
return image
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.99_95 ):
'''simple docstring'''
if not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
__snake_case : List[str] = True
__snake_case : Union[str, Any] = va.device
__snake_case : List[Any] = va.cpu().numpy()
__snake_case : Dict = va.cpu().numpy()
__snake_case : str = np.sum(va * va / (np.linalg.norm(__SCREAMING_SNAKE_CASE ) * np.linalg.norm(__SCREAMING_SNAKE_CASE )) )
if np.abs(__SCREAMING_SNAKE_CASE ) > DOT_THRESHOLD:
__snake_case : int = (1 - t) * va + t * va
else:
__snake_case : int = np.arccos(__SCREAMING_SNAKE_CASE )
__snake_case : Tuple = np.sin(__SCREAMING_SNAKE_CASE )
__snake_case : Dict = theta_a * t
__snake_case : Tuple = np.sin(__SCREAMING_SNAKE_CASE )
__snake_case : Dict = np.sin(theta_a - theta_t ) / sin_theta_a
__snake_case : int = sin_theta_t / sin_theta_a
__snake_case : int = sa * va + sa * va
if inputs_are_torch:
__snake_case : Optional[int] = torch.from_numpy(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE )
return va
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
__snake_case : Optional[int] = F.normalize(__SCREAMING_SNAKE_CASE , dim=-1 )
__snake_case : Tuple = F.normalize(__SCREAMING_SNAKE_CASE , dim=-1 )
return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
for param in model.parameters():
__snake_case : Union[str, Any] = value
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : Optional[Any] , _lowerCAmelCase : AutoencoderKL , _lowerCAmelCase : CLIPTextModel , _lowerCAmelCase : CLIPModel , _lowerCAmelCase : CLIPTokenizer , _lowerCAmelCase : UNetaDConditionModel , _lowerCAmelCase : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _lowerCAmelCase : CLIPFeatureExtractor , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : List[str]=None , ):
super().__init__()
self.register_modules(
vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , clip_model=_lowerCAmelCase , tokenizer=_lowerCAmelCase , unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , coca_model=_lowerCAmelCase , coca_tokenizer=_lowerCAmelCase , coca_transform=_lowerCAmelCase , )
__snake_case : Optional[Any] = (
feature_extractor.size
if isinstance(feature_extractor.size , _lowerCAmelCase )
else feature_extractor.size["""shortest_edge"""]
)
__snake_case : Optional[Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std )
set_requires_grad(self.text_encoder , _lowerCAmelCase )
set_requires_grad(self.clip_model , _lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__snake_case : Optional[Any] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_lowerCAmelCase )
def snake_case__ ( self : Optional[int] ):
self.enable_attention_slicing(_lowerCAmelCase )
def snake_case__ ( self : Any ):
set_requires_grad(self.vae , _lowerCAmelCase )
def snake_case__ ( self : Optional[int] ):
set_requires_grad(self.vae , _lowerCAmelCase )
def snake_case__ ( self : List[Any] ):
set_requires_grad(self.unet , _lowerCAmelCase )
def snake_case__ ( self : str ):
set_requires_grad(self.unet , _lowerCAmelCase )
def snake_case__ ( self : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ):
# get the original timestep using init_timestep
__snake_case : Optional[Any] = min(int(num_inference_steps * strength ) , _lowerCAmelCase )
__snake_case : Optional[int] = max(num_inference_steps - init_timestep , 0 )
__snake_case : str = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def snake_case__ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any]=None ):
if not isinstance(_lowerCAmelCase , torch.Tensor ):
raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(_lowerCAmelCase )}''' )
__snake_case : int = image.to(device=_lowerCAmelCase , dtype=_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
__snake_case : Optional[Any] = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowerCAmelCase )
]
__snake_case : Dict = torch.cat(_lowerCAmelCase , dim=0 )
else:
__snake_case : int = self.vae.encode(_lowerCAmelCase ).latent_dist.sample(_lowerCAmelCase )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__snake_case : Union[str, Any] = 0.18215 * init_latents
__snake_case : Union[str, Any] = init_latents.repeat_interleave(_lowerCAmelCase , dim=0 )
__snake_case : Tuple = randn_tensor(init_latents.shape , generator=_lowerCAmelCase , device=_lowerCAmelCase , dtype=_lowerCAmelCase )
# get latents
__snake_case : Dict = self.scheduler.add_noise(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : int = init_latents
return latents
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Tuple ):
__snake_case : Optional[Any] = self.coca_transform(_lowerCAmelCase ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
__snake_case : List[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) )
__snake_case : Optional[int] = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" )
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] ):
__snake_case : List[Any] = self.feature_extractor.preprocess(_lowerCAmelCase )
__snake_case : str = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half()
__snake_case : Any = self.clip_model.get_image_features(_lowerCAmelCase )
__snake_case : Optional[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_lowerCAmelCase )
__snake_case : Optional[int] = image_embeddings_clip.repeat_interleave(_lowerCAmelCase , dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def snake_case__ ( self : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , ):
__snake_case : Tuple = latents.detach().requires_grad_()
__snake_case : Optional[int] = self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase )
# predict the noise residual
__snake_case : Optional[Any] = self.unet(_lowerCAmelCase , _lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase ).sample
if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
__snake_case : Optional[Any] = self.scheduler.alphas_cumprod[timestep]
__snake_case : Optional[Any] = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__snake_case : Dict = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
__snake_case : Any = torch.sqrt(_lowerCAmelCase )
__snake_case : Union[str, Any] = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler , _lowerCAmelCase ):
__snake_case : List[str] = self.scheduler.sigmas[index]
__snake_case : List[str] = latents - sigma * noise_pred
else:
raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__snake_case : Any = 1 / 0.18215 * sample
__snake_case : str = self.vae.decode(_lowerCAmelCase ).sample
__snake_case : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 )
__snake_case : List[str] = transforms.Resize(self.feature_extractor_size )(_lowerCAmelCase )
__snake_case : Any = self.normalize(_lowerCAmelCase ).to(latents.dtype )
__snake_case : str = self.clip_model.get_image_features(_lowerCAmelCase )
__snake_case : Optional[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_lowerCAmelCase )
__snake_case : Optional[int] = spherical_dist_loss(_lowerCAmelCase , _lowerCAmelCase ).mean() * clip_guidance_scale
__snake_case : List[Any] = -torch.autograd.grad(_lowerCAmelCase , _lowerCAmelCase )[0]
if isinstance(self.scheduler , _lowerCAmelCase ):
__snake_case : Optional[Any] = latents.detach() + grads * (sigma**2)
__snake_case : Any = noise_pred_original
else:
__snake_case : int = noise_pred_original - torch.sqrt(_lowerCAmelCase ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self : int , _lowerCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] , _lowerCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[int] = 5_12 , _lowerCAmelCase : Optional[int] = 5_12 , _lowerCAmelCase : float = 0.6 , _lowerCAmelCase : Optional[int] = 50 , _lowerCAmelCase : Optional[float] = 7.5 , _lowerCAmelCase : Optional[int] = 1 , _lowerCAmelCase : float = 0.0 , _lowerCAmelCase : Optional[float] = 1_00 , _lowerCAmelCase : Optional[torch.Generator] = None , _lowerCAmelCase : Optional[str] = "pil" , _lowerCAmelCase : bool = True , _lowerCAmelCase : float = 0.8 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , ):
if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) != batch_size:
raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(_lowerCAmelCase )} generators.''' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' )
if isinstance(_lowerCAmelCase , torch.Generator ) and batch_size > 1:
__snake_case : List[str] = [generator] + [None] * (batch_size - 1)
__snake_case : str = [
("""model""", self.coca_model is None),
("""tokenizer""", self.coca_tokenizer is None),
("""transform""", self.coca_transform is None),
]
__snake_case : Tuple = [x[0] for x in coca_is_none if x[1]]
__snake_case : Optional[int] = """, """.join(_lowerCAmelCase )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(_lowerCAmelCase ):
raise ValueError(
f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.'''
f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' )
__snake_case : Optional[int] = self.get_image_description(_lowerCAmelCase )
if style_prompt is None:
if len(_lowerCAmelCase ):
raise ValueError(
f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.'''
f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' )
__snake_case : Any = self.get_image_description(_lowerCAmelCase )
# get prompt text embeddings for content and style
__snake_case : List[Any] = self.tokenizer(
_lowerCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""pt""" , )
__snake_case : List[Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
__snake_case : Any = self.tokenizer(
_lowerCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""pt""" , )
__snake_case : Tuple = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
__snake_case : str = slerp(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# duplicate text embeddings for each generation per prompt
__snake_case : str = text_embeddings.repeat_interleave(_lowerCAmelCase , dim=0 )
# set timesteps
__snake_case : str = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
__snake_case : Tuple = {}
if accepts_offset:
__snake_case : Optional[Any] = 1
self.scheduler.set_timesteps(_lowerCAmelCase , **_lowerCAmelCase )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
__snake_case , __snake_case : Any = self.get_timesteps(_lowerCAmelCase , _lowerCAmelCase , self.device )
__snake_case : Union[str, Any] = timesteps[:1].repeat(_lowerCAmelCase )
# Preprocess image
__snake_case : List[str] = preprocess(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : str = self.prepare_latents(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text_embeddings.dtype , self.device , _lowerCAmelCase )
__snake_case : Optional[Any] = preprocess(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : Union[str, Any] = self.prepare_latents(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text_embeddings.dtype , self.device , _lowerCAmelCase )
__snake_case : int = slerp(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if clip_guidance_scale > 0:
__snake_case : Tuple = self.get_clip_image_embeddings(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : Tuple = self.get_clip_image_embeddings(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : List[Any] = slerp(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__snake_case : Optional[Any] = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__snake_case : Optional[Any] = content_text_input.input_ids.shape[-1]
__snake_case : List[Any] = self.tokenizer([""""""] , padding="""max_length""" , max_length=_lowerCAmelCase , return_tensors="""pt""" )
__snake_case : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
__snake_case : str = uncond_embeddings.repeat_interleave(_lowerCAmelCase , dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__snake_case : Union[str, Any] = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__snake_case : Any = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
__snake_case : Union[str, Any] = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
__snake_case : Any = torch.randn(_lowerCAmelCase , generator=_lowerCAmelCase , device="""cpu""" , dtype=_lowerCAmelCase ).to(
self.device )
else:
__snake_case : int = torch.randn(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=_lowerCAmelCase )
else:
if latents.shape != latents_shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
__snake_case : Dict = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__snake_case : int = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__snake_case : Dict = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__snake_case : List[Any] = {}
if accepts_eta:
__snake_case : int = eta
# check if the scheduler accepts generator
__snake_case : Optional[Any] = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
__snake_case : Tuple = generator
with self.progress_bar(total=_lowerCAmelCase ):
for i, t in enumerate(_lowerCAmelCase ):
# expand the latents if we are doing classifier free guidance
__snake_case : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__snake_case : int = self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase )
# predict the noise residual
__snake_case : Tuple = self.unet(_lowerCAmelCase , _lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
__snake_case , __snake_case : Any = noise_pred.chunk(2 )
__snake_case : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
__snake_case : Tuple = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
__snake_case , __snake_case : Dict = self.cond_fn(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , )
# compute the previous noisy sample x_t -> x_t-1
__snake_case : Optional[int] = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__snake_case : Dict = 1 / 0.18215 * latents
__snake_case : Optional[Any] = self.vae.decode(_lowerCAmelCase ).sample
__snake_case : int = (image / 2 + 0.5).clamp(0 , 1 )
__snake_case : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__snake_case : Optional[Any] = self.numpy_to_pil(_lowerCAmelCase )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=_lowerCAmelCase , nsfw_content_detected=_lowerCAmelCase )
| 20 | import argparse
import os
from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPTaConfig,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
TaConfig,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPTaLMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFTaForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWavaVecaModel,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
WavaVecaConfig,
WavaVecaModel,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tfa_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPTaLMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
TaForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
logging.set_verbosity_info()
lowercase_ = {
"bart": (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"bert": (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-base-cased-finetuned-mrpc": (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"dpr": (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"gpt2": (
GPTaConfig,
TFGPTaLMHeadModel,
GPTaLMHeadModel,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlnet": (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm": (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm-roberta": (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"transfo-xl": (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"openai-gpt": (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"roberta": (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"layoutlm": (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"roberta-large-mnli": (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"camembert": (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"flaubert": (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert": (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert-base-distilled-squad": (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert": (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert-visual-feature-encoder": (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"ctrl": (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"albert": (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"t5": (
TaConfig,
TFTaForConditionalGeneration,
TaForConditionalGeneration,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"electra": (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"wav2vec2": (
WavaVecaConfig,
TFWavaVecaModel,
WavaVecaModel,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=True ):
'''simple docstring'''
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' )
__snake_case , __snake_case , __snake_case , __snake_case : Any = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
__snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
__snake_case : Dict = config_class.from_json_file(__SCREAMING_SNAKE_CASE )
__snake_case : Tuple = True
__snake_case : Union[str, Any] = True
print(F'''Building TensorFlow model from configuration: {config}''' )
__snake_case : List[Any] = model_class(__SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
__snake_case : Optional[Any] = cached_file(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
# Load PyTorch checkpoint in tf2 model:
__snake_case : List[Any] = load_pytorch_checkpoint_in_tfa_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if compare_with_pt_model:
__snake_case : Tuple = tf_model(tf_model.dummy_inputs , training=__SCREAMING_SNAKE_CASE ) # build the network
__snake_case : List[str] = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" )
__snake_case : Any = pt_model_class.from_pretrained(
pretrained_model_name_or_path=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE , state_dict=__SCREAMING_SNAKE_CASE )
with torch.no_grad():
__snake_case : Union[str, Any] = pt_model(**pt_model.dummy_inputs )
__snake_case : Any = pto[0].numpy()
__snake_case : Optional[int] = tfo[0].numpy()
__snake_case : Optional[int] = np.amax(np.abs(np_pt - np_tf ) )
print(F'''Max absolute difference between models outputs {diff}''' )
assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}'''
# Save pytorch-model
print(F'''Save TensorFlow model to {tf_dump_path}''' )
tf_model.save_weights(__SCREAMING_SNAKE_CASE , save_format="""h5""" )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Any=False , ):
'''simple docstring'''
if args_model_type is None:
__snake_case : Tuple = list(MODEL_CLASSES.keys() )
else:
__snake_case : Union[str, Any] = [args_model_type]
for j, model_type in enumerate(__SCREAMING_SNAKE_CASE , start=1 ):
print("""=""" * 1_0_0 )
print(F''' Converting model type {j}/{len(__SCREAMING_SNAKE_CASE )}: {model_type}''' )
print("""=""" * 1_0_0 )
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' )
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
__snake_case : int = list(aws_model_maps.keys() )
if config_shortcut_names_or_path is None:
__snake_case : Union[str, Any] = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , start=1 ):
print("""-""" * 1_0_0 )
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' )
continue
__snake_case : List[Any] = model_shortcut_name
elif only_convert_finetuned_models:
print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' )
continue
print(
F''' Converting checkpoint {i}/{len(__SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}''' )
print("""-""" * 1_0_0 )
if config_shortcut_name in aws_config_map:
__snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
else:
__snake_case : Dict = config_shortcut_name
if model_shortcut_name in aws_model_maps:
__snake_case : Union[str, Any] = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
else:
__snake_case : List[Any] = model_shortcut_name
if os.path.isfile(__SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = """converted_model"""
convert_pt_checkpoint_to_tf(
model_type=__SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=__SCREAMING_SNAKE_CASE , config_file=__SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(__SCREAMING_SNAKE_CASE , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__SCREAMING_SNAKE_CASE , )
if remove_cached_files:
os.remove(__SCREAMING_SNAKE_CASE )
os.remove(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file."
)
parser.add_argument(
"--model_type",
default=None,
type=str,
help=(
F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and '''
"convert all the models from AWS."
),
)
parser.add_argument(
"--pytorch_checkpoint_path",
default=None,
type=str,
help=(
"Path to the PyTorch checkpoint path or shortcut name to download from AWS. "
"If not given, will download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--config_file",
default=None,
type=str,
help=(
"The config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture. If not given and "
"--pytorch_checkpoint_path is not given or is a shortcut name "
"use the configuration associated to the shortcut name on the AWS"
),
)
parser.add_argument(
"--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions."
)
parser.add_argument(
"--use_cached_models",
action="store_true",
help="Use cached models if possible instead of updating to latest checkpoint versions.",
)
parser.add_argument(
"--remove_cached_files",
action="store_true",
help="Remove pytorch models after conversion (save memory when converting in batches).",
)
parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.")
lowercase_ = parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
| 20 | 1 |
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
lowercase_ = get_logger(__name__)
lowercase_ = Path(__file__).parent / '''model_card_template.md'''
lowercase_ = uuida().hex
lowercase_ = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES
lowercase_ = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES
lowercase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/'''
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[Dict, str, None] = None ):
'''simple docstring'''
__snake_case : List[str] = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}'''
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += F'''; torch/{_torch_version}'''
if is_flax_available():
ua += F'''; jax/{_jax_version}'''
ua += F'''; flax/{_flax_version}'''
if is_onnx_available():
ua += F'''; onnxruntime/{_onnxruntime_version}'''
# CI will set this value to True
if os.environ.get("""DIFFUSERS_IS_CI""" , """""" ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
ua += "; " + user_agent
return ua
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[str] = None ):
'''simple docstring'''
if token is None:
__snake_case : Optional[int] = HfFolder.get_token()
if organization is None:
__snake_case : Union[str, Any] = whoami(_UpperCAmelCase )['name']
return F'''{username}/{model_id}'''
else:
return F'''{organization}/{model_id}'''
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
if not is_jinja_available():
raise ValueError(
"""Modelcard rendering is based on Jinja templates."""
""" Please make sure to have `jinja` installed before using `create_model_card`."""
""" To install it, please run `pip install Jinja2`.""" )
if hasattr(_UpperCAmelCase , """local_rank""" ) and args.local_rank not in [-1, 0]:
return
__snake_case : str = args.hub_token if hasattr(_UpperCAmelCase , """hub_token""" ) else None
__snake_case : Optional[int] = get_full_repo_name(_UpperCAmelCase , token=_UpperCAmelCase )
__snake_case : int = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language="""en""" , license="""apache-2.0""" , library_name="""diffusers""" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_UpperCAmelCase , model_name=_UpperCAmelCase , repo_name=_UpperCAmelCase , dataset_name=args.dataset_name if hasattr(_UpperCAmelCase , """dataset_name""" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(_UpperCAmelCase , """gradient_accumulation_steps""" ) else None
) , adam_betaa=args.adam_betaa if hasattr(_UpperCAmelCase , """adam_beta1""" ) else None , adam_betaa=args.adam_betaa if hasattr(_UpperCAmelCase , """adam_beta2""" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_UpperCAmelCase , """adam_weight_decay""" ) else None , adam_epsilon=args.adam_epsilon if hasattr(_UpperCAmelCase , """adam_epsilon""" ) else None , lr_scheduler=args.lr_scheduler if hasattr(_UpperCAmelCase , """lr_scheduler""" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_UpperCAmelCase , """lr_warmup_steps""" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_UpperCAmelCase , """ema_inv_gamma""" ) else None , ema_power=args.ema_power if hasattr(_UpperCAmelCase , """ema_power""" ) else None , ema_max_decay=args.ema_max_decay if hasattr(_UpperCAmelCase , """ema_max_decay""" ) else None , mixed_precision=args.mixed_precision , )
__snake_case : List[Any] = os.path.join(args.output_dir , """README.md""" )
model_card.save(_UpperCAmelCase )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[str] , __SCREAMING_SNAKE_CASE : Optional[str] = None ):
'''simple docstring'''
if resolved_file is None or commit_hash is not None:
return commit_hash
__snake_case : List[str] = str(Path(_UpperCAmelCase ).as_posix() )
__snake_case : List[Any] = re.search(R"""snapshots/([^/]+)/""" , _UpperCAmelCase )
if search is None:
return None
__snake_case : str = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(_UpperCAmelCase ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
lowercase_ = os.path.expanduser(
os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface"))
)
lowercase_ = os.path.join(hf_cache_home, "diffusers")
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[str] = None ):
'''simple docstring'''
if new_cache_dir is None:
__snake_case : Tuple = DIFFUSERS_CACHE
if old_cache_dir is None:
__snake_case : str = old_diffusers_cache
__snake_case : str = Path(_UpperCAmelCase ).expanduser()
__snake_case : int = Path(_UpperCAmelCase ).expanduser()
for old_blob_path in old_cache_dir.glob("""**/blobs/*""" ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
__snake_case : Optional[Any] = new_cache_dir / old_blob_path.relative_to(_UpperCAmelCase )
new_blob_path.parent.mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase )
os.replace(_UpperCAmelCase , _UpperCAmelCase )
try:
os.symlink(_UpperCAmelCase , _UpperCAmelCase )
except OSError:
logger.warning(
"""Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""" )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
lowercase_ = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt")
if not os.path.isfile(cache_version_file):
lowercase_ = 0
else:
with open(cache_version_file) as f:
try:
lowercase_ = int(f.read())
except ValueError:
lowercase_ = 0
if cache_version < 1:
lowercase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
"The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your "
"existing cached models. This is a one-time operation, you can interrupt it or run it "
"later by calling `diffusers.utils.hub_utils.move_cache()`."
)
try:
move_cache()
except Exception as e:
lowercase_ = '''\n'''.join(traceback.format_tb(e.__traceback__))
logger.error(
F'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease '''
"file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole "
"message and we will do our best to help."
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, "w") as f:
f.write("1")
except Exception:
logger.warning(
F'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure '''
"the directory exists and can be written to."
)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ):
'''simple docstring'''
if variant is not None:
__snake_case : List[Any] = weights_name.split(""".""" )
__snake_case : Dict = splits[:-1] + [variant] + splits[-1:]
__snake_case : Optional[Any] = '.'.join(_UpperCAmelCase )
return weights_name
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , *,
__SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str]=None , ):
'''simple docstring'''
__snake_case : Optional[Any] = str(_UpperCAmelCase )
if os.path.isfile(_UpperCAmelCase ):
return pretrained_model_name_or_path
elif os.path.isdir(_UpperCAmelCase ):
if os.path.isfile(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ):
# Load from a PyTorch checkpoint
__snake_case : Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ):
__snake_case : List[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return model_file
else:
raise EnvironmentError(
F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(_UpperCAmelCase ).base_version ) >= version.parse("""0.20.0""" )
):
try:
__snake_case : Optional[Any] = hf_hub_download(
_UpperCAmelCase , filename=_add_variant(_UpperCAmelCase , _UpperCAmelCase ) , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , proxies=_UpperCAmelCase , resume_download=_UpperCAmelCase , local_files_only=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , user_agent=_UpperCAmelCase , subfolder=_UpperCAmelCase , revision=revision or commit_hash , )
warnings.warn(
F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , _UpperCAmelCase , )
return model_file
except: # noqa: E722
warnings.warn(
F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_UpperCAmelCase , _UpperCAmelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(_UpperCAmelCase , _UpperCAmelCase )}\' so that the correct variant file can be added.''' , _UpperCAmelCase , )
try:
# 2. Load model file as usual
__snake_case : List[Any] = hf_hub_download(
_UpperCAmelCase , filename=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , proxies=_UpperCAmelCase , resume_download=_UpperCAmelCase , local_files_only=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , user_agent=_UpperCAmelCase , subfolder=_UpperCAmelCase , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier '''
"""listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a """
"""token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """
"""login`.""" )
except RevisionNotFoundError:
raise EnvironmentError(
F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for '''
"""this model name. Check the model page at """
F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' )
except EntryNotFoundError:
raise EnvironmentError(
F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' )
except HTTPError as err:
raise EnvironmentError(
F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' )
except ValueError:
raise EnvironmentError(
F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it'''
F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a'''
F''' directory containing a file named {weights_name} or'''
""" \nCheckout your internet connection or see how to run the library in"""
""" offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.""" )
except EnvironmentError:
raise EnvironmentError(
F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from '''
"""\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. """
F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory '''
F'''containing a file named {weights_name}''' )
| 350 | import random
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
__snake_case , __snake_case , __snake_case : Tuple = [], [], []
for element in data:
if element < pivot:
less.append(__SCREAMING_SNAKE_CASE )
elif element > pivot:
greater.append(__SCREAMING_SNAKE_CASE )
else:
equal.append(__SCREAMING_SNAKE_CASE )
return less, equal, greater
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
# index = len(items) // 2 when trying to find the median
# (value of index when items is sorted)
# invalid input
if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0:
return None
__snake_case : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )]
__snake_case : Tuple = 0
__snake_case , __snake_case , __snake_case : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE )
__snake_case : int = len(__SCREAMING_SNAKE_CASE )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# must be in larger
else:
return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
| 20 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
snake_case_ = None
snake_case_ = logging.get_logger(__name__)
snake_case_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
snake_case_ = {
"vocab_file": {
"facebook/mbart-large-en-ro": (
"https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"
),
"facebook/mbart-large-cc25": (
"https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json",
"facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json",
},
}
snake_case_ = {
"facebook/mbart-large-en-ro": 10_24,
"facebook/mbart-large-cc25": 10_24,
}
# fmt: off
snake_case_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"]
class SCREAMING_SNAKE_CASE__ ( A__ ):
A : List[str] = VOCAB_FILES_NAMES
A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Any = PRETRAINED_VOCAB_FILES_MAP
A : str = ["input_ids", "attention_mask"]
A : str = MBartTokenizer
A : List[int] = []
A : List[int] = []
def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]="<s>" , _lowerCAmelCase : Optional[Any]="</s>" , _lowerCAmelCase : str="</s>" , _lowerCAmelCase : List[Any]="<s>" , _lowerCAmelCase : Optional[int]="<unk>" , _lowerCAmelCase : Union[str, Any]="<pad>" , _lowerCAmelCase : Tuple="<mask>" , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Union[str, Any] , ):
# Mask token behave like a normal word, i.e. include the space before it
__snake_case : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
super().__init__(
vocab_file=__A , tokenizer_file=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , src_lang=__A , tgt_lang=__A , additional_special_tokens=__A , **__A , )
__snake_case : Any = vocab_file
__snake_case : Any = False if not self.vocab_file else True
__snake_case : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} )
__snake_case : Union[str, Any] = {
lang_code: self.convert_tokens_to_ids(__A ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__snake_case : List[str] = src_lang if src_lang is not None else """en_XX"""
__snake_case : Tuple = self.convert_tokens_to_ids(self._src_lang )
__snake_case : List[Any] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def snake_case__ ( self : Union[str, Any] ):
return self._src_lang
@src_lang.setter
def snake_case__ ( self : int , _lowerCAmelCase : Union[str, Any] ):
__snake_case : int = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def snake_case__ ( self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict = None ):
__snake_case : Any = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def snake_case__ ( self : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , **_lowerCAmelCase : Any ):
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
__snake_case : Any = src_lang
__snake_case : Dict = self(__A , add_special_tokens=__A , return_tensors=__A , **__A )
__snake_case : List[Any] = self.convert_tokens_to_ids(__A )
__snake_case : str = tgt_lang_id
return inputs
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] = "en_XX" , _lowerCAmelCase : List[Any] = None , _lowerCAmelCase : Optional[Any] = "ro_RO" , **_lowerCAmelCase : Dict , ):
__snake_case : str = src_lang
__snake_case : str = tgt_lang
return super().prepare_seqaseq_batch(__A , __A , **__A )
def snake_case__ ( self : str ):
return self.set_src_lang_special_tokens(self.src_lang )
def snake_case__ ( self : Union[str, Any] ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[str] ):
__snake_case : Optional[Any] = self.convert_tokens_to_ids(__A )
__snake_case : Any = []
__snake_case : Union[str, Any] = [self.eos_token_id, self.cur_lang_code]
__snake_case : Dict = self.convert_ids_to_tokens(self.prefix_tokens )
__snake_case : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens )
__snake_case : int = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Any ):
__snake_case : Dict = self.convert_tokens_to_ids(__A )
__snake_case : Dict = []
__snake_case : str = [self.eos_token_id, self.cur_lang_code]
__snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens )
__snake_case : int = self.convert_ids_to_tokens(self.suffix_tokens )
__snake_case : Optional[int] = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def snake_case__ ( self : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(__A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' )
return
__snake_case : int = os.path.join(
__A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ):
copyfile(self.vocab_file , __A )
return (out_vocab_file,)
| 351 | import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"
),
}
}
lowercase_ = {
"junnyu/roformer_chinese_small": 15_36,
"junnyu/roformer_chinese_base": 15_36,
"junnyu/roformer_chinese_char_small": 5_12,
"junnyu/roformer_chinese_char_base": 5_12,
"junnyu/roformer_small_discriminator": 1_28,
"junnyu/roformer_small_generator": 1_28,
}
lowercase_ = {
"junnyu/roformer_chinese_small": {"do_lower_case": True},
"junnyu/roformer_chinese_base": {"do_lower_case": True},
"junnyu/roformer_chinese_char_small": {"do_lower_case": True},
"junnyu/roformer_chinese_char_base": {"do_lower_case": True},
"junnyu/roformer_small_discriminator": {"do_lower_case": True},
"junnyu/roformer_small_generator": {"do_lower_case": True},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = VOCAB_FILES_NAMES
A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : int = PRETRAINED_INIT_CONFIGURATION
A : List[str] = RoFormerTokenizer
def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any="[UNK]" , _lowerCAmelCase : int="[SEP]" , _lowerCAmelCase : Optional[int]="[PAD]" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Dict , ):
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
__snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case
or pre_tok_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents
):
__snake_case : Tuple = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) )
__snake_case : List[Any] = do_lower_case
__snake_case : Optional[Any] = strip_accents
__snake_case : List[str] = pre_tok_class(**_lowerCAmelCase )
__snake_case : Optional[Any] = do_lower_case
def __getstate__( self : Optional[Any] ):
__snake_case : Optional[int] = self.__dict__.copy()
__snake_case : Optional[Any] = BertPreTokenizer()
return state
def __setstate__( self : str , _lowerCAmelCase : Dict ):
__snake_case : str = d
__snake_case : int = self.__dict__["""_tokenizer"""].get_vocab()
__snake_case : List[str] = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=None ):
__snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
def snake_case__ ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Tuple , ):
__snake_case : Tuple = BertPreTokenizer()
return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
| 20 | 0 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 352 | from __future__ import annotations
import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if depth < 0:
raise ValueError("""Depth cannot be less than 0""" )
if len(__SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("""Scores cannot be empty""" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
return min(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3]
__snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 )
print("""Optimal value : """ , end="""""" )
print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 20 | 0 |
def __lowerCAmelCase ( _A : list ):
'''simple docstring'''
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" )
if len(__lowerCAmelCase ) == 0:
raise ValueError("""Input list must be a non empty list""" )
if len(__lowerCAmelCase ) == 1:
return True
__snake_case : Union[str, Any] = series[1] - series[0]
for index in range(len(__lowerCAmelCase ) - 1 ):
if series[index + 1] - series[index] != common_diff:
return False
return True
def __lowerCAmelCase ( _A : list ):
'''simple docstring'''
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" )
if len(__lowerCAmelCase ) == 0:
raise ValueError("""Input list must be a non empty list""" )
__snake_case : Tuple = 0
for val in series:
answer += val
return answer / len(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 353 | import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
lowercase_ = None
lowercase_ = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
lowercase_ = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : bool = True
A : Optional[str] = None
# Automatically constructed
A : ClassVar[str] = "PIL.Image.Image"
A : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} )
A : str = field(default="Image" , init=__UpperCamelCase , repr=__UpperCamelCase )
def __call__( self : Any ):
return self.pa_type
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
__snake_case : str = np.array(_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": value, "bytes": None}
elif isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": None, "bytes": value}
elif isinstance(_lowerCAmelCase , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(_lowerCAmelCase )
elif isinstance(_lowerCAmelCase , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(_lowerCAmelCase )
elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("""path""" )}
elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )}
else:
raise ValueError(
f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def snake_case__ ( self : List[str] , _lowerCAmelCase : dict , _lowerCAmelCase : Dict=None ):
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support decoding images, please install 'Pillow'.""" )
if token_per_repo_id is None:
__snake_case : Tuple = {}
__snake_case , __snake_case : str = value["""path"""], value["""bytes"""]
if bytes_ is None:
if path is None:
raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
else:
if is_local_path(_lowerCAmelCase ):
__snake_case : str = PIL.Image.open(_lowerCAmelCase )
else:
__snake_case : List[str] = path.split("""::""" )[-1]
try:
__snake_case : Dict = string_to_dict(_lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""]
__snake_case : int = token_per_repo_id.get(_lowerCAmelCase )
except ValueError:
__snake_case : List[Any] = None
with xopen(_lowerCAmelCase , """rb""" , use_auth_token=_lowerCAmelCase ) as f:
__snake_case : Union[str, Any] = BytesIO(f.read() )
__snake_case : Dict = PIL.Image.open(bytes_ )
else:
__snake_case : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def snake_case__ ( self : Union[str, Any] ):
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("""binary""" ),
"path": Value("""string""" ),
}
)
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ):
if pa.types.is_string(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("""bytes""" ) >= 0:
__snake_case : List[str] = storage.field("""bytes""" )
else:
__snake_case : List[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
if storage.type.get_field_index("""path""" ) >= 0:
__snake_case : Optional[int] = storage.field("""path""" )
else:
__snake_case : int = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
__snake_case : Optional[Any] = pa.array(
[encode_np_array(np.array(_lowerCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
__snake_case : Optional[int] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays(
[bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : pa.StructArray ):
@no_op_if_value_is_null
def path_to_bytes(_lowerCAmelCase : Tuple ):
with xopen(_lowerCAmelCase , """rb""" ) as f:
__snake_case : Optional[int] = f.read()
return bytes_
__snake_case : Tuple = pa.array(
[
(path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
__snake_case : Optional[Any] = pa.array(
[os.path.basename(_lowerCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def __lowerCAmelCase ( ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
__snake_case : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
__snake_case : List[Any] = BytesIO()
if image.format in list_image_compression_formats():
__snake_case : Union[str, Any] = image.format
else:
__snake_case : List[Any] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF"""
image.save(__SCREAMING_SNAKE_CASE , format=__SCREAMING_SNAKE_CASE )
return buffer.getvalue()
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
if hasattr(__SCREAMING_SNAKE_CASE , """filename""" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
__snake_case : List[Any] = array.dtype
__snake_case : List[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER
__snake_case : Dict = dtype.kind
__snake_case : Union[str, Any] = dtype.itemsize
__snake_case : Tuple = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
__snake_case : int = np.dtype("""|u1""" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' )
if dtype is not dest_dtype:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
__snake_case : List[str] = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
__snake_case : int = dtype_byteorder + dtype_kind + str(__SCREAMING_SNAKE_CASE )
__snake_case : Any = np.dtype(__SCREAMING_SNAKE_CASE )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' )
__snake_case : Optional[int] = PIL.Image.fromarray(array.astype(__SCREAMING_SNAKE_CASE ) )
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if objs:
__snake_case , __snake_case : Any = first_non_null_value(__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
__snake_case : int = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ):
__snake_case : List[str] = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
else:
return objs
else:
return objs
| 20 | 0 |
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated.
lowercase_ = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n"
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : Optional[int] ):
__snake_case : List[str] = tempfile.mkdtemp()
os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) )
__snake_case : Dict = self.transformer_dir
shutil.copy(
os.path.join(_lowerCamelCase , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , )
def snake_case__ ( self : Tuple ):
__snake_case : Optional[Any] = '''src/transformers'''
shutil.rmtree(self.transformer_dir )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None ):
__snake_case : int = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
__snake_case : Optional[int] = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
__snake_case : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
__snake_case : Optional[int] = black.format_str(_lowerCamelCase , mode=_lowerCamelCase )
__snake_case : Optional[Any] = os.path.join(self.transformer_dir , """new_code.py""" )
with open(_lowerCamelCase , """w""" , newline="""\n""" ) as f:
f.write(_lowerCamelCase )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(_lowerCamelCase ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=_lowerCamelCase )
with open(_lowerCamelCase , """r""" ) as f:
self.assertTrue(f.read() , _lowerCamelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : List[str] = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" )
self.assertEqual(_lowerCamelCase , _lowerCamelCase )
def snake_case__ ( self : Union[str, Any] ):
self.check_copy_consistency(
"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , )
# With no empty line at the end
self.check_copy_consistency(
"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , _lowerCamelCase , )
# Copy consistency with rename
self.check_copy_consistency(
"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , _lowerCamelCase ) , )
# Copy consistency with a really long name
__snake_case : List[Any] = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
f'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , f'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , _lowerCamelCase , _lowerCamelCase ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , _lowerCamelCase , overwrite_result=re.sub("""Bert""" , """TestModel""" , _lowerCamelCase ) , )
def snake_case__ ( self : str ):
__snake_case : List[Any] = check_copies.LOCALIZED_READMES['''README_zh-hans.md''']
__snake_case : List[str] = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the'''
''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for'''
''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong'''
''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.'''
''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),'''
''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and'''
''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same'''
''' method has been applied to compress GPT2 into'''
''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into'''
''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),'''
''' Multilingual BERT into'''
''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German'''
''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**'''
''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders'''
''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang'''
''' Luong, Quoc V. Le, Christopher D. Manning.'''
)
__snake_case : int = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
__snake_case : Optional[Any] = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.'''
''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文'''
''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and'''
''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same'''
''' method has been applied to compress GPT2 into'''
''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into'''
''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),'''
''' Multilingual BERT into'''
''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German'''
''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自'''
''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather'''
''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,'''
''' Christopher D. Manning 发布。\n'''
)
__snake_case : Optional[Any] = check_copies.convert_to_localized_md(
_lowerCamelCase , _lowerCamelCase , localized_readme["""format_model_list"""] )
self.assertFalse(_lowerCamelCase )
self.assertEqual(_lowerCamelCase , _lowerCamelCase )
__snake_case : Optional[Any] = check_copies.convert_to_localized_md(
_lowerCamelCase , _lowerCamelCase , localized_readme["""format_model_list"""] )
# Check whether the number of models is equal to README.md after conversion.
self.assertTrue(_lowerCamelCase )
__snake_case : Any = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the'''
''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for'''
''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong'''
''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.'''
)
__snake_case : Optional[int] = (
'''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and'''
''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
__snake_case : str = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
__snake_case : Dict = check_copies.convert_to_localized_md(
_lowerCamelCase , _lowerCamelCase , localized_readme["""format_model_list"""] )
# Check if the model link is synchronized.
self.assertEqual(_lowerCamelCase , _lowerCamelCase )
| 354 | from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(__UpperCamelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ):
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = {}
__snake_case : int = {}
if prompt is not None:
__snake_case : Dict = prompt
if generate_kwargs is not None:
__snake_case : List[Any] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__snake_case : Optional[int] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
__snake_case : Any = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ):
return super().__call__(_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = load_image(_lowerCAmelCase )
if prompt is not None:
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
raise ValueError(
f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
__snake_case : Tuple = self.model.config.model_type
if model_type == "git":
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids
__snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids
__snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
__snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework )
model_inputs.update(_lowerCAmelCase )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
__snake_case : int = None
return model_inputs
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ):
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase )
and all(x is None for x in model_inputs["""input_ids"""] )
):
__snake_case : List[Any] = None
if generate_kwargs is None:
__snake_case : Dict = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__snake_case : Dict = model_inputs.pop(self.model.main_input_name )
__snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase )
return model_outputs
def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ):
__snake_case : Union[str, Any] = []
for output_ids in model_outputs:
__snake_case : Union[str, Any] = {
"""generated_text""": self.tokenizer.decode(
_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , )
}
records.append(_lowerCAmelCase )
return records
| 20 | 0 |
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
lowercase_ = "src/diffusers"
lowercase_ = "."
# This is to make sure the diffusers module imported is the one in the repo.
lowercase_ = importlib.util.spec_from_file_location(
"diffusers",
os.path.join(DIFFUSERS_PATH, "__init__.py"),
submodule_search_locations=[DIFFUSERS_PATH],
)
lowercase_ = spec.loader.load_module()
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
return line.startswith(__a ) or len(__a ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , __a ) is not None
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
__snake_case : int = object_name.split(""".""" )
__snake_case : int = 0
# First let's find the module where our object lives.
__snake_case : Dict = parts[i]
while i < len(__a ) and not os.path.isfile(os.path.join(__a , F'''{module}.py''' ) ):
i += 1
if i < len(__a ):
__snake_case : Any = os.path.join(__a , parts[i] )
if i >= len(__a ):
raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' )
with open(os.path.join(__a , F'''{module}.py''' ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
__snake_case : int = f.readlines()
# Now let's find the class / func in the code!
__snake_case : Optional[int] = ''
__snake_case : List[str] = 0
for name in parts[i + 1 :]:
while (
line_index < len(__a ) and re.search(RF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(__a ):
raise ValueError(F''' {object_name} does not match any function or class in {module}.''' )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
__snake_case : int = line_index
while line_index < len(__a ) and _should_continue(lines[line_index] , __a ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
__snake_case : int = lines[start_index:line_index]
return "".join(__a )
lowercase_ = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)")
lowercase_ = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)")
lowercase_ = re.compile(r"<FILL\s+[^>]*>")
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : Union[str, Any] = code.split("""\n""" )
__snake_case : Union[str, Any] = 0
while idx < len(__a ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(__a ):
return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0]
return ""
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
__snake_case : Tuple = len(get_indent(__a ) ) > 0
if has_indent:
__snake_case : Optional[int] = F'''class Bla:\n{code}'''
__snake_case : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=__a )
__snake_case : Tuple = black.format_str(__a , mode=__a )
__snake_case : Optional[int] = style_docstrings_in_code(__a )
return result[len("""class Bla:\n""" ) :] if has_indent else result
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int]=False ):
'''simple docstring'''
with open(__a , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
__snake_case : Optional[int] = f.readlines()
__snake_case : Tuple = []
__snake_case : Optional[Any] = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(__a ):
__snake_case : Tuple = _re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
__snake_case : List[str] = search.groups()
__snake_case : Dict = find_code_in_diffusers(__a )
__snake_case : Any = get_indent(__a )
__snake_case : Optional[Any] = line_index + 1 if indent == theoretical_indent else line_index + 2
__snake_case : Optional[Any] = theoretical_indent
__snake_case : Optional[Any] = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
__snake_case : Optional[int] = True
while line_index < len(__a ) and should_continue:
line_index += 1
if line_index >= len(__a ):
break
__snake_case : Any = lines[line_index]
__snake_case : Union[str, Any] = _should_continue(__a , __a ) and re.search(F'''^{indent}# End copy''' , __a ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
__snake_case : int = lines[start_index:line_index]
__snake_case : int = ''.join(__a )
# Remove any nested `Copied from` comments to avoid circular copies
__snake_case : Optional[int] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(__a ) is None]
__snake_case : List[Any] = '\n'.join(__a )
# Before comparing, use the `replace_pattern` on the original code.
if len(__a ) > 0:
__snake_case : List[str] = replace_pattern.replace("""with""" , """""" ).split(""",""" )
__snake_case : int = [_re_replace_pattern.search(__a ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
__snake_case : str = pattern.groups()
__snake_case : str = re.sub(__a , __a , __a )
if option.strip() == "all-casing":
__snake_case : str = re.sub(obja.lower() , obja.lower() , __a )
__snake_case : Tuple = re.sub(obja.upper() , obja.upper() , __a )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
__snake_case : Optional[int] = blackify(lines[start_index - 1] + theoretical_code )
__snake_case : Dict = theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
__snake_case : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:]
__snake_case : Union[str, Any] = start_index + 1
if overwrite and len(__a ) > 0:
# Warn the user a file has been modified.
print(F'''Detected changes, rewriting {filename}.''' )
with open(__a , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(__a )
return diffs
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bool = False ):
'''simple docstring'''
__snake_case : List[str] = glob.glob(os.path.join(__a , """**/*.py""" ) , recursive=__a )
__snake_case : int = []
for filename in all_files:
__snake_case : int = is_copy_consistent(__a , __a )
diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs]
if not overwrite and len(__a ) > 0:
__snake_case : Tuple = '\n'.join(__a )
raise Exception(
"""Found the following copy inconsistencies:\n"""
+ diff
+ """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowercase_ = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 355 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowercase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["YolosFeatureExtractor"]
lowercase_ = ["YolosImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST",
"YolosForObjectDetection",
"YolosModel",
"YolosPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 0 |
from ..utils import is_flax_available, is_torch_available
if is_torch_available():
from .autoencoder_kl import AutoencoderKL
from .controlnet import ControlNetModel
from .dual_transformer_ad import DualTransformeraDModel
from .modeling_utils import ModelMixin
from .prior_transformer import PriorTransformer
from .ta_film_transformer import TaFilmDecoder
from .transformer_ad import TransformeraDModel
from .unet_ad import UNetaDModel
from .unet_ad import UNetaDModel
from .unet_ad_condition import UNetaDConditionModel
from .unet_ad_condition import UNetaDConditionModel
from .vq_model import VQModel
if is_flax_available():
from .controlnet_flax import FlaxControlNetModel
from .unet_ad_condition_flax import FlaxUNetaDConditionModel
from .vae_flax import FlaxAutoencoderKL
| 356 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = "microsoft/speecht5_tts"
A : List[Any] = (
"This is a tool that reads an English text out loud. It takes an input named `text` which should contain the "
"text to read (in English) and returns a waveform object containing the sound."
)
A : str = "text_reader"
A : Optional[Any] = SpeechTaProcessor
A : Any = SpeechTaForTextToSpeech
A : Optional[Any] = SpeechTaHifiGan
A : str = ["text"]
A : Union[str, Any] = ["audio"]
def snake_case__ ( self : List[Any] ):
if self.post_processor is None:
__snake_case : Tuple = """microsoft/speecht5_hifigan"""
super().setup()
def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ):
__snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" )
__snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" )
__snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ):
with torch.no_grad():
return self.model.generate_speech(**_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
with torch.no_grad():
return self.post_processor(_lowerCAmelCase ).cpu().detach()
| 20 | 0 |
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
__snake_case : str = mf_knapsack(i - 1 , __A , __A , __A )
else:
__snake_case : Union[str, Any] = max(
mf_knapsack(i - 1 , __A , __A , __A ) , mf_knapsack(i - 1 , __A , __A , j - wt[i - 1] ) + val[i - 1] , )
__snake_case : int = val
return f[i][j]
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : Union[str, Any] = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
__snake_case : str = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
__snake_case : List[str] = dp[i - 1][w_]
return dp[n][w_], dp
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
if not (isinstance(__A , (list, tuple) ) and isinstance(__A , (list, tuple) )):
raise ValueError(
"""Both the weights and values vectors must be either lists or tuples""" )
__snake_case : Dict = len(__A )
if num_items != len(__A ):
__snake_case : List[str] = (
"""The number of weights must be the same as the number of values.\n"""
F'''But got {num_items} weights and {len(__A )} values'''
)
raise ValueError(__A )
for i in range(__A ):
if not isinstance(wt[i] , __A ):
__snake_case : List[Any] = (
"""All weights must be integers but got weight of """
F'''type {type(wt[i] )} at index {i}'''
)
raise TypeError(__A )
__snake_case , __snake_case : Tuple = knapsack(__A , __A , __A , __A )
__snake_case : Dict = set()
_construct_solution(__A , __A , __A , __A , __A )
return optimal_val, example_optional_set
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : set ):
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(__A , __A , i - 1 , __A , __A )
else:
optimal_set.add(__A )
_construct_solution(__A , __A , i - 1 , j - wt[i - 1] , __A )
if __name__ == "__main__":
lowercase_ = [3, 2, 4, 4]
lowercase_ = [4, 3, 2, 3]
lowercase_ = 4
lowercase_ = 6
lowercase_ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowercase_ = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowercase_ = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("optimal_value = ", optimal_solution)
print("An optimal subset corresponding to the optimal value", optimal_subset)
| 357 | import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * power_factor
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | 0 |
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
with open(lowerCamelCase_ , """r""" ) as fh:
fcntl.flock(lowerCamelCase_ , fcntl.LOCK_EX )
try:
print(*lowerCamelCase_ )
finally:
fcntl.flock(lowerCamelCase_ , fcntl.LOCK_UN )
lowercase_ = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
lowercase_ = torch.device("cuda", local_rank)
lowercase_ = socket.gethostname()
lowercase_ = F'''[{hostname}-{local_rank}]'''
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
lowercase_ = dist.get_rank()
lowercase_ = dist.get_world_size()
printflock(F'''{gpu} is OK (global rank: {rank}/{world_size})''')
dist.barrier()
if rank == 0:
printflock(F'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''')
except Exception:
printflock(F'''{gpu} is broken''')
raise
| 358 | from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 20 | 0 |
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser(
description=(
"Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned"
" Distillation"
)
)
parser.add_argument("--model_type", default="bert", choices=["bert"])
parser.add_argument("--model_name", default="bert-base-uncased", type=str)
parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str)
parser.add_argument("--vocab_transform", action="store_true")
lowercase_ = parser.parse_args()
if args.model_type == "bert":
lowercase_ = BertForMaskedLM.from_pretrained(args.model_name)
lowercase_ = """bert"""
else:
raise ValueError("args.model_type should be \"bert\".")
lowercase_ = model.state_dict()
lowercase_ = {}
for w in ["word_embeddings", "position_embeddings"]:
lowercase_ = state_dict[F'''{prefix}.embeddings.{w}.weight''']
for w in ["weight", "bias"]:
lowercase_ = state_dict[F'''{prefix}.embeddings.LayerNorm.{w}''']
lowercase_ = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
for w in ["weight", "bias"]:
lowercase_ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}'''
]
lowercase_ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}'''
]
lowercase_ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}'''
]
lowercase_ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}'''
]
lowercase_ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}'''
]
lowercase_ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}'''
]
lowercase_ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}'''
]
lowercase_ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}'''
]
std_idx += 1
lowercase_ = state_dict["""cls.predictions.decoder.weight"""]
lowercase_ = state_dict["""cls.predictions.bias"""]
if args.vocab_transform:
for w in ["weight", "bias"]:
lowercase_ = state_dict[F'''cls.predictions.transform.dense.{w}''']
lowercase_ = state_dict[F'''cls.predictions.transform.LayerNorm.{w}''']
print(F'''N layers selected for distillation: {std_idx}''')
print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''')
print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''')
torch.save(compressed_sd, args.dump_checkpoint)
| 359 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {
"configuration_blenderbot_small": [
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotSmallConfig",
"BlenderbotSmallOnnxConfig",
],
"tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["BlenderbotSmallTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
"BlenderbotSmallPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFBlenderbotSmallForConditionalGeneration",
"TFBlenderbotSmallModel",
"TFBlenderbotSmallPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxBlenderbotSmallForConditionalGeneration",
"FlaxBlenderbotSmallModel",
"FlaxBlenderbotSmallPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 0 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : int
A : int
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[Any] , _lowerCAmelCase : int ):
__snake_case : list[list[Edge]] = [[] for _ in range(snake_case__ )]
__snake_case : Optional[int] = size
def __getitem__( self : Union[str, Any] , _lowerCAmelCase : int ):
return iter(self._graph[vertex] )
@property
def snake_case__ ( self : Union[str, Any] ):
return self._size
def snake_case__ ( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ):
if weight not in (0, 1):
raise ValueError("""Edge weight must be either 0 or 1.""" )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("""Vertex indexes must be in [0; size).""" )
self._graph[from_vertex].append(Edge(snake_case__ , snake_case__ ) )
def snake_case__ ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : int ):
__snake_case : Union[str, Any] = deque([start_vertex] )
__snake_case : list[int | None] = [None] * self.size
__snake_case : str = 0
while queue:
__snake_case : int = queue.popleft()
__snake_case : str = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
__snake_case : List[str] = current_distance + edge.weight
__snake_case : List[str] = distances[edge.destination_vertex]
if (
isinstance(snake_case__ , snake_case__ )
and new_distance >= dest_vertex_distance
):
continue
__snake_case : Any = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError("""No path from start_vertex to finish_vertex.""" )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 360 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase_ = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["ViTFeatureExtractor"]
lowercase_ = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 0 |
"""simple docstring"""
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if num < 0:
return False
__snake_case : str = num
__snake_case : List[str] = 0
while num > 0:
__snake_case : Optional[Any] = rev_num * 1_0 + (num % 1_0)
num //= 1_0
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 361 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if (direction == 1 and array[indexa] > array[indexa]) or (
direction == 0 and array[indexa] < array[indexa]
):
__snake_case , __snake_case : str = array[indexa], array[indexa]
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Tuple = int(length / 2 )
for i in range(__SCREAMING_SNAKE_CASE , low + middle ):
comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Optional[Any] = int(length / 2 )
bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 )
bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
bitonic_sort(unsorted, 0, len(unsorted), 1)
print("\nSorted array in ascending order is: ", end="")
print(*unsorted, sep=", ")
bitonic_merge(unsorted, 0, len(unsorted), 0)
print("Sorted array in descending order is: ", end="")
print(*unsorted, sep=", ")
| 20 | 0 |
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
lowercase_ = "platform"
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class SCREAMING_SNAKE_CASE__ :
A : List[Any] = PegasusConfig
A : Dict = {}
A : Optional[Any] = "gelu"
def __init__( self : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any=13 , _lowerCAmelCase : Dict=7 , _lowerCAmelCase : str=True , _lowerCAmelCase : Any=False , _lowerCAmelCase : Optional[Any]=99 , _lowerCAmelCase : Optional[Any]=32 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : Union[str, Any]=37 , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : List[str]=20 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : str=0 , ):
__snake_case : Dict = parent
__snake_case : List[str] = batch_size
__snake_case : Dict = seq_length
__snake_case : List[str] = is_training
__snake_case : Optional[int] = use_labels
__snake_case : List[str] = vocab_size
__snake_case : int = hidden_size
__snake_case : Dict = num_hidden_layers
__snake_case : Optional[int] = num_attention_heads
__snake_case : Dict = intermediate_size
__snake_case : Optional[Any] = hidden_dropout_prob
__snake_case : Optional[int] = attention_probs_dropout_prob
__snake_case : str = max_position_embeddings
__snake_case : Optional[Any] = eos_token_id
__snake_case : List[Any] = pad_token_id
__snake_case : List[str] = bos_token_id
def snake_case__ ( self : Any ):
__snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
__snake_case : Union[str, Any] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
__snake_case : List[Any] = np.concatenate([input_ids, eos_tensor] , axis=1 )
__snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Union[str, Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__snake_case : Optional[int] = prepare_pegasus_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return config, inputs_dict
def snake_case__ ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ):
__snake_case : List[str] = 20
__snake_case : Any = model_class_name(_lowerCAmelCase )
__snake_case : Tuple = model.encode(inputs_dict["""input_ids"""] )
__snake_case : Optional[Any] = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
__snake_case : List[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : Dict = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
__snake_case : Dict = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__snake_case : List[Any] = model.decode(
decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , )
__snake_case : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__snake_case : Union[str, Any] = model.decode(
decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , )
__snake_case : Tuple = model.decode(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Tuple ):
__snake_case : Dict = 20
__snake_case : Optional[Any] = model_class_name(_lowerCAmelCase )
__snake_case : Any = model.encode(inputs_dict["""input_ids"""] )
__snake_case : int = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
__snake_case : List[Any] = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__snake_case : List[str] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : str = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__snake_case : str = model.decode(
decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , )
__snake_case : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__snake_case : int = model.decode(
decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , )
__snake_case : Optional[Any] = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase )
__snake_case : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : int=None , ):
'''simple docstring'''
if attention_mask is None:
__snake_case : Any = np.not_equal(lowercase__ , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
__snake_case : Tuple = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ):
A : int = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
A : Tuple = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
A : List[Any] = True
A : Dict = False
A : Dict = False
A : List[Any] = False
def snake_case__ ( self : Optional[Any] ):
__snake_case : str = FlaxPegasusModelTester(self )
__snake_case : str = ConfigTester(self , config_class=_lowerCAmelCase )
def snake_case__ ( self : Tuple ):
self.config_tester.run_common_tests()
def snake_case__ ( self : str ):
__snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[int] ):
__snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : int ):
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__snake_case : Tuple = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : List[Any] = model_class(_lowerCAmelCase )
@jax.jit
def encode_jitted(_lowerCAmelCase : List[Any] , _lowerCAmelCase : int=None , **_lowerCAmelCase : List[str] ):
return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )
with self.subTest("""JIT Enabled""" ):
__snake_case : Any = encode_jitted(**_lowerCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__snake_case : Tuple = encode_jitted(**_lowerCAmelCase ).to_tuple()
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) )
for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def snake_case__ ( self : int ):
__snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__snake_case : Any = model_class(_lowerCAmelCase )
__snake_case : Optional[Any] = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
__snake_case : int = {
'decoder_input_ids': inputs_dict['decoder_input_ids'],
'decoder_attention_mask': inputs_dict['decoder_attention_mask'],
'encoder_outputs': encoder_outputs,
}
@jax.jit
def decode_jitted(_lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ):
return model.decode(
decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , )
with self.subTest("""JIT Enabled""" ):
__snake_case : Any = decode_jitted(**_lowerCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__snake_case : Tuple = decode_jitted(**_lowerCAmelCase ).to_tuple()
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) )
for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def snake_case__ ( self : int ):
for model_class_name in self.all_model_classes:
__snake_case : Optional[int] = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=_lowerCAmelCase )
__snake_case : Optional[Any] = np.ones((1, 1) )
__snake_case : Optional[int] = model(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@slow
def snake_case__ ( self : List[Any] ):
__snake_case : int = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
__snake_case : Optional[Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
__snake_case : Optional[int] = [
' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.',
' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ',
]
__snake_case : Dict = [
'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.',
'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.',
]
__snake_case : int = tokenizer(_lowerCAmelCase , return_tensors="""np""" , truncation=_lowerCAmelCase , max_length=5_12 , padding=_lowerCAmelCase )
__snake_case : Tuple = model.generate(**_lowerCAmelCase , num_beams=2 ).sequences
__snake_case : Dict = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
assert tgt_text == decoded
| 362 | import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ):
'''simple docstring'''
__snake_case : Optional[int] = {
"""7z""": (seven_zip_file, SevenZipExtractor),
"""bz2""": (bza_file, BzipaExtractor),
"""gzip""": (gz_file, GzipExtractor),
"""lz4""": (lza_file, LzaExtractor),
"""tar""": (tar_file, TarExtractor),
"""xz""": (xz_file, XzExtractor),
"""zip""": (zip_file, ZipExtractor),
"""zstd""": (zstd_file, ZstdExtractor),
}
__snake_case , __snake_case : Tuple = input_paths_and_base_extractors[compression_format]
if input_path is None:
__snake_case : Tuple = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE )
__snake_case : List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : List[str] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Optional[Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : int = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ):
'''simple docstring'''
__snake_case : Union[str, Any] = {
"""7z""": seven_zip_file,
"""bz2""": bza_file,
"""gzip""": gz_file,
"""lz4""": lza_file,
"""tar""": tar_file,
"""xz""": xz_file,
"""zip""": zip_file,
"""zstd""": zstd_file,
}
__snake_case : int = input_paths[compression_format]
if input_path is None:
__snake_case : int = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
__snake_case : Any = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE )
assert extractor_format is not None
__snake_case : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : Union[str, Any] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Union[str, Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : Optional[Any] = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
import tarfile
__snake_case : List[str] = tmp_path / """data_dot_dot"""
directory.mkdir()
__snake_case : Optional[Any] = directory / """tar_file_with_dot_dot.tar"""
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) )
return path
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
import tarfile
__snake_case : Dict = tmp_path / """data_sym_link"""
directory.mkdir()
__snake_case : Tuple = directory / """tar_file_with_sym_link.tar"""
os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE )
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
"""insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
__snake_case : Any = {
"""tar_file_with_dot_dot""": tar_file_with_dot_dot,
"""tar_file_with_sym_link""": tar_file_with_sym_link,
}
__snake_case : int = insecure_tar_files[insecure_tar_file]
__snake_case : Optional[int] = tmp_path / """extracted"""
TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
# We should have less false positives than zipfile.is_zipfile
# We do that by checking only the magic number
__snake_case : Optional[Any] = tmpdir / """not_a_zip_file"""
# From: https://github.com/python/cpython/pull/5053
__snake_case : List[str] = (
b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"""
b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"""
b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"""
b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"""
)
with not_a_zip_file.open("""wb""" ) as f:
f.write(__SCREAMING_SNAKE_CASE )
assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
| 20 | 0 |
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
__snake_case : List[str] = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""encoder.embed_positions._float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
__snake_case : Any = emb.weight.shape
__snake_case : Tuple = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase )
__snake_case : Union[str, Any] = emb.weight.data
return lin_layer
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=None ):
'''simple docstring'''
__snake_case : List[str] = {}
for old_key in state_dict.keys():
__snake_case : Union[str, Any] = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
__snake_case : Optional[int] = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' )
else:
__snake_case : List[str] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" )
if "gate" in key:
__snake_case : Tuple = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" )
if "fc2" and "experts" not in key:
__snake_case : Optional[Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" )
if "fc1" and "experts" not in key:
__snake_case : Dict = key.replace(""".fc1.""" , """.ffn.fc1.""" )
if ".encoder_attn." in key:
__snake_case : List[str] = key.replace(""".encoder_attn.""" , """.cross_attention.""" )
if "encoder_attn_layer_norm" in key:
__snake_case : Optional[Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" )
if "final_layer_norm" in key:
__snake_case : Tuple = key.replace("""final_layer_norm""" , """ff_layer_norm""" )
__snake_case : List[str] = state_dict[old_key]
return new_dict
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int = WEIGHTS_NAME ):
'''simple docstring'''
__snake_case : int = []
__snake_case : Any = 0
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
for expert in range(_lowerCamelCase ):
__snake_case : str = switch_checkpoint_path + F'''-rank-{expert}.pt'''
if os.path.isfile(_lowerCamelCase ):
__snake_case : List[Any] = torch.load(_lowerCamelCase )["""model"""]
remove_ignore_keys_(_lowerCamelCase )
__snake_case : Any = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase )
__snake_case : Optional[Any] = os.path.join(
_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) )
torch.save(_lowerCamelCase , _lowerCamelCase )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(_lowerCamelCase )[0]].dtype )
# Add the last block
__snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) )
__snake_case : Dict = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""]
remove_ignore_keys_(_lowerCamelCase )
__snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase )
__snake_case : Dict = shared_weights["""decoder.embed_tokens.weight"""]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(_lowerCamelCase ) == 1:
__snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase )
torch.save(_lowerCamelCase , _lowerCamelCase )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(_lowerCamelCase , _lowerCamelCase )
# Otherwise, let's build the index
__snake_case : str = {}
for idx, shard in enumerate(_lowerCamelCase ):
__snake_case : Optional[int] = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' )
__snake_case : Tuple = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) )
os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) )
for key in shard:
__snake_case : int = shard_file
# Add the metadata
__snake_case : int = {"""total_size""": total_size}
__snake_case : Optional[Any] = {"""metadata""": metadata, """weight_map""": weight_map}
with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f:
__snake_case : str = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n"""
f.write(_lowerCamelCase )
return metadata, index
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--nllb_moe_checkpoint_path",
default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b",
type=str,
required=False,
help="Path to the output pytorch model.",
)
lowercase_ = parser.parse_args()
lowercase_ , lowercase_ = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_28,
args.dtype,
)
lowercase_ = NllbMoeConfig.from_pretrained(
"facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28
)
config.save_pretrained(args.pytorch_dump_folder_path)
lowercase_ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print("Done")
model.save_pretrained(args.pytorch_dump_folder_path)
| 363 | import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : Any ):
__snake_case : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split()
__snake_case : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
__snake_case : List[str] = {
"""unk_token""": """<unk>""",
"""bos_token""": """<s>""",
"""eos_token""": """</s>""",
}
__snake_case : str = {
"""feature_size""": 1,
"""padding_value""": 0.0,
"""sampling_rate""": 1_60_00,
"""return_attention_mask""": False,
"""do_normalize""": True,
}
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__snake_case : Any = os.path.join(self.tmpdirname , _lowerCAmelCase )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
# load decoder from hub
__snake_case : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder"""
def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Tuple ):
__snake_case : int = self.add_kwargs_tokens_map.copy()
kwargs.update(_lowerCAmelCase )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , **_lowerCAmelCase : Optional[int] ):
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Dict , **_lowerCAmelCase : Tuple ):
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase )
def snake_case__ ( self : List[str] ):
shutil.rmtree(self.tmpdirname )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : Tuple = self.get_feature_extractor()
__snake_case : Dict = self.get_decoder()
__snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
__snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowerCAmelCase )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , _lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : Tuple = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
__snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def snake_case__ ( self : int ):
__snake_case : Tuple = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(["""xx"""] )
with self.assertRaisesRegex(_lowerCAmelCase , """include""" ):
WavaVecaProcessorWithLM(
tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def snake_case__ ( self : Dict ):
__snake_case : int = self.get_feature_extractor()
__snake_case : str = self.get_tokenizer()
__snake_case : Dict = self.get_decoder()
__snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : List[Any] = floats_list((3, 10_00) )
__snake_case : Optional[Any] = feature_extractor(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Tuple = processor(_lowerCAmelCase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def snake_case__ ( self : Optional[int] ):
__snake_case : Any = self.get_feature_extractor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : int = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Optional[int] = """This is a test string"""
__snake_case : Union[str, Any] = processor(text=_lowerCAmelCase )
__snake_case : Dict = tokenizer(_lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[Any]=(2, 10, 16) , _lowerCAmelCase : str=77 ):
np.random.seed(_lowerCAmelCase )
return np.random.rand(*_lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : List[str] = self.get_feature_extractor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : List[str] = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 )
__snake_case : int = processor.decode(_lowerCAmelCase )
__snake_case : Optional[int] = decoder.decode_beams(_lowerCAmelCase )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual("""</s> <s> </s>""" , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ["""fork"""], ["""spawn"""]] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] ):
__snake_case : int = self.get_feature_extractor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : int = self.get_decoder()
__snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : int = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
__snake_case : Tuple = processor.batch_decode(_lowerCAmelCase )
else:
with get_context(_lowerCAmelCase ).Pool() as pool:
__snake_case : int = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : int = list(_lowerCAmelCase )
with get_context("""fork""" ).Pool() as p:
__snake_case : Tuple = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase )
__snake_case , __snake_case , __snake_case : List[Any] = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(_lowerCAmelCase , decoded_processor.text )
self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text )
self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score )
self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score )
def snake_case__ ( self : Optional[int] ):
__snake_case : Optional[Any] = self.get_feature_extractor()
__snake_case : int = self.get_tokenizer()
__snake_case : str = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : int = self._get_dummy_logits()
__snake_case : List[str] = 15
__snake_case : Optional[Any] = -20.0
__snake_case : Tuple = -4.0
__snake_case : List[Any] = processor.batch_decode(
_lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , )
__snake_case : List[str] = decoded_processor_out.text
__snake_case : str = list(_lowerCAmelCase )
with get_context("""fork""" ).Pool() as pool:
__snake_case : Dict = decoder.decode_beams_batch(
_lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , )
__snake_case : int = [d[0][0] for d in decoded_decoder_out]
__snake_case : List[Any] = [d[0][2] for d in decoded_decoder_out]
__snake_case : List[Any] = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase )
self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1e-3 ) )
self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1e-3 ) )
def snake_case__ ( self : Any ):
__snake_case : List[Any] = self.get_feature_extractor()
__snake_case : Any = self.get_tokenizer()
__snake_case : Union[str, Any] = self.get_decoder()
__snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Any = self._get_dummy_logits()
__snake_case : Any = 2.0
__snake_case : int = 5.0
__snake_case : Optional[int] = -20.0
__snake_case : Optional[int] = True
__snake_case : Any = processor.batch_decode(
_lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , )
__snake_case : str = decoded_processor_out.text
__snake_case : int = list(_lowerCAmelCase )
decoder.reset_params(
alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , )
with get_context("""fork""" ).Pool() as pool:
__snake_case : Tuple = decoder.decode_beams_batch(
_lowerCAmelCase , _lowerCAmelCase , )
__snake_case : int = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase )
__snake_case : List[str] = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , _lowerCAmelCase )
def snake_case__ ( self : Dict ):
__snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key]
__snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute()
__snake_case : Union[str, Any] = os.listdir(_lowerCAmelCase )
__snake_case : List[str] = ["""alphabet.json""", """language_model"""]
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" )
__snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase )
__snake_case : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key]
__snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute()
__snake_case : List[str] = os.listdir(_lowerCAmelCase )
__snake_case : List[Any] = os.listdir(_lowerCAmelCase )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Optional[int] = floats_list((3, 10_00) )
__snake_case : Union[str, Any] = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Union[str, Any] = processor_auto(_lowerCAmelCase , return_tensors="""np""" )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 )
__snake_case : Dict = self._get_dummy_logits()
__snake_case : List[Any] = processor_wavaveca.batch_decode(_lowerCAmelCase )
__snake_case : List[Any] = processor_auto.batch_decode(_lowerCAmelCase )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def snake_case__ ( self : str ):
__snake_case : int = self.get_feature_extractor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : Optional[Any] = self.get_decoder()
__snake_case : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
@staticmethod
def snake_case__ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ):
__snake_case : Union[str, Any] = [d[key] for d in offsets]
return retrieved_list
def snake_case__ ( self : Dict ):
__snake_case : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : List[str] = self._get_dummy_logits()[0]
__snake_case : str = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""word_offsets""" in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] )
def snake_case__ ( self : List[str] ):
__snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Optional[int] = self._get_dummy_logits()
__snake_case : int = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""word_offsets""" in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertListEqual(
[""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def snake_case__ ( self : Optional[Any] ):
import torch
__snake_case : Optional[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase )
__snake_case : Any = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) )
__snake_case : List[Any] = iter(_lowerCAmelCase )
__snake_case : Optional[int] = next(_lowerCAmelCase )
__snake_case : str = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" )
__snake_case : str = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
__snake_case : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values
with torch.no_grad():
__snake_case : Dict = model(_lowerCAmelCase ).logits.cpu().numpy()
__snake_case : Any = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase )
__snake_case : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
__snake_case : Dict = [
{
"""start_time""": d["""start_offset"""] * time_offset,
"""end_time""": d["""end_offset"""] * time_offset,
"""word""": d["""word"""],
}
for d in output["""word_offsets"""]
]
__snake_case : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL"""
# output words
self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase )
self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text )
# output times
__snake_case : Dict = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) )
__snake_case : Optional[Any] = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) )
# fmt: off
__snake_case : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] )
__snake_case : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
| 20 | 0 |
import argparse
import gc
import json
import os
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
lowercase_ = 16
lowercase_ = 32
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
return int(x / 2**2_0 )
class SCREAMING_SNAKE_CASE__ :
def __enter__( self : Optional[int] ):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
__snake_case : Dict = torch.cuda.memory_allocated()
return self
def __exit__( self : List[str] , *_lowerCAmelCase : Union[str, Any] ):
gc.collect()
torch.cuda.empty_cache()
__snake_case : Tuple = torch.cuda.memory_allocated()
__snake_case : List[Any] = torch.cuda.max_memory_allocated()
__snake_case : Union[str, Any] = bamb(self.end - self.begin )
__snake_case : Optional[Any] = bamb(self.peak - self.begin )
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] = 1_6 , __SCREAMING_SNAKE_CASE : List[str] = "bert-base-cased" , __SCREAMING_SNAKE_CASE : Optional[int] = 3_2_0 , __SCREAMING_SNAKE_CASE : Tuple = 1_6_0 , ):
'''simple docstring'''
__snake_case : Optional[int] = AutoTokenizer.from_pretrained(a_ )
__snake_case : int = load_dataset(
"""glue""" , """mrpc""" , split={"""train""": F'''train[:{n_train}]''', """validation""": F'''validation[:{n_val}]'''} )
def tokenize_function(__SCREAMING_SNAKE_CASE : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__snake_case : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=a_ , max_length=a_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__snake_case : int = datasets.map(
a_ , batched=a_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=a_ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__snake_case : Any = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__SCREAMING_SNAKE_CASE : int ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(a_ , padding="""max_length""" , max_length=1_2_8 , return_tensors="""pt""" )
return tokenizer.pad(a_ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__snake_case : Dict = DataLoader(
tokenized_datasets["""train"""] , shuffle=a_ , collate_fn=a_ , batch_size=a_ )
__snake_case : Any = DataLoader(
tokenized_datasets["""validation"""] , shuffle=a_ , collate_fn=a_ , batch_size=a_ )
return train_dataloader, eval_dataloader
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
# Initialize accelerator
__snake_case : Any = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__snake_case : int = config["""lr"""]
__snake_case : Optional[int] = int(config["""num_epochs"""] )
__snake_case : Tuple = int(config["""seed"""] )
__snake_case : Optional[Any] = int(config["""batch_size"""] )
__snake_case : List[str] = args.model_name_or_path
set_seed(a_ )
__snake_case , __snake_case : List[str] = get_dataloaders(a_ , a_ , a_ , args.n_train , args.n_val )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__snake_case : str = AutoModelForSequenceClassification.from_pretrained(a_ , return_dict=a_ )
# Instantiate optimizer
__snake_case : Optional[Any] = (
AdamW
if accelerator.state.deepspeed_plugin is None
or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__snake_case : int = optimizer_cls(params=model.parameters() , lr=a_ )
if accelerator.state.deepspeed_plugin is not None:
__snake_case : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[
"""gradient_accumulation_steps"""
]
else:
__snake_case : Optional[int] = 1
__snake_case : Any = (len(a_ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__snake_case : Dict = get_linear_schedule_with_warmup(
optimizer=a_ , num_warmup_steps=0 , num_training_steps=a_ , )
else:
__snake_case : List[Any] = DummyScheduler(a_ , total_num_steps=a_ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Dict = accelerator.prepare(
a_ , a_ , a_ , a_ , a_ )
# We need to keep track of how many total steps we have iterated over
__snake_case : Dict = 0
# We also need to keep track of the stating epoch so files are named properly
__snake_case : str = 0
# Now we train the model
__snake_case : int = {}
for epoch in range(a_ , a_ ):
with TorchTracemalloc() as tracemalloc:
model.train()
for step, batch in enumerate(a_ ):
__snake_case : List[str] = model(**a_ )
__snake_case : Dict = outputs.loss
__snake_case : Dict = loss / gradient_accumulation_steps
accelerator.backward(a_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) )
accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) )
accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) )
accelerator.print(
"""Total Peak Memory consumed during the train (max): {}""".format(
tracemalloc.peaked + bamb(tracemalloc.begin ) ) )
__snake_case : Any = tracemalloc.peaked + bamb(tracemalloc.begin )
if args.peak_memory_upper_bound is not None:
assert (
train_total_peak_memory[F'''epoch-{epoch}'''] <= args.peak_memory_upper_bound
), "Peak memory usage exceeded the upper bound"
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f:
json.dump(a_ , a_ )
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : int = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" )
parser.add_argument(
"""--model_name_or_path""" , type=a_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=a_ , )
parser.add_argument(
"""--output_dir""" , type=a_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , )
parser.add_argument(
"""--peak_memory_upper_bound""" , type=a_ , default=a_ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , )
parser.add_argument(
"""--n_train""" , type=a_ , default=3_2_0 , help="""Number of training examples to use.""" , )
parser.add_argument(
"""--n_val""" , type=a_ , default=1_6_0 , help="""Number of validation examples to use.""" , )
parser.add_argument(
"""--num_epochs""" , type=a_ , default=1 , help="""Number of train epochs.""" , )
__snake_case : Tuple = parser.parse_args()
__snake_case : Optional[Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 4_2, """batch_size""": 1_6}
training_function(a_ , a_ )
if __name__ == "__main__":
main()
| 364 | import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowercase_ = {
"text_branch": "text_model",
"audio_branch": "audio_model.audio_encoder",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc")
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ):
'''simple docstring'''
__snake_case , __snake_case : str = create_model(
"""HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , )
return model, model_cfg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : Union[str, Any] = {}
__snake_case : List[Any] = R""".*sequential.(\d+).*"""
__snake_case : Union[str, Any] = R""".*_projection.(\d+).*"""
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
__snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# replace sequential layers with list
__snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 )
__snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' )
elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
__snake_case : List[Any] = 1 if projecton_layer == 0 else 2
__snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' )
if "audio" and "qkv" in key:
# split qkv into query key and value
__snake_case : Optional[int] = value
__snake_case : Any = mixed_qkv.size(0 ) // 3
__snake_case : List[Any] = mixed_qkv[:qkv_dim]
__snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2]
__snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :]
__snake_case : Any = query_layer
__snake_case : Dict = key_layer
__snake_case : Optional[Any] = value_layer
else:
__snake_case : List[str] = value
return model_state_dict
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ):
'''simple docstring'''
__snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE )
clap_model.eval()
__snake_case : Tuple = clap_model.state_dict()
__snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = ClapConfig()
__snake_case : Tuple = enable_fusion
__snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE )
# ignore the spectrogram embedding layer
model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not")
lowercase_ = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 20 | 0 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
__snake_case : List[Any] = SwinvaConfig()
__snake_case : Optional[Any] = swinva_name.split("""_""" )
__snake_case : Union[str, Any] = name_split[1]
if "to" in name_split[3]:
__snake_case : List[str] = int(name_split[3][-3:] )
else:
__snake_case : Dict = int(name_split[3] )
if "to" in name_split[2]:
__snake_case : List[Any] = int(name_split[2][-2:] )
else:
__snake_case : Optional[int] = int(name_split[2][6:] )
if model_size == "tiny":
__snake_case : Tuple = 9_6
__snake_case : Optional[Any] = (2, 2, 6, 2)
__snake_case : Any = (3, 6, 1_2, 2_4)
elif model_size == "small":
__snake_case : Dict = 9_6
__snake_case : Dict = (2, 2, 1_8, 2)
__snake_case : Optional[Any] = (3, 6, 1_2, 2_4)
elif model_size == "base":
__snake_case : Dict = 1_2_8
__snake_case : str = (2, 2, 1_8, 2)
__snake_case : Union[str, Any] = (4, 8, 1_6, 3_2)
else:
__snake_case : Dict = 1_9_2
__snake_case : List[str] = (2, 2, 1_8, 2)
__snake_case : Any = (6, 1_2, 2_4, 4_8)
if "to" in swinva_name:
__snake_case : Optional[Any] = (1_2, 1_2, 1_2, 6)
if ("22k" in swinva_name) and ("to" not in swinva_name):
__snake_case : int = 2_1_8_4_1
__snake_case : str = '''huggingface/label-files'''
__snake_case : int = '''imagenet-22k-id2label.json'''
__snake_case : Any = json.load(open(hf_hub_download(__a , __a , repo_type="""dataset""" ) , """r""" ) )
__snake_case : Any = {int(__a ): v for k, v in idalabel.items()}
__snake_case : str = idalabel
__snake_case : Any = {v: k for k, v in idalabel.items()}
else:
__snake_case : Optional[Any] = 1_0_0_0
__snake_case : str = '''huggingface/label-files'''
__snake_case : Optional[int] = '''imagenet-1k-id2label.json'''
__snake_case : Optional[int] = json.load(open(hf_hub_download(__a , __a , repo_type="""dataset""" ) , """r""" ) )
__snake_case : Any = {int(__a ): v for k, v in idalabel.items()}
__snake_case : int = idalabel
__snake_case : Dict = {v: k for k, v in idalabel.items()}
__snake_case : Dict = img_size
__snake_case : Any = num_classes
__snake_case : str = embed_dim
__snake_case : Dict = depths
__snake_case : Optional[Any] = num_heads
__snake_case : Optional[Any] = window_size
return config
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
if "patch_embed.proj" in name:
__snake_case : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
__snake_case : Tuple = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if "layers" in name:
__snake_case : Union[str, Any] = '''encoder.''' + name
if "attn.proj" in name:
__snake_case : int = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
__snake_case : int = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
__snake_case : Any = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
__snake_case : Optional[Any] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
__snake_case : Any = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
__snake_case : str = name.replace("""mlp.fc2""" , """output.dense""" )
if "q_bias" in name:
__snake_case : Dict = name.replace("""q_bias""" , """query.bias""" )
if "k_bias" in name:
__snake_case : List[Any] = name.replace("""k_bias""" , """key.bias""" )
if "v_bias" in name:
__snake_case : Dict = name.replace("""v_bias""" , """value.bias""" )
if "cpb_mlp" in name:
__snake_case : List[Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" )
if name == "norm.weight":
__snake_case : str = '''layernorm.weight'''
if name == "norm.bias":
__snake_case : Optional[Any] = '''layernorm.bias'''
if "head" in name:
__snake_case : Any = name.replace("""head""" , """classifier""" )
else:
__snake_case : Optional[int] = '''swinv2.''' + name
return name
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
__snake_case : Any = orig_state_dict.pop(__a )
if "mask" in key:
continue
elif "qkv" in key:
__snake_case : List[Any] = key.split(""".""" )
__snake_case : Union[str, Any] = int(key_split[1] )
__snake_case : Optional[int] = int(key_split[3] )
__snake_case : List[str] = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
__snake_case : Any = val[:dim, :]
__snake_case : Tuple = val[dim : dim * 2, :]
__snake_case : Optional[Any] = val[-dim:, :]
else:
__snake_case : Optional[int] = val[:dim]
__snake_case : List[str] = val[
dim : dim * 2
]
__snake_case : Any = val[-dim:]
else:
__snake_case : List[str] = val
return orig_state_dict
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
__snake_case : Any = timm.create_model(__a , pretrained=__a )
timm_model.eval()
__snake_case : Optional[int] = get_swinva_config(__a )
__snake_case : str = SwinvaForImageClassification(__a )
model.eval()
__snake_case : Union[str, Any] = convert_state_dict(timm_model.state_dict() , __a )
model.load_state_dict(__a )
__snake_case : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__snake_case : Dict = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swinva_name.replace("""_""" , """-""" ) ) )
__snake_case : Tuple = Image.open(requests.get(__a , stream=__a ).raw )
__snake_case : Dict = image_processor(images=__a , return_tensors="""pt""" )
__snake_case : Any = timm_model(inputs["""pixel_values"""] )
__snake_case : List[str] = model(**__a ).logits
assert torch.allclose(__a , __a , atol=1E-3 )
print(F'''Saving model {swinva_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__a )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__a )
model.push_to_hub(
repo_path_or_name=Path(__a , __a ) , organization="""nandwalritik""" , commit_message="""Add model""" , )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--swinv2_name",
default="swinv2_tiny_patch4_window8_256",
type=str,
help="Name of the Swinv2 timm model you\'d like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
lowercase_ = parser.parse_args()
convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
| 365 | import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = "▁"
lowercase_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
lowercase_ = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
lowercase_ = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
lowercase_ = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
lowercase_ = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = ["input_ids"]
A : Tuple = VOCAB_FILES_NAMES
A : List[Any] = PRETRAINED_INIT_CONFIGURATION
A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
A : Optional[Any] = RESOURCE_FILES_NAMES
def __init__( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]="utf8" , _lowerCAmelCase : Optional[Any]="[UNK]" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : List[Any]="[MASK]" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Any , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , vocab_file=_lowerCAmelCase , encoding=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , )
__snake_case : List[Any] = do_lower_case
__snake_case : Any = sentencepiece_model_ckpt
__snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCAmelCase )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
__snake_case : int = self.load_vocab(filepath=_lowerCAmelCase )
else:
__snake_case : Tuple = {self.sp_model.id_to_piece(_lowerCAmelCase ): id for id in range(self.sp_model.get_piece_size() )}
__snake_case : str = {v: k for k, v in self.vocab.items()}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[Any] ):
if text is None:
return None
__snake_case : List[Any] = self.tokenize(_lowerCAmelCase )
__snake_case , __snake_case : Optional[Any] = """""", []
for i, ch in enumerate(_lowerCAmelCase ):
if ch in self.SP_CHAR_MAPPING:
__snake_case : Any = self.SP_CHAR_MAPPING.get(_lowerCAmelCase )
else:
__snake_case : Dict = unicodedata.normalize("""NFKC""" , _lowerCAmelCase )
if self.is_whitespace(_lowerCAmelCase ):
continue
normalized_text += ch
char_mapping.extend([i] * len(_lowerCAmelCase ) )
__snake_case , __snake_case , __snake_case : str = normalized_text, [], 0
if self.do_lower_case:
__snake_case : int = text.lower()
for token in split_tokens:
if token[:1] == "▁":
__snake_case : int = token[1:]
__snake_case : Optional[int] = text[offset:].index(_lowerCAmelCase ) + offset
__snake_case : int = start + len(_lowerCAmelCase )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
__snake_case : str = end
return token_mapping
@property
def snake_case__ ( self : Tuple ):
return len(self.vocab )
def snake_case__ ( self : Dict ):
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : int ):
__snake_case : str = self.__dict__.copy()
__snake_case : Union[str, Any] = None
return state
def __setstate__( self : Optional[Any] , _lowerCAmelCase : List[str] ):
__snake_case : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__snake_case : Optional[Any] = {}
__snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] ):
return "".join((self.SP_CHAR_MAPPING.get(_lowerCAmelCase , _lowerCAmelCase ) for c in text) )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[int]=0.1 ):
if self.sp_model_kwargs.get("""enable_sampling""" ) is True:
__snake_case : List[str] = True
if self.sp_model_kwargs.get("""alpha""" ) is not None:
__snake_case : Dict = self.sp_model_kwargs.get("""alpha""" )
if self.sp_model_kwargs.get("""nbest_size""" ) is not None:
__snake_case : List[Any] = self.sp_model_kwargs.get("""nbest_size""" )
if not enable_sampling:
__snake_case : str = self.sp_model.EncodeAsPieces(_lowerCAmelCase )
else:
__snake_case : Tuple = self.sp_model.SampleEncodeAsPieces(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : Union[str, Any] = []
for pi, piece in enumerate(_lowerCAmelCase ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(_lowerCAmelCase ) and pi != 0:
new_pieces.append(_lowerCAmelCase )
continue
else:
continue
__snake_case : Optional[int] = 0
for i, chunk in enumerate(_lowerCAmelCase ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(_lowerCAmelCase ) or self.is_punct(_lowerCAmelCase ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(_lowerCAmelCase )
__snake_case : Tuple = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : Tuple = i
if len(_lowerCAmelCase ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
__snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
__snake_case : int = self.convert_ids_to_tokens(_lowerCAmelCase )
__snake_case : Any = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict ):
return self.reverse_vocab.get(_lowerCAmelCase , self.unk_token )
def snake_case__ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
__snake_case : Optional[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ):
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1]
return [1] + ([0] * len(_lowerCAmelCase )) + [1]
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(_lowerCAmelCase ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(_lowerCAmelCase ) + 1) + [1] * (len(_lowerCAmelCase ) + 3)
def snake_case__ ( self : Tuple , _lowerCAmelCase : List[str] ):
if "\u4e00" <= char <= "\u9fff":
return True
return False
def snake_case__ ( self : List[str] , _lowerCAmelCase : Any ):
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def snake_case__ ( self : int , _lowerCAmelCase : List[Any] ):
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def snake_case__ ( self : str , _lowerCAmelCase : Optional[Any] ):
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(_lowerCAmelCase ) == 1:
__snake_case : Dict = unicodedata.category(_lowerCAmelCase )
if cat == "Zs":
return True
return False
def snake_case__ ( self : str , _lowerCAmelCase : List[Any] ):
__snake_case : Dict = {}
with io.open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for index, line in enumerate(_lowerCAmelCase ):
__snake_case : Tuple = line.rstrip("""\n""" )
__snake_case : List[str] = int(_lowerCAmelCase )
return token_to_idx
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : Optional[int] = 0
if os.path.isdir(_lowerCAmelCase ):
__snake_case : int = os.path.join(
_lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
else:
__snake_case : Optional[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory
with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
""" Please check that the vocabulary is not corrupted!""" )
__snake_case : Union[str, Any] = token_index
writer.write(token + """\n""" )
index += 1
__snake_case : List[Any] = os.path.join(_lowerCAmelCase , """sentencepiece.bpe.model""" )
with open(_lowerCAmelCase , """wb""" ) as fi:
__snake_case : List[Any] = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (vocab_file,)
| 20 | 0 |
import argparse
import csv
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from tqdm import tqdm, trange
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
AdamW,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTTokenizer,
get_linear_schedule_with_warmup,
)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
lowercase_ = logging.getLogger(__name__)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
__snake_case : Union[str, Any] = np.argmax(lowerCAmelCase__ , axis=1 )
return np.sum(outputs == labels )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
with open(lowerCAmelCase__ , encoding="""utf_8""" ) as f:
__snake_case : Union[str, Any] = csv.reader(lowerCAmelCase__ )
__snake_case : Any = []
next(lowerCAmelCase__ ) # skip the first line
for line in tqdm(lowerCAmelCase__ ):
output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) )
return output
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
__snake_case : str = []
for dataset in encoded_datasets:
__snake_case : List[str] = len(lowerCAmelCase__ )
__snake_case : Union[str, Any] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa )
__snake_case : Optional[Any] = np.zeros((n_batch, 2) , dtype=np.intaa )
__snake_case : Optional[Any] = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa )
__snake_case : Dict = np.zeros((n_batch,) , dtype=np.intaa )
for (
i,
(story, conta, conta, mc_label),
) in enumerate(lowerCAmelCase__ ):
__snake_case : Dict = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
__snake_case : int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
__snake_case : Tuple = with_conta
__snake_case : str = with_conta
__snake_case : Dict = len(lowerCAmelCase__ ) - 1
__snake_case : Tuple = len(lowerCAmelCase__ ) - 1
__snake_case : Tuple = with_conta
__snake_case : Optional[Any] = with_conta
__snake_case : Dict = mc_label
__snake_case : Tuple = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(lowerCAmelCase__ ) for t in all_inputs ) )
return tensor_datasets
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Dict = argparse.ArgumentParser()
parser.add_argument("""--model_name""" , type=lowerCAmelCase__ , default="""openai-gpt""" , help="""pretrained model name""" )
parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" )
parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""" )
parser.add_argument(
"""--output_dir""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""The output directory where the model predictions and checkpoints will be written.""" , )
parser.add_argument("""--train_dataset""" , type=lowerCAmelCase__ , default="""""" )
parser.add_argument("""--eval_dataset""" , type=lowerCAmelCase__ , default="""""" )
parser.add_argument("""--seed""" , type=lowerCAmelCase__ , default=4_2 )
parser.add_argument("""--num_train_epochs""" , type=lowerCAmelCase__ , default=3 )
parser.add_argument("""--train_batch_size""" , type=lowerCAmelCase__ , default=8 )
parser.add_argument("""--eval_batch_size""" , type=lowerCAmelCase__ , default=1_6 )
parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=lowerCAmelCase__ , help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--max_grad_norm""" , type=lowerCAmelCase__ , default=1 )
parser.add_argument(
"""--max_steps""" , default=-1 , type=lowerCAmelCase__ , help=(
"""If > 0: set total number of training steps to perform. Override num_train_epochs."""
) , )
parser.add_argument(
"""--gradient_accumulation_steps""" , type=lowerCAmelCase__ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , )
parser.add_argument("""--learning_rate""" , type=lowerCAmelCase__ , default=6.25E-5 )
parser.add_argument("""--warmup_steps""" , default=0 , type=lowerCAmelCase__ , help="""Linear warmup over warmup_steps.""" )
parser.add_argument("""--lr_schedule""" , type=lowerCAmelCase__ , default="""warmup_linear""" )
parser.add_argument("""--weight_decay""" , type=lowerCAmelCase__ , default=0.01 )
parser.add_argument("""--lm_coef""" , type=lowerCAmelCase__ , default=0.9 )
parser.add_argument("""--n_valid""" , type=lowerCAmelCase__ , default=3_7_4 )
parser.add_argument("""--server_ip""" , type=lowerCAmelCase__ , default="""""" , help="""Can be used for distant debugging.""" )
parser.add_argument("""--server_port""" , type=lowerCAmelCase__ , default="""""" , help="""Can be used for distant debugging.""" )
__snake_case : Union[str, Any] = parser.parse_args()
print(lowerCAmelCase__ )
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("""Waiting for debugger attach""" )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase__ )
ptvsd.wait_for_attach()
random.seed(args.seed )
np.random.seed(args.seed )
torch.manual_seed(args.seed )
torch.cuda.manual_seed_all(args.seed )
__snake_case : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
__snake_case : Tuple = torch.cuda.device_count()
logger.info("""device: {}, n_gpu {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) )
if not args.do_train and not args.do_eval:
raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" )
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
__snake_case : List[Any] = ["""_start_""", """_delimiter_""", """_classify_"""]
__snake_case : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name )
tokenizer.add_tokens(lowerCAmelCase__ )
__snake_case : Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
__snake_case : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name )
model.resize_token_embeddings(len(lowerCAmelCase__ ) )
model.to(lowerCAmelCase__ )
# Load and encode the datasets
def tokenize_and_encode(__SCREAMING_SNAKE_CASE : List[str] ):
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(lowerCAmelCase__ ) )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
return obj
return [tokenize_and_encode(lowerCAmelCase__ ) for o in obj]
logger.info("""Encoding dataset...""" )
__snake_case : Any = load_rocstories_dataset(args.train_dataset )
__snake_case : Optional[Any] = load_rocstories_dataset(args.eval_dataset )
__snake_case : Optional[int] = (train_dataset, eval_dataset)
__snake_case : str = tokenize_and_encode(lowerCAmelCase__ )
# Compute the max input length for the Transformer
__snake_case : Optional[Any] = model.config.n_positions // 2 - 2
__snake_case : Dict = max(
len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3
for dataset in encoded_datasets
for story, conta, conta, _ in dataset )
__snake_case : Any = min(lowerCAmelCase__ , model.config.n_positions ) # Max size of input for the pre-trained model
# Prepare inputs tensors and dataloaders
__snake_case : Any = pre_process_datasets(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ )
__snake_case : Union[str, Any] = tensor_datasets[0], tensor_datasets[1]
__snake_case : Optional[Any] = TensorDataset(*lowerCAmelCase__ )
__snake_case : Optional[Any] = RandomSampler(lowerCAmelCase__ )
__snake_case : int = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ , batch_size=args.train_batch_size )
__snake_case : Optional[int] = TensorDataset(*lowerCAmelCase__ )
__snake_case : Union[str, Any] = SequentialSampler(lowerCAmelCase__ )
__snake_case : Any = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ , batch_size=args.eval_batch_size )
# Prepare optimizer
if args.do_train:
if args.max_steps > 0:
__snake_case : Dict = args.max_steps
__snake_case : str = args.max_steps // (len(lowerCAmelCase__ ) // args.gradient_accumulation_steps) + 1
else:
__snake_case : Optional[int] = len(lowerCAmelCase__ ) // args.gradient_accumulation_steps * args.num_train_epochs
__snake_case : Union[str, Any] = list(model.named_parameters() )
__snake_case : Dict = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""]
__snake_case : List[str] = [
{
"""params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )],
"""weight_decay""": args.weight_decay,
},
{"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0},
]
__snake_case : Union[str, Any] = AdamW(lowerCAmelCase__ , lr=args.learning_rate , eps=args.adam_epsilon )
__snake_case : Dict = get_linear_schedule_with_warmup(
lowerCAmelCase__ , num_warmup_steps=args.warmup_steps , num_training_steps=lowerCAmelCase__ )
if args.do_train:
__snake_case : List[str] = 0, 0, None
model.train()
for _ in trange(int(args.num_train_epochs ) , desc="""Epoch""" ):
__snake_case : List[str] = 0
__snake_case : Any = 0
__snake_case : Optional[int] = tqdm(lowerCAmelCase__ , desc="""Training""" )
for step, batch in enumerate(lowerCAmelCase__ ):
__snake_case : Optional[Any] = tuple(t.to(lowerCAmelCase__ ) for t in batch )
__snake_case : str = batch
__snake_case : List[str] = model(lowerCAmelCase__ , mc_token_ids=lowerCAmelCase__ , lm_labels=lowerCAmelCase__ , mc_labels=lowerCAmelCase__ )
__snake_case : List[str] = args.lm_coef * losses[0] + losses[1]
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
tr_loss += loss.item()
__snake_case : Tuple = (
loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
)
nb_tr_steps += 1
__snake_case : Optional[Any] = """Training loss: {:.2e} lr: {:.2e}""".format(lowerCAmelCase__ , scheduler.get_lr()[0] )
# Save a trained model
if args.do_train:
# Save a trained model, configuration and tokenizer
__snake_case : Dict = model.module if hasattr(lowerCAmelCase__ , """module""" ) else model # Only save the model itself
# If we save using the predefined names, we can load using `from_pretrained`
__snake_case : Any = os.path.join(args.output_dir , lowerCAmelCase__ )
__snake_case : Optional[int] = os.path.join(args.output_dir , lowerCAmelCase__ )
torch.save(model_to_save.state_dict() , lowerCAmelCase__ )
model_to_save.config.to_json_file(lowerCAmelCase__ )
tokenizer.save_vocabulary(args.output_dir )
# Load a trained model and vocabulary that you have fine-tuned
__snake_case : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir )
__snake_case : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir )
model.to(lowerCAmelCase__ )
if args.do_eval:
model.eval()
__snake_case : Union[str, Any] = 0, 0
__snake_case : int = 0, 0
for batch in tqdm(lowerCAmelCase__ , desc="""Evaluating""" ):
__snake_case : str = tuple(t.to(lowerCAmelCase__ ) for t in batch )
__snake_case : Dict = batch
with torch.no_grad():
__snake_case : List[str] = model(
lowerCAmelCase__ , mc_token_ids=lowerCAmelCase__ , lm_labels=lowerCAmelCase__ , mc_labels=lowerCAmelCase__ )
__snake_case : str = mc_logits.detach().cpu().numpy()
__snake_case : str = mc_labels.to("""cpu""" ).numpy()
__snake_case : Dict = accuracy(lowerCAmelCase__ , lowerCAmelCase__ )
eval_loss += mc_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0 )
nb_eval_steps += 1
__snake_case : Optional[Any] = eval_loss / nb_eval_steps
__snake_case : Any = eval_accuracy / nb_eval_examples
__snake_case : Any = tr_loss / nb_tr_steps if args.do_train else None
__snake_case : Optional[int] = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss}
__snake_case : List[str] = os.path.join(args.output_dir , """eval_results.txt""" )
with open(lowerCAmelCase__ , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key in sorted(result.keys() ):
logger.info(""" %s = %s""" , lowerCAmelCase__ , str(result[key] ) )
writer.write("""%s = %s\n""" % (key, str(result[key] )) )
if __name__ == "__main__":
main()
| 366 | from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json",
"xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json",
"xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json",
"xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json",
"xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json",
"xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json",
"xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json",
"xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json",
"xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json",
"xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = "xlm"
A : List[str] = {
"hidden_size": "emb_dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
"n_words": "vocab_size", # For backward compatibility
}
def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any]=3_01_45 , _lowerCAmelCase : Optional[Any]=20_48 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : int=16 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=5_12 , _lowerCAmelCase : List[Any]=20_48**-0.5 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple="first" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Tuple , ):
__snake_case : Optional[Any] = vocab_size
__snake_case : Tuple = emb_dim
__snake_case : int = n_layers
__snake_case : List[str] = n_heads
__snake_case : Union[str, Any] = dropout
__snake_case : Optional[int] = attention_dropout
__snake_case : Optional[Any] = gelu_activation
__snake_case : Tuple = sinusoidal_embeddings
__snake_case : List[Any] = causal
__snake_case : Dict = asm
__snake_case : int = n_langs
__snake_case : str = use_lang_emb
__snake_case : Dict = layer_norm_eps
__snake_case : List[Any] = bos_index
__snake_case : Union[str, Any] = eos_index
__snake_case : Dict = pad_index
__snake_case : Any = unk_index
__snake_case : Dict = mask_index
__snake_case : Any = is_encoder
__snake_case : Dict = max_position_embeddings
__snake_case : Optional[Any] = embed_init_std
__snake_case : List[Any] = init_std
__snake_case : str = summary_type
__snake_case : Optional[Any] = summary_use_proj
__snake_case : str = summary_activation
__snake_case : Optional[int] = summary_proj_to_labels
__snake_case : Dict = summary_first_dropout
__snake_case : Dict = start_n_top
__snake_case : int = end_n_top
__snake_case : str = mask_token_id
__snake_case : int = lang_id
if "n_words" in kwargs:
__snake_case : Dict = kwargs["""n_words"""]
super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
@property
def snake_case__ ( self : Dict ):
if self.task == "multiple-choice":
__snake_case : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__snake_case : Tuple = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 20 | 0 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : int , *_lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : str ):
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
__snake_case : List[Any] = eval_examples
__snake_case : List[Any] = post_process_function
def snake_case__ ( self : Any , _lowerCAmelCase : Optional[Dataset] = None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Optional[List[str]] = None , _lowerCAmelCase : str = "eval" , **_lowerCAmelCase : Any , ):
__snake_case : List[Any] = gen_kwargs.copy()
__snake_case : Union[str, Any] = (
gen_kwargs["max_length"] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length
)
__snake_case : Optional[Any] = (
gen_kwargs["num_beams"] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams
)
__snake_case : Dict = gen_kwargs
__snake_case : Any = self.eval_dataset if eval_dataset is None else eval_dataset
__snake_case : Any = self.get_eval_dataloader(lowerCAmelCase__ )
__snake_case : Tuple = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
__snake_case : Dict = self.compute_metrics
__snake_case : Optional[int] = None
__snake_case : Tuple = time.time()
__snake_case : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__snake_case : Optional[Any] = eval_loop(
lowerCAmelCase__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , metric_key_prefix=lowerCAmelCase__ , )
finally:
__snake_case : Any = compute_metrics
__snake_case : List[Any] = self.args.eval_batch_size * self.args.world_size
if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
lowerCAmelCase__ , lowerCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
__snake_case : Optional[Any] = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__snake_case : List[Any] = self.compute_metrics(lowerCAmelCase__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'''{metric_key_prefix}_''' ):
__snake_case : List[str] = metrics.pop(lowerCAmelCase__ )
metrics.update(output.metrics )
else:
__snake_case : List[Any] = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(lowerCAmelCase__ )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
__snake_case : Union[str, Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCAmelCase__ )
return metrics
def snake_case__ ( self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : str = "test" , **_lowerCAmelCase : List[str] ):
__snake_case : Dict = gen_kwargs.copy()
__snake_case : Any = self.get_test_dataloader(lowerCAmelCase__ )
# Temporarily disable metric computation, we will do it in the loop here.
__snake_case : List[Any] = self.compute_metrics
__snake_case : Tuple = None
__snake_case : str = time.time()
__snake_case : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__snake_case : Optional[int] = eval_loop(
lowerCAmelCase__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , metric_key_prefix=lowerCAmelCase__ , )
finally:
__snake_case : Optional[Any] = compute_metrics
__snake_case : Optional[Any] = self.args.eval_batch_size * self.args.world_size
if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
lowerCAmelCase__ , lowerCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
__snake_case : Dict = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , """predict""" )
__snake_case : Union[str, Any] = self.compute_metrics(lowerCAmelCase__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'''{metric_key_prefix}_''' ):
__snake_case : Tuple = metrics.pop(lowerCAmelCase__ )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCAmelCase__ )
| 367 | import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json",
"facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[Any] = "encodec"
def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase : Tuple=2_40_00 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : int=1_28 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Union[str, Any]=[8, 5, 4, 2] , _lowerCAmelCase : str="weight_norm" , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict="reflect" , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : Optional[int]=10_24 , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , **_lowerCAmelCase : List[Any] , ):
__snake_case : Optional[int] = target_bandwidths
__snake_case : int = sampling_rate
__snake_case : List[Any] = audio_channels
__snake_case : str = normalize
__snake_case : Union[str, Any] = chunk_length_s
__snake_case : Union[str, Any] = overlap
__snake_case : Union[str, Any] = hidden_size
__snake_case : Union[str, Any] = num_filters
__snake_case : Optional[Any] = num_residual_layers
__snake_case : List[Any] = upsampling_ratios
__snake_case : List[str] = norm_type
__snake_case : Union[str, Any] = kernel_size
__snake_case : Optional[int] = last_kernel_size
__snake_case : Optional[Any] = residual_kernel_size
__snake_case : Dict = dilation_growth_rate
__snake_case : int = use_causal_conv
__snake_case : Tuple = pad_mode
__snake_case : str = compress
__snake_case : Optional[Any] = num_lstm_layers
__snake_case : List[Any] = trim_right_ratio
__snake_case : Any = codebook_size
__snake_case : int = codebook_dim if codebook_dim is not None else hidden_size
__snake_case : int = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' )
super().__init__(**_lowerCAmelCase )
@property
def snake_case__ ( self : int ):
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def snake_case__ ( self : int ):
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def snake_case__ ( self : Union[str, Any] ):
__snake_case : List[str] = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def snake_case__ ( self : Tuple ):
return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 20 | 0 |
import baseaa
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
return baseaa.aaaencode(string.encode("""utf-8""" ) )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bytes ):
'''simple docstring'''
return baseaa.aaadecode(_UpperCamelCase ).decode("""utf-8""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 368 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : str = []
__snake_case , __snake_case : List[str] = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
__snake_case : List[Any] = result + left + right
return input_list
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
if len(__SCREAMING_SNAKE_CASE ) <= 1:
return input_list
__snake_case : Union[str, Any] = list(__SCREAMING_SNAKE_CASE )
# iteration for two-way merging
__snake_case : Tuple = 2
while p <= len(__SCREAMING_SNAKE_CASE ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = i
__snake_case : str = i + p - 1
__snake_case : Optional[Any] = (low + high + 1) // 2
__snake_case : str = merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# final merge of last two parts
if p * 2 >= len(__SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = i
__snake_case : str = merge(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
if user_input == "":
lowercase_ = []
else:
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
print(iter_merge_sort(unsorted))
| 20 | 0 |
from cva import destroyAllWindows, imread, imshow, waitKey
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
__snake_case : Optional[int] = img.shape[0], img.shape[1]
# converting each pixel's color to its negative
for i in range(a__ ):
for j in range(a__ ):
__snake_case : Any = [2_5_5, 2_5_5, 2_5_5] - img[i][j]
return img
if __name__ == "__main__":
# read original image
lowercase_ = imread("image_data/lena.jpg", 1)
# convert to its negative
lowercase_ = convert_to_negative(img)
# show result image
imshow("negative of original image", img)
waitKey(0)
destroyAllWindows()
| 369 | import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
lowercase_ = "Usage of script: script_name <size_of_canvas:int>"
lowercase_ = [0] * 1_00 + [1] * 10
random.shuffle(choice)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : List[str] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )]
return canvas
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
for i, row in enumerate(__SCREAMING_SNAKE_CASE ):
for j, _ in enumerate(__SCREAMING_SNAKE_CASE ):
__snake_case : int = bool(random.getrandbits(1 ) )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
__snake_case : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) )
for r, row in enumerate(__SCREAMING_SNAKE_CASE ):
for c, pt in enumerate(__SCREAMING_SNAKE_CASE ):
__snake_case : Optional[Any] = __judge_point(
__SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] )
__snake_case : List[str] = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
__snake_case : list[list[bool]] = current_canvas.tolist()
return return_canvas
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
__snake_case : Any = 0
__snake_case : Dict = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status:
alive += 1
else:
dead += 1
# handling duplicate entry for focus pt.
if pt:
alive -= 1
else:
dead -= 1
# running the rules of game here.
__snake_case : str = pt
if pt:
if alive < 2:
__snake_case : Optional[Any] = False
elif alive == 2 or alive == 3:
__snake_case : Union[str, Any] = True
elif alive > 3:
__snake_case : Optional[int] = False
else:
if alive == 3:
__snake_case : List[Any] = True
return state
if __name__ == "__main__":
if len(sys.argv) != 2:
raise Exception(usage_doc)
lowercase_ = int(sys.argv[1])
# main working structure of this module.
lowercase_ = create_canvas(canvas_size)
seed(c)
lowercase_ , lowercase_ = plt.subplots()
fig.show()
lowercase_ = ListedColormap(["w", "k"])
try:
while True:
lowercase_ = run(c)
ax.matshow(c, cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass
| 20 | 0 |
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Tuple , _lowerCAmelCase : Collection[float] | None = None ):
if components is None:
__snake_case : Dict = []
__snake_case : Tuple = list(lowercase_ )
def __len__( self : str ):
return len(self.__components )
def __str__( self : List[Any] ):
return "(" + ",".join(map(lowercase_ , self.__components ) ) + ")"
def __add__( self : List[Any] , _lowerCAmelCase : Vector ):
__snake_case : Optional[Any] = len(self )
if size == len(lowercase_ ):
__snake_case : List[Any] = [self.__components[i] + other.component(lowercase_ ) for i in range(lowercase_ )]
return Vector(lowercase_ )
else:
raise Exception("""must have the same size""" )
def __sub__( self : Dict , _lowerCAmelCase : Vector ):
__snake_case : List[str] = len(self )
if size == len(lowercase_ ):
__snake_case : str = [self.__components[i] - other.component(lowercase_ ) for i in range(lowercase_ )]
return Vector(lowercase_ )
else: # error case
raise Exception("""must have the same size""" )
@overload
def __mul__( self : List[Any] , _lowerCAmelCase : float ):
...
@overload
def __mul__( self : Dict , _lowerCAmelCase : Vector ):
...
def __mul__( self : Any , _lowerCAmelCase : float | Vector ):
if isinstance(lowercase_ , (float, int) ):
__snake_case : Dict = [c * other for c in self.__components]
return Vector(lowercase_ )
elif isinstance(lowercase_ , lowercase_ ) and len(self ) == len(lowercase_ ):
__snake_case : Union[str, Any] = len(self )
__snake_case : List[Any] = [self.__components[i] * other.component(lowercase_ ) for i in range(lowercase_ )]
return sum(lowercase_ )
else: # error case
raise Exception("""invalid operand!""" )
def snake_case__ ( self : Tuple ):
return Vector(self.__components )
def snake_case__ ( self : str , _lowerCAmelCase : int ):
if isinstance(lowercase_ , lowercase_ ) and -len(self.__components ) <= i < len(self.__components ):
return self.__components[i]
else:
raise Exception("""index out of range""" )
def snake_case__ ( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : float ):
assert -len(self.__components ) <= pos < len(self.__components )
__snake_case : List[Any] = value
def snake_case__ ( self : int ):
if len(self.__components ) == 0:
raise Exception("""Vector is empty""" )
__snake_case : Union[str, Any] = [c**2 for c in self.__components]
return math.sqrt(sum(lowercase_ ) )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Vector , _lowerCAmelCase : bool = False ):
__snake_case : List[Any] = self * other
__snake_case : List[Any] = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den ) )
else:
return math.acos(num / den )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
return Vector([0] * dimension )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (isinstance(UpperCAmelCase__ , UpperCAmelCase__ ))
__snake_case : Dict = [0] * dimension
__snake_case : List[Any] = 1
return Vector(UpperCAmelCase__ )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : Vector , __SCREAMING_SNAKE_CASE : Vector ):
'''simple docstring'''
assert (
isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
and isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
and (isinstance(UpperCAmelCase__ , (int, float) ))
)
return x * scalar + y
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
random.seed(UpperCAmelCase__ )
__snake_case : Optional[int] = [random.randint(UpperCAmelCase__ , UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ )]
return Vector(UpperCAmelCase__ )
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Union[str, Any] , _lowerCAmelCase : list[list[float]] , _lowerCAmelCase : int , _lowerCAmelCase : int ):
__snake_case : int = matrix
__snake_case : Optional[int] = w
__snake_case : Dict = h
def __str__( self : Any ):
__snake_case : Optional[int] = """"""
for i in range(self.__height ):
ans += "|"
for j in range(self.__width ):
if j < self.__width - 1:
ans += str(self.__matrix[i][j] ) + ","
else:
ans += str(self.__matrix[i][j] ) + "|\n"
return ans
def __add__( self : Dict , _lowerCAmelCase : Matrix ):
if self.__width == other.width() and self.__height == other.height():
__snake_case : int = []
for i in range(self.__height ):
__snake_case : List[str] = [
self.__matrix[i][j] + other.component(lowercase_ , lowercase_ )
for j in range(self.__width )
]
matrix.append(lowercase_ )
return Matrix(lowercase_ , self.__width , self.__height )
else:
raise Exception("""matrix must have the same dimension!""" )
def __sub__( self : Any , _lowerCAmelCase : Matrix ):
if self.__width == other.width() and self.__height == other.height():
__snake_case : Optional[int] = []
for i in range(self.__height ):
__snake_case : Optional[int] = [
self.__matrix[i][j] - other.component(lowercase_ , lowercase_ )
for j in range(self.__width )
]
matrix.append(lowercase_ )
return Matrix(lowercase_ , self.__width , self.__height )
else:
raise Exception("""matrices must have the same dimension!""" )
@overload
def __mul__( self : List[str] , _lowerCAmelCase : float ):
...
@overload
def __mul__( self : List[Any] , _lowerCAmelCase : Vector ):
...
def __mul__( self : str , _lowerCAmelCase : float | Vector ):
if isinstance(lowercase_ , lowercase_ ): # matrix-vector
if len(lowercase_ ) == self.__width:
__snake_case : int = zero_vector(self.__height )
for i in range(self.__height ):
__snake_case : List[str] = [
self.__matrix[i][j] * other.component(lowercase_ )
for j in range(self.__width )
]
ans.change_component(lowercase_ , sum(lowercase_ ) )
return ans
else:
raise Exception(
"""vector must have the same size as the """
"""number of columns of the matrix!""" )
elif isinstance(lowercase_ , (int, float) ): # matrix-scalar
__snake_case : List[str] = [
[self.__matrix[i][j] * other for j in range(self.__width )]
for i in range(self.__height )
]
return Matrix(lowercase_ , self.__width , self.__height )
return None
def snake_case__ ( self : List[str] ):
return self.__height
def snake_case__ ( self : Optional[Any] ):
return self.__width
def snake_case__ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int ):
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception("""change_component: indices out of bounds""" )
def snake_case__ ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float ):
if 0 <= x < self.__height and 0 <= y < self.__width:
__snake_case : int = value
else:
raise Exception("""change_component: indices out of bounds""" )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ):
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
__snake_case : int = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(lowercase_ ) ):
__snake_case : Optional[int] = minor[i][:y] + minor[i][y + 1 :]
return Matrix(lowercase_ , self.__width - 1 , self.__height - 1 ).determinant()
def snake_case__ ( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int ):
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(lowercase_ , lowercase_ )
else:
raise Exception("""Indices out of bounds""" )
def snake_case__ ( self : List[Any] ):
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
if self.__height < 1:
raise Exception("""Matrix has no element""" )
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
__snake_case : Any = [
self.__matrix[0][y] * self.cofactor(0 , lowercase_ ) for y in range(self.__width )
]
return sum(lowercase_ )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : list[list[float]] = [[0] * n for _ in range(UpperCAmelCase__ )]
return Matrix(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
random.seed(UpperCAmelCase__ )
__snake_case : list[list[float]] = [
[random.randint(UpperCAmelCase__ , UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )
]
return Matrix(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
| 370 | import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Union[Dict, Any]] = None , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : int=2 ):
'''simple docstring'''
from .. import __version__
__snake_case : List[Any] = take_from
__snake_case : List[Any] = ()
if not isinstance(args[0] , __SCREAMING_SNAKE_CASE ):
__snake_case : str = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(__SCREAMING_SNAKE_CASE ):
raise ValueError(
F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''''
F''' version {__version__} is >= {version_name}''' )
__snake_case : Optional[Any] = None
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__SCREAMING_SNAKE_CASE ),)
__snake_case : Optional[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''
elif hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
values += (getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),)
__snake_case : Any = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''
elif deprecated_kwargs is None:
__snake_case : Tuple = F'''`{attribute}` is deprecated and will be removed in version {version_name}.'''
if warning is not None:
__snake_case : Optional[Any] = warning + """ """ if standard_warn else """"""
warnings.warn(warning + message , __SCREAMING_SNAKE_CASE , stacklevel=__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) > 0:
__snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1]
__snake_case : int = call_frame.filename
__snake_case : int = call_frame.lineno
__snake_case : List[str] = call_frame.function
__snake_case , __snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' )
if len(__SCREAMING_SNAKE_CASE ) == 0:
return
elif len(__SCREAMING_SNAKE_CASE ) == 1:
return values[0]
return values
| 20 | 0 |
import os
from datetime import datetime as dt
from github import Github
lowercase_ = [
"good first issue",
"feature request",
"wip",
]
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : List[str] = Github(os.environ["""GITHUB_TOKEN"""] )
__snake_case : str = g.get_repo("""huggingface/accelerate""" )
__snake_case : Dict = repo.get_issues(state="""open""" )
for issue in open_issues:
__snake_case : Optional[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda __SCREAMING_SNAKE_CASE : i.created_at , reverse=__a )
__snake_case : Tuple = comments[0] if len(__a ) > 0 else None
__snake_case : Any = dt.utcnow()
__snake_case : Optional[int] = (current_time - issue.updated_at).days
__snake_case : str = (current_time - issue.created_at).days
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and days_since_updated > 7
and days_since_creation >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Close issue since it has been 7 days of inactivity since bot mention.
issue.edit(state="""closed""" )
elif (
days_since_updated > 2_3
and days_since_creation >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Add stale comment
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
if __name__ == "__main__":
main()
| 371 | import argparse
import os
from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPTaConfig,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
TaConfig,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPTaLMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFTaForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWavaVecaModel,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
WavaVecaConfig,
WavaVecaModel,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tfa_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPTaLMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
TaForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
logging.set_verbosity_info()
lowercase_ = {
"bart": (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"bert": (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-base-cased-finetuned-mrpc": (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"dpr": (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"gpt2": (
GPTaConfig,
TFGPTaLMHeadModel,
GPTaLMHeadModel,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlnet": (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm": (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm-roberta": (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"transfo-xl": (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"openai-gpt": (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"roberta": (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"layoutlm": (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"roberta-large-mnli": (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"camembert": (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"flaubert": (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert": (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert-base-distilled-squad": (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert": (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert-visual-feature-encoder": (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"ctrl": (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"albert": (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"t5": (
TaConfig,
TFTaForConditionalGeneration,
TaForConditionalGeneration,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"electra": (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"wav2vec2": (
WavaVecaConfig,
TFWavaVecaModel,
WavaVecaModel,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=True ):
'''simple docstring'''
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' )
__snake_case , __snake_case , __snake_case , __snake_case : Any = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
__snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
__snake_case : Dict = config_class.from_json_file(__SCREAMING_SNAKE_CASE )
__snake_case : Tuple = True
__snake_case : Union[str, Any] = True
print(F'''Building TensorFlow model from configuration: {config}''' )
__snake_case : List[Any] = model_class(__SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
__snake_case : Optional[Any] = cached_file(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
# Load PyTorch checkpoint in tf2 model:
__snake_case : List[Any] = load_pytorch_checkpoint_in_tfa_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if compare_with_pt_model:
__snake_case : Tuple = tf_model(tf_model.dummy_inputs , training=__SCREAMING_SNAKE_CASE ) # build the network
__snake_case : List[str] = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" )
__snake_case : Any = pt_model_class.from_pretrained(
pretrained_model_name_or_path=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE , state_dict=__SCREAMING_SNAKE_CASE )
with torch.no_grad():
__snake_case : Union[str, Any] = pt_model(**pt_model.dummy_inputs )
__snake_case : Any = pto[0].numpy()
__snake_case : Optional[int] = tfo[0].numpy()
__snake_case : Optional[int] = np.amax(np.abs(np_pt - np_tf ) )
print(F'''Max absolute difference between models outputs {diff}''' )
assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}'''
# Save pytorch-model
print(F'''Save TensorFlow model to {tf_dump_path}''' )
tf_model.save_weights(__SCREAMING_SNAKE_CASE , save_format="""h5""" )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Any=False , ):
'''simple docstring'''
if args_model_type is None:
__snake_case : Tuple = list(MODEL_CLASSES.keys() )
else:
__snake_case : Union[str, Any] = [args_model_type]
for j, model_type in enumerate(__SCREAMING_SNAKE_CASE , start=1 ):
print("""=""" * 1_0_0 )
print(F''' Converting model type {j}/{len(__SCREAMING_SNAKE_CASE )}: {model_type}''' )
print("""=""" * 1_0_0 )
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' )
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
__snake_case : int = list(aws_model_maps.keys() )
if config_shortcut_names_or_path is None:
__snake_case : Union[str, Any] = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , start=1 ):
print("""-""" * 1_0_0 )
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' )
continue
__snake_case : List[Any] = model_shortcut_name
elif only_convert_finetuned_models:
print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' )
continue
print(
F''' Converting checkpoint {i}/{len(__SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}''' )
print("""-""" * 1_0_0 )
if config_shortcut_name in aws_config_map:
__snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
else:
__snake_case : Dict = config_shortcut_name
if model_shortcut_name in aws_model_maps:
__snake_case : Union[str, Any] = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
else:
__snake_case : List[Any] = model_shortcut_name
if os.path.isfile(__SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = """converted_model"""
convert_pt_checkpoint_to_tf(
model_type=__SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=__SCREAMING_SNAKE_CASE , config_file=__SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(__SCREAMING_SNAKE_CASE , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__SCREAMING_SNAKE_CASE , )
if remove_cached_files:
os.remove(__SCREAMING_SNAKE_CASE )
os.remove(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file."
)
parser.add_argument(
"--model_type",
default=None,
type=str,
help=(
F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and '''
"convert all the models from AWS."
),
)
parser.add_argument(
"--pytorch_checkpoint_path",
default=None,
type=str,
help=(
"Path to the PyTorch checkpoint path or shortcut name to download from AWS. "
"If not given, will download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--config_file",
default=None,
type=str,
help=(
"The config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture. If not given and "
"--pytorch_checkpoint_path is not given or is a shortcut name "
"use the configuration associated to the shortcut name on the AWS"
),
)
parser.add_argument(
"--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions."
)
parser.add_argument(
"--use_cached_models",
action="store_true",
help="Use cached models if possible instead of updating to latest checkpoint versions.",
)
parser.add_argument(
"--remove_cached_files",
action="store_true",
help="Remove pytorch models after conversion (save memory when converting in batches).",
)
parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.")
lowercase_ = parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
| 20 | 0 |
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
if num < 0:
return False
__snake_case : int = num
__snake_case : int = 0
while num > 0:
__snake_case : Dict = rev_num * 1_0 + (num % 1_0)
num //= 1_0
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 350 | import random
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
__snake_case , __snake_case , __snake_case : Tuple = [], [], []
for element in data:
if element < pivot:
less.append(__SCREAMING_SNAKE_CASE )
elif element > pivot:
greater.append(__SCREAMING_SNAKE_CASE )
else:
equal.append(__SCREAMING_SNAKE_CASE )
return less, equal, greater
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
# index = len(items) // 2 when trying to find the median
# (value of index when items is sorted)
# invalid input
if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0:
return None
__snake_case : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )]
__snake_case : Tuple = 0
__snake_case , __snake_case , __snake_case : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE )
__snake_case : int = len(__SCREAMING_SNAKE_CASE )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# must be in larger
else:
return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
| 20 | 0 |
from itertools import permutations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : tuple ):
'''simple docstring'''
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
__snake_case : str = [7, 1_1, 1_3, 1_7]
for i, test in enumerate(_snake_case ):
if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0:
return False
return True
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int = 1_0 ):
'''simple docstring'''
return sum(
int("""""".join(map(_snake_case , _snake_case ) ) )
for num in permutations(range(_snake_case ) )
if is_substring_divisible(_snake_case ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 351 | import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"
),
}
}
lowercase_ = {
"junnyu/roformer_chinese_small": 15_36,
"junnyu/roformer_chinese_base": 15_36,
"junnyu/roformer_chinese_char_small": 5_12,
"junnyu/roformer_chinese_char_base": 5_12,
"junnyu/roformer_small_discriminator": 1_28,
"junnyu/roformer_small_generator": 1_28,
}
lowercase_ = {
"junnyu/roformer_chinese_small": {"do_lower_case": True},
"junnyu/roformer_chinese_base": {"do_lower_case": True},
"junnyu/roformer_chinese_char_small": {"do_lower_case": True},
"junnyu/roformer_chinese_char_base": {"do_lower_case": True},
"junnyu/roformer_small_discriminator": {"do_lower_case": True},
"junnyu/roformer_small_generator": {"do_lower_case": True},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = VOCAB_FILES_NAMES
A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : int = PRETRAINED_INIT_CONFIGURATION
A : List[str] = RoFormerTokenizer
def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any="[UNK]" , _lowerCAmelCase : int="[SEP]" , _lowerCAmelCase : Optional[int]="[PAD]" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Dict , ):
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
__snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case
or pre_tok_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents
):
__snake_case : Tuple = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) )
__snake_case : List[Any] = do_lower_case
__snake_case : Optional[Any] = strip_accents
__snake_case : List[str] = pre_tok_class(**_lowerCAmelCase )
__snake_case : Optional[Any] = do_lower_case
def __getstate__( self : Optional[Any] ):
__snake_case : Optional[int] = self.__dict__.copy()
__snake_case : Optional[Any] = BertPreTokenizer()
return state
def __setstate__( self : str , _lowerCAmelCase : Dict ):
__snake_case : str = d
__snake_case : int = self.__dict__["""_tokenizer"""].get_vocab()
__snake_case : List[str] = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=None ):
__snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
def snake_case__ ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Tuple , ):
__snake_case : Tuple = BertPreTokenizer()
return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
| 20 | 0 |
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
lowercase_ = logging.getLogger()
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
__snake_case : Optional[int] = '\n'.join(_A )
Path(_A ).open("""w""" ).writelines(_A )
lowercase_ = """patrickvonplaten/t5-tiny-random"""
lowercase_ = """sshleifer/bart-tiny-random"""
lowercase_ = """sshleifer/tiny-mbart"""
lowercase_ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[Any] ):
__snake_case : List[Any] = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source'
__snake_case : Optional[Any] = input_file_name.parent / 'utest_output.txt'
assert not output_file_name.exists()
__snake_case : Any = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.']
_dump_articles(snake_case__ , snake_case__ )
__snake_case : str = str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" )
__snake_case : Any = 'translation_en_to_de' if model == T5_TINY else 'summarization'
__snake_case : List[Any] = f'''\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '''.split()
with patch.object(snake_case__ , """argv""" , snake_case__ ):
run_generate()
assert Path(snake_case__ ).exists()
# os.remove(Path(output_file_name))
def snake_case__ ( self : Dict ):
self.run_eval_tester(snake_case__ )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def snake_case__ ( self : Tuple , _lowerCAmelCase : Dict ):
self.run_eval_tester(snake_case__ )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def snake_case__ ( self : List[str] , _lowerCAmelCase : int ):
__snake_case : Any = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source'
__snake_case : Tuple = input_file_name.parent / 'utest_output.txt'
assert not output_file_name.exists()
__snake_case : str = {
'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'],
'de': [
'Maschinelles Lernen ist großartig, oder?',
'Ich esse gerne Bananen',
'Morgen ist wieder ein toller Tag!',
],
}
__snake_case : Optional[Any] = Path(self.get_auto_remove_tmp_dir() )
__snake_case : List[Any] = str(tmp_dir / """scores.json""" )
__snake_case : List[Any] = str(tmp_dir / """val.target""" )
_dump_articles(snake_case__ , text["""en"""] )
_dump_articles(snake_case__ , text["""de"""] )
__snake_case : Union[str, Any] = 'translation_en_to_de' if model == T5_TINY else 'summarization'
__snake_case : List[Any] = f'''\n run_eval_search.py\n {model}\n {str(snake_case__ )}\n {str(snake_case__ )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '''.split()
testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] )
with patch.object(snake_case__ , """argv""" , snake_case__ ):
with CaptureStdout() as cs:
run_search()
__snake_case : int = [' num_beams | length_penalty', model, 'Best score args']
__snake_case : Any = ['Info']
if "translation" in task:
expected_strings.append("""bleu""" )
else:
expected_strings.extend(snake_case__ )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(snake_case__ ).exists()
os.remove(Path(snake_case__ ) )
| 352 | from __future__ import annotations
import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if depth < 0:
raise ValueError("""Depth cannot be less than 0""" )
if len(__SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("""Scores cannot be empty""" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
return min(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3]
__snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 )
print("""Optimal value : """ , end="""""" )
print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 20 | 0 |
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def __lowerCAmelCase ( *_A : List[str] ):
'''simple docstring'''
with open(_A , """r""" ) as fh:
fcntl.flock(_A , fcntl.LOCK_EX )
try:
print(*_A )
finally:
fcntl.flock(_A , fcntl.LOCK_UN )
lowercase_ = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
lowercase_ = torch.device("cuda", local_rank)
lowercase_ = socket.gethostname()
lowercase_ = F'''[{hostname}-{local_rank}]'''
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
lowercase_ = dist.get_rank()
lowercase_ = dist.get_world_size()
printflock(F'''{gpu} is OK (global rank: {rank}/{world_size})''')
dist.barrier()
if rank == 0:
printflock(F'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''')
except Exception:
printflock(F'''{gpu} is broken''')
raise
| 353 | import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
lowercase_ = None
lowercase_ = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
lowercase_ = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : bool = True
A : Optional[str] = None
# Automatically constructed
A : ClassVar[str] = "PIL.Image.Image"
A : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} )
A : str = field(default="Image" , init=__UpperCamelCase , repr=__UpperCamelCase )
def __call__( self : Any ):
return self.pa_type
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
__snake_case : str = np.array(_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": value, "bytes": None}
elif isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": None, "bytes": value}
elif isinstance(_lowerCAmelCase , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(_lowerCAmelCase )
elif isinstance(_lowerCAmelCase , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(_lowerCAmelCase )
elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("""path""" )}
elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )}
else:
raise ValueError(
f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def snake_case__ ( self : List[str] , _lowerCAmelCase : dict , _lowerCAmelCase : Dict=None ):
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support decoding images, please install 'Pillow'.""" )
if token_per_repo_id is None:
__snake_case : Tuple = {}
__snake_case , __snake_case : str = value["""path"""], value["""bytes"""]
if bytes_ is None:
if path is None:
raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
else:
if is_local_path(_lowerCAmelCase ):
__snake_case : str = PIL.Image.open(_lowerCAmelCase )
else:
__snake_case : List[str] = path.split("""::""" )[-1]
try:
__snake_case : Dict = string_to_dict(_lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""]
__snake_case : int = token_per_repo_id.get(_lowerCAmelCase )
except ValueError:
__snake_case : List[Any] = None
with xopen(_lowerCAmelCase , """rb""" , use_auth_token=_lowerCAmelCase ) as f:
__snake_case : Union[str, Any] = BytesIO(f.read() )
__snake_case : Dict = PIL.Image.open(bytes_ )
else:
__snake_case : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def snake_case__ ( self : Union[str, Any] ):
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("""binary""" ),
"path": Value("""string""" ),
}
)
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ):
if pa.types.is_string(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("""bytes""" ) >= 0:
__snake_case : List[str] = storage.field("""bytes""" )
else:
__snake_case : List[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
if storage.type.get_field_index("""path""" ) >= 0:
__snake_case : Optional[int] = storage.field("""path""" )
else:
__snake_case : int = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
__snake_case : Optional[Any] = pa.array(
[encode_np_array(np.array(_lowerCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
__snake_case : Optional[int] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays(
[bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : pa.StructArray ):
@no_op_if_value_is_null
def path_to_bytes(_lowerCAmelCase : Tuple ):
with xopen(_lowerCAmelCase , """rb""" ) as f:
__snake_case : Optional[int] = f.read()
return bytes_
__snake_case : Tuple = pa.array(
[
(path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
__snake_case : Optional[Any] = pa.array(
[os.path.basename(_lowerCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def __lowerCAmelCase ( ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
__snake_case : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
__snake_case : List[Any] = BytesIO()
if image.format in list_image_compression_formats():
__snake_case : Union[str, Any] = image.format
else:
__snake_case : List[Any] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF"""
image.save(__SCREAMING_SNAKE_CASE , format=__SCREAMING_SNAKE_CASE )
return buffer.getvalue()
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
if hasattr(__SCREAMING_SNAKE_CASE , """filename""" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
__snake_case : List[Any] = array.dtype
__snake_case : List[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER
__snake_case : Dict = dtype.kind
__snake_case : Union[str, Any] = dtype.itemsize
__snake_case : Tuple = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
__snake_case : int = np.dtype("""|u1""" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' )
if dtype is not dest_dtype:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
__snake_case : List[str] = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
__snake_case : int = dtype_byteorder + dtype_kind + str(__SCREAMING_SNAKE_CASE )
__snake_case : Any = np.dtype(__SCREAMING_SNAKE_CASE )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' )
__snake_case : Optional[int] = PIL.Image.fromarray(array.astype(__SCREAMING_SNAKE_CASE ) )
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if objs:
__snake_case , __snake_case : Any = first_non_null_value(__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
__snake_case : int = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ):
__snake_case : List[str] = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
else:
return objs
else:
return objs
| 20 | 0 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from torchvision.transforms.functional import InterpolationMode
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
ViTImageProcessor,
ViTMAEConfig,
ViTMAEForPreTraining,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
lowercase_ = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.31.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : Optional[str] = field(
default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} )
A : Optional[str] = field(
default=_UpperCAmelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
A : Optional[str] = field(
default=_UpperCAmelCase , metadata={"help": "The column name of the images in the files."} )
A : Optional[str] = field(default=_UpperCAmelCase , metadata={"help": "A folder containing the training data."} )
A : Optional[str] = field(default=_UpperCAmelCase , metadata={"help": "A folder containing the validation data."} )
A : Optional[float] = field(
default=0.15 , metadata={"help": "Percent to split off of train for validation."} )
A : Optional[int] = field(
default=_UpperCAmelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
A : Optional[int] = field(
default=_UpperCAmelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def snake_case__ ( self : Optional[int] ):
__snake_case : List[str] = {}
if self.train_dir is not None:
__snake_case : List[str] = self.train_dir
if self.validation_dir is not None:
__snake_case : int = self.validation_dir
__snake_case : List[Any] = data_files if data_files else None
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : str = field(
default=_UpperCAmelCase , metadata={
"help": (
"The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch."
)
} , )
A : Optional[str] = field(
default=_UpperCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} )
A : Optional[str] = field(
default=_UpperCAmelCase , metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
} , )
A : Optional[str] = field(
default=_UpperCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} )
A : str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
A : str = field(default=_UpperCAmelCase , metadata={"help": "Name or path of preprocessor config."} )
A : bool = field(
default=_UpperCAmelCase , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
A : float = field(
default=0.75 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} )
A : bool = field(
default=_UpperCAmelCase , metadata={"help": "Whether or not to train with normalized pixel values as target."} )
@dataclass
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ):
A : float = field(
default=1e-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
__snake_case : Any = torch.stack([example["""pixel_values"""] for example in examples] )
return {"pixel_values": pixel_values}
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__snake_case : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__snake_case : Optional[int] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_mae""" , snake_case_ , snake_case_ )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
__snake_case : List[Any] = training_args.get_process_log_level()
logger.setLevel(snake_case_ )
transformers.utils.logging.set_verbosity(snake_case_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
__snake_case : int = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__snake_case : Optional[int] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Initialize our dataset.
__snake_case : Union[str, Any] = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
__snake_case : Dict = None if """validation""" in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , snake_case_ ) and data_args.train_val_split > 0.0:
__snake_case : Any = ds["""train"""].train_test_split(data_args.train_val_split )
__snake_case : int = split["""train"""]
__snake_case : str = split["""test"""]
# Load pretrained model and image processor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__snake_case : List[Any] = {
"""cache_dir""": model_args.cache_dir,
"""revision""": model_args.model_revision,
"""use_auth_token""": True if model_args.use_auth_token else None,
}
if model_args.config_name:
__snake_case : Tuple = ViTMAEConfig.from_pretrained(model_args.config_name , **snake_case_ )
elif model_args.model_name_or_path:
__snake_case : Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **snake_case_ )
else:
__snake_case : Any = ViTMAEConfig()
logger.warning("""You are instantiating a new config instance from scratch.""" )
if model_args.config_overrides is not None:
logger.info(F'''Overriding config: {model_args.config_overrides}''' )
config.update_from_string(model_args.config_overrides )
logger.info(F'''New config: {config}''' )
# adapt config
config.update(
{
"""mask_ratio""": model_args.mask_ratio,
"""norm_pix_loss""": model_args.norm_pix_loss,
} )
# create image processor
if model_args.image_processor_name:
__snake_case : List[str] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **snake_case_ )
elif model_args.model_name_or_path:
__snake_case : Tuple = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **snake_case_ )
else:
__snake_case : Optional[Any] = ViTImageProcessor()
# create model
if model_args.model_name_or_path:
__snake_case : Union[str, Any] = ViTMAEForPreTraining.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info("""Training new model from scratch""" )
__snake_case : str = ViTMAEForPreTraining(snake_case_ )
if training_args.do_train:
__snake_case : List[Any] = ds["""train"""].column_names
else:
__snake_case : Optional[Any] = ds["""validation"""].column_names
if data_args.image_column_name is not None:
__snake_case : List[Any] = data_args.image_column_name
elif "image" in column_names:
__snake_case : int = """image"""
elif "img" in column_names:
__snake_case : Optional[int] = """img"""
else:
__snake_case : List[str] = column_names[0]
# transformations as done in original MAE paper
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
if "shortest_edge" in image_processor.size:
__snake_case : Optional[Any] = image_processor.size["""shortest_edge"""]
else:
__snake_case : List[str] = (image_processor.size["""height"""], image_processor.size["""width"""])
__snake_case : List[str] = Compose(
[
Lambda(lambda __SCREAMING_SNAKE_CASE : img.convert("""RGB""" ) if img.mode != "RGB" else img ),
RandomResizedCrop(snake_case_ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
def preprocess_images(__SCREAMING_SNAKE_CASE : Optional[int] ):
__snake_case : Union[str, Any] = [transforms(snake_case_ ) for image in examples[image_column_name]]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError("""--do_train requires a train dataset""" )
if data_args.max_train_samples is not None:
__snake_case : int = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(snake_case_ )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError("""--do_eval requires a validation dataset""" )
if data_args.max_eval_samples is not None:
__snake_case : Union[str, Any] = (
ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(snake_case_ )
# Compute absolute learning rate
__snake_case : List[Any] = (
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
)
if training_args.base_learning_rate is not None:
__snake_case : int = training_args.base_learning_rate * total_train_batch_size / 2_5_6
# Initialize our trainer
__snake_case : int = Trainer(
model=snake_case_ , args=snake_case_ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=snake_case_ , data_collator=snake_case_ , )
# Training
if training_args.do_train:
__snake_case : Union[str, Any] = None
if training_args.resume_from_checkpoint is not None:
__snake_case : Optional[int] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__snake_case : int = last_checkpoint
__snake_case : str = trainer.train(resume_from_checkpoint=snake_case_ )
trainer.save_model()
trainer.log_metrics("""train""" , train_result.metrics )
trainer.save_metrics("""train""" , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
__snake_case : str = trainer.evaluate()
trainer.log_metrics("""eval""" , snake_case_ )
trainer.save_metrics("""eval""" , snake_case_ )
# Write model card and (optionally) push to hub
__snake_case : List[Any] = {
"""tasks""": """masked-auto-encoding""",
"""dataset""": data_args.dataset_name,
"""tags""": ["""masked-auto-encoding"""],
}
if training_args.push_to_hub:
trainer.push_to_hub(**snake_case_ )
else:
trainer.create_model_card(**snake_case_ )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 354 | from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(__UpperCamelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ):
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = {}
__snake_case : int = {}
if prompt is not None:
__snake_case : Dict = prompt
if generate_kwargs is not None:
__snake_case : List[Any] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__snake_case : Optional[int] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
__snake_case : Any = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ):
return super().__call__(_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = load_image(_lowerCAmelCase )
if prompt is not None:
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
raise ValueError(
f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
__snake_case : Tuple = self.model.config.model_type
if model_type == "git":
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids
__snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids
__snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
__snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework )
model_inputs.update(_lowerCAmelCase )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
__snake_case : int = None
return model_inputs
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ):
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase )
and all(x is None for x in model_inputs["""input_ids"""] )
):
__snake_case : List[Any] = None
if generate_kwargs is None:
__snake_case : Dict = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__snake_case : Dict = model_inputs.pop(self.model.main_input_name )
__snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase )
return model_outputs
def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ):
__snake_case : Union[str, Any] = []
for output_ids in model_outputs:
__snake_case : Union[str, Any] = {
"""generated_text""": self.tokenizer.decode(
_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , )
}
records.append(_lowerCAmelCase )
return records
| 20 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {
"configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"LILT_PRETRAINED_MODEL_ARCHIVE_LIST",
"LiltForQuestionAnswering",
"LiltForSequenceClassification",
"LiltForTokenClassification",
"LiltModel",
"LiltPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lilt import (
LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
LiltPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 355 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowercase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["YolosFeatureExtractor"]
lowercase_ = ["YolosImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST",
"YolosForObjectDetection",
"YolosModel",
"YolosPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 0 |
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import BatchEncoding, MarianTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available
if is_sentencepiece_available():
from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model")
lowercase_ = {"target_lang": "fi", "source_lang": "en"}
lowercase_ = ">>zh<<"
lowercase_ = "Helsinki-NLP/"
if is_torch_available():
lowercase_ = "pt"
elif is_tf_available():
lowercase_ = "tf"
else:
lowercase_ = "jax"
@require_sentencepiece
class SCREAMING_SNAKE_CASE__ ( __lowerCamelCase , unittest.TestCase ):
A : Union[str, Any] = MarianTokenizer
A : Tuple = False
A : int = True
def snake_case__ ( self : Union[str, Any] ):
super().setUp()
__snake_case : List[Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""]
__snake_case : List[str] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) )
__snake_case : Any = Path(self.tmpdirname )
save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""vocab"""] )
save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] )
if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] )
copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] )
__snake_case : Union[str, Any] = MarianTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Any ):
return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[int] ):
return (
"This is a test",
"This is a test",
)
def snake_case__ ( self : Optional[Any] ):
__snake_case : Any = """</s>"""
__snake_case : Any = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """</s>""" )
self.assertEqual(vocab_keys[1] , """<unk>""" )
self.assertEqual(vocab_keys[-1] , """<pad>""" )
self.assertEqual(len(UpperCamelCase_ ) , 9 )
def snake_case__ ( self : Tuple ):
self.assertEqual(self.get_tokenizer().vocab_size , 9 )
def snake_case__ ( self : List[Any] ):
__snake_case : Optional[int] = MarianTokenizer.from_pretrained(f'''{ORG_NAME}opus-mt-en-de''' )
__snake_case : Optional[Any] = en_de_tokenizer(["""I am a small frog"""] , return_tensors=UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
__snake_case : List[str] = [38, 1_21, 14, 6_97, 3_88_48, 0]
self.assertListEqual(UpperCamelCase_ , batch.input_ids[0] )
__snake_case : List[str] = tempfile.mkdtemp()
en_de_tokenizer.save_pretrained(UpperCamelCase_ )
__snake_case : List[Any] = [x.name for x in Path(UpperCamelCase_ ).glob("""*""" )]
self.assertIn("""source.spm""" , UpperCamelCase_ )
MarianTokenizer.from_pretrained(UpperCamelCase_ )
def snake_case__ ( self : Any ):
__snake_case : Tuple = self.get_tokenizer()
__snake_case : Optional[Any] = tok(
["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(batch.input_ids.shape , (2, 5_12) )
def snake_case__ ( self : List[Any] ):
__snake_case : str = self.get_tokenizer()
__snake_case : Any = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(batch_smaller.input_ids.shape , (2, 10) )
@slow
def snake_case__ ( self : Optional[int] ):
# fmt: off
__snake_case : int = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCamelCase_ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , )
def snake_case__ ( self : int ):
__snake_case : str = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" )
__snake_case : Optional[Any] = """Tämä on testi"""
__snake_case : List[Any] = """This is a test"""
__snake_case : Any = [76, 7, 20_47, 2]
__snake_case : Optional[Any] = [69, 12, 11, 9_40, 2]
__snake_case : Dict = tokenizer(UpperCamelCase_ ).input_ids
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__snake_case : Optional[Any] = tokenizer(text_target=UpperCamelCase_ ).input_ids
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__snake_case : Dict = tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
| 356 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = "microsoft/speecht5_tts"
A : List[Any] = (
"This is a tool that reads an English text out loud. It takes an input named `text` which should contain the "
"text to read (in English) and returns a waveform object containing the sound."
)
A : str = "text_reader"
A : Optional[Any] = SpeechTaProcessor
A : Any = SpeechTaForTextToSpeech
A : Optional[Any] = SpeechTaHifiGan
A : str = ["text"]
A : Union[str, Any] = ["audio"]
def snake_case__ ( self : List[Any] ):
if self.post_processor is None:
__snake_case : Tuple = """microsoft/speecht5_hifigan"""
super().setup()
def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ):
__snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" )
__snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" )
__snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ):
with torch.no_grad():
return self.model.generate_speech(**_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
with torch.no_grad():
return self.post_processor(_lowerCAmelCase ).cpu().detach()
| 20 | 0 |
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def __init__( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int]=13 , _lowerCAmelCase : Dict=7 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Dict=99 , _lowerCAmelCase : Dict=32 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : int=4 , _lowerCAmelCase : List[Any]=37 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : int=5_12 , _lowerCAmelCase : Dict=16 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : Dict=4 , ):
__snake_case : Any = parent
__snake_case : Any = batch_size
__snake_case : Optional[Any] = seq_length
__snake_case : Optional[Any] = is_training
__snake_case : Any = use_attention_mask
__snake_case : List[str] = use_token_type_ids
__snake_case : Dict = use_labels
__snake_case : List[str] = vocab_size
__snake_case : Dict = hidden_size
__snake_case : List[Any] = num_hidden_layers
__snake_case : List[Any] = num_attention_heads
__snake_case : Optional[Any] = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : Dict = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : int = max_position_embeddings
__snake_case : int = type_vocab_size
__snake_case : Optional[Any] = type_sequence_label_size
__snake_case : Tuple = initializer_range
__snake_case : Any = num_choices
def snake_case__ ( self : str ):
__snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Dict = None
if self.use_attention_mask:
__snake_case : int = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Dict = None
if self.use_token_type_ids:
__snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Tuple = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def snake_case__ ( self : List[str] ):
__snake_case : Union[str, Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : int = config_and_inputs
__snake_case : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ , unittest.TestCase ):
A : Optional[Any] = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def snake_case__ ( self : Dict ):
__snake_case : Any = FlaxAlbertModelTester(self )
@slow
def snake_case__ ( self : Tuple ):
for model_class_name in self.all_model_classes:
__snake_case : Union[str, Any] = model_class_name.from_pretrained("""albert-base-v2""" )
__snake_case : str = model(np.ones((1, 1) ) )
self.assertIsNotNone(__lowerCAmelCase )
@require_flax
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
def snake_case__ ( self : str ):
__snake_case : Union[str, Any] = FlaxAlbertModel.from_pretrained("""albert-base-v2""" )
__snake_case : List[str] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__snake_case : int = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
__snake_case : Optional[Any] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0]
__snake_case : int = (1, 11, 7_68)
self.assertEqual(output.shape , __lowerCAmelCase )
__snake_case : List[Any] = np.array(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCAmelCase , atol=1e-4 ) )
| 357 | import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * power_factor
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | 0 |
from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , ):
'''simple docstring'''
if (stress, tangential_force, area).count(0 ) != 1:
raise ValueError("""You cannot supply more or less than 2 values""" )
elif stress < 0:
raise ValueError("""Stress cannot be negative""" )
elif tangential_force < 0:
raise ValueError("""Tangential Force cannot be negative""" )
elif area < 0:
raise ValueError("""Area cannot be negative""" )
elif stress == 0:
return (
"stress",
tangential_force / area,
)
elif tangential_force == 0:
return (
"tangential_force",
stress * area,
)
else:
return (
"area",
tangential_force / stress,
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 358 | from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 20 | 0 |
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
lowercase_ = logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[float] = field(
default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} )
A : bool = field(default=__UpperCamelCase , metadata={"help": "Whether to SortishSamler or not."} )
A : bool = field(
default=__UpperCamelCase , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} )
A : bool = field(default=__UpperCamelCase , metadata={"help": "whether to use adafactor"} )
A : Optional[float] = field(
default=__UpperCamelCase , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} )
A : Optional[float] = field(
default=__UpperCamelCase , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} )
A : Optional[float] = field(default=__UpperCamelCase , metadata={"help": "Dropout probability. Goes into model.config."} )
A : Optional[float] = field(
default=__UpperCamelCase , metadata={"help": "Attention dropout probability. Goes into model.config."} )
A : Optional[str] = field(
default="linear" , metadata={"help": f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
| 359 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {
"configuration_blenderbot_small": [
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotSmallConfig",
"BlenderbotSmallOnnxConfig",
],
"tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["BlenderbotSmallTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
"BlenderbotSmallPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFBlenderbotSmallForConditionalGeneration",
"TFBlenderbotSmallModel",
"TFBlenderbotSmallPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxBlenderbotSmallForConditionalGeneration",
"FlaxBlenderbotSmallModel",
"FlaxBlenderbotSmallPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 0 |
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
lowercase_ = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n'
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , __UpperCamelCase ):
def snake_case__ ( self : Optional[int] ):
__snake_case : int = load_tool("""text-question-answering""" )
self.tool.setup()
__snake_case : str = load_tool("""text-question-answering""" , remote=_snake_case )
def snake_case__ ( self : int ):
__snake_case : Any = self.tool(_snake_case , """What did Hugging Face do in April 2021?""" )
self.assertEqual(_snake_case , """launched the BigScience Research Workshop""" )
def snake_case__ ( self : List[str] ):
__snake_case : Union[str, Any] = self.remote_tool(_snake_case , """What did Hugging Face do in April 2021?""" )
self.assertEqual(_snake_case , """launched the BigScience Research Workshop""" )
def snake_case__ ( self : Any ):
__snake_case : List[str] = self.tool(text=_snake_case , question="""What did Hugging Face do in April 2021?""" )
self.assertEqual(_snake_case , """launched the BigScience Research Workshop""" )
def snake_case__ ( self : List[Any] ):
__snake_case : Dict = self.remote_tool(text=_snake_case , question="""What did Hugging Face do in April 2021?""" )
self.assertEqual(_snake_case , """launched the BigScience Research Workshop""" )
| 360 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase_ = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["ViTFeatureExtractor"]
lowercase_ = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 0 |
"""simple docstring"""
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
lowercase_ = "pt"
elif is_tf_available():
lowercase_ = "tf"
else:
lowercase_ = "jax"
class SCREAMING_SNAKE_CASE__ ( __snake_case , unittest.TestCase ):
A : Optional[Any] = PerceiverTokenizer
A : str = False
def snake_case__ ( self : List[Any] ):
super().setUp()
__snake_case : Union[str, Any] = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def snake_case__ ( self : Dict ):
return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" )
def snake_case__ ( self : str , **_lowerCAmelCase : List[Any] ):
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Dict=20 , _lowerCAmelCase : Dict=5 ):
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for Perceiver because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
__snake_case : Any = []
for i in range(len(_lowerCAmelCase ) ):
try:
__snake_case : Union[str, Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
__snake_case : Optional[Any] = list(filter(lambda _lowerCAmelCase : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , _lowerCAmelCase ) )
__snake_case : Tuple = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) )
if max_length is not None and len(_lowerCAmelCase ) > max_length:
__snake_case : Tuple = toks[:max_length]
if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0:
while len(_lowerCAmelCase ) < min_length:
__snake_case : Dict = toks + toks
# toks_str = [t[1] for t in toks]
__snake_case : int = [t[0] for t in toks]
# Ensure consistency
__snake_case : List[Any] = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
if " " not in output_txt and len(_lowerCAmelCase ) > 1:
__snake_case : Any = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase )
+ """ """
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase )
)
if with_prefix_space:
__snake_case : Any = """ """ + output_txt
__snake_case : Any = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
return output_txt, output_ids
def snake_case__ ( self : Tuple ):
__snake_case : Dict = self.perceiver_tokenizer
__snake_case : int = """Unicode €."""
__snake_case : List[str] = tokenizer(_lowerCAmelCase )
__snake_case : Tuple = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5]
self.assertEqual(encoded["""input_ids"""] , _lowerCAmelCase )
# decoding
__snake_case : List[str] = tokenizer.decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , """[CLS]Unicode €.[SEP]""" )
__snake_case : Optional[Any] = tokenizer("""e è é ê ë""" )
__snake_case : Optional[Any] = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5]
self.assertEqual(encoded["""input_ids"""] , _lowerCAmelCase )
# decoding
__snake_case : List[str] = tokenizer.decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , """[CLS]e è é ê ë[SEP]""" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" )
def snake_case__ ( self : Tuple ):
__snake_case : Optional[Any] = self.perceiver_tokenizer
__snake_case : str = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
# fmt: off
__snake_case : Union[str, Any] = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0]
# fmt: on
__snake_case : Dict = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
if FRAMEWORK != "jax":
__snake_case : Tuple = list(batch.input_ids.numpy()[0] )
else:
__snake_case : Tuple = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual((2, 38) , batch.input_ids.shape )
self.assertEqual((2, 38) , batch.attention_mask.shape )
def snake_case__ ( self : List[str] ):
__snake_case : List[str] = self.perceiver_tokenizer
__snake_case : str = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
__snake_case : Any = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("""input_ids""" , _lowerCAmelCase )
self.assertIn("""attention_mask""" , _lowerCAmelCase )
self.assertNotIn("""decoder_input_ids""" , _lowerCAmelCase )
self.assertNotIn("""decoder_attention_mask""" , _lowerCAmelCase )
def snake_case__ ( self : List[str] ):
__snake_case : Tuple = self.perceiver_tokenizer
__snake_case : Any = [
"""Summary of the text.""",
"""Another summary.""",
]
__snake_case : Any = tokenizer(
text_target=_lowerCAmelCase , max_length=32 , padding="""max_length""" , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def snake_case__ ( self : Any ):
# safety check on max_len default value so we are sure the test works
__snake_case : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : Optional[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : int = tempfile.mkdtemp()
__snake_case : Any = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
__snake_case : Optional[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase )
__snake_case : List[str] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
shutil.rmtree(_lowerCAmelCase )
__snake_case : int = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : Tuple = """ He is very happy, UNwant\u00E9d,running"""
tokenizer.add_tokens(["""bim""", """bambam"""] )
__snake_case : Dict = tokenizer.additional_special_tokens
additional_special_tokens.append("""new_additional_special_token""" )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
__snake_case : int = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
__snake_case : List[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase )
__snake_case : Tuple = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : int = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(_lowerCAmelCase )
def snake_case__ ( self : Optional[int] ):
__snake_case : Optional[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : str = json.load(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Union[str, Any] = json.load(_lowerCAmelCase )
__snake_case : List[Any] = [f'''<extra_id_{i}>''' for i in range(1_25 )]
__snake_case : Dict = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
__snake_case : Optional[Any] = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
with open(os.path.join(_lowerCAmelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : Dict = tokenizer_class.from_pretrained(
_lowerCAmelCase , )
self.assertIn(
"""an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : Optional[Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=_lowerCAmelCase )]
__snake_case : str = tokenizer_class.from_pretrained(
_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , )
self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens )
self.assertEqual(
["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Any = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([1_78] ) , """�""" )
def snake_case__ ( self : Union[str, Any] ):
pass
def snake_case__ ( self : List[Any] ):
pass
def snake_case__ ( self : Dict ):
pass
def snake_case__ ( self : int ):
pass
def snake_case__ ( self : List[str] ):
# The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character
# strings and special added tokens as tokens
__snake_case : Tuple = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : List[Any] = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""]
__snake_case : Optional[int] = tokenizer.convert_tokens_to_string(_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
| 361 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if (direction == 1 and array[indexa] > array[indexa]) or (
direction == 0 and array[indexa] < array[indexa]
):
__snake_case , __snake_case : str = array[indexa], array[indexa]
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Tuple = int(length / 2 )
for i in range(__SCREAMING_SNAKE_CASE , low + middle ):
comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Optional[Any] = int(length / 2 )
bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 )
bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
bitonic_sort(unsorted, 0, len(unsorted), 1)
print("\nSorted array in ascending order is: ", end="")
print(*unsorted, sep=", ")
bitonic_merge(unsorted, 0, len(unsorted), 0)
print("Sorted array in descending order is: ", end="")
print(*unsorted, sep=", ")
| 20 | 0 |
"""simple docstring"""
from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] ):
'''simple docstring'''
if not nums:
return 0
__snake_case : Tuple = nums[0]
__snake_case : Optional[int] = 0
for num in nums[1:]:
__snake_case , __snake_case : List[str] = (
max_excluding + num,
max(UpperCamelCase__ , UpperCamelCase__ ),
)
return max(UpperCamelCase__ , UpperCamelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 362 | import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ):
'''simple docstring'''
__snake_case : Optional[int] = {
"""7z""": (seven_zip_file, SevenZipExtractor),
"""bz2""": (bza_file, BzipaExtractor),
"""gzip""": (gz_file, GzipExtractor),
"""lz4""": (lza_file, LzaExtractor),
"""tar""": (tar_file, TarExtractor),
"""xz""": (xz_file, XzExtractor),
"""zip""": (zip_file, ZipExtractor),
"""zstd""": (zstd_file, ZstdExtractor),
}
__snake_case , __snake_case : Tuple = input_paths_and_base_extractors[compression_format]
if input_path is None:
__snake_case : Tuple = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE )
__snake_case : List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : List[str] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Optional[Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : int = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ):
'''simple docstring'''
__snake_case : Union[str, Any] = {
"""7z""": seven_zip_file,
"""bz2""": bza_file,
"""gzip""": gz_file,
"""lz4""": lza_file,
"""tar""": tar_file,
"""xz""": xz_file,
"""zip""": zip_file,
"""zstd""": zstd_file,
}
__snake_case : int = input_paths[compression_format]
if input_path is None:
__snake_case : int = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
__snake_case : Any = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE )
assert extractor_format is not None
__snake_case : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : Union[str, Any] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Union[str, Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : Optional[Any] = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
import tarfile
__snake_case : List[str] = tmp_path / """data_dot_dot"""
directory.mkdir()
__snake_case : Optional[Any] = directory / """tar_file_with_dot_dot.tar"""
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) )
return path
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
import tarfile
__snake_case : Dict = tmp_path / """data_sym_link"""
directory.mkdir()
__snake_case : Tuple = directory / """tar_file_with_sym_link.tar"""
os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE )
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
"""insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
__snake_case : Any = {
"""tar_file_with_dot_dot""": tar_file_with_dot_dot,
"""tar_file_with_sym_link""": tar_file_with_sym_link,
}
__snake_case : int = insecure_tar_files[insecure_tar_file]
__snake_case : Optional[int] = tmp_path / """extracted"""
TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
# We should have less false positives than zipfile.is_zipfile
# We do that by checking only the magic number
__snake_case : Optional[Any] = tmpdir / """not_a_zip_file"""
# From: https://github.com/python/cpython/pull/5053
__snake_case : List[str] = (
b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"""
b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"""
b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"""
b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"""
)
with not_a_zip_file.open("""wb""" ) as f:
f.write(__SCREAMING_SNAKE_CASE )
assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
| 20 | 0 |
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : float | Decimal , __SCREAMING_SNAKE_CASE : float = 1_0**-1_0 ):
'''simple docstring'''
__snake_case : Optional[int] = a
while True:
__snake_case : Tuple = Decimal(_a ) - (
Decimal(eval(_a ) ) / Decimal(eval(str(diff(_a ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(_a ) ) < precision: # noqa: S307
return float(_a )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''')
# Find root of polynomial
print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''')
# Find Square Root of 5
print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''')
# Exponential Roots
print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
| 363 | import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : Any ):
__snake_case : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split()
__snake_case : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
__snake_case : List[str] = {
"""unk_token""": """<unk>""",
"""bos_token""": """<s>""",
"""eos_token""": """</s>""",
}
__snake_case : str = {
"""feature_size""": 1,
"""padding_value""": 0.0,
"""sampling_rate""": 1_60_00,
"""return_attention_mask""": False,
"""do_normalize""": True,
}
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__snake_case : Any = os.path.join(self.tmpdirname , _lowerCAmelCase )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
# load decoder from hub
__snake_case : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder"""
def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Tuple ):
__snake_case : int = self.add_kwargs_tokens_map.copy()
kwargs.update(_lowerCAmelCase )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , **_lowerCAmelCase : Optional[int] ):
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Dict , **_lowerCAmelCase : Tuple ):
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase )
def snake_case__ ( self : List[str] ):
shutil.rmtree(self.tmpdirname )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : Tuple = self.get_feature_extractor()
__snake_case : Dict = self.get_decoder()
__snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
__snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowerCAmelCase )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , _lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : Tuple = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
__snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def snake_case__ ( self : int ):
__snake_case : Tuple = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(["""xx"""] )
with self.assertRaisesRegex(_lowerCAmelCase , """include""" ):
WavaVecaProcessorWithLM(
tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def snake_case__ ( self : Dict ):
__snake_case : int = self.get_feature_extractor()
__snake_case : str = self.get_tokenizer()
__snake_case : Dict = self.get_decoder()
__snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : List[Any] = floats_list((3, 10_00) )
__snake_case : Optional[Any] = feature_extractor(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Tuple = processor(_lowerCAmelCase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def snake_case__ ( self : Optional[int] ):
__snake_case : Any = self.get_feature_extractor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : int = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Optional[int] = """This is a test string"""
__snake_case : Union[str, Any] = processor(text=_lowerCAmelCase )
__snake_case : Dict = tokenizer(_lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[Any]=(2, 10, 16) , _lowerCAmelCase : str=77 ):
np.random.seed(_lowerCAmelCase )
return np.random.rand(*_lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : List[str] = self.get_feature_extractor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : List[str] = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 )
__snake_case : int = processor.decode(_lowerCAmelCase )
__snake_case : Optional[int] = decoder.decode_beams(_lowerCAmelCase )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual("""</s> <s> </s>""" , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ["""fork"""], ["""spawn"""]] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] ):
__snake_case : int = self.get_feature_extractor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : int = self.get_decoder()
__snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : int = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
__snake_case : Tuple = processor.batch_decode(_lowerCAmelCase )
else:
with get_context(_lowerCAmelCase ).Pool() as pool:
__snake_case : int = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : int = list(_lowerCAmelCase )
with get_context("""fork""" ).Pool() as p:
__snake_case : Tuple = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase )
__snake_case , __snake_case , __snake_case : List[Any] = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(_lowerCAmelCase , decoded_processor.text )
self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text )
self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score )
self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score )
def snake_case__ ( self : Optional[int] ):
__snake_case : Optional[Any] = self.get_feature_extractor()
__snake_case : int = self.get_tokenizer()
__snake_case : str = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : int = self._get_dummy_logits()
__snake_case : List[str] = 15
__snake_case : Optional[Any] = -20.0
__snake_case : Tuple = -4.0
__snake_case : List[Any] = processor.batch_decode(
_lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , )
__snake_case : List[str] = decoded_processor_out.text
__snake_case : str = list(_lowerCAmelCase )
with get_context("""fork""" ).Pool() as pool:
__snake_case : Dict = decoder.decode_beams_batch(
_lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , )
__snake_case : int = [d[0][0] for d in decoded_decoder_out]
__snake_case : List[Any] = [d[0][2] for d in decoded_decoder_out]
__snake_case : List[Any] = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase )
self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1e-3 ) )
self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1e-3 ) )
def snake_case__ ( self : Any ):
__snake_case : List[Any] = self.get_feature_extractor()
__snake_case : Any = self.get_tokenizer()
__snake_case : Union[str, Any] = self.get_decoder()
__snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Any = self._get_dummy_logits()
__snake_case : Any = 2.0
__snake_case : int = 5.0
__snake_case : Optional[int] = -20.0
__snake_case : Optional[int] = True
__snake_case : Any = processor.batch_decode(
_lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , )
__snake_case : str = decoded_processor_out.text
__snake_case : int = list(_lowerCAmelCase )
decoder.reset_params(
alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , )
with get_context("""fork""" ).Pool() as pool:
__snake_case : Tuple = decoder.decode_beams_batch(
_lowerCAmelCase , _lowerCAmelCase , )
__snake_case : int = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase )
__snake_case : List[str] = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , _lowerCAmelCase )
def snake_case__ ( self : Dict ):
__snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key]
__snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute()
__snake_case : Union[str, Any] = os.listdir(_lowerCAmelCase )
__snake_case : List[str] = ["""alphabet.json""", """language_model"""]
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" )
__snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase )
__snake_case : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key]
__snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute()
__snake_case : List[str] = os.listdir(_lowerCAmelCase )
__snake_case : List[Any] = os.listdir(_lowerCAmelCase )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Optional[int] = floats_list((3, 10_00) )
__snake_case : Union[str, Any] = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Union[str, Any] = processor_auto(_lowerCAmelCase , return_tensors="""np""" )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 )
__snake_case : Dict = self._get_dummy_logits()
__snake_case : List[Any] = processor_wavaveca.batch_decode(_lowerCAmelCase )
__snake_case : List[Any] = processor_auto.batch_decode(_lowerCAmelCase )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def snake_case__ ( self : str ):
__snake_case : int = self.get_feature_extractor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : Optional[Any] = self.get_decoder()
__snake_case : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
@staticmethod
def snake_case__ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ):
__snake_case : Union[str, Any] = [d[key] for d in offsets]
return retrieved_list
def snake_case__ ( self : Dict ):
__snake_case : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : List[str] = self._get_dummy_logits()[0]
__snake_case : str = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""word_offsets""" in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] )
def snake_case__ ( self : List[str] ):
__snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Optional[int] = self._get_dummy_logits()
__snake_case : int = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""word_offsets""" in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertListEqual(
[""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def snake_case__ ( self : Optional[Any] ):
import torch
__snake_case : Optional[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase )
__snake_case : Any = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) )
__snake_case : List[Any] = iter(_lowerCAmelCase )
__snake_case : Optional[int] = next(_lowerCAmelCase )
__snake_case : str = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" )
__snake_case : str = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
__snake_case : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values
with torch.no_grad():
__snake_case : Dict = model(_lowerCAmelCase ).logits.cpu().numpy()
__snake_case : Any = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase )
__snake_case : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
__snake_case : Dict = [
{
"""start_time""": d["""start_offset"""] * time_offset,
"""end_time""": d["""end_offset"""] * time_offset,
"""word""": d["""word"""],
}
for d in output["""word_offsets"""]
]
__snake_case : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL"""
# output words
self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase )
self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text )
# output times
__snake_case : Dict = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) )
__snake_case : Optional[Any] = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) )
# fmt: off
__snake_case : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] )
__snake_case : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
| 20 | 0 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class SCREAMING_SNAKE_CASE__ ( snake_case__ , unittest.TestCase ):
A : str = ProphetNetTokenizer
A : List[str] = False
def snake_case__ ( self : Optional[int] ):
super().setUp()
__snake_case : Union[str, Any] = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
__snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Tuple ):
__snake_case : int = "UNwant\u00E9d,running"
__snake_case : Any = "unwanted, running"
return input_text, output_text
def snake_case__ ( self : Optional[Any] ):
__snake_case : List[Any] = self.tokenizer_class(self.vocab_file )
__snake_case : Any = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(UpperCAmelCase_ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [9, 6, 7, 12, 10, 11] )
def snake_case__ ( self : List[str] ):
__snake_case : str = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Dict = BasicTokenizer(do_lower_case=UpperCAmelCase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def snake_case__ ( self : Dict ):
__snake_case : Optional[int] = BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Optional[int] = BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def snake_case__ ( self : Any ):
__snake_case : List[Any] = BasicTokenizer(do_lower_case=UpperCAmelCase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def snake_case__ ( self : Any ):
__snake_case : Optional[Any] = BasicTokenizer(do_lower_case=UpperCAmelCase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def snake_case__ ( self : List[Any] ):
__snake_case : Optional[Any] = BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def snake_case__ ( self : Tuple ):
__snake_case : Any = BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def snake_case__ ( self : Tuple ):
__snake_case : List[str] = BasicTokenizer(do_lower_case=UpperCAmelCase_ , never_split=["""[UNK]"""] )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] )
def snake_case__ ( self : int ):
__snake_case : List[Any] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
__snake_case : List[str] = {}
for i, token in enumerate(UpperCAmelCase_ ):
__snake_case : Dict = i
__snake_case : Optional[int] = WordpieceTokenizer(vocab=UpperCAmelCase_ , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] )
@require_torch
def snake_case__ ( self : List[Any] ):
__snake_case : List[Any] = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" )
__snake_case : List[Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."]
__snake_case : Tuple = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02]
__snake_case : int = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors="""pt""" )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
__snake_case : List[Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def snake_case__ ( self : List[Any] ):
self.assertTrue(_is_whitespace(""" """ ) )
self.assertTrue(_is_whitespace("""\t""" ) )
self.assertTrue(_is_whitespace("""\r""" ) )
self.assertTrue(_is_whitespace("""\n""" ) )
self.assertTrue(_is_whitespace("""\u00A0""" ) )
self.assertFalse(_is_whitespace("""A""" ) )
self.assertFalse(_is_whitespace("""-""" ) )
def snake_case__ ( self : List[str] ):
self.assertTrue(_is_control("""\u0005""" ) )
self.assertFalse(_is_control("""A""" ) )
self.assertFalse(_is_control(""" """ ) )
self.assertFalse(_is_control("""\t""" ) )
self.assertFalse(_is_control("""\r""" ) )
def snake_case__ ( self : Union[str, Any] ):
self.assertTrue(_is_punctuation("""-""" ) )
self.assertTrue(_is_punctuation("""$""" ) )
self.assertTrue(_is_punctuation("""`""" ) )
self.assertTrue(_is_punctuation(""".""" ) )
self.assertFalse(_is_punctuation("""A""" ) )
self.assertFalse(_is_punctuation(""" """ ) )
@slow
def snake_case__ ( self : Optional[Any] ):
__snake_case : Optional[int] = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" )
__snake_case : str = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCAmelCase_ )
__snake_case : int = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCAmelCase_ )
__snake_case : str = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ )
__snake_case : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ )
assert encoded_sentence == text + [1_02]
assert encoded_pair == text + [1_02] + text_a + [1_02]
| 364 | import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowercase_ = {
"text_branch": "text_model",
"audio_branch": "audio_model.audio_encoder",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc")
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ):
'''simple docstring'''
__snake_case , __snake_case : str = create_model(
"""HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , )
return model, model_cfg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : Union[str, Any] = {}
__snake_case : List[Any] = R""".*sequential.(\d+).*"""
__snake_case : Union[str, Any] = R""".*_projection.(\d+).*"""
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
__snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# replace sequential layers with list
__snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 )
__snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' )
elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
__snake_case : List[Any] = 1 if projecton_layer == 0 else 2
__snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' )
if "audio" and "qkv" in key:
# split qkv into query key and value
__snake_case : Optional[int] = value
__snake_case : Any = mixed_qkv.size(0 ) // 3
__snake_case : List[Any] = mixed_qkv[:qkv_dim]
__snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2]
__snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :]
__snake_case : Any = query_layer
__snake_case : Dict = key_layer
__snake_case : Optional[Any] = value_layer
else:
__snake_case : List[str] = value
return model_state_dict
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ):
'''simple docstring'''
__snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE )
clap_model.eval()
__snake_case : Tuple = clap_model.state_dict()
__snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = ClapConfig()
__snake_case : Tuple = enable_fusion
__snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE )
# ignore the spectrogram embedding layer
model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not")
lowercase_ = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 20 | 0 |
import os
import unittest
from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class SCREAMING_SNAKE_CASE__ ( lowerCamelCase_ , unittest.TestCase ):
A : List[str] = TransfoXLTokenizer
A : Union[str, Any] = False
A : Union[str, Any] = False
def snake_case__ ( self : Union[str, Any] ):
super().setUp()
__snake_case : List[str] = [
"""<unk>""",
"""[CLS]""",
"""[SEP]""",
"""want""",
"""unwanted""",
"""wa""",
"""un""",
"""running""",
""",""",
"""low""",
"""l""",
]
__snake_case : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def snake_case__ ( self : List[str] , **_lowerCAmelCase : str ):
__snake_case : str = True
return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[int] ):
__snake_case : Any = """<unk> UNwanted , running"""
__snake_case : Optional[Any] = """<unk> unwanted, running"""
return input_text, output_text
def snake_case__ ( self : int ):
__snake_case : Union[str, Any] = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowerCAmelCase__ )
__snake_case : str = tokenizer.tokenize("""<unk> UNwanted , running""" )
self.assertListEqual(lowerCAmelCase__ , ["""<unk>""", """unwanted""", """,""", """running"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [0, 4, 8, 7] )
def snake_case__ ( self : Optional[Any] ):
__snake_case : List[str] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] )
def snake_case__ ( self : Dict ):
__snake_case : Optional[int] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def snake_case__ ( self : List[str] ):
__snake_case : Optional[int] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ )
__snake_case : Union[str, Any] = """Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?"""
__snake_case : str = [
"""Hello""",
"""(""",
"""bracket""",
""")""",
"""and""",
"""side""",
"""@-@""",
"""scrolled""",
"""[""",
"""and""",
"""]""",
"""Henry""",
"""\'s""",
"""$""",
"""5""",
"""@,@""",
"""000""",
"""with""",
"""3""",
"""@.@""",
"""34""",
"""m""",
""".""",
"""What""",
"""\'s""",
"""up""",
"""!""",
"""?""",
]
self.assertListEqual(tokenizer.tokenize(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ):
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : Union[str, Any] = len(lowerCAmelCase__ )
tokenizer.add_tokens(["""new1""", """new2"""] )
tokenizer.move_added_token("""new1""" , 1 )
# Check that moved token is not copied (duplicate)
self.assertEqual(len(lowerCAmelCase__ ) , original_len + 2 )
# Check that token is moved to specified id
self.assertEqual(tokenizer.encode("""new1""" ) , [1] )
self.assertEqual(tokenizer.decode([1] ) , """new1""" )
| 365 | import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = "▁"
lowercase_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
lowercase_ = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
lowercase_ = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
lowercase_ = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
lowercase_ = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = ["input_ids"]
A : Tuple = VOCAB_FILES_NAMES
A : List[Any] = PRETRAINED_INIT_CONFIGURATION
A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
A : Optional[Any] = RESOURCE_FILES_NAMES
def __init__( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]="utf8" , _lowerCAmelCase : Optional[Any]="[UNK]" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : List[Any]="[MASK]" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Any , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , vocab_file=_lowerCAmelCase , encoding=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , )
__snake_case : List[Any] = do_lower_case
__snake_case : Any = sentencepiece_model_ckpt
__snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCAmelCase )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
__snake_case : int = self.load_vocab(filepath=_lowerCAmelCase )
else:
__snake_case : Tuple = {self.sp_model.id_to_piece(_lowerCAmelCase ): id for id in range(self.sp_model.get_piece_size() )}
__snake_case : str = {v: k for k, v in self.vocab.items()}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[Any] ):
if text is None:
return None
__snake_case : List[Any] = self.tokenize(_lowerCAmelCase )
__snake_case , __snake_case : Optional[Any] = """""", []
for i, ch in enumerate(_lowerCAmelCase ):
if ch in self.SP_CHAR_MAPPING:
__snake_case : Any = self.SP_CHAR_MAPPING.get(_lowerCAmelCase )
else:
__snake_case : Dict = unicodedata.normalize("""NFKC""" , _lowerCAmelCase )
if self.is_whitespace(_lowerCAmelCase ):
continue
normalized_text += ch
char_mapping.extend([i] * len(_lowerCAmelCase ) )
__snake_case , __snake_case , __snake_case : str = normalized_text, [], 0
if self.do_lower_case:
__snake_case : int = text.lower()
for token in split_tokens:
if token[:1] == "▁":
__snake_case : int = token[1:]
__snake_case : Optional[int] = text[offset:].index(_lowerCAmelCase ) + offset
__snake_case : int = start + len(_lowerCAmelCase )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
__snake_case : str = end
return token_mapping
@property
def snake_case__ ( self : Tuple ):
return len(self.vocab )
def snake_case__ ( self : Dict ):
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : int ):
__snake_case : str = self.__dict__.copy()
__snake_case : Union[str, Any] = None
return state
def __setstate__( self : Optional[Any] , _lowerCAmelCase : List[str] ):
__snake_case : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__snake_case : Optional[Any] = {}
__snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] ):
return "".join((self.SP_CHAR_MAPPING.get(_lowerCAmelCase , _lowerCAmelCase ) for c in text) )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[int]=0.1 ):
if self.sp_model_kwargs.get("""enable_sampling""" ) is True:
__snake_case : List[str] = True
if self.sp_model_kwargs.get("""alpha""" ) is not None:
__snake_case : Dict = self.sp_model_kwargs.get("""alpha""" )
if self.sp_model_kwargs.get("""nbest_size""" ) is not None:
__snake_case : List[Any] = self.sp_model_kwargs.get("""nbest_size""" )
if not enable_sampling:
__snake_case : str = self.sp_model.EncodeAsPieces(_lowerCAmelCase )
else:
__snake_case : Tuple = self.sp_model.SampleEncodeAsPieces(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : Union[str, Any] = []
for pi, piece in enumerate(_lowerCAmelCase ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(_lowerCAmelCase ) and pi != 0:
new_pieces.append(_lowerCAmelCase )
continue
else:
continue
__snake_case : Optional[int] = 0
for i, chunk in enumerate(_lowerCAmelCase ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(_lowerCAmelCase ) or self.is_punct(_lowerCAmelCase ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(_lowerCAmelCase )
__snake_case : Tuple = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : Tuple = i
if len(_lowerCAmelCase ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
__snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
__snake_case : int = self.convert_ids_to_tokens(_lowerCAmelCase )
__snake_case : Any = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict ):
return self.reverse_vocab.get(_lowerCAmelCase , self.unk_token )
def snake_case__ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
__snake_case : Optional[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ):
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1]
return [1] + ([0] * len(_lowerCAmelCase )) + [1]
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(_lowerCAmelCase ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(_lowerCAmelCase ) + 1) + [1] * (len(_lowerCAmelCase ) + 3)
def snake_case__ ( self : Tuple , _lowerCAmelCase : List[str] ):
if "\u4e00" <= char <= "\u9fff":
return True
return False
def snake_case__ ( self : List[str] , _lowerCAmelCase : Any ):
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def snake_case__ ( self : int , _lowerCAmelCase : List[Any] ):
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def snake_case__ ( self : str , _lowerCAmelCase : Optional[Any] ):
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(_lowerCAmelCase ) == 1:
__snake_case : Dict = unicodedata.category(_lowerCAmelCase )
if cat == "Zs":
return True
return False
def snake_case__ ( self : str , _lowerCAmelCase : List[Any] ):
__snake_case : Dict = {}
with io.open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for index, line in enumerate(_lowerCAmelCase ):
__snake_case : Tuple = line.rstrip("""\n""" )
__snake_case : List[str] = int(_lowerCAmelCase )
return token_to_idx
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : Optional[int] = 0
if os.path.isdir(_lowerCAmelCase ):
__snake_case : int = os.path.join(
_lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
else:
__snake_case : Optional[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory
with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
""" Please check that the vocabulary is not corrupted!""" )
__snake_case : Union[str, Any] = token_index
writer.write(token + """\n""" )
index += 1
__snake_case : List[Any] = os.path.join(_lowerCAmelCase , """sentencepiece.bpe.model""" )
with open(_lowerCAmelCase , """wb""" ) as fi:
__snake_case : List[Any] = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (vocab_file,)
| 20 | 0 |
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
if not head:
return True
# split the list to two parts
__snake_case , __snake_case : int = head.next, head
while fast and fast.next:
__snake_case : str = fast.next.next
__snake_case : Union[str, Any] = slow.next
__snake_case : int = slow.next
__snake_case : List[Any] = None # Don't forget here! But forget still works!
# reverse the second part
__snake_case : int = None
while second:
__snake_case : int = second.next
__snake_case : List[Any] = node
__snake_case : Any = second
__snake_case : Tuple = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
__snake_case : Optional[Any] = node.next
__snake_case : Optional[int] = head.next
return True
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
__snake_case : Tuple = head
while fast and fast.next:
__snake_case , __snake_case : List[str] = fast.next.next, slow.next
# 2. Push the second half into the stack
__snake_case : Tuple = [slow.val]
while slow.next:
__snake_case : List[str] = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
__snake_case : List[Any] = cur.next
return True
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
if not head or not head.next:
return True
__snake_case : Union[str, Any] = {}
__snake_case : List[str] = 0
while head:
if head.val in d:
d[head.val].append(UpperCamelCase__ )
else:
__snake_case : int = [pos]
__snake_case : Union[str, Any] = head.next
pos += 1
__snake_case : Optional[Any] = pos - 1
__snake_case : int = 0
for v in d.values():
if len(UpperCamelCase__ ) % 2 != 0:
middle += 1
else:
__snake_case : str = 0
for i in range(0 , len(UpperCamelCase__ ) ):
if v[i] + v[len(UpperCamelCase__ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 366 | from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json",
"xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json",
"xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json",
"xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json",
"xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json",
"xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json",
"xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json",
"xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json",
"xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json",
"xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = "xlm"
A : List[str] = {
"hidden_size": "emb_dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
"n_words": "vocab_size", # For backward compatibility
}
def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any]=3_01_45 , _lowerCAmelCase : Optional[Any]=20_48 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : int=16 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=5_12 , _lowerCAmelCase : List[Any]=20_48**-0.5 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple="first" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Tuple , ):
__snake_case : Optional[Any] = vocab_size
__snake_case : Tuple = emb_dim
__snake_case : int = n_layers
__snake_case : List[str] = n_heads
__snake_case : Union[str, Any] = dropout
__snake_case : Optional[int] = attention_dropout
__snake_case : Optional[Any] = gelu_activation
__snake_case : Tuple = sinusoidal_embeddings
__snake_case : List[Any] = causal
__snake_case : Dict = asm
__snake_case : int = n_langs
__snake_case : str = use_lang_emb
__snake_case : Dict = layer_norm_eps
__snake_case : List[Any] = bos_index
__snake_case : Union[str, Any] = eos_index
__snake_case : Dict = pad_index
__snake_case : Any = unk_index
__snake_case : Dict = mask_index
__snake_case : Any = is_encoder
__snake_case : Dict = max_position_embeddings
__snake_case : Optional[Any] = embed_init_std
__snake_case : List[Any] = init_std
__snake_case : str = summary_type
__snake_case : Optional[Any] = summary_use_proj
__snake_case : str = summary_activation
__snake_case : Optional[int] = summary_proj_to_labels
__snake_case : Dict = summary_first_dropout
__snake_case : Dict = start_n_top
__snake_case : int = end_n_top
__snake_case : str = mask_token_id
__snake_case : int = lang_id
if "n_words" in kwargs:
__snake_case : Dict = kwargs["""n_words"""]
super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
@property
def snake_case__ ( self : Dict ):
if self.task == "multiple-choice":
__snake_case : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__snake_case : Tuple = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 20 | 0 |
from typing import Any
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[int] , _lowerCAmelCase : Any ):
__snake_case : int = data
__snake_case : Any = None
def __repr__( self : List[Any] ):
return f'''Node({self.data})'''
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[Any] ):
__snake_case : str = None
def __iter__( self : int ):
__snake_case : Union[str, Any] = self.head
while node:
yield node.data
__snake_case : Any = node.next
def __len__( self : Optional[Any] ):
return sum(1 for _ in self )
def __repr__( self : Optional[Any] ):
return "->".join([str(_lowerCamelCase ) for item in self] )
def __getitem__( self : int , _lowerCAmelCase : int ):
if not 0 <= index < len(self ):
raise ValueError("""list index out of range.""" )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Any ):
if not 0 <= index < len(self ):
raise ValueError("""list index out of range.""" )
__snake_case : Tuple = self.head
for _ in range(_lowerCamelCase ):
__snake_case : Union[str, Any] = current.next
__snake_case : Optional[Any] = data
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Any ):
self.insert_nth(len(self ) , _lowerCamelCase )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Any ):
self.insert_nth(0 , _lowerCamelCase )
def snake_case__ ( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Any ):
if not 0 <= index <= len(self ):
raise IndexError("""list index out of range""" )
__snake_case : Optional[Any] = Node(_lowerCamelCase )
if self.head is None:
__snake_case : Union[str, Any] = new_node
elif index == 0:
__snake_case : Optional[Any] = self.head # link new_node to head
__snake_case : Dict = new_node
else:
__snake_case : List[Any] = self.head
for _ in range(index - 1 ):
__snake_case : Dict = temp.next
__snake_case : str = temp.next
__snake_case : List[str] = new_node
def snake_case__ ( self : Any ): # print every node data
print(self )
def snake_case__ ( self : str ):
return self.delete_nth(0 )
def snake_case__ ( self : str ): # delete from tail
return self.delete_nth(len(self ) - 1 )
def snake_case__ ( self : Tuple , _lowerCAmelCase : int = 0 ):
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError("""List index out of range.""" )
__snake_case : Optional[int] = self.head # default first node
if index == 0:
__snake_case : List[Any] = self.head.next
else:
__snake_case : List[Any] = self.head
for _ in range(index - 1 ):
__snake_case : Any = temp.next
__snake_case : List[Any] = temp.next
__snake_case : Union[str, Any] = temp.next.next
return delete_node.data
def snake_case__ ( self : int ):
return self.head is None
def snake_case__ ( self : List[str] ):
__snake_case : Optional[int] = None
__snake_case : str = self.head
while current:
# Store the current node's next node.
__snake_case : Dict = current.next
# Make the current node's next point backwards
__snake_case : List[str] = prev
# Make the previous node be the current node
__snake_case : int = current
# Make the current node the next node (to progress iteration)
__snake_case : List[Any] = next_node
# Return prev in order to put the head at the end
__snake_case : Dict = prev
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Optional[int] = LinkedList()
assert linked_list.is_empty() is True
assert str(__lowerCamelCase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(1_0 ):
assert len(__lowerCamelCase ) == i
linked_list.insert_nth(__lowerCamelCase , i + 1 )
assert str(__lowerCamelCase ) == "->".join(str(__lowerCamelCase ) for i in range(1 , 1_1 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(1_1 )
assert str(__lowerCamelCase ) == "->".join(str(__lowerCamelCase ) for i in range(0 , 1_2 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 1_0
assert linked_list.delete_tail() == 1_1
assert len(__lowerCamelCase ) == 9
assert str(__lowerCamelCase ) == "->".join(str(__lowerCamelCase ) for i in range(1 , 1_0 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
__snake_case : List[str] = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(__lowerCamelCase ) == "->".join(str(__lowerCamelCase ) for i in range(-8 , 1 ) )
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : str = [
-9,
1_0_0,
Node(7_7_3_4_5_1_1_2 ),
"""dlrow olleH""",
7,
5_5_5_5,
0,
-1_92.5_55_55,
"""Hello, world!""",
77.9,
Node(1_0 ),
None,
None,
12.20,
]
__snake_case : Optional[Any] = LinkedList()
for i in test_input:
linked_list.insert_tail(__lowerCamelCase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(__lowerCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
__snake_case : List[str] = linked_list.delete_head()
assert result == -9
assert (
str(__lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
__snake_case : Optional[Any] = linked_list.delete_tail()
assert result == 12.2
assert (
str(__lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
__snake_case : Optional[Any] = linked_list.delete_nth(1_0 )
assert result is None
assert (
str(__lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node("""Hello again, world!""" ) )
assert (
str(__lowerCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(__lowerCamelCase )
assert (
str(__lowerCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(__lowerCamelCase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def __lowerCAmelCase ( ):
'''simple docstring'''
from doctest import testmod
testmod()
__snake_case : Tuple = LinkedList()
linked_list.insert_head(input("""Inserting 1st at head """ ).strip() )
linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() )
print("""\nPrint list:""" )
linked_list.print_list()
linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() )
linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() )
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nDelete head""" )
linked_list.delete_head()
print("""Delete tail""" )
linked_list.delete_tail()
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nReverse linked list""" )
linked_list.reverse()
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nString representation of linked list:""" )
print(__lowerCamelCase )
print("""\nReading/changing Node data using indexing:""" )
print(F'''Element at Position 1: {linked_list[1]}''' )
__snake_case : List[Any] = input("""Enter New Value: """ ).strip()
print("""New list:""" )
print(__lowerCamelCase )
print(F'''length of linked_list is : {len(__lowerCamelCase )}''' )
if __name__ == "__main__":
main()
| 367 | import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json",
"facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[Any] = "encodec"
def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase : Tuple=2_40_00 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : int=1_28 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Union[str, Any]=[8, 5, 4, 2] , _lowerCAmelCase : str="weight_norm" , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict="reflect" , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : Optional[int]=10_24 , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , **_lowerCAmelCase : List[Any] , ):
__snake_case : Optional[int] = target_bandwidths
__snake_case : int = sampling_rate
__snake_case : List[Any] = audio_channels
__snake_case : str = normalize
__snake_case : Union[str, Any] = chunk_length_s
__snake_case : Union[str, Any] = overlap
__snake_case : Union[str, Any] = hidden_size
__snake_case : Union[str, Any] = num_filters
__snake_case : Optional[Any] = num_residual_layers
__snake_case : List[Any] = upsampling_ratios
__snake_case : List[str] = norm_type
__snake_case : Union[str, Any] = kernel_size
__snake_case : Optional[int] = last_kernel_size
__snake_case : Optional[Any] = residual_kernel_size
__snake_case : Dict = dilation_growth_rate
__snake_case : int = use_causal_conv
__snake_case : Tuple = pad_mode
__snake_case : str = compress
__snake_case : Optional[Any] = num_lstm_layers
__snake_case : List[Any] = trim_right_ratio
__snake_case : Any = codebook_size
__snake_case : int = codebook_dim if codebook_dim is not None else hidden_size
__snake_case : int = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' )
super().__init__(**_lowerCAmelCase )
@property
def snake_case__ ( self : int ):
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def snake_case__ ( self : int ):
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def snake_case__ ( self : Union[str, Any] ):
__snake_case : List[str] = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def snake_case__ ( self : Tuple ):
return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 20 | 0 |
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
assert column_title.isupper()
__snake_case : List[Any] = 0
__snake_case : Optional[int] = len(_snake_case ) - 1
__snake_case : Optional[Any] = 0
while index >= 0:
__snake_case : List[str] = (ord(column_title[index] ) - 6_4) * pow(2_6 , _snake_case )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 368 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : str = []
__snake_case , __snake_case : List[str] = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
__snake_case : List[Any] = result + left + right
return input_list
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
if len(__SCREAMING_SNAKE_CASE ) <= 1:
return input_list
__snake_case : Union[str, Any] = list(__SCREAMING_SNAKE_CASE )
# iteration for two-way merging
__snake_case : Tuple = 2
while p <= len(__SCREAMING_SNAKE_CASE ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = i
__snake_case : str = i + p - 1
__snake_case : Optional[Any] = (low + high + 1) // 2
__snake_case : str = merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# final merge of last two parts
if p * 2 >= len(__SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = i
__snake_case : str = merge(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
if user_input == "":
lowercase_ = []
else:
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
print(iter_merge_sort(unsorted))
| 20 | 0 |
from itertools import permutations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : tuple ):
'''simple docstring'''
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
__snake_case : List[str] = [7, 1_1, 1_3, 1_7]
for i, test in enumerate(__SCREAMING_SNAKE_CASE ):
if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0:
return False
return True
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int = 1_0 ):
'''simple docstring'''
return sum(
int("""""".join(map(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) )
for num in permutations(range(__SCREAMING_SNAKE_CASE ) )
if is_substring_divisible(__SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 369 | import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
lowercase_ = "Usage of script: script_name <size_of_canvas:int>"
lowercase_ = [0] * 1_00 + [1] * 10
random.shuffle(choice)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : List[str] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )]
return canvas
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
for i, row in enumerate(__SCREAMING_SNAKE_CASE ):
for j, _ in enumerate(__SCREAMING_SNAKE_CASE ):
__snake_case : int = bool(random.getrandbits(1 ) )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
__snake_case : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) )
for r, row in enumerate(__SCREAMING_SNAKE_CASE ):
for c, pt in enumerate(__SCREAMING_SNAKE_CASE ):
__snake_case : Optional[Any] = __judge_point(
__SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] )
__snake_case : List[str] = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
__snake_case : list[list[bool]] = current_canvas.tolist()
return return_canvas
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
__snake_case : Any = 0
__snake_case : Dict = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status:
alive += 1
else:
dead += 1
# handling duplicate entry for focus pt.
if pt:
alive -= 1
else:
dead -= 1
# running the rules of game here.
__snake_case : str = pt
if pt:
if alive < 2:
__snake_case : Optional[Any] = False
elif alive == 2 or alive == 3:
__snake_case : Union[str, Any] = True
elif alive > 3:
__snake_case : Optional[int] = False
else:
if alive == 3:
__snake_case : List[Any] = True
return state
if __name__ == "__main__":
if len(sys.argv) != 2:
raise Exception(usage_doc)
lowercase_ = int(sys.argv[1])
# main working structure of this module.
lowercase_ = create_canvas(canvas_size)
seed(c)
lowercase_ , lowercase_ = plt.subplots()
fig.show()
lowercase_ = ListedColormap(["w", "k"])
try:
while True:
lowercase_ = run(c)
ax.matshow(c, cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass
| 20 | 0 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class SCREAMING_SNAKE_CASE__ ( _a ):
def __init__( self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ):
__snake_case : List[str] = params
__snake_case : Optional[Any] = np.array(snake_case_ )
__snake_case : List[str] = np.array([len(snake_case_ ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self : Dict , _lowerCAmelCase : Tuple ):
return (self.token_ids[index], self.lengths[index])
def __len__( self : int ):
return len(self.lengths )
def snake_case__ ( self : List[Any] ):
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def snake_case__ ( self : str ):
__snake_case : int = self.params.max_model_input_size
__snake_case : str = self.lengths > max_len
logger.info(f'''Splitting {sum(snake_case_ )} too long sequences.''' )
def divide_chunks(_lowerCAmelCase : Any , _lowerCAmelCase : List[str] ):
return [l[i : i + n] for i in range(0 , len(snake_case_ ) , snake_case_ )]
__snake_case : List[Any] = []
__snake_case : str = []
if self.params.mlm:
__snake_case : Union[str, Any] = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""]
else:
__snake_case : int = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""]
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
__snake_case : Optional[Any] = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
__snake_case : List[Any] = np.insert(snake_case_ , 0 , snake_case_ )
if sub_s[-1] != sep_id:
__snake_case : Dict = np.insert(snake_case_ , len(snake_case_ ) , snake_case_ )
assert len(snake_case_ ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(snake_case_ )
new_tok_ids.extend(snake_case_ )
new_lengths.extend([len(snake_case_ ) for l in sub_seqs] )
__snake_case : str = np.array(snake_case_ )
__snake_case : Any = np.array(snake_case_ )
def snake_case__ ( self : Any ):
__snake_case : Optional[int] = len(self )
__snake_case : Tuple = self.lengths > 11
__snake_case : Optional[int] = self.token_ids[indices]
__snake_case : Tuple = self.lengths[indices]
__snake_case : Tuple = len(self )
logger.info(f'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' )
def snake_case__ ( self : Any ):
if "unk_token" not in self.params.special_tok_ids:
return
else:
__snake_case : Tuple = self.params.special_tok_ids["""unk_token"""]
__snake_case : int = len(self )
__snake_case : Dict = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
__snake_case : Optional[Any] = (unk_occs / self.lengths) < 0.5
__snake_case : List[str] = self.token_ids[indices]
__snake_case : List[Any] = self.lengths[indices]
__snake_case : Union[str, Any] = len(self )
logger.info(f'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' )
def snake_case__ ( self : Any ):
if not self.params.is_master:
return
logger.info(f'''{len(self )} sequences''' )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def snake_case__ ( self : Tuple , _lowerCAmelCase : Optional[Any] ):
__snake_case : List[Any] = [t[0] for t in batch]
__snake_case : str = [t[1] for t in batch]
assert len(snake_case_ ) == len(snake_case_ )
# Max for paddings
__snake_case : int = max(snake_case_ )
# Pad token ids
if self.params.mlm:
__snake_case : Union[str, Any] = self.params.special_tok_ids["""pad_token"""]
else:
__snake_case : Optional[Any] = self.params.special_tok_ids["""unk_token"""]
__snake_case : Optional[int] = [list(t.astype(snake_case_ ) ) + [pad_idx] * (max_seq_len_ - len(snake_case_ )) for t in token_ids]
assert len(tk_ ) == len(snake_case_ )
assert all(len(snake_case_ ) == max_seq_len_ for t in tk_ )
__snake_case : int = torch.tensor(tk_ ) # (bs, max_seq_len_)
__snake_case : Optional[int] = torch.tensor(snake_case_ ) # (bs)
return tk_t, lg_t
| 370 | import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Union[Dict, Any]] = None , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : int=2 ):
'''simple docstring'''
from .. import __version__
__snake_case : List[Any] = take_from
__snake_case : List[Any] = ()
if not isinstance(args[0] , __SCREAMING_SNAKE_CASE ):
__snake_case : str = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(__SCREAMING_SNAKE_CASE ):
raise ValueError(
F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''''
F''' version {__version__} is >= {version_name}''' )
__snake_case : Optional[Any] = None
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__SCREAMING_SNAKE_CASE ),)
__snake_case : Optional[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''
elif hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
values += (getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),)
__snake_case : Any = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''
elif deprecated_kwargs is None:
__snake_case : Tuple = F'''`{attribute}` is deprecated and will be removed in version {version_name}.'''
if warning is not None:
__snake_case : Optional[Any] = warning + """ """ if standard_warn else """"""
warnings.warn(warning + message , __SCREAMING_SNAKE_CASE , stacklevel=__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) > 0:
__snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1]
__snake_case : int = call_frame.filename
__snake_case : int = call_frame.lineno
__snake_case : List[str] = call_frame.function
__snake_case , __snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' )
if len(__SCREAMING_SNAKE_CASE ) == 0:
return
elif len(__SCREAMING_SNAKE_CASE ) == 1:
return values[0]
return values
| 20 | 0 |
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str = 1_0_0_0_0_0_0 ):
'''simple docstring'''
__snake_case : List[str] = 1
__snake_case : str = 1
__snake_case : Dict = {1: 1}
for inputa in range(2 , __lowerCAmelCase ):
__snake_case : Union[str, Any] = 0
__snake_case : List[Any] = inputa
while True:
if number in counters:
counter += counters[number]
break
if number % 2 == 0:
number //= 2
counter += 1
else:
__snake_case : Union[str, Any] = (3 * number) + 1
counter += 1
if inputa not in counters:
__snake_case : Union[str, Any] = counter
if counter > pre_counter:
__snake_case : Union[str, Any] = inputa
__snake_case : Tuple = counter
return largest_number
if __name__ == "__main__":
print(solution(int(input().strip())))
| 371 | import argparse
import os
from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPTaConfig,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
TaConfig,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPTaLMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFTaForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWavaVecaModel,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
WavaVecaConfig,
WavaVecaModel,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tfa_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPTaLMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
TaForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
logging.set_verbosity_info()
lowercase_ = {
"bart": (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"bert": (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-base-cased-finetuned-mrpc": (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"dpr": (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"gpt2": (
GPTaConfig,
TFGPTaLMHeadModel,
GPTaLMHeadModel,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlnet": (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm": (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm-roberta": (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"transfo-xl": (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"openai-gpt": (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"roberta": (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"layoutlm": (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"roberta-large-mnli": (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"camembert": (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"flaubert": (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert": (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert-base-distilled-squad": (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert": (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert-visual-feature-encoder": (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"ctrl": (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"albert": (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"t5": (
TaConfig,
TFTaForConditionalGeneration,
TaForConditionalGeneration,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"electra": (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"wav2vec2": (
WavaVecaConfig,
TFWavaVecaModel,
WavaVecaModel,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=True ):
'''simple docstring'''
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' )
__snake_case , __snake_case , __snake_case , __snake_case : Any = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
__snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
__snake_case : Dict = config_class.from_json_file(__SCREAMING_SNAKE_CASE )
__snake_case : Tuple = True
__snake_case : Union[str, Any] = True
print(F'''Building TensorFlow model from configuration: {config}''' )
__snake_case : List[Any] = model_class(__SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
__snake_case : Optional[Any] = cached_file(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
# Load PyTorch checkpoint in tf2 model:
__snake_case : List[Any] = load_pytorch_checkpoint_in_tfa_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if compare_with_pt_model:
__snake_case : Tuple = tf_model(tf_model.dummy_inputs , training=__SCREAMING_SNAKE_CASE ) # build the network
__snake_case : List[str] = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" )
__snake_case : Any = pt_model_class.from_pretrained(
pretrained_model_name_or_path=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE , state_dict=__SCREAMING_SNAKE_CASE )
with torch.no_grad():
__snake_case : Union[str, Any] = pt_model(**pt_model.dummy_inputs )
__snake_case : Any = pto[0].numpy()
__snake_case : Optional[int] = tfo[0].numpy()
__snake_case : Optional[int] = np.amax(np.abs(np_pt - np_tf ) )
print(F'''Max absolute difference between models outputs {diff}''' )
assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}'''
# Save pytorch-model
print(F'''Save TensorFlow model to {tf_dump_path}''' )
tf_model.save_weights(__SCREAMING_SNAKE_CASE , save_format="""h5""" )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Any=False , ):
'''simple docstring'''
if args_model_type is None:
__snake_case : Tuple = list(MODEL_CLASSES.keys() )
else:
__snake_case : Union[str, Any] = [args_model_type]
for j, model_type in enumerate(__SCREAMING_SNAKE_CASE , start=1 ):
print("""=""" * 1_0_0 )
print(F''' Converting model type {j}/{len(__SCREAMING_SNAKE_CASE )}: {model_type}''' )
print("""=""" * 1_0_0 )
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' )
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
__snake_case : int = list(aws_model_maps.keys() )
if config_shortcut_names_or_path is None:
__snake_case : Union[str, Any] = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , start=1 ):
print("""-""" * 1_0_0 )
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' )
continue
__snake_case : List[Any] = model_shortcut_name
elif only_convert_finetuned_models:
print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' )
continue
print(
F''' Converting checkpoint {i}/{len(__SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}''' )
print("""-""" * 1_0_0 )
if config_shortcut_name in aws_config_map:
__snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
else:
__snake_case : Dict = config_shortcut_name
if model_shortcut_name in aws_model_maps:
__snake_case : Union[str, Any] = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
else:
__snake_case : List[Any] = model_shortcut_name
if os.path.isfile(__SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = """converted_model"""
convert_pt_checkpoint_to_tf(
model_type=__SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=__SCREAMING_SNAKE_CASE , config_file=__SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(__SCREAMING_SNAKE_CASE , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__SCREAMING_SNAKE_CASE , )
if remove_cached_files:
os.remove(__SCREAMING_SNAKE_CASE )
os.remove(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file."
)
parser.add_argument(
"--model_type",
default=None,
type=str,
help=(
F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and '''
"convert all the models from AWS."
),
)
parser.add_argument(
"--pytorch_checkpoint_path",
default=None,
type=str,
help=(
"Path to the PyTorch checkpoint path or shortcut name to download from AWS. "
"If not given, will download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--config_file",
default=None,
type=str,
help=(
"The config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture. If not given and "
"--pytorch_checkpoint_path is not given or is a shortcut name "
"use the configuration associated to the shortcut name on the AWS"
),
)
parser.add_argument(
"--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions."
)
parser.add_argument(
"--use_cached_models",
action="store_true",
help="Use cached models if possible instead of updating to latest checkpoint versions.",
)
parser.add_argument(
"--remove_cached_files",
action="store_true",
help="Remove pytorch models after conversion (save memory when converting in batches).",
)
parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.")
lowercase_ = parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
| 20 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"""facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = "levit"
def __init__( self : Dict , _lowerCAmelCase : List[Any]=2_24 , _lowerCAmelCase : Dict=3 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Any=1 , _lowerCAmelCase : Optional[int]=16 , _lowerCAmelCase : Dict=[1_28, 2_56, 3_84] , _lowerCAmelCase : List[str]=[4, 8, 12] , _lowerCAmelCase : Optional[int]=[4, 4, 4] , _lowerCAmelCase : Optional[Any]=[16, 16, 16] , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : str=[2, 2, 2] , _lowerCAmelCase : List[str]=[2, 2, 2] , _lowerCAmelCase : Any=0.02 , **_lowerCAmelCase : int , ):
super().__init__(**_lowerCAmelCase )
__snake_case : Tuple = image_size
__snake_case : Optional[Any] = num_channels
__snake_case : Union[str, Any] = kernel_size
__snake_case : Optional[int] = stride
__snake_case : str = padding
__snake_case : int = hidden_sizes
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : Union[str, Any] = depths
__snake_case : Optional[int] = key_dim
__snake_case : Dict = drop_path_rate
__snake_case : Dict = patch_size
__snake_case : str = attention_ratio
__snake_case : Tuple = mlp_ratio
__snake_case : Tuple = initializer_range
__snake_case : str = [
['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[Any] = version.parse("1.11" )
@property
def snake_case__ ( self : str ):
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def snake_case__ ( self : Union[str, Any] ):
return 1e-4
| 350 | import random
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
__snake_case , __snake_case , __snake_case : Tuple = [], [], []
for element in data:
if element < pivot:
less.append(__SCREAMING_SNAKE_CASE )
elif element > pivot:
greater.append(__SCREAMING_SNAKE_CASE )
else:
equal.append(__SCREAMING_SNAKE_CASE )
return less, equal, greater
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
# index = len(items) // 2 when trying to find the median
# (value of index when items is sorted)
# invalid input
if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0:
return None
__snake_case : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )]
__snake_case : Tuple = 0
__snake_case , __snake_case , __snake_case : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE )
__snake_case : int = len(__SCREAMING_SNAKE_CASE )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# must be in larger
else:
return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
| 20 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
snake_case_ = {
"""configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ = [
"""MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MegaForCausalLM""",
"""MegaForMaskedLM""",
"""MegaForMultipleChoice""",
"""MegaForQuestionAnswering""",
"""MegaForSequenceClassification""",
"""MegaForTokenClassification""",
"""MegaModel""",
"""MegaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
snake_case_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 351 | import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"
),
}
}
lowercase_ = {
"junnyu/roformer_chinese_small": 15_36,
"junnyu/roformer_chinese_base": 15_36,
"junnyu/roformer_chinese_char_small": 5_12,
"junnyu/roformer_chinese_char_base": 5_12,
"junnyu/roformer_small_discriminator": 1_28,
"junnyu/roformer_small_generator": 1_28,
}
lowercase_ = {
"junnyu/roformer_chinese_small": {"do_lower_case": True},
"junnyu/roformer_chinese_base": {"do_lower_case": True},
"junnyu/roformer_chinese_char_small": {"do_lower_case": True},
"junnyu/roformer_chinese_char_base": {"do_lower_case": True},
"junnyu/roformer_small_discriminator": {"do_lower_case": True},
"junnyu/roformer_small_generator": {"do_lower_case": True},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = VOCAB_FILES_NAMES
A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : int = PRETRAINED_INIT_CONFIGURATION
A : List[str] = RoFormerTokenizer
def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any="[UNK]" , _lowerCAmelCase : int="[SEP]" , _lowerCAmelCase : Optional[int]="[PAD]" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Dict , ):
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
__snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case
or pre_tok_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents
):
__snake_case : Tuple = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) )
__snake_case : List[Any] = do_lower_case
__snake_case : Optional[Any] = strip_accents
__snake_case : List[str] = pre_tok_class(**_lowerCAmelCase )
__snake_case : Optional[Any] = do_lower_case
def __getstate__( self : Optional[Any] ):
__snake_case : Optional[int] = self.__dict__.copy()
__snake_case : Optional[Any] = BertPreTokenizer()
return state
def __setstate__( self : str , _lowerCAmelCase : Dict ):
__snake_case : str = d
__snake_case : int = self.__dict__["""_tokenizer"""].get_vocab()
__snake_case : List[str] = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=None ):
__snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
def snake_case__ ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Tuple , ):
__snake_case : Tuple = BertPreTokenizer()
return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
| 20 | 0 |
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class SCREAMING_SNAKE_CASE__ ( snake_case_ ):
def __init__( self : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ):
super().__init__()
# make sure scheduler can always be converted to DDIM
__snake_case : Any = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase )
@torch.no_grad()
def __call__( self : str , _lowerCAmelCase : List[Any] = 1 , _lowerCAmelCase : Union[str, Any] = None , _lowerCAmelCase : Dict = 0.0 , _lowerCAmelCase : Dict = 50 , _lowerCAmelCase : List[str] = None , _lowerCAmelCase : Optional[int] = "pil" , _lowerCAmelCase : Union[str, Any] = True , ):
# Sample gaussian noise to begin loop
if isinstance(self.unet.config.sample_size , _lowerCAmelCase ):
__snake_case : List[Any] = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
__snake_case : Union[str, Any] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(_lowerCAmelCase )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
__snake_case : Tuple = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(_lowerCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
__snake_case : Union[str, Any] = self.unet(_lowerCAmelCase , _lowerCAmelCase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
__snake_case : str = self.scheduler.step(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , eta=_lowerCAmelCase , use_clipped_model_output=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample
__snake_case : List[str] = (image / 2 + 0.5).clamp(0 , 1 )
__snake_case : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__snake_case : List[Any] = self.numpy_to_pil(_lowerCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_lowerCAmelCase )
| 352 | from __future__ import annotations
import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if depth < 0:
raise ValueError("""Depth cannot be less than 0""" )
if len(__SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("""Scores cannot be empty""" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
return min(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3]
__snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 )
print("""Optimal value : """ , end="""""" )
print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 20 | 0 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Dict = 42
A : List[str] = None
def __lowerCAmelCase ( _A : Union[str, Any] , _A : Optional[int]=0.9_99 , _A : Optional[int]="cosine" , ):
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(_A : int ):
return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_A : Any ):
return math.exp(t * -12.0 )
else:
raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
__snake_case : List[str] = []
for i in range(_lowerCAmelCase ):
__snake_case : Dict = i / num_diffusion_timesteps
__snake_case : int = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_lowerCAmelCase ) / alpha_bar_fn(_lowerCAmelCase ) , _lowerCAmelCase ) )
return torch.tensor(_lowerCAmelCase , dtype=torch.floataa )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase ):
@register_to_config
def __init__( self : Dict , _lowerCAmelCase : int = 10_00 , _lowerCAmelCase : str = "fixed_small_log" , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[float] = 1.0 , _lowerCAmelCase : str = "epsilon" , _lowerCAmelCase : str = "squaredcos_cap_v2" , ):
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'""" )
__snake_case : str = betas_for_alpha_bar(_lowerCAmelCase )
__snake_case : Optional[int] = 1.0 - self.betas
__snake_case : str = torch.cumprod(self.alphas , dim=0 )
__snake_case : List[str] = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
__snake_case : Union[str, Any] = 1.0
# setable values
__snake_case : Optional[int] = None
__snake_case : Optional[int] = torch.from_numpy(np.arange(0 , _lowerCAmelCase )[::-1].copy() )
__snake_case : List[str] = variance_type
def snake_case__ ( self : int , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : Optional[int] = None ):
return sample
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, torch.device] = None ):
__snake_case : Any = num_inference_steps
__snake_case : Optional[int] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
__snake_case : Union[str, Any] = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
__snake_case : Optional[int] = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase )
def snake_case__ ( self : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : int=None ):
if prev_timestep is None:
__snake_case : List[str] = t - 1
__snake_case : int = self.alphas_cumprod[t]
__snake_case : str = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
__snake_case : int = 1 - alpha_prod_t
__snake_case : Optional[int] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
__snake_case : List[str] = self.betas[t]
else:
__snake_case : List[str] = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
__snake_case : Tuple = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
__snake_case : List[Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
__snake_case : List[str] = torch.log(torch.clamp(_lowerCAmelCase , min=1e-20 ) )
__snake_case : List[Any] = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
__snake_case : Dict = variance.log()
__snake_case : List[Any] = beta.log()
__snake_case : Union[str, Any] = (predicted_variance + 1) / 2
__snake_case : List[str] = frac * max_log + (1 - frac) * min_log
return variance
def snake_case__ ( self : Any , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : int , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : bool = True , ):
__snake_case : Optional[int] = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
__snake_case , __snake_case : Dict = torch.split(_lowerCAmelCase , sample.shape[1] , dim=1 )
else:
__snake_case : Union[str, Any] = None
# 1. compute alphas, betas
if prev_timestep is None:
__snake_case : List[Any] = t - 1
__snake_case : List[Any] = self.alphas_cumprod[t]
__snake_case : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
__snake_case : int = 1 - alpha_prod_t
__snake_case : Optional[int] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
__snake_case : Tuple = self.betas[t]
__snake_case : Optional[Any] = self.alphas[t]
else:
__snake_case : Optional[Any] = 1 - alpha_prod_t / alpha_prod_t_prev
__snake_case : Any = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
__snake_case : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
__snake_case : Optional[int] = model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'''
""" for the UnCLIPScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
__snake_case : int = torch.clamp(
_lowerCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__snake_case : Tuple = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
__snake_case : List[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__snake_case : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
__snake_case : List[str] = 0
if t > 0:
__snake_case : Optional[int] = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=_lowerCAmelCase , device=model_output.device )
__snake_case : Union[str, Any] = self._get_variance(
_lowerCAmelCase , predicted_variance=_lowerCAmelCase , prev_timestep=_lowerCAmelCase , )
if self.variance_type == "fixed_small_log":
__snake_case : Optional[int] = variance
elif self.variance_type == "learned_range":
__snake_case : int = (0.5 * variance).exp()
else:
raise ValueError(
f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'''
""" for the UnCLIPScheduler.""" )
__snake_case : Tuple = variance * variance_noise
__snake_case : Optional[int] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase )
def snake_case__ ( self : Tuple , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : torch.IntTensor , ):
__snake_case : Optional[Any] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
__snake_case : Any = timesteps.to(original_samples.device )
__snake_case : Union[str, Any] = alphas_cumprod[timesteps] ** 0.5
__snake_case : str = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
__snake_case : Optional[Any] = sqrt_alpha_prod.unsqueeze(-1 )
__snake_case : List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5
__snake_case : Union[str, Any] = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
__snake_case : Optional[int] = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
__snake_case : List[Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 353 | import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
lowercase_ = None
lowercase_ = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
lowercase_ = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : bool = True
A : Optional[str] = None
# Automatically constructed
A : ClassVar[str] = "PIL.Image.Image"
A : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} )
A : str = field(default="Image" , init=__UpperCamelCase , repr=__UpperCamelCase )
def __call__( self : Any ):
return self.pa_type
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
__snake_case : str = np.array(_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": value, "bytes": None}
elif isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": None, "bytes": value}
elif isinstance(_lowerCAmelCase , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(_lowerCAmelCase )
elif isinstance(_lowerCAmelCase , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(_lowerCAmelCase )
elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("""path""" )}
elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )}
else:
raise ValueError(
f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def snake_case__ ( self : List[str] , _lowerCAmelCase : dict , _lowerCAmelCase : Dict=None ):
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support decoding images, please install 'Pillow'.""" )
if token_per_repo_id is None:
__snake_case : Tuple = {}
__snake_case , __snake_case : str = value["""path"""], value["""bytes"""]
if bytes_ is None:
if path is None:
raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
else:
if is_local_path(_lowerCAmelCase ):
__snake_case : str = PIL.Image.open(_lowerCAmelCase )
else:
__snake_case : List[str] = path.split("""::""" )[-1]
try:
__snake_case : Dict = string_to_dict(_lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""]
__snake_case : int = token_per_repo_id.get(_lowerCAmelCase )
except ValueError:
__snake_case : List[Any] = None
with xopen(_lowerCAmelCase , """rb""" , use_auth_token=_lowerCAmelCase ) as f:
__snake_case : Union[str, Any] = BytesIO(f.read() )
__snake_case : Dict = PIL.Image.open(bytes_ )
else:
__snake_case : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def snake_case__ ( self : Union[str, Any] ):
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("""binary""" ),
"path": Value("""string""" ),
}
)
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ):
if pa.types.is_string(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("""bytes""" ) >= 0:
__snake_case : List[str] = storage.field("""bytes""" )
else:
__snake_case : List[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
if storage.type.get_field_index("""path""" ) >= 0:
__snake_case : Optional[int] = storage.field("""path""" )
else:
__snake_case : int = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
__snake_case : Optional[Any] = pa.array(
[encode_np_array(np.array(_lowerCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
__snake_case : Optional[int] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays(
[bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : pa.StructArray ):
@no_op_if_value_is_null
def path_to_bytes(_lowerCAmelCase : Tuple ):
with xopen(_lowerCAmelCase , """rb""" ) as f:
__snake_case : Optional[int] = f.read()
return bytes_
__snake_case : Tuple = pa.array(
[
(path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
__snake_case : Optional[Any] = pa.array(
[os.path.basename(_lowerCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def __lowerCAmelCase ( ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
__snake_case : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
__snake_case : List[Any] = BytesIO()
if image.format in list_image_compression_formats():
__snake_case : Union[str, Any] = image.format
else:
__snake_case : List[Any] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF"""
image.save(__SCREAMING_SNAKE_CASE , format=__SCREAMING_SNAKE_CASE )
return buffer.getvalue()
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
if hasattr(__SCREAMING_SNAKE_CASE , """filename""" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
__snake_case : List[Any] = array.dtype
__snake_case : List[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER
__snake_case : Dict = dtype.kind
__snake_case : Union[str, Any] = dtype.itemsize
__snake_case : Tuple = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
__snake_case : int = np.dtype("""|u1""" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' )
if dtype is not dest_dtype:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
__snake_case : List[str] = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
__snake_case : int = dtype_byteorder + dtype_kind + str(__SCREAMING_SNAKE_CASE )
__snake_case : Any = np.dtype(__SCREAMING_SNAKE_CASE )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' )
__snake_case : Optional[int] = PIL.Image.fromarray(array.astype(__SCREAMING_SNAKE_CASE ) )
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if objs:
__snake_case , __snake_case : Any = first_non_null_value(__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
__snake_case : int = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ):
__snake_case : List[str] = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
else:
return objs
else:
return objs
| 20 | 0 |
import argparse
import logging
import os
import time
import timeit
import datasets
import numpy as np
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
import torch
from absl import logging as absl_logging
from accelerate import Accelerator
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from utils_qa import postprocess_qa_predictions
import transformers
from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed
from transformers.trainer_pt_utils import nested_concat, nested_truncate
lowercase_ = trt.Logger(trt.Logger.WARNING)
lowercase_ = absl_logging.get_absl_logger()
absl_logger.setLevel(logging.WARNING)
lowercase_ = logging.getLogger(__name__)
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--onnx_model_path",
default=None,
type=str,
required=True,
help="Path to ONNX model: ",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints and predictions will be written.",
)
# Other parameters
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
required=True,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--version_2_with_negative",
action="store_true",
help="If true, the SQuAD examples contain some that do not have an answer.",
)
parser.add_argument(
"--null_score_diff_threshold",
type=float,
default=0.0,
help="If null_score - best_non_null is greater than the threshold predict null.",
)
parser.add_argument(
"--max_seq_length",
default=3_84,
type=int,
help=(
"The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded."
),
)
parser.add_argument(
"--doc_stride",
default=1_28,
type=int,
help="When splitting up a long document into chunks, how much stride to take between chunks.",
)
parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.")
parser.add_argument(
"--n_best_size",
default=20,
type=int,
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
)
parser.add_argument(
"--max_answer_length",
default=30,
type=int,
help=(
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
),
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--dataset_name",
type=str,
default=None,
required=True,
help="The name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The configuration name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data."
)
parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision instead of 32-bit",
)
parser.add_argument(
"--int8",
action="store_true",
help="Whether to use INT8",
)
lowercase_ = parser.parse_args()
if args.tokenizer_name:
lowercase_ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
logger.info("Training/evaluation parameters %s", args)
lowercase_ = args.per_device_eval_batch_size
lowercase_ = (args.eval_batch_size, args.max_seq_length)
# TRT Engine properties
lowercase_ = True
lowercase_ = 'temp_engine/bert-fp32.engine'
if args.fpaa:
lowercase_ = 'temp_engine/bert-fp16.engine'
if args.inta:
lowercase_ = 'temp_engine/bert-int8.engine'
# import ONNX file
if not os.path.exists("temp_engine"):
os.makedirs("temp_engine")
lowercase_ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(
network, TRT_LOGGER
) as parser:
with open(args.onnx_model_path, "rb") as model:
if not parser.parse(model.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
# Query input names and shapes from parsed TensorRT network
lowercase_ = [network.get_input(i) for i in range(network.num_inputs)]
lowercase_ = [_input.name for _input in network_inputs] # ex: ["actual_input1"]
with builder.create_builder_config() as config:
lowercase_ = 1 << 50
if STRICT_TYPES:
config.set_flag(trt.BuilderFlag.STRICT_TYPES)
if args.fpaa:
config.set_flag(trt.BuilderFlag.FPaa)
if args.inta:
config.set_flag(trt.BuilderFlag.INTa)
lowercase_ = builder.create_optimization_profile()
config.add_optimization_profile(profile)
for i in range(len(input_names)):
profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE)
lowercase_ = builder.build_engine(network, config)
# serialize_engine and store in file (can be directly loaded and deserialized):
with open(engine_name, "wb") as f:
f.write(engine.serialize())
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
__snake_case : str = np.asarray(inputs["""input_ids"""] , dtype=np.intaa )
__snake_case : str = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa )
__snake_case : Optional[int] = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa )
# Copy inputs
cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , _A )
cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , _A )
cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , _A )
# start time
__snake_case : Dict = time.time()
# Run inference
context.execute_async(
bindings=[int(_A ) for d_inp in d_inputs] + [int(_A ), int(_A )] , stream_handle=stream.handle )
# Transfer predictions back from GPU
cuda.memcpy_dtoh_async(_A , _A , _A )
cuda.memcpy_dtoh_async(_A , _A , _A )
# Synchronize the stream and take time
stream.synchronize()
# end time
__snake_case : Union[str, Any] = time.time()
__snake_case : Dict = end_time - start_time
__snake_case : Optional[int] = (h_outputa, h_outputa)
# print(outputs)
return outputs, infer_time
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
lowercase_ = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
lowercase_ = load_dataset(args.dataset_name, args.dataset_config_name)
else:
raise ValueError("Evaluation requires a dataset name")
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Preprocessing the datasets.
# Preprocessing is slighlty different for training and evaluation.
lowercase_ = raw_datasets['validation'].column_names
lowercase_ = 'question' if 'question' in column_names else column_names[0]
lowercase_ = 'context' if 'context' in column_names else column_names[1]
lowercase_ = 'answers' if 'answers' in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
lowercase_ = tokenizer.padding_side == 'right'
if args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the'''
F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.'''
)
lowercase_ = min(args.max_seq_length, tokenizer.model_max_length)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
__snake_case : Optional[Any] = [q.lstrip() for q in examples[question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
__snake_case : Dict = tokenizer(
examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=_A , stride=args.doc_stride , return_overflowing_tokens=_A , return_offsets_mapping=_A , padding="""max_length""" , )
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
__snake_case : Any = tokenized_examples.pop("""overflow_to_sample_mapping""" )
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
__snake_case : List[str] = []
for i in range(len(tokenized_examples["""input_ids"""] ) ):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
__snake_case : Dict = tokenized_examples.sequence_ids(_A )
__snake_case : List[str] = 1 if pad_on_right else 0
# One example can give several spans, this is the index of the example containing this span of text.
__snake_case : Dict = sample_mapping[i]
tokenized_examples["example_id"].append(examples["""id"""][sample_index] )
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
__snake_case : Any = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] )
]
return tokenized_examples
lowercase_ = raw_datasets['validation']
# Validation Feature Creation
lowercase_ = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
lowercase_ = default_data_collator
lowercase_ = eval_dataset.remove_columns(["example_id", "offset_mapping"])
lowercase_ = DataLoader(
eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]="eval" ):
'''simple docstring'''
__snake_case : List[str] = postprocess_qa_predictions(
examples=_A , features=_A , predictions=_A , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=_A , )
# Format the result to the format the metric expects.
if args.version_2_with_negative:
__snake_case : Optional[int] = [
{"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items()
]
else:
__snake_case : Optional[Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()]
__snake_case : str = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=_A , label_ids=_A )
lowercase_ = load_metric("squad_v2" if args.version_2_with_negative else "squad")
# Evaluation!
logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path)
with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine(
f.read()
) as engine, engine.create_execution_context() as context:
# setup for TRT inferrence
for i in range(len(input_names)):
context.set_binding_shape(i, INPUT_SHAPE)
assert context.all_binding_shapes_specified
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
return trt.volume(engine.get_binding_shape(_A ) ) * engine.get_binding_dtype(_A ).itemsize
# Allocate device memory for inputs and outputs.
lowercase_ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)]
# Allocate output buffer
lowercase_ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa)
lowercase_ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa)
lowercase_ = cuda.mem_alloc(h_outputa.nbytes)
lowercase_ = cuda.mem_alloc(h_outputa.nbytes)
# Create a stream in which to copy inputs/outputs and run inference.
lowercase_ = cuda.Stream()
# Evaluation
logger.info("***** Running Evaluation *****")
logger.info(F''' Num examples = {len(eval_dataset)}''')
logger.info(F''' Batch size = {args.per_device_eval_batch_size}''')
lowercase_ = 0.0
lowercase_ = 0
lowercase_ = timeit.default_timer()
lowercase_ = None
for step, batch in enumerate(eval_dataloader):
lowercase_ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream)
total_time += infer_time
niter += 1
lowercase_ = outputs
lowercase_ = torch.tensor(start_logits)
lowercase_ = torch.tensor(end_logits)
# necessary to pad predictions and labels for being gathered
lowercase_ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00)
lowercase_ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00)
lowercase_ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy())
lowercase_ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00)
if all_preds is not None:
lowercase_ = nested_truncate(all_preds, len(eval_dataset))
lowercase_ = timeit.default_timer() - start_time
logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset))
# Inference time from TRT
logger.info("Average Inference Time = {:.3f} ms".format(total_time * 10_00 / niter))
logger.info("Total Inference Time = {:.3f} ms".format(total_time * 10_00))
logger.info("Total Number of Inference = %d", niter)
lowercase_ = post_processing_function(eval_examples, eval_dataset, all_preds)
lowercase_ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(F'''Evaluation metrics: {eval_metric}''')
| 354 | from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(__UpperCamelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ):
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = {}
__snake_case : int = {}
if prompt is not None:
__snake_case : Dict = prompt
if generate_kwargs is not None:
__snake_case : List[Any] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__snake_case : Optional[int] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
__snake_case : Any = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ):
return super().__call__(_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = load_image(_lowerCAmelCase )
if prompt is not None:
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
raise ValueError(
f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
__snake_case : Tuple = self.model.config.model_type
if model_type == "git":
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids
__snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids
__snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
__snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework )
model_inputs.update(_lowerCAmelCase )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
__snake_case : int = None
return model_inputs
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ):
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase )
and all(x is None for x in model_inputs["""input_ids"""] )
):
__snake_case : List[Any] = None
if generate_kwargs is None:
__snake_case : Dict = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__snake_case : Dict = model_inputs.pop(self.model.main_input_name )
__snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase )
return model_outputs
def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ):
__snake_case : Union[str, Any] = []
for output_ids in model_outputs:
__snake_case : Union[str, Any] = {
"""generated_text""": self.tokenizer.decode(
_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , )
}
records.append(_lowerCAmelCase )
return records
| 20 | 0 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
lowercase_ = pytest.mark.integration
@require_faiss
class SCREAMING_SNAKE_CASE__ ( snake_case_ ):
def snake_case__ ( self : List[Any] ):
__snake_case : Optional[Any] = Dataset.from_dict({"""filename""": ["""my_name-train""" + """_""" + str(_lowerCAmelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def snake_case__ ( self : Dict ):
import faiss
__snake_case : Dataset = self._create_dummy_dataset()
__snake_case : Optional[Any] = dset.map(
lambda _lowerCAmelCase , _lowerCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase )
__snake_case : List[Any] = dset.add_faiss_index("""vecs""" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT )
__snake_case : str = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" )
dset.drop_index("""vecs""" )
def snake_case__ ( self : str ):
import faiss
__snake_case : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , )
__snake_case : Union[str, Any] = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" )
def snake_case__ ( self : Any ):
import faiss
__snake_case : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_lowerCAmelCase ) as tmp_file:
dset.save_faiss_index("""vecs""" , tmp_file.name )
dset.load_faiss_index("""vecs2""" , tmp_file.name )
os.unlink(tmp_file.name )
__snake_case : Tuple = dset.get_nearest_examples("""vecs2""" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" )
dset.drop_index("""vecs""" )
self.assertRaises(_lowerCAmelCase , partial(dset.get_nearest_examples , """vecs2""" , np.ones(5 , dtype=np.floataa ) ) )
def snake_case__ ( self : Any ):
from elasticsearch import Elasticsearch
__snake_case : Dataset = self._create_dummy_dataset()
with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch(
"""elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk:
__snake_case : Any = {'acknowledged': True}
mocked_bulk.return_value([(True, None)] * 30 )
__snake_case : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 29}]}}
__snake_case : List[Any] = Elasticsearch()
dset.add_elasticsearch_index("""filename""" , es_client=_lowerCAmelCase )
__snake_case : int = dset.get_nearest_examples("""filename""" , """my_name-train_29""" )
self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" )
@require_faiss
class SCREAMING_SNAKE_CASE__ ( snake_case_ ):
def snake_case__ ( self : List[Any] ):
import faiss
__snake_case : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
__snake_case : List[str] = np.zeros(5 , dtype=np.floataa )
__snake_case : int = 1
__snake_case : Union[str, Any] = index.search(_lowerCAmelCase )
self.assertRaises(_lowerCAmelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
__snake_case : Any = np.eye(5 , dtype=np.floataa )[::-1]
__snake_case : Optional[Any] = index.search_batch(_lowerCAmelCase )
self.assertRaises(_lowerCAmelCase , index.search_batch , queries[0] )
__snake_case : Optional[int] = [scores[0] for scores in total_scores]
__snake_case : Union[str, Any] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_lowerCAmelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
import faiss
__snake_case : Tuple = FaissIndex(string_factory="""Flat""" )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
__snake_case : int = FaissIndex(string_factory="""LSH""" )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(_lowerCAmelCase ):
__snake_case : Union[str, Any] = FaissIndex(string_factory="""Flat""" , custom_index=faiss.IndexFlat(5 ) )
def snake_case__ ( self : Optional[int] ):
import faiss
__snake_case : Any = faiss.IndexFlat(5 )
__snake_case : int = FaissIndex(custom_index=_lowerCAmelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def snake_case__ ( self : List[str] ):
import faiss
__snake_case : str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_lowerCAmelCase ) as tmp_file:
index.save(tmp_file.name )
__snake_case : str = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
__snake_case : int = np.zeros(5 , dtype=np.floataa )
__snake_case : Tuple = 1
__snake_case : Any = index.search(_lowerCAmelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
import faiss
__snake_case : List[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
__snake_case : List[str] = 'index.faiss'
__snake_case : Tuple = F'''mock://{index_name}'''
index.save(__SCREAMING_SNAKE_CASE , storage_options=mockfs.storage_options )
__snake_case : List[str] = FaissIndex.load(__SCREAMING_SNAKE_CASE , storage_options=mockfs.storage_options )
__snake_case : List[Any] = np.zeros(5 , dtype=np.floataa )
__snake_case : List[str] = 1
__snake_case : int = index.search(__SCREAMING_SNAKE_CASE )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class SCREAMING_SNAKE_CASE__ ( snake_case_ ):
def snake_case__ ( self : Optional[Any] ):
from elasticsearch import Elasticsearch
with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch(
"""elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk:
__snake_case : str = Elasticsearch()
__snake_case : List[str] = {'acknowledged': True}
__snake_case : Optional[Any] = ElasticSearchIndex(es_client=_lowerCAmelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(["""foo""", """bar""", """foobar"""] )
# single query
__snake_case : int = 'foo'
__snake_case : int = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
__snake_case : Union[str, Any] = index.search(_lowerCAmelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
__snake_case : List[Any] = 'foo'
__snake_case : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
__snake_case : Union[str, Any] = index.search(_lowerCAmelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
__snake_case : List[Any] = ['foo', 'bar', 'foobar']
__snake_case : Optional[int] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
__snake_case : Union[str, Any] = index.search_batch(_lowerCAmelCase )
__snake_case : Optional[Any] = [scores[0] for scores in total_scores]
__snake_case : str = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_lowerCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , _lowerCAmelCase )
# batched queries with timeout
__snake_case : Any = ['foo', 'bar', 'foobar']
__snake_case : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
__snake_case : Optional[int] = index.search_batch(_lowerCAmelCase , request_timeout=30 )
__snake_case : Optional[Any] = [scores[0] for scores in total_scores]
__snake_case : Optional[Any] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_lowerCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , _lowerCAmelCase )
| 355 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowercase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["YolosFeatureExtractor"]
lowercase_ = ["YolosImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST",
"YolosForObjectDetection",
"YolosModel",
"YolosPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 0 |
from math import ceil, sqrt
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int = 1_0_0_0_0_0_0 ):
'''simple docstring'''
__snake_case : List[str] = 0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
__snake_case : str = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
__snake_case : Dict = 1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(F'''{solution() = }''')
| 356 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = "microsoft/speecht5_tts"
A : List[Any] = (
"This is a tool that reads an English text out loud. It takes an input named `text` which should contain the "
"text to read (in English) and returns a waveform object containing the sound."
)
A : str = "text_reader"
A : Optional[Any] = SpeechTaProcessor
A : Any = SpeechTaForTextToSpeech
A : Optional[Any] = SpeechTaHifiGan
A : str = ["text"]
A : Union[str, Any] = ["audio"]
def snake_case__ ( self : List[Any] ):
if self.post_processor is None:
__snake_case : Tuple = """microsoft/speecht5_hifigan"""
super().setup()
def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ):
__snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" )
__snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" )
__snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ):
with torch.no_grad():
return self.model.generate_speech(**_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
with torch.no_grad():
return self.post_processor(_lowerCAmelCase ).cpu().detach()
| 20 | 0 |
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = "▁"
lowercase_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
lowercase_ = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
lowercase_ = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
lowercase_ = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
lowercase_ = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ):
A : List[str] = ["input_ids"]
A : Union[str, Any] = VOCAB_FILES_NAMES
A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION
A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : List[Any] = PRETRAINED_VOCAB_FILES_MAP
A : str = RESOURCE_FILES_NAMES
def __init__( self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Tuple="utf8" , _lowerCAmelCase : Dict="[UNK]" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : int="[PAD]" , _lowerCAmelCase : List[Any]="[CLS]" , _lowerCAmelCase : Optional[int]="[MASK]" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Optional[Any] , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__snake_case : str = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , vocab_file=lowercase__ , encoding=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , )
__snake_case : Optional[Any] = do_lower_case
__snake_case : List[str] = sentencepiece_model_ckpt
__snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowercase__ )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
__snake_case : Optional[int] = self.load_vocab(filepath=lowercase__ )
else:
__snake_case : List[Any] = {self.sp_model.id_to_piece(lowercase__ ): id for id in range(self.sp_model.get_piece_size() )}
__snake_case : List[str] = {v: k for k, v in self.vocab.items()}
def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] ):
if text is None:
return None
__snake_case : Dict = self.tokenize(lowercase__ )
__snake_case , __snake_case : Union[str, Any] = """""", []
for i, ch in enumerate(lowercase__ ):
if ch in self.SP_CHAR_MAPPING:
__snake_case : Any = self.SP_CHAR_MAPPING.get(lowercase__ )
else:
__snake_case : Dict = unicodedata.normalize("""NFKC""" , lowercase__ )
if self.is_whitespace(lowercase__ ):
continue
normalized_text += ch
char_mapping.extend([i] * len(lowercase__ ) )
__snake_case , __snake_case , __snake_case : int = normalized_text, [], 0
if self.do_lower_case:
__snake_case : Dict = text.lower()
for token in split_tokens:
if token[:1] == "▁":
__snake_case : Dict = token[1:]
__snake_case : Tuple = text[offset:].index(lowercase__ ) + offset
__snake_case : Union[str, Any] = start + len(lowercase__ )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
__snake_case : List[str] = end
return token_mapping
@property
def snake_case__ ( self : Optional[int] ):
return len(self.vocab )
def snake_case__ ( self : int ):
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : str ):
__snake_case : Any = self.__dict__.copy()
__snake_case : Union[str, Any] = None
return state
def __setstate__( self : str , _lowerCAmelCase : Any ):
__snake_case : Tuple = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__snake_case : Union[str, Any] = {}
__snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def snake_case__ ( self : str , _lowerCAmelCase : List[str] ):
return "".join((self.SP_CHAR_MAPPING.get(lowercase__ , lowercase__ ) for c in text) )
def snake_case__ ( self : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Any=64 , _lowerCAmelCase : Any=0.1 ):
if self.sp_model_kwargs.get("""enable_sampling""" ) is True:
__snake_case : Tuple = True
if self.sp_model_kwargs.get("""alpha""" ) is not None:
__snake_case : Tuple = self.sp_model_kwargs.get("""alpha""" )
if self.sp_model_kwargs.get("""nbest_size""" ) is not None:
__snake_case : Any = self.sp_model_kwargs.get("""nbest_size""" )
if not enable_sampling:
__snake_case : List[Any] = self.sp_model.EncodeAsPieces(lowercase__ )
else:
__snake_case : Optional[int] = self.sp_model.SampleEncodeAsPieces(lowercase__ , lowercase__ , lowercase__ )
__snake_case : Dict = []
for pi, piece in enumerate(lowercase__ ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(lowercase__ ) and pi != 0:
new_pieces.append(lowercase__ )
continue
else:
continue
__snake_case : Union[str, Any] = 0
for i, chunk in enumerate(lowercase__ ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(lowercase__ ) or self.is_punct(lowercase__ ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(lowercase__ )
__snake_case : Union[str, Any] = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : Optional[Any] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : Any = i
if len(lowercase__ ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def snake_case__ ( self : int , _lowerCAmelCase : int ):
__snake_case : Optional[int] = """""".join(lowercase__ ).replace(lowercase__ , """ """ ).strip()
return out_string
def snake_case__ ( self : List[str] , _lowerCAmelCase : Union[str, Any] ):
__snake_case : List[str] = self.convert_ids_to_tokens(lowercase__ )
__snake_case : List[str] = """""".join(lowercase__ ).replace(lowercase__ , """ """ ).strip()
return out_string
def snake_case__ ( self : Tuple , _lowerCAmelCase : List[str] ):
return self.vocab.get(lowercase__ , self.vocab.get(self.unk_token ) )
def snake_case__ ( self : int , _lowerCAmelCase : Optional[int] ):
return self.reverse_vocab.get(lowercase__ , self.unk_token )
def snake_case__ ( self : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : List[str] = [self.cls_token_id]
__snake_case : Union[str, Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=None ):
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[int]=False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(lowercase__ )) + [1, 1] + ([0] * len(lowercase__ )) + [1]
return [1] + ([0] * len(lowercase__ )) + [1]
def snake_case__ ( self : Tuple , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(lowercase__ ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(lowercase__ ) + 1) + [1] * (len(lowercase__ ) + 3)
def snake_case__ ( self : Any , _lowerCAmelCase : int ):
if "\u4e00" <= char <= "\u9fff":
return True
return False
def snake_case__ ( self : List[str] , _lowerCAmelCase : str ):
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Any ):
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(lowercase__ ) == 1:
__snake_case : str = unicodedata.category(lowercase__ )
if cat == "Zs":
return True
return False
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[Any] ):
__snake_case : Optional[int] = {}
with io.open(lowercase__ , """r""" , encoding="""utf-8""" ) as f:
for index, line in enumerate(lowercase__ ):
__snake_case : int = line.rstrip("""\n""" )
__snake_case : List[Any] = int(lowercase__ )
return token_to_idx
def snake_case__ ( self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : str = 0
if os.path.isdir(lowercase__ ):
__snake_case : str = os.path.join(
lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
else:
__snake_case : Any = (filename_prefix + """-""" if filename_prefix else """""") + save_directory
with open(lowercase__ , """w""" , encoding="""utf-8""" ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
""" Please check that the vocabulary is not corrupted!""" )
__snake_case : str = token_index
writer.write(token + """\n""" )
index += 1
__snake_case : List[Any] = os.path.join(lowercase__ , """sentencepiece.bpe.model""" )
with open(lowercase__ , """wb""" ) as fi:
__snake_case : List[Any] = self.sp_model.serialized_model_proto()
fi.write(lowercase__ )
return (vocab_file,)
| 357 | import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * power_factor
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | 0 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowercase_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
'VAN_PRETRAINED_MODEL_ARCHIVE_LIST',
'VanForImageClassification',
'VanModel',
'VanPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_van import (
VAN_PRETRAINED_MODEL_ARCHIVE_LIST,
VanForImageClassification,
VanModel,
VanPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 358 | from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 20 | 0 |
from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int | None = None , __SCREAMING_SNAKE_CASE : int | None = None ):
'''simple docstring'''
if start is None:
__snake_case : Optional[Any] = 0
if end is None:
__snake_case : str = len(a__ ) - 1
if start >= end:
return
__snake_case : Any = (start + end) // 2
slowsort(a__ , a__ , a__ )
slowsort(a__ , mid + 1 , a__ )
if sequence[end] < sequence[mid]:
__snake_case , __snake_case : List[Any] = sequence[mid], sequence[end]
slowsort(a__ , a__ , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 359 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {
"configuration_blenderbot_small": [
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotSmallConfig",
"BlenderbotSmallOnnxConfig",
],
"tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["BlenderbotSmallTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
"BlenderbotSmallPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFBlenderbotSmallForConditionalGeneration",
"TFBlenderbotSmallModel",
"TFBlenderbotSmallPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxBlenderbotSmallForConditionalGeneration",
"FlaxBlenderbotSmallModel",
"FlaxBlenderbotSmallPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 0 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class SCREAMING_SNAKE_CASE__ ( __lowercase ):
A : Dict = ['''image_processor''', '''tokenizer''']
A : Any = '''CLIPImageProcessor'''
A : List[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self : Tuple , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : List[str] ):
__snake_case : str = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , UpperCAmelCase__ , )
__snake_case : str = kwargs.pop("""feature_extractor""" )
__snake_case : int = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(UpperCAmelCase__ , UpperCAmelCase__ )
def __call__( self : Any , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : List[str] ):
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
__snake_case : Union[str, Any] = self.tokenizer(UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ )
if images is not None:
__snake_case : List[str] = self.image_processor(UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ )
if text is not None and images is not None:
__snake_case : Union[str, Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase__ ) , tensor_type=UpperCAmelCase__ )
def snake_case__ ( self : List[Any] , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Optional[int] ):
return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__ )
def snake_case__ ( self : Union[str, Any] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Dict ):
return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__ )
@property
def snake_case__ ( self : Optional[Any] ):
__snake_case : int = self.tokenizer.model_input_names
__snake_case : int = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def snake_case__ ( self : Any ):
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCAmelCase__ , )
return self.image_processor_class
@property
def snake_case__ ( self : int ):
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCAmelCase__ , )
return self.image_processor
| 360 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase_ = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["ViTFeatureExtractor"]
lowercase_ = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 0 |
"""simple docstring"""
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
return base * power(__lowerCAmelCase , (exponent - 1) ) if exponent else 1
if __name__ == "__main__":
print("Raise base to the power of exponent using recursion...")
lowercase_ = int(input("Enter the base: ").strip())
lowercase_ = int(input("Enter the exponent: ").strip())
lowercase_ = power(base, abs(exponent))
if exponent < 0: # power() does not properly deal w/ negative exponents
lowercase_ = 1 / result
print(F'''{base} to the power of {exponent} is {result}''')
| 361 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if (direction == 1 and array[indexa] > array[indexa]) or (
direction == 0 and array[indexa] < array[indexa]
):
__snake_case , __snake_case : str = array[indexa], array[indexa]
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Tuple = int(length / 2 )
for i in range(__SCREAMING_SNAKE_CASE , low + middle ):
comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Optional[Any] = int(length / 2 )
bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 )
bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
bitonic_sort(unsorted, 0, len(unsorted), 1)
print("\nSorted array in ascending order is: ", end="")
print(*unsorted, sep=", ")
bitonic_merge(unsorted, 0, len(unsorted), 0)
print("Sorted array in descending order is: ", end="")
print(*unsorted, sep=", ")
| 20 | 0 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_download, hf_hub_url
from PIL import Image
from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
lowercase_ = logging.get_logger(__name__)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
__snake_case : str = SwinConfig(
embed_dim=1_9_2 , depths=(2, 2, 1_8, 2) , num_heads=(6, 1_2, 2_4, 4_8) , window_size=1_2 , out_features=["""stage2""", """stage3""", """stage4"""] , )
__snake_case : Dict = DetaConfig(
backbone_config=lowercase__ , num_queries=9_0_0 , encoder_ffn_dim=2_0_4_8 , decoder_ffn_dim=2_0_4_8 , num_feature_levels=5 , assign_first_stage=lowercase__ , with_box_refine=lowercase__ , two_stage=lowercase__ , )
# set labels
__snake_case : int = """huggingface/label-files"""
if "o365" in model_name:
__snake_case : List[Any] = 3_6_6
__snake_case : List[str] = """object365-id2label.json"""
else:
__snake_case : Union[str, Any] = 9_1
__snake_case : Optional[int] = """coco-detection-id2label.json"""
__snake_case : List[str] = num_labels
__snake_case : List[Any] = json.load(open(cached_download(hf_hub_url(lowercase__ , lowercase__ , repo_type="""dataset""" ) ) , """r""" ) )
__snake_case : Any = {int(lowercase__ ): v for k, v in idalabel.items()}
__snake_case : Union[str, Any] = idalabel
__snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()}
return config
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
__snake_case : List[Any] = []
# stem
# fmt: off
rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""") )
rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""") )
rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""") )
rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""") )
rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""") )
rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""") )
rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""") )
rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""") )
rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""") )
# transformer encoder
for i in range(config.encoder_layers ):
rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''') )
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''') )
# transformer decoder
for i in range(config.decoder_layers ):
rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''') )
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''') )
# fmt: on
return rename_keys
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
__snake_case : List[str] = dct.pop(lowercase__ )
__snake_case : str = val
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
__snake_case : Tuple = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
__snake_case : Tuple = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
__snake_case : Optional[Any] = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' )
__snake_case : Dict = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
__snake_case : List[str] = in_proj_weight[:dim, :]
__snake_case : Optional[Any] = in_proj_bias[: dim]
__snake_case : Any = in_proj_weight[
dim : dim * 2, :
]
__snake_case : int = in_proj_bias[
dim : dim * 2
]
__snake_case : Tuple = in_proj_weight[
-dim :, :
]
__snake_case : str = in_proj_bias[-dim :]
# fmt: on
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
__snake_case : int = config.d_model
for i in range(config.decoder_layers ):
# read in weights + bias of input projection layer of self-attention
__snake_case : List[str] = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' )
__snake_case : List[Any] = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
__snake_case : int = in_proj_weight[:hidden_size, :]
__snake_case : int = in_proj_bias[:hidden_size]
__snake_case : Tuple = in_proj_weight[
hidden_size : hidden_size * 2, :
]
__snake_case : List[str] = in_proj_bias[hidden_size : hidden_size * 2]
__snake_case : Tuple = in_proj_weight[-hidden_size:, :]
__snake_case : Tuple = in_proj_bias[-hidden_size:]
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__snake_case : Optional[int] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
__snake_case : Optional[Any] = get_deta_config(lowercase__ )
# load original state dict
if model_name == "deta-swin-large":
__snake_case : Dict = hf_hub_download(repo_id="""nielsr/deta-checkpoints""" , filename="""adet_swin_ft.pth""" )
elif model_name == "deta-swin-large-o365":
__snake_case : str = hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""" , filename="""deta_swin_pt_o365.pth""" )
else:
raise ValueError(F'''Model name {model_name} not supported''' )
__snake_case : Optional[Any] = torch.load(lowercase__ , map_location="""cpu""" )["""model"""]
# original state dict
for name, param in state_dict.items():
print(lowercase__ , param.shape )
# rename keys
__snake_case : Optional[int] = create_rename_keys(lowercase__ )
for src, dest in rename_keys:
rename_key(lowercase__ , lowercase__ , lowercase__ )
read_in_swin_q_k_v(lowercase__ , config.backbone_config )
read_in_decoder_q_k_v(lowercase__ , lowercase__ )
# fix some prefixes
for key in state_dict.copy().keys():
if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key:
__snake_case : str = state_dict.pop(lowercase__ )
__snake_case : int = val
if "input_proj" in key:
__snake_case : List[str] = state_dict.pop(lowercase__ )
__snake_case : Optional[Any] = val
if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key:
__snake_case : List[Any] = state_dict.pop(lowercase__ )
__snake_case : Optional[Any] = val
# finally, create HuggingFace model and load state dict
__snake_case : Any = DetaForObjectDetection(lowercase__ )
model.load_state_dict(lowercase__ )
model.eval()
__snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu"""
model.to(lowercase__ )
# load image processor
__snake_case : List[Any] = DetaImageProcessor(format="""coco_detection""" )
# verify our conversion on image
__snake_case : int = prepare_img()
__snake_case : Dict = processor(images=lowercase__ , return_tensors="""pt""" )
__snake_case : Tuple = encoding["""pixel_values"""]
__snake_case : Any = model(pixel_values.to(lowercase__ ) )
# verify logits
print("""Logits:""" , outputs.logits[0, :3, :3] )
print("""Boxes:""" , outputs.pred_boxes[0, :3, :3] )
if model_name == "deta-swin-large":
__snake_case : Optional[Any] = torch.tensor(
[[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] )
__snake_case : str = torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] )
elif model_name == "deta-swin-large-o365":
__snake_case : Tuple = torch.tensor(
[[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] )
__snake_case : List[str] = torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] )
assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(lowercase__ ) , atol=1E-4 )
assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(lowercase__ ) , atol=1E-4 )
print("""Everything ok!""" )
if pytorch_dump_folder_path:
# Save model and processor
logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' )
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
model.save_pretrained(lowercase__ )
processor.save_pretrained(lowercase__ )
# Push to hub
if push_to_hub:
print("""Pushing model and processor to hub...""" )
model.push_to_hub(F'''jozhang97/{model_name}''' )
processor.push_to_hub(F'''jozhang97/{model_name}''' )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
type=str,
default="deta-swin-large",
choices=["deta-swin-large", "deta-swin-large-o365"],
help="Name of the model you\'d like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
help="Path to the folder to output PyTorch model.",
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowercase_ = parser.parse_args()
convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 362 | import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ):
'''simple docstring'''
__snake_case : Optional[int] = {
"""7z""": (seven_zip_file, SevenZipExtractor),
"""bz2""": (bza_file, BzipaExtractor),
"""gzip""": (gz_file, GzipExtractor),
"""lz4""": (lza_file, LzaExtractor),
"""tar""": (tar_file, TarExtractor),
"""xz""": (xz_file, XzExtractor),
"""zip""": (zip_file, ZipExtractor),
"""zstd""": (zstd_file, ZstdExtractor),
}
__snake_case , __snake_case : Tuple = input_paths_and_base_extractors[compression_format]
if input_path is None:
__snake_case : Tuple = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE )
__snake_case : List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : List[str] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Optional[Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : int = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ):
'''simple docstring'''
__snake_case : Union[str, Any] = {
"""7z""": seven_zip_file,
"""bz2""": bza_file,
"""gzip""": gz_file,
"""lz4""": lza_file,
"""tar""": tar_file,
"""xz""": xz_file,
"""zip""": zip_file,
"""zstd""": zstd_file,
}
__snake_case : int = input_paths[compression_format]
if input_path is None:
__snake_case : int = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
__snake_case : Any = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE )
assert extractor_format is not None
__snake_case : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : Union[str, Any] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Union[str, Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : Optional[Any] = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
import tarfile
__snake_case : List[str] = tmp_path / """data_dot_dot"""
directory.mkdir()
__snake_case : Optional[Any] = directory / """tar_file_with_dot_dot.tar"""
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) )
return path
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
import tarfile
__snake_case : Dict = tmp_path / """data_sym_link"""
directory.mkdir()
__snake_case : Tuple = directory / """tar_file_with_sym_link.tar"""
os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE )
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
"""insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
__snake_case : Any = {
"""tar_file_with_dot_dot""": tar_file_with_dot_dot,
"""tar_file_with_sym_link""": tar_file_with_sym_link,
}
__snake_case : int = insecure_tar_files[insecure_tar_file]
__snake_case : Optional[int] = tmp_path / """extracted"""
TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
# We should have less false positives than zipfile.is_zipfile
# We do that by checking only the magic number
__snake_case : Optional[Any] = tmpdir / """not_a_zip_file"""
# From: https://github.com/python/cpython/pull/5053
__snake_case : List[str] = (
b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"""
b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"""
b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"""
b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"""
)
with not_a_zip_file.open("""wb""" ) as f:
f.write(__SCREAMING_SNAKE_CASE )
assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
| 20 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
'andreasmadsen/efficient_mlm_m0.40': (
'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json'
),
}
class SCREAMING_SNAKE_CASE__ ( __SCREAMING_SNAKE_CASE ):
A : Optional[int] = "roberta-prelayernorm"
def __init__( self : Any , _lowerCAmelCase : List[str]=5_02_65 , _lowerCAmelCase : List[Any]=7_68 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : str=12 , _lowerCAmelCase : Dict=30_72 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : List[Any]=5_12 , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=0.02 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Union[str, Any]=0 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Dict="absolute" , _lowerCAmelCase : Any=True , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : Optional[Any] , ):
super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = vocab_size
__snake_case : Dict = hidden_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : List[str] = num_attention_heads
__snake_case : Any = hidden_act
__snake_case : int = intermediate_size
__snake_case : List[Any] = hidden_dropout_prob
__snake_case : Any = attention_probs_dropout_prob
__snake_case : Optional[int] = max_position_embeddings
__snake_case : Any = type_vocab_size
__snake_case : Union[str, Any] = initializer_range
__snake_case : Any = layer_norm_eps
__snake_case : str = position_embedding_type
__snake_case : List[str] = use_cache
__snake_case : Dict = classifier_dropout
class SCREAMING_SNAKE_CASE__ ( __SCREAMING_SNAKE_CASE ):
@property
def lowerCAmelCase__ ( self : Tuple ):
if self.task == "multiple-choice":
__snake_case : List[Any] = {0: "batch", 1: "choice", 2: "sequence"}
else:
__snake_case : Optional[int] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 363 | import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : Any ):
__snake_case : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split()
__snake_case : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
__snake_case : List[str] = {
"""unk_token""": """<unk>""",
"""bos_token""": """<s>""",
"""eos_token""": """</s>""",
}
__snake_case : str = {
"""feature_size""": 1,
"""padding_value""": 0.0,
"""sampling_rate""": 1_60_00,
"""return_attention_mask""": False,
"""do_normalize""": True,
}
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__snake_case : Any = os.path.join(self.tmpdirname , _lowerCAmelCase )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
# load decoder from hub
__snake_case : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder"""
def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Tuple ):
__snake_case : int = self.add_kwargs_tokens_map.copy()
kwargs.update(_lowerCAmelCase )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , **_lowerCAmelCase : Optional[int] ):
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Dict , **_lowerCAmelCase : Tuple ):
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase )
def snake_case__ ( self : List[str] ):
shutil.rmtree(self.tmpdirname )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : Tuple = self.get_feature_extractor()
__snake_case : Dict = self.get_decoder()
__snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
__snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowerCAmelCase )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , _lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : Tuple = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
__snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def snake_case__ ( self : int ):
__snake_case : Tuple = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(["""xx"""] )
with self.assertRaisesRegex(_lowerCAmelCase , """include""" ):
WavaVecaProcessorWithLM(
tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def snake_case__ ( self : Dict ):
__snake_case : int = self.get_feature_extractor()
__snake_case : str = self.get_tokenizer()
__snake_case : Dict = self.get_decoder()
__snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : List[Any] = floats_list((3, 10_00) )
__snake_case : Optional[Any] = feature_extractor(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Tuple = processor(_lowerCAmelCase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def snake_case__ ( self : Optional[int] ):
__snake_case : Any = self.get_feature_extractor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : int = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Optional[int] = """This is a test string"""
__snake_case : Union[str, Any] = processor(text=_lowerCAmelCase )
__snake_case : Dict = tokenizer(_lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[Any]=(2, 10, 16) , _lowerCAmelCase : str=77 ):
np.random.seed(_lowerCAmelCase )
return np.random.rand(*_lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : List[str] = self.get_feature_extractor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : List[str] = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 )
__snake_case : int = processor.decode(_lowerCAmelCase )
__snake_case : Optional[int] = decoder.decode_beams(_lowerCAmelCase )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual("""</s> <s> </s>""" , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ["""fork"""], ["""spawn"""]] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] ):
__snake_case : int = self.get_feature_extractor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : int = self.get_decoder()
__snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : int = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
__snake_case : Tuple = processor.batch_decode(_lowerCAmelCase )
else:
with get_context(_lowerCAmelCase ).Pool() as pool:
__snake_case : int = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : int = list(_lowerCAmelCase )
with get_context("""fork""" ).Pool() as p:
__snake_case : Tuple = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase )
__snake_case , __snake_case , __snake_case : List[Any] = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(_lowerCAmelCase , decoded_processor.text )
self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text )
self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score )
self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score )
def snake_case__ ( self : Optional[int] ):
__snake_case : Optional[Any] = self.get_feature_extractor()
__snake_case : int = self.get_tokenizer()
__snake_case : str = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : int = self._get_dummy_logits()
__snake_case : List[str] = 15
__snake_case : Optional[Any] = -20.0
__snake_case : Tuple = -4.0
__snake_case : List[Any] = processor.batch_decode(
_lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , )
__snake_case : List[str] = decoded_processor_out.text
__snake_case : str = list(_lowerCAmelCase )
with get_context("""fork""" ).Pool() as pool:
__snake_case : Dict = decoder.decode_beams_batch(
_lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , )
__snake_case : int = [d[0][0] for d in decoded_decoder_out]
__snake_case : List[Any] = [d[0][2] for d in decoded_decoder_out]
__snake_case : List[Any] = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase )
self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1e-3 ) )
self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1e-3 ) )
def snake_case__ ( self : Any ):
__snake_case : List[Any] = self.get_feature_extractor()
__snake_case : Any = self.get_tokenizer()
__snake_case : Union[str, Any] = self.get_decoder()
__snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Any = self._get_dummy_logits()
__snake_case : Any = 2.0
__snake_case : int = 5.0
__snake_case : Optional[int] = -20.0
__snake_case : Optional[int] = True
__snake_case : Any = processor.batch_decode(
_lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , )
__snake_case : str = decoded_processor_out.text
__snake_case : int = list(_lowerCAmelCase )
decoder.reset_params(
alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , )
with get_context("""fork""" ).Pool() as pool:
__snake_case : Tuple = decoder.decode_beams_batch(
_lowerCAmelCase , _lowerCAmelCase , )
__snake_case : int = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase )
__snake_case : List[str] = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , _lowerCAmelCase )
def snake_case__ ( self : Dict ):
__snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key]
__snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute()
__snake_case : Union[str, Any] = os.listdir(_lowerCAmelCase )
__snake_case : List[str] = ["""alphabet.json""", """language_model"""]
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" )
__snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase )
__snake_case : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key]
__snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute()
__snake_case : List[str] = os.listdir(_lowerCAmelCase )
__snake_case : List[Any] = os.listdir(_lowerCAmelCase )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Optional[int] = floats_list((3, 10_00) )
__snake_case : Union[str, Any] = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Union[str, Any] = processor_auto(_lowerCAmelCase , return_tensors="""np""" )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 )
__snake_case : Dict = self._get_dummy_logits()
__snake_case : List[Any] = processor_wavaveca.batch_decode(_lowerCAmelCase )
__snake_case : List[Any] = processor_auto.batch_decode(_lowerCAmelCase )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def snake_case__ ( self : str ):
__snake_case : int = self.get_feature_extractor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : Optional[Any] = self.get_decoder()
__snake_case : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
@staticmethod
def snake_case__ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ):
__snake_case : Union[str, Any] = [d[key] for d in offsets]
return retrieved_list
def snake_case__ ( self : Dict ):
__snake_case : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : List[str] = self._get_dummy_logits()[0]
__snake_case : str = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""word_offsets""" in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] )
def snake_case__ ( self : List[str] ):
__snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Optional[int] = self._get_dummy_logits()
__snake_case : int = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""word_offsets""" in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertListEqual(
[""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def snake_case__ ( self : Optional[Any] ):
import torch
__snake_case : Optional[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase )
__snake_case : Any = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) )
__snake_case : List[Any] = iter(_lowerCAmelCase )
__snake_case : Optional[int] = next(_lowerCAmelCase )
__snake_case : str = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" )
__snake_case : str = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
__snake_case : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values
with torch.no_grad():
__snake_case : Dict = model(_lowerCAmelCase ).logits.cpu().numpy()
__snake_case : Any = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase )
__snake_case : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
__snake_case : Dict = [
{
"""start_time""": d["""start_offset"""] * time_offset,
"""end_time""": d["""end_offset"""] * time_offset,
"""word""": d["""word"""],
}
for d in output["""word_offsets"""]
]
__snake_case : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL"""
# output words
self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase )
self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text )
# output times
__snake_case : Dict = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) )
__snake_case : Optional[Any] = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) )
# fmt: off
__snake_case : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] )
__snake_case : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
| 20 | 0 |
from math import sqrt
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int = 1_0_0_0_0_0_0 ):
'''simple docstring'''
__snake_case : int = 0
__snake_case : int = 0
__snake_case : int
while num_cuboids <= limit:
max_cuboid_size += 1
for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ):
if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer():
num_cuboids += (
min(_a , sum_shortest_sides // 2 )
- max(1 , sum_shortest_sides - max_cuboid_size )
+ 1
)
return max_cuboid_size
if __name__ == "__main__":
print(F'''{solution() = }''')
| 364 | import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowercase_ = {
"text_branch": "text_model",
"audio_branch": "audio_model.audio_encoder",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc")
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ):
'''simple docstring'''
__snake_case , __snake_case : str = create_model(
"""HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , )
return model, model_cfg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : Union[str, Any] = {}
__snake_case : List[Any] = R""".*sequential.(\d+).*"""
__snake_case : Union[str, Any] = R""".*_projection.(\d+).*"""
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
__snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# replace sequential layers with list
__snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 )
__snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' )
elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
__snake_case : List[Any] = 1 if projecton_layer == 0 else 2
__snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' )
if "audio" and "qkv" in key:
# split qkv into query key and value
__snake_case : Optional[int] = value
__snake_case : Any = mixed_qkv.size(0 ) // 3
__snake_case : List[Any] = mixed_qkv[:qkv_dim]
__snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2]
__snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :]
__snake_case : Any = query_layer
__snake_case : Dict = key_layer
__snake_case : Optional[Any] = value_layer
else:
__snake_case : List[str] = value
return model_state_dict
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ):
'''simple docstring'''
__snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE )
clap_model.eval()
__snake_case : Tuple = clap_model.state_dict()
__snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = ClapConfig()
__snake_case : Tuple = enable_fusion
__snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE )
# ignore the spectrogram embedding layer
model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not")
lowercase_ = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 20 | 0 |
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Tuple = ["""image_processor""", """tokenizer"""]
A : str = """FlavaImageProcessor"""
A : Dict = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : Optional[Any] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : List[Any] ):
__snake_case : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , _lowercase , )
__snake_case : str = kwargs.pop("""feature_extractor""" )
__snake_case : Dict = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(_lowercase , _lowercase )
__snake_case : List[Any] = self.image_processor
def __call__( self : int , _lowerCAmelCase : List[Any] = None , _lowerCAmelCase : Any = None , _lowerCAmelCase : Tuple = True , _lowerCAmelCase : Optional[int] = False , _lowerCAmelCase : Union[str, Any] = False , _lowerCAmelCase : Tuple = None , _lowerCAmelCase : Union[str, Any] = 0 , _lowerCAmelCase : Optional[Any] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : List[Any] = None , _lowerCAmelCase : List[str] = None , _lowerCAmelCase : Dict = None , _lowerCAmelCase : List[Any] = False , _lowerCAmelCase : int = False , _lowerCAmelCase : str = False , _lowerCAmelCase : List[str] = False , _lowerCAmelCase : int = True , _lowerCAmelCase : Union[str, Any] = None , **_lowerCAmelCase : Optional[Any] , ):
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
__snake_case : Any = self.tokenizer(
text=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_token_type_ids=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , )
if images is not None:
__snake_case : Optional[Any] = self.image_processor(
_lowercase , return_image_mask=_lowercase , return_codebook_pixels=_lowercase , return_tensors=_lowercase , **_lowercase , )
if text is not None and images is not None:
encoding.update(_lowercase )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_lowercase ) , tensor_type=_lowercase )
def snake_case__ ( self : Union[str, Any] , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : List[Any] ):
return self.tokenizer.batch_decode(*_lowercase , **_lowercase )
def snake_case__ ( self : str , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ):
return self.tokenizer.decode(*_lowercase , **_lowercase )
@property
def snake_case__ ( self : List[str] ):
__snake_case : Any = self.tokenizer.model_input_names
__snake_case : str = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def snake_case__ ( self : Any ):
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _lowercase , )
return self.image_processor_class
@property
def snake_case__ ( self : List[Any] ):
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _lowercase , )
return self.image_processor
| 365 | import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = "▁"
lowercase_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
lowercase_ = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
lowercase_ = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
lowercase_ = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
lowercase_ = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = ["input_ids"]
A : Tuple = VOCAB_FILES_NAMES
A : List[Any] = PRETRAINED_INIT_CONFIGURATION
A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
A : Optional[Any] = RESOURCE_FILES_NAMES
def __init__( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]="utf8" , _lowerCAmelCase : Optional[Any]="[UNK]" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : List[Any]="[MASK]" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Any , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , vocab_file=_lowerCAmelCase , encoding=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , )
__snake_case : List[Any] = do_lower_case
__snake_case : Any = sentencepiece_model_ckpt
__snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCAmelCase )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
__snake_case : int = self.load_vocab(filepath=_lowerCAmelCase )
else:
__snake_case : Tuple = {self.sp_model.id_to_piece(_lowerCAmelCase ): id for id in range(self.sp_model.get_piece_size() )}
__snake_case : str = {v: k for k, v in self.vocab.items()}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[Any] ):
if text is None:
return None
__snake_case : List[Any] = self.tokenize(_lowerCAmelCase )
__snake_case , __snake_case : Optional[Any] = """""", []
for i, ch in enumerate(_lowerCAmelCase ):
if ch in self.SP_CHAR_MAPPING:
__snake_case : Any = self.SP_CHAR_MAPPING.get(_lowerCAmelCase )
else:
__snake_case : Dict = unicodedata.normalize("""NFKC""" , _lowerCAmelCase )
if self.is_whitespace(_lowerCAmelCase ):
continue
normalized_text += ch
char_mapping.extend([i] * len(_lowerCAmelCase ) )
__snake_case , __snake_case , __snake_case : str = normalized_text, [], 0
if self.do_lower_case:
__snake_case : int = text.lower()
for token in split_tokens:
if token[:1] == "▁":
__snake_case : int = token[1:]
__snake_case : Optional[int] = text[offset:].index(_lowerCAmelCase ) + offset
__snake_case : int = start + len(_lowerCAmelCase )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
__snake_case : str = end
return token_mapping
@property
def snake_case__ ( self : Tuple ):
return len(self.vocab )
def snake_case__ ( self : Dict ):
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : int ):
__snake_case : str = self.__dict__.copy()
__snake_case : Union[str, Any] = None
return state
def __setstate__( self : Optional[Any] , _lowerCAmelCase : List[str] ):
__snake_case : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__snake_case : Optional[Any] = {}
__snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] ):
return "".join((self.SP_CHAR_MAPPING.get(_lowerCAmelCase , _lowerCAmelCase ) for c in text) )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[int]=0.1 ):
if self.sp_model_kwargs.get("""enable_sampling""" ) is True:
__snake_case : List[str] = True
if self.sp_model_kwargs.get("""alpha""" ) is not None:
__snake_case : Dict = self.sp_model_kwargs.get("""alpha""" )
if self.sp_model_kwargs.get("""nbest_size""" ) is not None:
__snake_case : List[Any] = self.sp_model_kwargs.get("""nbest_size""" )
if not enable_sampling:
__snake_case : str = self.sp_model.EncodeAsPieces(_lowerCAmelCase )
else:
__snake_case : Tuple = self.sp_model.SampleEncodeAsPieces(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : Union[str, Any] = []
for pi, piece in enumerate(_lowerCAmelCase ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(_lowerCAmelCase ) and pi != 0:
new_pieces.append(_lowerCAmelCase )
continue
else:
continue
__snake_case : Optional[int] = 0
for i, chunk in enumerate(_lowerCAmelCase ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(_lowerCAmelCase ) or self.is_punct(_lowerCAmelCase ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(_lowerCAmelCase )
__snake_case : Tuple = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : Tuple = i
if len(_lowerCAmelCase ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
__snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
__snake_case : int = self.convert_ids_to_tokens(_lowerCAmelCase )
__snake_case : Any = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict ):
return self.reverse_vocab.get(_lowerCAmelCase , self.unk_token )
def snake_case__ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
__snake_case : Optional[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ):
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1]
return [1] + ([0] * len(_lowerCAmelCase )) + [1]
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(_lowerCAmelCase ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(_lowerCAmelCase ) + 1) + [1] * (len(_lowerCAmelCase ) + 3)
def snake_case__ ( self : Tuple , _lowerCAmelCase : List[str] ):
if "\u4e00" <= char <= "\u9fff":
return True
return False
def snake_case__ ( self : List[str] , _lowerCAmelCase : Any ):
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def snake_case__ ( self : int , _lowerCAmelCase : List[Any] ):
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def snake_case__ ( self : str , _lowerCAmelCase : Optional[Any] ):
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(_lowerCAmelCase ) == 1:
__snake_case : Dict = unicodedata.category(_lowerCAmelCase )
if cat == "Zs":
return True
return False
def snake_case__ ( self : str , _lowerCAmelCase : List[Any] ):
__snake_case : Dict = {}
with io.open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for index, line in enumerate(_lowerCAmelCase ):
__snake_case : Tuple = line.rstrip("""\n""" )
__snake_case : List[str] = int(_lowerCAmelCase )
return token_to_idx
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : Optional[int] = 0
if os.path.isdir(_lowerCAmelCase ):
__snake_case : int = os.path.join(
_lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
else:
__snake_case : Optional[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory
with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
""" Please check that the vocabulary is not corrupted!""" )
__snake_case : Union[str, Any] = token_index
writer.write(token + """\n""" )
index += 1
__snake_case : List[Any] = os.path.join(_lowerCAmelCase , """sentencepiece.bpe.model""" )
with open(_lowerCAmelCase , """wb""" ) as fi:
__snake_case : List[Any] = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (vocab_file,)
| 20 | 0 |
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : set ):
'''simple docstring'''
__snake_case , __snake_case : int = len(SCREAMING_SNAKE_CASE__ ), len(grid[0] )
if (
min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col) )
__snake_case : Any = 0
count += depth_first_search(SCREAMING_SNAKE_CASE__ , row + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
count += depth_first_search(SCREAMING_SNAKE_CASE__ , row - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
count += depth_first_search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , col + 1 , SCREAMING_SNAKE_CASE__ )
count += depth_first_search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , col - 1 , SCREAMING_SNAKE_CASE__ )
visit.remove((row, col) )
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 366 | from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json",
"xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json",
"xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json",
"xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json",
"xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json",
"xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json",
"xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json",
"xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json",
"xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json",
"xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = "xlm"
A : List[str] = {
"hidden_size": "emb_dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
"n_words": "vocab_size", # For backward compatibility
}
def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any]=3_01_45 , _lowerCAmelCase : Optional[Any]=20_48 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : int=16 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=5_12 , _lowerCAmelCase : List[Any]=20_48**-0.5 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple="first" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Tuple , ):
__snake_case : Optional[Any] = vocab_size
__snake_case : Tuple = emb_dim
__snake_case : int = n_layers
__snake_case : List[str] = n_heads
__snake_case : Union[str, Any] = dropout
__snake_case : Optional[int] = attention_dropout
__snake_case : Optional[Any] = gelu_activation
__snake_case : Tuple = sinusoidal_embeddings
__snake_case : List[Any] = causal
__snake_case : Dict = asm
__snake_case : int = n_langs
__snake_case : str = use_lang_emb
__snake_case : Dict = layer_norm_eps
__snake_case : List[Any] = bos_index
__snake_case : Union[str, Any] = eos_index
__snake_case : Dict = pad_index
__snake_case : Any = unk_index
__snake_case : Dict = mask_index
__snake_case : Any = is_encoder
__snake_case : Dict = max_position_embeddings
__snake_case : Optional[Any] = embed_init_std
__snake_case : List[Any] = init_std
__snake_case : str = summary_type
__snake_case : Optional[Any] = summary_use_proj
__snake_case : str = summary_activation
__snake_case : Optional[int] = summary_proj_to_labels
__snake_case : Dict = summary_first_dropout
__snake_case : Dict = start_n_top
__snake_case : int = end_n_top
__snake_case : str = mask_token_id
__snake_case : int = lang_id
if "n_words" in kwargs:
__snake_case : Dict = kwargs["""n_words"""]
super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
@property
def snake_case__ ( self : Dict ):
if self.task == "multiple-choice":
__snake_case : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__snake_case : Tuple = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 20 | 0 |
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def __lowerCAmelCase ( __UpperCAmelCase : str ):
'''simple docstring'''
for param in module.parameters():
__snake_case : int = False
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : List[str] = """cuda""" if torch.cuda.is_available() else """cpu"""
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
__snake_case : List[Any] = """mps"""
if device == "mps":
print(
"""WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"""
""" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"""
""" with generations.""" )
return device
def __lowerCAmelCase ( __UpperCAmelCase : Optional[Any] ):
'''simple docstring'''
__snake_case : Any = plt.imshow(__UpperCAmelCase )
fig.axes.get_xaxis().set_visible(__UpperCAmelCase )
fig.axes.get_yaxis().set_visible(__UpperCAmelCase )
plt.show()
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Tuple = datetime.now()
__snake_case : Dict = current_time.strftime("""%H:%M:%S""" )
return timestamp
| 367 | import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json",
"facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[Any] = "encodec"
def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase : Tuple=2_40_00 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : int=1_28 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Union[str, Any]=[8, 5, 4, 2] , _lowerCAmelCase : str="weight_norm" , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict="reflect" , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : Optional[int]=10_24 , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , **_lowerCAmelCase : List[Any] , ):
__snake_case : Optional[int] = target_bandwidths
__snake_case : int = sampling_rate
__snake_case : List[Any] = audio_channels
__snake_case : str = normalize
__snake_case : Union[str, Any] = chunk_length_s
__snake_case : Union[str, Any] = overlap
__snake_case : Union[str, Any] = hidden_size
__snake_case : Union[str, Any] = num_filters
__snake_case : Optional[Any] = num_residual_layers
__snake_case : List[Any] = upsampling_ratios
__snake_case : List[str] = norm_type
__snake_case : Union[str, Any] = kernel_size
__snake_case : Optional[int] = last_kernel_size
__snake_case : Optional[Any] = residual_kernel_size
__snake_case : Dict = dilation_growth_rate
__snake_case : int = use_causal_conv
__snake_case : Tuple = pad_mode
__snake_case : str = compress
__snake_case : Optional[Any] = num_lstm_layers
__snake_case : List[Any] = trim_right_ratio
__snake_case : Any = codebook_size
__snake_case : int = codebook_dim if codebook_dim is not None else hidden_size
__snake_case : int = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' )
super().__init__(**_lowerCAmelCase )
@property
def snake_case__ ( self : int ):
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def snake_case__ ( self : int ):
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def snake_case__ ( self : Union[str, Any] ):
__snake_case : List[str] = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def snake_case__ ( self : Tuple ):
return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 20 | 0 |
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
lowercase_ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json"
with io.open(filename, "r", encoding="utf-8") as f:
lowercase_ = json.load(f)
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : Any , _lowerCAmelCase : List[str] ):
return FSMTTokenizer.from_pretrained(lowercase_ )
def snake_case__ ( self : Any , _lowerCAmelCase : Any ):
__snake_case : Any = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ )
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
["""en-ru""", 26.0],
["""ru-en""", 22.0],
["""en-de""", 22.0],
["""de-en""", 29.0],
] )
@slow
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Any ):
__snake_case : List[str] = f'''facebook/wmt19-{pair}'''
__snake_case : Tuple = self.get_tokenizer(lowercase_ )
__snake_case : Dict = self.get_model(lowercase_ )
__snake_case : int = bleu_data[pair]["""src"""]
__snake_case : int = bleu_data[pair]["""tgt"""]
__snake_case : Optional[int] = tokenizer(lowercase_ , return_tensors="""pt""" , truncation=lowercase_ , padding="""longest""" ).to(lowercase_ )
__snake_case : str = model.generate(
input_ids=batch.input_ids , num_beams=8 , )
__snake_case : Tuple = tokenizer.batch_decode(
lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ )
__snake_case : List[Any] = calculate_bleu(lowercase_ , lowercase_ )
print(lowercase_ )
self.assertGreaterEqual(scores["""bleu"""] , lowercase_ )
| 368 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : str = []
__snake_case , __snake_case : List[str] = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
__snake_case : List[Any] = result + left + right
return input_list
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
if len(__SCREAMING_SNAKE_CASE ) <= 1:
return input_list
__snake_case : Union[str, Any] = list(__SCREAMING_SNAKE_CASE )
# iteration for two-way merging
__snake_case : Tuple = 2
while p <= len(__SCREAMING_SNAKE_CASE ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = i
__snake_case : str = i + p - 1
__snake_case : Optional[Any] = (low + high + 1) // 2
__snake_case : str = merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# final merge of last two parts
if p * 2 >= len(__SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = i
__snake_case : str = merge(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
if user_input == "":
lowercase_ = []
else:
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
print(iter_merge_sort(unsorted))
| 20 | 0 |
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class SCREAMING_SNAKE_CASE__ ( a__ ):
A : Dict = ["image_processor", "tokenizer"]
A : int = "AutoImageProcessor"
A : List[str] = "AutoTokenizer"
def __init__( self : Optional[Any] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ):
__snake_case : str = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , _lowerCAmelCase , )
__snake_case : Optional[Any] = kwargs.pop("""feature_extractor""" )
__snake_case : str = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : str = self.image_processor
__snake_case : List[str] = False
def __call__( self : Optional[int] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : List[str] ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*_lowerCAmelCase , **_lowerCAmelCase )
__snake_case : Optional[int] = kwargs.pop("""images""" , _lowerCAmelCase )
__snake_case : Dict = kwargs.pop("""text""" , _lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
__snake_case : Optional[int] = args[0]
__snake_case : Any = args[1:]
if images is None and text is None:
raise ValueError("""You need to specify either an `images` or `text` input to process.""" )
if images is not None:
__snake_case : Any = self.image_processor(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase )
if text is not None:
__snake_case : List[str] = self.tokenizer(_lowerCAmelCase , **_lowerCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
__snake_case : List[str] = encodings["input_ids"]
return inputs
def snake_case__ ( self : Any , *_lowerCAmelCase : int , **_lowerCAmelCase : List[Any] ):
return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Tuple , *_lowerCAmelCase : Dict , **_lowerCAmelCase : List[str] ):
return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase )
@contextmanager
def snake_case__ ( self : Optional[Any] ):
warnings.warn(
"""`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """
"""labels by using the argument `text` of the regular `__call__` method (either in the same call as """
"""your images inputs, or in a separate call.""" )
__snake_case : int = True
__snake_case : List[Any] = self.tokenizer
yield
__snake_case : Tuple = self.image_processor
__snake_case : List[Any] = False
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=False , _lowerCAmelCase : Dict=None ):
if added_vocab is None:
__snake_case : str = self.tokenizer.get_added_vocab()
__snake_case : Dict = {}
while tokens:
__snake_case : Any = re.search(r"""<s_(.*?)>""" , _lowerCAmelCase , re.IGNORECASE )
if start_token is None:
break
__snake_case : str = start_token.group(1 )
__snake_case : Union[str, Any] = re.search(rf'''</s_{key}>''' , _lowerCAmelCase , re.IGNORECASE )
__snake_case : Optional[Any] = start_token.group()
if end_token is None:
__snake_case : str = tokens.replace(_lowerCAmelCase , """""" )
else:
__snake_case : Tuple = end_token.group()
__snake_case : Tuple = re.escape(_lowerCAmelCase )
__snake_case : int = re.escape(_lowerCAmelCase )
__snake_case : int = re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''' , _lowerCAmelCase , re.IGNORECASE )
if content is not None:
__snake_case : int = content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
__snake_case : int = self.tokenajson(_lowerCAmelCase , is_inner_value=_lowerCAmelCase , added_vocab=_lowerCAmelCase )
if value:
if len(_lowerCAmelCase ) == 1:
__snake_case : str = value[0]
__snake_case : List[Any] = value
else: # leaf nodes
__snake_case : Dict = []
for leaf in content.split(r"""<sep/>""" ):
__snake_case : int = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
__snake_case : Optional[Any] = leaf[1:-2] # for categorical special tokens
output[key].append(_lowerCAmelCase )
if len(output[key] ) == 1:
__snake_case : int = output[key][0]
__snake_case : str = tokens[tokens.find(_lowerCAmelCase ) + len(_lowerCAmelCase ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=_lowerCAmelCase , added_vocab=_lowerCAmelCase )
if len(_lowerCAmelCase ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def snake_case__ ( self : Union[str, Any] ):
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _lowerCAmelCase , )
return self.image_processor_class
@property
def snake_case__ ( self : Tuple ):
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _lowerCAmelCase , )
return self.image_processor
| 369 | import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
lowercase_ = "Usage of script: script_name <size_of_canvas:int>"
lowercase_ = [0] * 1_00 + [1] * 10
random.shuffle(choice)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : List[str] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )]
return canvas
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
for i, row in enumerate(__SCREAMING_SNAKE_CASE ):
for j, _ in enumerate(__SCREAMING_SNAKE_CASE ):
__snake_case : int = bool(random.getrandbits(1 ) )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
__snake_case : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) )
for r, row in enumerate(__SCREAMING_SNAKE_CASE ):
for c, pt in enumerate(__SCREAMING_SNAKE_CASE ):
__snake_case : Optional[Any] = __judge_point(
__SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] )
__snake_case : List[str] = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
__snake_case : list[list[bool]] = current_canvas.tolist()
return return_canvas
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
__snake_case : Any = 0
__snake_case : Dict = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status:
alive += 1
else:
dead += 1
# handling duplicate entry for focus pt.
if pt:
alive -= 1
else:
dead -= 1
# running the rules of game here.
__snake_case : str = pt
if pt:
if alive < 2:
__snake_case : Optional[Any] = False
elif alive == 2 or alive == 3:
__snake_case : Union[str, Any] = True
elif alive > 3:
__snake_case : Optional[int] = False
else:
if alive == 3:
__snake_case : List[Any] = True
return state
if __name__ == "__main__":
if len(sys.argv) != 2:
raise Exception(usage_doc)
lowercase_ = int(sys.argv[1])
# main working structure of this module.
lowercase_ = create_canvas(canvas_size)
seed(c)
lowercase_ , lowercase_ = plt.subplots()
fig.show()
lowercase_ = ListedColormap(["w", "k"])
try:
while True:
lowercase_ = run(c)
ax.matshow(c, cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass
| 20 | 0 |
from __future__ import annotations
import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
__snake_case : Tuple = u
for i in range(1 , __SCREAMING_SNAKE_CASE ):
__snake_case : List[Any] = temp * (u - i)
return temp
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Union[str, Any] = int(input("""enter the numbers of values: """ ) )
__snake_case : list[list[float]] = []
for _ in range(__SCREAMING_SNAKE_CASE ):
y.append([] )
for i in range(__SCREAMING_SNAKE_CASE ):
for j in range(__SCREAMING_SNAKE_CASE ):
y[i].append(__SCREAMING_SNAKE_CASE )
__snake_case : Dict = 0
print("""enter the values of parameters in a list: """ )
__snake_case : str = list(map(__SCREAMING_SNAKE_CASE , input().split() ) )
print("""enter the values of corresponding parameters: """ )
for i in range(__SCREAMING_SNAKE_CASE ):
__snake_case : Union[str, Any] = float(input() )
__snake_case : List[Any] = int(input("""enter the value to interpolate: """ ) )
__snake_case : int = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , __SCREAMING_SNAKE_CASE ):
for j in range(n - i ):
__snake_case : List[str] = y[j + 1][i - 1] - y[j][i - 1]
__snake_case : List[str] = y[0][0]
for i in range(1 , __SCREAMING_SNAKE_CASE ):
summ += (ucal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(__SCREAMING_SNAKE_CASE )
print(F'''the value at {value} is {summ}''' )
if __name__ == "__main__":
main()
| 370 | import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Union[Dict, Any]] = None , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : int=2 ):
'''simple docstring'''
from .. import __version__
__snake_case : List[Any] = take_from
__snake_case : List[Any] = ()
if not isinstance(args[0] , __SCREAMING_SNAKE_CASE ):
__snake_case : str = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(__SCREAMING_SNAKE_CASE ):
raise ValueError(
F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''''
F''' version {__version__} is >= {version_name}''' )
__snake_case : Optional[Any] = None
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__SCREAMING_SNAKE_CASE ),)
__snake_case : Optional[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''
elif hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
values += (getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),)
__snake_case : Any = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''
elif deprecated_kwargs is None:
__snake_case : Tuple = F'''`{attribute}` is deprecated and will be removed in version {version_name}.'''
if warning is not None:
__snake_case : Optional[Any] = warning + """ """ if standard_warn else """"""
warnings.warn(warning + message , __SCREAMING_SNAKE_CASE , stacklevel=__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) > 0:
__snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1]
__snake_case : int = call_frame.filename
__snake_case : int = call_frame.lineno
__snake_case : List[str] = call_frame.function
__snake_case , __snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' )
if len(__SCREAMING_SNAKE_CASE ) == 0:
return
elif len(__SCREAMING_SNAKE_CASE ) == 1:
return values[0]
return values
| 20 | 0 |
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
lowercase_ = (
"4S 3H 2C 7S 5H",
"9D 8H 2C 6S 7H",
"2D 6D 9D TH 7D",
"TC 8C 2S JH 6C",
"JH 8S TH AH QH",
"TS KS 5S 9S AC",
"KD 6S 9D TH AD",
"KS 8D 4D 9S 4S", # pair
"8C 4S KH JS 4D", # pair
"QH 8H KD JH 8S", # pair
"KC 4H KS 2H 8D", # pair
"KD 4S KC 3H 8S", # pair
"AH 8S AS KC JH", # pair
"3H 4C 4H 3S 2H", # 2 pairs
"5S 5D 2C KH KH", # 2 pairs
"3C KH 5D 5S KH", # 2 pairs
"AS 3C KH AD KH", # 2 pairs
"7C 7S 3S 7H 5S", # 3 of a kind
"7C 7S KH 2H 7H", # 3 of a kind
"AC KH QH AH AS", # 3 of a kind
"2H 4D 3C AS 5S", # straight (low ace)
"3C 5C 4C 2C 6H", # straight
"6S 8S 7S 5H 9H", # straight
"JS QS 9H TS KH", # straight
"QC KH TS JS AH", # straight (high ace)
"8C 9C 5C 3C TC", # flush
"3S 8S 9S 5S KS", # flush
"4C 5C 9C 8C KC", # flush
"JH 8H AH KH QH", # flush
"3D 2H 3H 2C 2D", # full house
"2H 2C 3S 3H 3D", # full house
"KH KC 3S 3H 3D", # full house
"JC 6H JS JD JH", # 4 of a kind
"JC 7H JS JD JH", # 4 of a kind
"JC KH JS JD JH", # 4 of a kind
"2S AS 4S 5S 3S", # straight flush (low ace)
"2D 6D 3D 4D 5D", # straight flush
"5C 6C 3C 7C 4C", # straight flush
"JH 9H TH KH QH", # straight flush
"JH AH TH KH QH", # royal flush (high ace straight flush)
)
lowercase_ = (
("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"),
("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"),
("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"),
("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"),
("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"),
("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"),
("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"),
("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"),
("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"),
("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"),
("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"),
("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"),
("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"),
("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"),
("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"),
("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"),
("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"),
("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"),
("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"),
("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"),
("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"),
("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"),
("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"),
("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"),
("AH AD KS KC AC", "AH KD KH AC KC", "Win"),
("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"),
("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"),
("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"),
("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"),
("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"),
("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"),
("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"),
("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"),
)
lowercase_ = (
("2H 3H 4H 5H 6H", True),
("AS AH 2H AD AC", False),
("2H 3H 5H 6H 7H", True),
("KS AS TS QS JS", True),
("8H 9H QS JS TH", False),
("AS 3S 4S 8S 2S", True),
)
lowercase_ = (
("2H 3H 4H 5H 6H", True),
("AS AH 2H AD AC", False),
("2H 3H 5H 6H 7H", False),
("KS AS TS QS JS", True),
("8H 9H QS JS TH", True),
)
lowercase_ = (
("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]),
("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]),
("JH QD KC AS TS", False, [14, 13, 12, 11, 10]),
("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]),
)
lowercase_ = (
("JH AH TH KH QH", 0),
("JH 9H TH KH QH", 0),
("JC KH JS JD JH", 7),
("KH KC 3S 3H 3D", 6),
("8C 9C 5C 3C TC", 0),
("JS QS 9H TS KH", 0),
("7C 7S KH 2H 7H", 3),
("3C KH 5D 5S KH", 2),
("QH 8H KD JH 8S", 1),
("2D 6D 9D TH 7D", 0),
)
lowercase_ = (
("JH AH TH KH QH", 23),
("JH 9H TH KH QH", 22),
("JC KH JS JD JH", 21),
("KH KC 3S 3H 3D", 20),
("8C 9C 5C 3C TC", 19),
("JS QS 9H TS KH", 18),
("7C 7S KH 2H 7H", 17),
("3C KH 5D 5S KH", 16),
("QH 8H KD JH 8S", 15),
("2D 6D 9D TH 7D", 14),
)
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case , __snake_case : Tuple = randrange(len(lowerCamelCase__ ) ), randrange(len(lowerCamelCase__ ) )
__snake_case : List[Any] = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)]
__snake_case , __snake_case : Any = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int = 1_0_0 ):
'''simple docstring'''
return (generate_random_hand() for _ in range(lowerCamelCase__ ))
@pytest.mark.parametrize("""hand, expected""" , lowerCamelCase__ )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
assert PokerHand(lowerCamelCase__ )._is_flush() == expected
@pytest.mark.parametrize("""hand, expected""" , lowerCamelCase__ )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
assert PokerHand(lowerCamelCase__ )._is_straight() == expected
@pytest.mark.parametrize("""hand, expected, card_values""" , lowerCamelCase__ )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : Tuple = PokerHand(lowerCamelCase__ )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize("""hand, expected""" , lowerCamelCase__ )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
assert PokerHand(lowerCamelCase__ )._is_same_kind() == expected
@pytest.mark.parametrize("""hand, expected""" , lowerCamelCase__ )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
assert PokerHand(lowerCamelCase__ )._hand_type == expected
@pytest.mark.parametrize("""hand, other, expected""" , lowerCamelCase__ )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
assert PokerHand(lowerCamelCase__ ).compare_with(PokerHand(lowerCamelCase__ ) ) == expected
@pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
assert PokerHand(lowerCamelCase__ ).compare_with(PokerHand(lowerCamelCase__ ) ) == expected
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : List[str] = [PokerHand(lowerCamelCase__ ) for hand in SORTED_HANDS]
__snake_case : Any = poker_hands.copy()
shuffle(lowerCamelCase__ )
__snake_case : List[Any] = chain(sorted(lowerCamelCase__ ) )
for index, hand in enumerate(lowerCamelCase__ ):
assert hand == poker_hands[index]
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : List[Any] = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )]
pokerhands.sort(reverse=lowerCamelCase__ )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : List[Any] = PokerHand("""2C 4S AS 3D 5C""" )
__snake_case : Optional[int] = True
__snake_case : Optional[int] = [5, 4, 3, 2, 1_4]
for _ in range(1_0 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : str = 0
__snake_case : Any = os.path.abspath(os.path.dirname(lowerCamelCase__ ) )
__snake_case : List[str] = os.path.join(lowerCamelCase__ , """poker_hands.txt""" )
with open(lowerCamelCase__ ) as file_hand:
for line in file_hand:
__snake_case : List[str] = line[:1_4].strip()
__snake_case : Union[str, Any] = line[1_5:].strip()
__snake_case , __snake_case : Union[str, Any] = PokerHand(lowerCamelCase__ ), PokerHand(lowerCamelCase__ )
__snake_case : str = player.compare_with(lowerCamelCase__ )
if output == "Win":
answer += 1
assert answer == 3_7_6
| 371 | import argparse
import os
from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPTaConfig,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
TaConfig,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPTaLMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFTaForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWavaVecaModel,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
WavaVecaConfig,
WavaVecaModel,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tfa_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPTaLMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
TaForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
logging.set_verbosity_info()
lowercase_ = {
"bart": (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"bert": (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-base-cased-finetuned-mrpc": (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"dpr": (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"gpt2": (
GPTaConfig,
TFGPTaLMHeadModel,
GPTaLMHeadModel,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlnet": (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm": (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm-roberta": (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"transfo-xl": (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"openai-gpt": (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"roberta": (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"layoutlm": (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"roberta-large-mnli": (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"camembert": (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"flaubert": (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert": (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert-base-distilled-squad": (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert": (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert-visual-feature-encoder": (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"ctrl": (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"albert": (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"t5": (
TaConfig,
TFTaForConditionalGeneration,
TaForConditionalGeneration,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"electra": (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"wav2vec2": (
WavaVecaConfig,
TFWavaVecaModel,
WavaVecaModel,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=True ):
'''simple docstring'''
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' )
__snake_case , __snake_case , __snake_case , __snake_case : Any = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
__snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
__snake_case : Dict = config_class.from_json_file(__SCREAMING_SNAKE_CASE )
__snake_case : Tuple = True
__snake_case : Union[str, Any] = True
print(F'''Building TensorFlow model from configuration: {config}''' )
__snake_case : List[Any] = model_class(__SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
__snake_case : Optional[Any] = cached_file(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
# Load PyTorch checkpoint in tf2 model:
__snake_case : List[Any] = load_pytorch_checkpoint_in_tfa_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if compare_with_pt_model:
__snake_case : Tuple = tf_model(tf_model.dummy_inputs , training=__SCREAMING_SNAKE_CASE ) # build the network
__snake_case : List[str] = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" )
__snake_case : Any = pt_model_class.from_pretrained(
pretrained_model_name_or_path=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE , state_dict=__SCREAMING_SNAKE_CASE )
with torch.no_grad():
__snake_case : Union[str, Any] = pt_model(**pt_model.dummy_inputs )
__snake_case : Any = pto[0].numpy()
__snake_case : Optional[int] = tfo[0].numpy()
__snake_case : Optional[int] = np.amax(np.abs(np_pt - np_tf ) )
print(F'''Max absolute difference between models outputs {diff}''' )
assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}'''
# Save pytorch-model
print(F'''Save TensorFlow model to {tf_dump_path}''' )
tf_model.save_weights(__SCREAMING_SNAKE_CASE , save_format="""h5""" )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Any=False , ):
'''simple docstring'''
if args_model_type is None:
__snake_case : Tuple = list(MODEL_CLASSES.keys() )
else:
__snake_case : Union[str, Any] = [args_model_type]
for j, model_type in enumerate(__SCREAMING_SNAKE_CASE , start=1 ):
print("""=""" * 1_0_0 )
print(F''' Converting model type {j}/{len(__SCREAMING_SNAKE_CASE )}: {model_type}''' )
print("""=""" * 1_0_0 )
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' )
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
__snake_case : int = list(aws_model_maps.keys() )
if config_shortcut_names_or_path is None:
__snake_case : Union[str, Any] = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , start=1 ):
print("""-""" * 1_0_0 )
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' )
continue
__snake_case : List[Any] = model_shortcut_name
elif only_convert_finetuned_models:
print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' )
continue
print(
F''' Converting checkpoint {i}/{len(__SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}''' )
print("""-""" * 1_0_0 )
if config_shortcut_name in aws_config_map:
__snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
else:
__snake_case : Dict = config_shortcut_name
if model_shortcut_name in aws_model_maps:
__snake_case : Union[str, Any] = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
else:
__snake_case : List[Any] = model_shortcut_name
if os.path.isfile(__SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = """converted_model"""
convert_pt_checkpoint_to_tf(
model_type=__SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=__SCREAMING_SNAKE_CASE , config_file=__SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(__SCREAMING_SNAKE_CASE , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__SCREAMING_SNAKE_CASE , )
if remove_cached_files:
os.remove(__SCREAMING_SNAKE_CASE )
os.remove(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file."
)
parser.add_argument(
"--model_type",
default=None,
type=str,
help=(
F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and '''
"convert all the models from AWS."
),
)
parser.add_argument(
"--pytorch_checkpoint_path",
default=None,
type=str,
help=(
"Path to the PyTorch checkpoint path or shortcut name to download from AWS. "
"If not given, will download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--config_file",
default=None,
type=str,
help=(
"The config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture. If not given and "
"--pytorch_checkpoint_path is not given or is a shortcut name "
"use the configuration associated to the shortcut name on the AWS"
),
)
parser.add_argument(
"--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions."
)
parser.add_argument(
"--use_cached_models",
action="store_true",
help="Use cached models if possible instead of updating to latest checkpoint versions.",
)
parser.add_argument(
"--remove_cached_files",
action="store_true",
help="Remove pytorch models after conversion (save memory when converting in batches).",
)
parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.")
lowercase_ = parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
| 20 | 0 |
import builtins
import sys
from ...utils.imports import _is_package_available
from . import cursor, input
from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor
from .keymap import KEYMAP
lowercase_ = False
try:
lowercase_ = _is_package_available("google.colab")
except ModuleNotFoundError:
pass
@input.register
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Dict , _lowerCAmelCase : List[Any] = None , _lowerCAmelCase : List[str] = [] ):
__snake_case : Optional[int] = 0
__snake_case : List[str] = choices
__snake_case : Tuple = prompt
if sys.platform == "win32":
__snake_case : str = "*"
else:
__snake_case : str = "➔ "
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[str] = "" ):
if sys.platform != "win32":
writeColor(self.choices[index] , 32 , _snake_case )
else:
forceWrite(self.choices[index] , _snake_case )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str] ):
if index == self.position:
forceWrite(f''' {self.arrow_char} ''' )
self.write_choice(_snake_case )
else:
forceWrite(f''' {self.choices[index]}''' )
reset_cursor()
def snake_case__ ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : str = 1 ):
__snake_case : Any = self.position
if direction == Direction.DOWN:
if self.position + 1 >= len(self.choices ):
return
self.position += num_spaces
else:
if self.position - 1 < 0:
return
self.position -= num_spaces
clear_line()
self.print_choice(_snake_case )
move_cursor(_snake_case , direction.name )
self.print_choice(self.position )
@input.mark(KEYMAP["""up"""] )
def snake_case__ ( self : Dict ):
self.move_direction(Direction.UP )
@input.mark(KEYMAP["""down"""] )
def snake_case__ ( self : Tuple ):
self.move_direction(Direction.DOWN )
@input.mark(KEYMAP["""newline"""] )
def snake_case__ ( self : int ):
move_cursor(len(self.choices ) - self.position , """DOWN""" )
return self.position
@input.mark(KEYMAP["""interrupt"""] )
def snake_case__ ( self : List[Any] ):
move_cursor(len(self.choices ) - self.position , """DOWN""" )
raise KeyboardInterrupt
@input.mark_multiple(*[KEYMAP[str(_snake_case )] for number in range(10 )] )
def snake_case__ ( self : Dict ):
__snake_case : str = int(chr(self.current_selection ) )
__snake_case : List[Any] = index - self.position
if index == self.position:
return
if index < len(self.choices ):
if self.position > index:
self.move_direction(Direction.UP , -movement )
elif self.position < index:
self.move_direction(Direction.DOWN , _snake_case )
else:
return
else:
return
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Union[str, Any] = 0 ):
if self.prompt:
linebreak()
forceWrite(self.prompt , """\n""" )
if in_colab:
forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" )
else:
forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" )
__snake_case : Optional[int] = default_choice
for i in range(len(self.choices ) ):
self.print_choice(_snake_case )
forceWrite("""\n""" )
move_cursor(len(self.choices ) - self.position , """UP""" )
with cursor.hide():
while True:
if in_colab:
try:
__snake_case : Dict = int(builtins.input() )
except ValueError:
__snake_case : str = default_choice
else:
__snake_case : Dict = self.handle_input()
if choice is not None:
reset_cursor()
for _ in range(len(self.choices ) + 1 ):
move_cursor(1 , """UP""" )
clear_line()
self.write_choice(_snake_case , """\n""" )
return choice
| 350 | import random
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
__snake_case , __snake_case , __snake_case : Tuple = [], [], []
for element in data:
if element < pivot:
less.append(__SCREAMING_SNAKE_CASE )
elif element > pivot:
greater.append(__SCREAMING_SNAKE_CASE )
else:
equal.append(__SCREAMING_SNAKE_CASE )
return less, equal, greater
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
# index = len(items) // 2 when trying to find the median
# (value of index when items is sorted)
# invalid input
if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0:
return None
__snake_case : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )]
__snake_case : Tuple = 0
__snake_case , __snake_case , __snake_case : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE )
__snake_case : int = len(__SCREAMING_SNAKE_CASE )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# must be in larger
else:
return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
| 20 | 0 |
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
return EnvironmentCommand()
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
return EnvironmentCommand(args.accelerate_config_file )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
@staticmethod
def snake_case__ ( _lowerCAmelCase : Optional[int] ):
__snake_case : Optional[int] = parser.add_parser("""env""" )
download_parser.set_defaults(func=_lowerCAmelCase )
download_parser.add_argument(
"""--accelerate-config_file""" , default=_lowerCAmelCase , help="""The accelerate config file to use for the default values in the launching script.""" , )
download_parser.set_defaults(func=_lowerCAmelCase )
def __init__( self : int , _lowerCAmelCase : Any , *_lowerCAmelCase : List[Any] ):
__snake_case : Union[str, Any] = accelerate_config_file
def snake_case__ ( self : int ):
__snake_case : Optional[Any] = '''not installed'''
if is_safetensors_available():
import safetensors
__snake_case : Any = safetensors.__version__
elif importlib.util.find_spec("""safetensors""" ) is not None:
import safetensors
__snake_case : Any = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.'''
__snake_case : Any = '''not installed'''
__snake_case : str = '''not found'''
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
__snake_case : int = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(_lowerCAmelCase ):
__snake_case : Optional[int] = load_config_from_file(self._accelerate_config_file ).to_dict()
__snake_case : str = (
'''\n'''.join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(_lowerCAmelCase , _lowerCAmelCase )
else f'''\t{accelerate_config}'''
)
__snake_case : str = '''not installed'''
__snake_case : Union[str, Any] = '''NA'''
if is_torch_available():
import torch
__snake_case : Tuple = torch.__version__
__snake_case : int = torch.cuda.is_available()
__snake_case : Union[str, Any] = '''not installed'''
__snake_case : List[Any] = '''NA'''
if is_tf_available():
import tensorflow as tf
__snake_case : int = tf.__version__
try:
# deprecated in v2.1
__snake_case : Tuple = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
__snake_case : int = bool(tf.config.list_physical_devices("""GPU""" ) )
__snake_case : Union[str, Any] = '''not installed'''
__snake_case : Union[str, Any] = '''not installed'''
__snake_case : int = '''not installed'''
__snake_case : Any = '''NA'''
if is_flax_available():
import flax
import jax
import jaxlib
__snake_case : List[str] = flax.__version__
__snake_case : Any = jax.__version__
__snake_case : Optional[Any] = jaxlib.__version__
__snake_case : Any = jax.lib.xla_bridge.get_backend().platform
__snake_case : Union[str, Any] = {
'''`transformers` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Huggingface_hub version''': huggingface_hub.__version__,
'''Safetensors version''': f'''{safetensors_version}''',
'''Accelerate version''': f'''{accelerate_version}''',
'''Accelerate config''': f'''{accelerate_config_str}''',
'''PyTorch version (GPU?)''': f'''{pt_version} ({pt_cuda_available})''',
'''Tensorflow version (GPU?)''': f'''{tf_version} ({tf_cuda_available})''',
'''Flax version (CPU?/GPU?/TPU?)''': f'''{flax_version} ({jax_backend})''',
'''Jax version''': f'''{jax_version}''',
'''JaxLib version''': f'''{jaxlib_version}''',
'''Using GPU in script?''': '''<fill in>''',
'''Using distributed or parallel set-up in script?''': '''<fill in>''',
}
print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" )
print(self.format_dict(_lowerCAmelCase ) )
return info
@staticmethod
def snake_case__ ( _lowerCAmelCase : Dict ):
return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
| 351 | import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"
),
}
}
lowercase_ = {
"junnyu/roformer_chinese_small": 15_36,
"junnyu/roformer_chinese_base": 15_36,
"junnyu/roformer_chinese_char_small": 5_12,
"junnyu/roformer_chinese_char_base": 5_12,
"junnyu/roformer_small_discriminator": 1_28,
"junnyu/roformer_small_generator": 1_28,
}
lowercase_ = {
"junnyu/roformer_chinese_small": {"do_lower_case": True},
"junnyu/roformer_chinese_base": {"do_lower_case": True},
"junnyu/roformer_chinese_char_small": {"do_lower_case": True},
"junnyu/roformer_chinese_char_base": {"do_lower_case": True},
"junnyu/roformer_small_discriminator": {"do_lower_case": True},
"junnyu/roformer_small_generator": {"do_lower_case": True},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = VOCAB_FILES_NAMES
A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : int = PRETRAINED_INIT_CONFIGURATION
A : List[str] = RoFormerTokenizer
def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any="[UNK]" , _lowerCAmelCase : int="[SEP]" , _lowerCAmelCase : Optional[int]="[PAD]" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Dict , ):
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
__snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case
or pre_tok_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents
):
__snake_case : Tuple = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) )
__snake_case : List[Any] = do_lower_case
__snake_case : Optional[Any] = strip_accents
__snake_case : List[str] = pre_tok_class(**_lowerCAmelCase )
__snake_case : Optional[Any] = do_lower_case
def __getstate__( self : Optional[Any] ):
__snake_case : Optional[int] = self.__dict__.copy()
__snake_case : Optional[Any] = BertPreTokenizer()
return state
def __setstate__( self : str , _lowerCAmelCase : Dict ):
__snake_case : str = d
__snake_case : int = self.__dict__["""_tokenizer"""].get_vocab()
__snake_case : List[str] = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=None ):
__snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
def snake_case__ ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Tuple , ):
__snake_case : Tuple = BertPreTokenizer()
return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
| 20 | 0 |
from diffusers.utils.testing_utils import require_onnxruntime
@require_onnxruntime
class SCREAMING_SNAKE_CASE__ :
pass
| 352 | from __future__ import annotations
import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if depth < 0:
raise ValueError("""Depth cannot be less than 0""" )
if len(__SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("""Scores cannot be empty""" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
return min(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3]
__snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 )
print("""Optimal value : """ , end="""""" )
print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 20 | 0 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowercase_ = logging.get_logger(__name__)
def __lowerCAmelCase ( _A : List[Any] , _A : List[Any]=False ):
'''simple docstring'''
__snake_case : Dict = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith("""head""" ):
__snake_case : Tuple = "segformer.encoder." + key
if key.startswith("""backbone""" ):
__snake_case : List[str] = key.replace("""backbone""" , """segformer.encoder""" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
__snake_case : str = key[key.find("""patch_embed""" ) + len("""patch_embed""" )]
__snake_case : Tuple = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(_lowerCAmelCase )-1}''' )
if "norm" in key:
__snake_case : Any = key.replace("""norm""" , """layer_norm""" )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
__snake_case : Dict = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )]
__snake_case : List[str] = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(_lowerCAmelCase )-1}''' )
if "layer_norm1" in key:
__snake_case : int = key.replace("""layer_norm1""" , """layer_norm_1""" )
if "layer_norm2" in key:
__snake_case : List[Any] = key.replace("""layer_norm2""" , """layer_norm_2""" )
if "block" in key:
# replace for example block1 by block.0
__snake_case : Tuple = key[key.find("""block""" ) + len("""block""" )]
__snake_case : int = key.replace(F'''block{idx}''' , F'''block.{int(_lowerCAmelCase )-1}''' )
if "attn.q" in key:
__snake_case : Optional[Any] = key.replace("""attn.q""" , """attention.self.query""" )
if "attn.proj" in key:
__snake_case : Optional[int] = key.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in key:
__snake_case : int = key.replace("""attn""" , """attention.self""" )
if "fc1" in key:
__snake_case : int = key.replace("""fc1""" , """dense1""" )
if "fc2" in key:
__snake_case : Dict = key.replace("""fc2""" , """dense2""" )
if "linear_pred" in key:
__snake_case : Optional[Any] = key.replace("""linear_pred""" , """classifier""" )
if "linear_fuse" in key:
__snake_case : Optional[Any] = key.replace("""linear_fuse.conv""" , """linear_fuse""" )
__snake_case : Optional[Any] = key.replace("""linear_fuse.bn""" , """batch_norm""" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
__snake_case : List[Any] = key[key.find("""linear_c""" ) + len("""linear_c""" )]
__snake_case : List[Any] = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(_lowerCAmelCase )-1}''' )
if key.startswith("""head""" ):
__snake_case : str = key.replace("""head""" , """classifier""" )
__snake_case : Union[str, Any] = value
return new_state_dict
def __lowerCAmelCase ( _A : List[Any] , _A : Any ):
'''simple docstring'''
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
__snake_case : Dict = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' )
__snake_case : int = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
__snake_case : List[str] = kv_weight[
: config.hidden_sizes[i], :
]
__snake_case : Dict = kv_bias[: config.hidden_sizes[i]]
__snake_case : str = kv_weight[
config.hidden_sizes[i] :, :
]
__snake_case : List[Any] = kv_bias[
config.hidden_sizes[i] :
]
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg"
__snake_case : List[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw )
return image
@torch.no_grad()
def __lowerCAmelCase ( _A : List[str] , _A : int , _A : str ):
'''simple docstring'''
__snake_case : str = SegformerConfig()
__snake_case : List[Any] = False
# set attributes based on model_name
__snake_case : Any = "huggingface/label-files"
if "segformer" in model_name:
__snake_case : Dict = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2]
if "ade" in model_name:
__snake_case : Optional[Any] = 1_5_0
__snake_case : List[str] = "ade20k-id2label.json"
__snake_case : Union[str, Any] = (1, 1_5_0, 1_2_8, 1_2_8)
elif "city" in model_name:
__snake_case : List[str] = 1_9
__snake_case : Tuple = "cityscapes-id2label.json"
__snake_case : List[str] = (1, 1_9, 1_2_8, 1_2_8)
else:
raise ValueError(F'''Model {model_name} not supported''' )
elif "mit" in model_name:
__snake_case : int = True
__snake_case : Tuple = model_name[4:6]
__snake_case : Optional[Any] = 1_0_0_0
__snake_case : List[Any] = "imagenet-1k-id2label.json"
__snake_case : str = (1, 1_0_0_0)
else:
raise ValueError(F'''Model {model_name} not supported''' )
# set config attributes
__snake_case : Optional[int] = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) )
__snake_case : Union[str, Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()}
__snake_case : Union[str, Any] = idalabel
__snake_case : Dict = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
__snake_case : Tuple = [6_4, 1_2_8, 3_2_0, 5_1_2]
__snake_case : Dict = 2_5_6
elif size == "b2":
__snake_case : List[str] = [6_4, 1_2_8, 3_2_0, 5_1_2]
__snake_case : Union[str, Any] = 7_6_8
__snake_case : int = [3, 4, 6, 3]
elif size == "b3":
__snake_case : Optional[int] = [6_4, 1_2_8, 3_2_0, 5_1_2]
__snake_case : List[Any] = 7_6_8
__snake_case : str = [3, 4, 1_8, 3]
elif size == "b4":
__snake_case : List[Any] = [6_4, 1_2_8, 3_2_0, 5_1_2]
__snake_case : Dict = 7_6_8
__snake_case : Optional[Any] = [3, 8, 2_7, 3]
elif size == "b5":
__snake_case : Optional[Any] = [6_4, 1_2_8, 3_2_0, 5_1_2]
__snake_case : List[Any] = 7_6_8
__snake_case : List[str] = [3, 6, 4_0, 3]
else:
raise ValueError(F'''Size {size} not supported''' )
# load image processor (only resize + normalize)
__snake_case : Optional[Any] = SegformerImageProcessor(
image_scale=(5_1_2, 5_1_2) , keep_ratio=_lowerCAmelCase , align=_lowerCAmelCase , do_random_crop=_lowerCAmelCase )
# prepare image
__snake_case : str = prepare_img()
__snake_case : int = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).pixel_values
logger.info(F'''Converting model {model_name}...''' )
# load original state dict
if encoder_only:
__snake_case : Dict = torch.load(_lowerCAmelCase , map_location=torch.device("""cpu""" ) )
else:
__snake_case : Dict = torch.load(_lowerCAmelCase , map_location=torch.device("""cpu""" ) )["state_dict"]
# rename keys
__snake_case : str = rename_keys(_lowerCAmelCase , encoder_only=_lowerCAmelCase )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(_lowerCAmelCase , _lowerCAmelCase )
# create HuggingFace model and load state dict
if encoder_only:
__snake_case : Tuple = False
__snake_case : int = SegformerForImageClassification(_lowerCAmelCase )
else:
__snake_case : Dict = SegformerForSemanticSegmentation(_lowerCAmelCase )
model.load_state_dict(_lowerCAmelCase )
model.eval()
# forward pass
__snake_case : List[str] = model(_lowerCAmelCase )
__snake_case : Optional[Any] = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
__snake_case : int = torch.tensor(
[
[[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]],
[[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]],
[[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
__snake_case : Optional[Any] = torch.tensor(
[
[[-7.58_20, -8.72_31, -8.32_15], [-8.06_00, -10.35_29, -10.03_04], [-7.52_08, -9.41_03, -9.62_39]],
[[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]],
[[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
__snake_case : Optional[int] = torch.tensor(
[
[[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]],
[[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]],
[[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
__snake_case : List[Any] = torch.tensor(
[
[[-9.08_78, -10.20_81, -10.18_91], [-9.31_44, -10.79_41, -10.98_43], [-9.22_94, -10.38_55, -10.57_04]],
[[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]],
[[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
__snake_case : Optional[int] = torch.tensor(
[
[[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]],
[[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]],
[[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
__snake_case : Tuple = torch.tensor(
[
[[-9.55_24, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.58_42, -12.88_51, -13.94_14]],
[[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]],
[[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
__snake_case : List[Any] = torch.tensor(
[
[[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]],
[[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]],
[[0.53_74, 0.10_67, -0.47_42], [0.11_41, -0.22_55, -0.70_99], [-0.30_00, -0.59_24, -1.31_05]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
__snake_case : Optional[int] = torch.tensor(
[
[[-7.82_17, -9.87_67, -10.17_17], [-9.44_38, -10.90_58, -11.40_47], [-9.79_39, -12.34_95, -12.10_79]],
[[-7.15_14, -9.53_36, -10.08_60], [-9.77_76, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]],
[[0.30_21, 0.08_05, -0.23_10], [-0.03_28, -0.16_05, -0.27_14], [-0.14_08, -0.54_77, -0.69_76]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
__snake_case : Any = torch.tensor(
[
[
[-1.1_372E01, -1.2_787E01, -1.3_477E01],
[-1.2_536E01, -1.4_194E01, -1.4_409E01],
[-1.3_217E01, -1.4_888E01, -1.5_327E01],
],
[
[-1.4_791E01, -1.7_122E01, -1.8_277E01],
[-1.7_163E01, -1.9_192E01, -1.9_533E01],
[-1.7_897E01, -1.9_991E01, -2.0_315E01],
],
[
[7.6_723E-01, 4.1_921E-01, -7.7_878E-02],
[4.7_772E-01, 9.5_557E-03, -2.8_082E-01],
[3.6_032E-01, -2.4_826E-01, -5.1_168E-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
__snake_case : List[Any] = torch.tensor(
[
[[-9.49_59, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]],
[[-9.89_05, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]],
[[0.22_13, 0.01_92, -0.24_66], [-0.17_31, -0.42_13, -0.48_74], [-0.31_26, -0.65_41, -1.13_89]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
__snake_case : str = torch.tensor(
[
[[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]],
[[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]],
[[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
__snake_case : List[str] = torch.tensor(
[
[[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]],
[[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]],
[[-4.51_78, -5.50_37, -6.51_09], [-5.08_84, -7.21_74, -8.03_34], [-4.41_56, -5.81_17, -7.29_70]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
__snake_case : Union[str, Any] = torch.tensor(
[
[[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]],
[[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]],
[[-4.73_49, -4.95_88, -5.09_66], [-4.32_10, -6.93_25, -7.25_91], [-3.43_12, -4.74_84, -7.19_17]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
__snake_case : Optional[Any] = torch.tensor(
[
[[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]],
[[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]],
[[1.04_91, 0.82_89, 1.03_10], [1.10_44, 0.52_19, 0.80_55], [1.08_99, 0.69_26, 0.55_90]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
__snake_case : Optional[int] = torch.tensor(
[
[[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]],
[[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]],
[[-1.79_90, -2.09_51, -1.77_84], [-2.63_97, -3.82_45, -3.96_86], [-1.52_64, -2.81_26, -2.93_16]],
] )
else:
__snake_case : str = logits.argmax(-1 ).item()
print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , _lowerCAmelCase , atol=1E-2 )
# finally, save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
image_processor.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="segformer.b0.512x512.ade.160k",
type=str,
help="Name of the model you\'d like to convert.",
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
lowercase_ = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 353 | import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
lowercase_ = None
lowercase_ = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
lowercase_ = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : bool = True
A : Optional[str] = None
# Automatically constructed
A : ClassVar[str] = "PIL.Image.Image"
A : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} )
A : str = field(default="Image" , init=__UpperCamelCase , repr=__UpperCamelCase )
def __call__( self : Any ):
return self.pa_type
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
__snake_case : str = np.array(_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": value, "bytes": None}
elif isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": None, "bytes": value}
elif isinstance(_lowerCAmelCase , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(_lowerCAmelCase )
elif isinstance(_lowerCAmelCase , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(_lowerCAmelCase )
elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("""path""" )}
elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )}
else:
raise ValueError(
f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def snake_case__ ( self : List[str] , _lowerCAmelCase : dict , _lowerCAmelCase : Dict=None ):
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support decoding images, please install 'Pillow'.""" )
if token_per_repo_id is None:
__snake_case : Tuple = {}
__snake_case , __snake_case : str = value["""path"""], value["""bytes"""]
if bytes_ is None:
if path is None:
raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
else:
if is_local_path(_lowerCAmelCase ):
__snake_case : str = PIL.Image.open(_lowerCAmelCase )
else:
__snake_case : List[str] = path.split("""::""" )[-1]
try:
__snake_case : Dict = string_to_dict(_lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""]
__snake_case : int = token_per_repo_id.get(_lowerCAmelCase )
except ValueError:
__snake_case : List[Any] = None
with xopen(_lowerCAmelCase , """rb""" , use_auth_token=_lowerCAmelCase ) as f:
__snake_case : Union[str, Any] = BytesIO(f.read() )
__snake_case : Dict = PIL.Image.open(bytes_ )
else:
__snake_case : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def snake_case__ ( self : Union[str, Any] ):
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("""binary""" ),
"path": Value("""string""" ),
}
)
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ):
if pa.types.is_string(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("""bytes""" ) >= 0:
__snake_case : List[str] = storage.field("""bytes""" )
else:
__snake_case : List[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
if storage.type.get_field_index("""path""" ) >= 0:
__snake_case : Optional[int] = storage.field("""path""" )
else:
__snake_case : int = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
__snake_case : Optional[Any] = pa.array(
[encode_np_array(np.array(_lowerCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
__snake_case : Optional[int] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays(
[bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : pa.StructArray ):
@no_op_if_value_is_null
def path_to_bytes(_lowerCAmelCase : Tuple ):
with xopen(_lowerCAmelCase , """rb""" ) as f:
__snake_case : Optional[int] = f.read()
return bytes_
__snake_case : Tuple = pa.array(
[
(path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
__snake_case : Optional[Any] = pa.array(
[os.path.basename(_lowerCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def __lowerCAmelCase ( ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
__snake_case : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
__snake_case : List[Any] = BytesIO()
if image.format in list_image_compression_formats():
__snake_case : Union[str, Any] = image.format
else:
__snake_case : List[Any] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF"""
image.save(__SCREAMING_SNAKE_CASE , format=__SCREAMING_SNAKE_CASE )
return buffer.getvalue()
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
if hasattr(__SCREAMING_SNAKE_CASE , """filename""" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
__snake_case : List[Any] = array.dtype
__snake_case : List[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER
__snake_case : Dict = dtype.kind
__snake_case : Union[str, Any] = dtype.itemsize
__snake_case : Tuple = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
__snake_case : int = np.dtype("""|u1""" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' )
if dtype is not dest_dtype:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
__snake_case : List[str] = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
__snake_case : int = dtype_byteorder + dtype_kind + str(__SCREAMING_SNAKE_CASE )
__snake_case : Any = np.dtype(__SCREAMING_SNAKE_CASE )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' )
__snake_case : Optional[int] = PIL.Image.fromarray(array.astype(__SCREAMING_SNAKE_CASE ) )
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if objs:
__snake_case , __snake_case : Any = first_non_null_value(__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
__snake_case : int = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ):
__snake_case : List[str] = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
else:
return objs
else:
return objs
| 20 | 0 |
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def __lowerCAmelCase ( ):
'''simple docstring'''
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
__snake_case : Optional[int] = """__test_patch_submodule_mock__"""
with patch_submodule(_test_patching , """os.path.join""" , __SCREAMING_SNAKE_CASE ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def __lowerCAmelCase ( ):
'''simple docstring'''
assert _test_patching.open is open
__snake_case : Dict = """__test_patch_submodule_builtin_mock__"""
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , """open""" , __SCREAMING_SNAKE_CASE ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Union[str, Any] = """__test_patch_submodule_missing_mock__"""
with patch_submodule(_test_patching , """pandas.read_csv""" , __SCREAMING_SNAKE_CASE ):
pass
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : str = """__test_patch_submodule_missing_builtin_mock__"""
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , """len""" , __SCREAMING_SNAKE_CASE ) is None
with patch_submodule(_test_patching , """len""" , __SCREAMING_SNAKE_CASE ):
assert _test_patching.len is mock
assert _test_patching.len is len
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Any = """__test_patch_submodule_start_and_stop_mock__"""
__snake_case : List[str] = patch_submodule(_test_patching , """open""" , __SCREAMING_SNAKE_CASE )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def __lowerCAmelCase ( ):
'''simple docstring'''
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
__snake_case : Optional[int] = """__test_patch_submodule_successive_join__"""
__snake_case : Dict = """__test_patch_submodule_successive_dirname__"""
__snake_case : Optional[Any] = """__test_patch_submodule_successive_rename__"""
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , """os.path.join""" , __SCREAMING_SNAKE_CASE ):
with patch_submodule(_test_patching , """os.rename""" , __SCREAMING_SNAKE_CASE ):
with patch_submodule(_test_patching , """os.path.dirname""" , __SCREAMING_SNAKE_CASE ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , """os.rename""" , __SCREAMING_SNAKE_CASE ):
with patch_submodule(_test_patching , """os.path.join""" , __SCREAMING_SNAKE_CASE ):
with patch_submodule(_test_patching , """os.path.dirname""" , __SCREAMING_SNAKE_CASE ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Optional[Any] = """__test_patch_submodule_doesnt_exist_mock__"""
with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , __SCREAMING_SNAKE_CASE ):
pass
with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , __SCREAMING_SNAKE_CASE ):
pass
| 354 | from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(__UpperCamelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ):
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = {}
__snake_case : int = {}
if prompt is not None:
__snake_case : Dict = prompt
if generate_kwargs is not None:
__snake_case : List[Any] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__snake_case : Optional[int] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
__snake_case : Any = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ):
return super().__call__(_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = load_image(_lowerCAmelCase )
if prompt is not None:
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
raise ValueError(
f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
__snake_case : Tuple = self.model.config.model_type
if model_type == "git":
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids
__snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids
__snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
__snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework )
model_inputs.update(_lowerCAmelCase )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
__snake_case : int = None
return model_inputs
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ):
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase )
and all(x is None for x in model_inputs["""input_ids"""] )
):
__snake_case : List[Any] = None
if generate_kwargs is None:
__snake_case : Dict = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__snake_case : Dict = model_inputs.pop(self.model.main_input_name )
__snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase )
return model_outputs
def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ):
__snake_case : Union[str, Any] = []
for output_ids in model_outputs:
__snake_case : Union[str, Any] = {
"""generated_text""": self.tokenizer.decode(
_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , )
}
records.append(_lowerCAmelCase )
return records
| 20 | 0 |
import json
import os
import unittest
from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast
from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( _lowerCamelCase , unittest.TestCase ):
A : Union[str, Any] = GPTaTokenizer
A : Optional[Any] = GPTaTokenizerFast
A : Any = True
A : Tuple = {"add_prefix_space": True}
A : Dict = False
def snake_case__ ( self : List[str] ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__snake_case : Any = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
"""<|endoftext|>""",
]
__snake_case : Optional[int] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) )
__snake_case : List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
__snake_case : Optional[Any] = {"""unk_token""": """<unk>"""}
__snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(lowercase_ ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(lowercase_ ) )
def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : str ):
kwargs.update(self.special_tokens_map )
return GPTaTokenizer.from_pretrained(self.tmpdirname , **lowercase_ )
def snake_case__ ( self : str , **_lowerCAmelCase : Any ):
kwargs.update(self.special_tokens_map )
return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ )
def snake_case__ ( self : str , _lowerCAmelCase : int ):
__snake_case : List[Any] = """lower newer"""
__snake_case : str = """lower newer"""
return input_text, output_text
def snake_case__ ( self : int ):
__snake_case : Tuple = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
__snake_case : Dict = """lower newer"""
__snake_case : Optional[Any] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
__snake_case : List[Any] = tokenizer.tokenize(lowercase_ , add_prefix_space=lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
__snake_case : Union[str, Any] = tokens + [tokenizer.unk_token]
__snake_case : Optional[int] = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ )
def snake_case__ ( self : Any ):
if not self.test_rust_tokenizer:
return
__snake_case : Optional[int] = self.get_tokenizer()
__snake_case : str = self.get_rust_tokenizer(add_prefix_space=lowercase_ )
__snake_case : List[str] = """lower newer"""
# Testing tokenization
__snake_case : List[Any] = tokenizer.tokenize(lowercase_ , add_prefix_space=lowercase_ )
__snake_case : str = rust_tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
# Testing conversion to ids without special tokens
__snake_case : Any = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ )
__snake_case : Optional[int] = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
# Testing conversion to ids with special tokens
__snake_case : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowercase_ )
__snake_case : Tuple = tokenizer.encode(lowercase_ , add_prefix_space=lowercase_ )
__snake_case : Tuple = rust_tokenizer.encode(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
# Testing the unknown token
__snake_case : List[Any] = tokens + [rust_tokenizer.unk_token]
__snake_case : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ )
def snake_case__ ( self : Dict , *_lowerCAmelCase : str , **_lowerCAmelCase : Optional[Any] ):
# It's very difficult to mix/test pretokenization with byte-level
# And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string)
pass
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[Any]=15 ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__snake_case : Any = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ )
# Simple input
__snake_case : Union[str, Any] = """This is a simple input"""
__snake_case : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""]
__snake_case : Optional[int] = ("""This is a simple input""", """This is a pair""")
__snake_case : Union[str, Any] = [
("""This is a simple input 1""", """This is a simple input 2"""),
("""This is a simple pair 1""", """This is a simple pair 2"""),
]
# Simple input tests
self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="""max_length""" )
# Simple input
self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" )
# Simple input
self.assertRaises(
lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" , )
# Pair input
self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="""max_length""" )
# Pair input
self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" )
# Pair input
self.assertRaises(
lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" , )
def snake_case__ ( self : Tuple ):
__snake_case : Optional[int] = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" )
# Simple input
__snake_case : str = """This is a simple input"""
__snake_case : Tuple = ["""This is a simple input looooooooong""", """This is a simple input"""]
__snake_case : List[str] = ("""This is a simple input""", """This is a pair""")
__snake_case : Optional[int] = [
("""This is a simple input loooooong""", """This is a simple input"""),
("""This is a simple pair loooooong""", """This is a simple pair"""),
]
__snake_case : Optional[int] = tokenizer.pad_token_id
__snake_case : Union[str, Any] = tokenizer(lowercase_ , padding="""max_length""" , max_length=30 , return_tensors="""np""" )
__snake_case : Dict = tokenizer(lowercase_ , padding=lowercase_ , truncate=lowercase_ , return_tensors="""np""" )
__snake_case : List[Any] = tokenizer(*lowercase_ , padding="""max_length""" , max_length=60 , return_tensors="""np""" )
__snake_case : Union[str, Any] = tokenizer(lowercase_ , padding=lowercase_ , truncate=lowercase_ , return_tensors="""np""" )
# s
# test single string max_length padding
self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 )
self.assertTrue(pad_token_id in out_s["""input_ids"""] )
self.assertTrue(0 in out_s["""attention_mask"""] )
# s2
# test automatic padding
self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] )
self.assertFalse(0 in out_sa["""attention_mask"""][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] )
self.assertTrue(0 in out_sa["""attention_mask"""][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 )
self.assertTrue(pad_token_id in out_p["""input_ids"""] )
self.assertTrue(0 in out_p["""attention_mask"""] )
# p2
# test automatic padding pair
self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] )
self.assertFalse(0 in out_pa["""attention_mask"""][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] )
self.assertTrue(0 in out_pa["""attention_mask"""][1] )
def snake_case__ ( self : int ):
__snake_case : Tuple = """$$$"""
__snake_case : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=lowercase_ , add_bos_token=lowercase_ )
__snake_case : str = """This is a simple input"""
__snake_case : Optional[Any] = ["""This is a simple input 1""", """This is a simple input 2"""]
__snake_case : List[str] = tokenizer.bos_token_id
__snake_case : Tuple = tokenizer(lowercase_ )
__snake_case : List[Any] = tokenizer(lowercase_ )
self.assertEqual(out_s.input_ids[0] , lowercase_ )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
__snake_case : List[Any] = tokenizer.decode(out_s.input_ids )
__snake_case : str = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0] , lowercase_ )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
def snake_case__ ( self : List[str] ):
pass
def snake_case__ ( self : str ):
# TODO: change to self.get_tokenizers() when the fast version is implemented
__snake_case : Dict = [self.get_tokenizer(do_lower_case=lowercase_ , add_bos_token=lowercase_ )]
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : Optional[Any] = """Encode this."""
__snake_case : List[str] = """This one too please."""
__snake_case : Optional[int] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ )
encoded_sequence += tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ )
__snake_case : Dict = tokenizer.encode_plus(
lowercase_ , lowercase_ , add_special_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , )
__snake_case : Union[str, Any] = encoded_sequence_dict["""input_ids"""]
__snake_case : int = encoded_sequence_dict["""special_tokens_mask"""]
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) )
__snake_case : List[str] = [
(x if not special_tokens_mask[i] else None) for i, x in enumerate(lowercase_ )
]
__snake_case : Optional[Any] = [x for x in filtered_sequence if x is not None]
self.assertEqual(lowercase_ , lowercase_ )
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : Union[str, Any] ):
# More context:
# https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1
# https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519
# https://github.com/huggingface/transformers/pull/17088#discussion_r871246439
__snake_case : Optional[Any] = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=lowercase_ )
__snake_case : int = """A photo of a cat"""
__snake_case : Optional[int] = tokenizer.encode(
lowercase_ , )
self.assertEqual(lowercase_ , [2, 2_50, 13_45, 9, 10, 47_58] )
tokenizer.save_pretrained("""test_opt""" )
__snake_case : Tuple = AutoTokenizer.from_pretrained("""./test_opt""" )
__snake_case : Optional[int] = tokenizer.encode(
lowercase_ , )
self.assertEqual(lowercase_ , [2, 2_50, 13_45, 9, 10, 47_58] )
def snake_case__ ( self : Tuple ):
__snake_case : Any = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , use_slow=lowercase_ )
__snake_case : Union[str, Any] = """A photo of a cat"""
__snake_case : Dict = tokenizer.encode(
lowercase_ , )
# Same as above
self.assertEqual(lowercase_ , [2, 2_50, 13_45, 9, 10, 47_58] )
@unittest.skip("""This test is failing because of a bug in the fast tokenizer""" )
def snake_case__ ( self : List[str] ):
__snake_case : Optional[Any] = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=lowercase_ )
__snake_case : str = """bos"""
__snake_case : Tuple = tokenizer.get_vocab()["""bos"""]
__snake_case : Dict = """A photo of a cat"""
__snake_case : Optional[Any] = tokenizer.encode(
lowercase_ , )
# We changed the bos token
self.assertEqual(lowercase_ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] )
tokenizer.save_pretrained("""./tok""" )
__snake_case : List[Any] = AutoTokenizer.from_pretrained("""./tok""" )
self.assertTrue(tokenizer.is_fast )
__snake_case : Union[str, Any] = tokenizer.encode(
lowercase_ , )
self.assertEqual(lowercase_ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] )
| 355 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowercase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["YolosFeatureExtractor"]
lowercase_ = ["YolosImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST",
"YolosForObjectDetection",
"YolosModel",
"YolosPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 0 |
from __future__ import annotations
import copy
import tempfile
import unittest
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available
from transformers.testing_utils import (
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tensorflow_probability,
require_tf,
slow,
)
from ..bert.test_modeling_bert import BertModelTester
if is_tf_available():
from transformers import (
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFFunnelBaseModel,
TFFunnelModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
TFTapasForQuestionAnswering,
)
from transformers.models.auto.modeling_tf_auto import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
class SCREAMING_SNAKE_CASE__ ( A__ ):
A : Union[str, Any] = 'new-model'
if is_tf_available():
class SCREAMING_SNAKE_CASE__ ( A__ ):
A : str = NewModelConfig
@require_tf
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Union[str, Any] = """bert-base-cased"""
__snake_case : List[Any] = AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__snake_case : Union[str, Any] = TFAutoModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
@slow
def snake_case__ ( self : int ):
__snake_case : Any = """bert-base-cased"""
__snake_case : Dict = AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__snake_case : Tuple = TFAutoModelForPreTraining.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
@slow
def snake_case__ ( self : Tuple ):
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Any = AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__snake_case : Any = TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ )
__snake_case , __snake_case : Dict = TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
@slow
def snake_case__ ( self : List[Any] ):
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : List[Any] = AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__snake_case : Optional[int] = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
@slow
def snake_case__ ( self : Optional[int] ):
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Dict = AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__snake_case : Tuple = TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ )
__snake_case , __snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
@slow
def snake_case__ ( self : Union[str, Any] ):
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : List[Any] = AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ )
__snake_case , __snake_case : int = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
@slow
def snake_case__ ( self : Any ):
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
__snake_case : int = AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__snake_case : Union[str, Any] = TFAutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
@slow
def snake_case__ ( self : str ):
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
__snake_case : Optional[Any] = AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__snake_case : Tuple = TFAutoModelForQuestionAnswering.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
@slow
@require_tensorflow_probability
def snake_case__ ( self : List[str] ):
for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
__snake_case : List[str] = AutoConfig.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__snake_case : Union[str, Any] = TFAutoModelForTableQuestionAnswering.from_pretrained(lowerCamelCase__ )
__snake_case , __snake_case : List[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained(
lowerCamelCase__ , output_loading_info=lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
def snake_case__ ( self : Tuple ):
__snake_case : str = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
self.assertEqual(model.num_parameters() , 1_44_10 )
self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 1_44_10 )
def snake_case__ ( self : List[Any] ):
__snake_case : List[Any] = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
self.assertEqual(model.num_parameters() , 1_44_10 )
self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 1_44_10 )
def snake_case__ ( self : Any ):
# For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
__snake_case : Union[str, Any] = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
__snake_case : Tuple = copy.deepcopy(model.config )
__snake_case : Dict = ["""FunnelBaseModel"""]
__snake_case : Dict = TFAutoModel.from_config(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(lowerCamelCase__ )
__snake_case : int = TFAutoModel.from_pretrained(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
def snake_case__ ( self : Optional[Any] ):
try:
AutoConfig.register("""new-model""" , lowerCamelCase__ )
__snake_case : List[str] = [
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSequenceClassification,
TFAutoModelForTokenClassification,
]
for auto_class in auto_classes:
with self.subTest(auto_class.__name__ ):
# Wrong config class will raise an error
with self.assertRaises(lowerCamelCase__ ):
auto_class.register(lowerCamelCase__ , lowerCamelCase__ )
auto_class.register(lowerCamelCase__ , lowerCamelCase__ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(lowerCamelCase__ ):
auto_class.register(lowerCamelCase__ , lowerCamelCase__ )
# Now that the config is registered, it can be used as any other config with the auto-API
__snake_case : List[str] = BertModelTester(self ).get_config()
__snake_case : Any = NewModelConfig(**tiny_config.to_dict() )
__snake_case : Tuple = auto_class.from_config(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(lowerCamelCase__ )
__snake_case : Optional[Any] = auto_class.from_pretrained(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
for mapping in (
TF_MODEL_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
):
if NewModelConfig in mapping._extra_content:
del mapping._extra_content[NewModelConfig]
def snake_case__ ( self : Any ):
with self.assertRaisesRegex(
lowerCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ):
__snake_case : Any = TFAutoModel.from_pretrained("""bert-base""" )
def snake_case__ ( self : Tuple ):
with self.assertRaisesRegex(
lowerCamelCase__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
__snake_case : Optional[int] = TFAutoModel.from_pretrained(lowerCamelCase__ , revision="""aaaaaa""" )
def snake_case__ ( self : List[str] ):
with self.assertRaisesRegex(
lowerCamelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ):
__snake_case : Tuple = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" )
def snake_case__ ( self : Union[str, Any] ):
with self.assertRaisesRegex(lowerCamelCase__ , """Use `from_pt=True` to load this model""" ):
__snake_case : str = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" )
def snake_case__ ( self : int ):
# Make sure we have cached the model.
__snake_case : Optional[int] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
with RequestCounter() as counter:
__snake_case : str = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
# With a sharded checkpoint
__snake_case : Optional[int] = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" )
with RequestCounter() as counter:
__snake_case : Any = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 356 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = "microsoft/speecht5_tts"
A : List[Any] = (
"This is a tool that reads an English text out loud. It takes an input named `text` which should contain the "
"text to read (in English) and returns a waveform object containing the sound."
)
A : str = "text_reader"
A : Optional[Any] = SpeechTaProcessor
A : Any = SpeechTaForTextToSpeech
A : Optional[Any] = SpeechTaHifiGan
A : str = ["text"]
A : Union[str, Any] = ["audio"]
def snake_case__ ( self : List[Any] ):
if self.post_processor is None:
__snake_case : Tuple = """microsoft/speecht5_hifigan"""
super().setup()
def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ):
__snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" )
__snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" )
__snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ):
with torch.no_grad():
return self.model.generate_speech(**_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
with torch.no_grad():
return self.post_processor(_lowerCAmelCase ).cpu().detach()
| 20 | 0 |
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class SCREAMING_SNAKE_CASE__ ( a_ ):
A : Dict = (IPNDMScheduler,)
A : Union[str, Any] = (("num_inference_steps", 50),)
def snake_case__ ( self : Union[str, Any] , **_lowerCAmelCase : Dict ):
__snake_case : Any = {'''num_train_timesteps''': 10_00}
config.update(**lowercase_ )
return config
def snake_case__ ( self : int , _lowerCAmelCase : Optional[Any]=0 , **_lowerCAmelCase : Dict ):
__snake_case : Optional[int] = dict(self.forward_default_kwargs )
__snake_case : List[str] = kwargs.pop("""num_inference_steps""" , lowercase_ )
__snake_case : Any = self.dummy_sample
__snake_case : Any = 0.1 * sample
__snake_case : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__snake_case : Dict = self.get_scheduler_config(**lowercase_ )
__snake_case : List[Any] = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
__snake_case : Any = dummy_past_residuals[:]
if time_step is None:
__snake_case : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
__snake_case : Dict = scheduler_class.from_pretrained(lowercase_ )
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
__snake_case : List[str] = dummy_past_residuals[:]
__snake_case : int = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
__snake_case : Optional[int] = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
__snake_case : List[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
__snake_case : int = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def snake_case__ ( self : List[str] ):
pass
def snake_case__ ( self : Any , _lowerCAmelCase : Tuple=0 , **_lowerCAmelCase : Optional[Any] ):
__snake_case : List[str] = dict(self.forward_default_kwargs )
__snake_case : str = kwargs.pop("""num_inference_steps""" , lowercase_ )
__snake_case : int = self.dummy_sample
__snake_case : List[str] = 0.1 * sample
__snake_case : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__snake_case : List[Any] = self.get_scheduler_config()
__snake_case : int = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals (must be after setting timesteps)
__snake_case : Any = dummy_past_residuals[:]
if time_step is None:
__snake_case : Optional[int] = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
__snake_case : int = scheduler_class.from_pretrained(lowercase_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residual (must be after setting timesteps)
__snake_case : Tuple = dummy_past_residuals[:]
__snake_case : List[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
__snake_case : Optional[Any] = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
__snake_case : Optional[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
__snake_case : Optional[Any] = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def snake_case__ ( self : Any , **_lowerCAmelCase : Tuple ):
__snake_case : str = self.scheduler_classes[0]
__snake_case : Dict = self.get_scheduler_config(**lowercase_ )
__snake_case : List[str] = scheduler_class(**lowercase_ )
__snake_case : str = 10
__snake_case : Any = self.dummy_model()
__snake_case : Any = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
for i, t in enumerate(scheduler.timesteps ):
__snake_case : Tuple = model(lowercase_ , lowercase_ )
__snake_case : List[str] = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
__snake_case : Tuple = model(lowercase_ , lowercase_ )
__snake_case : Tuple = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample
return sample
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Union[str, Any] = dict(self.forward_default_kwargs )
__snake_case : List[str] = kwargs.pop("""num_inference_steps""" , lowercase_ )
for scheduler_class in self.scheduler_classes:
__snake_case : List[str] = self.get_scheduler_config()
__snake_case : str = scheduler_class(**lowercase_ )
__snake_case : Any = self.dummy_sample
__snake_case : Optional[Any] = 0.1 * sample
if num_inference_steps is not None and hasattr(lowercase_ , """set_timesteps""" ):
scheduler.set_timesteps(lowercase_ )
elif num_inference_steps is not None and not hasattr(lowercase_ , """set_timesteps""" ):
__snake_case : List[Any] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
__snake_case : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
__snake_case : List[str] = dummy_past_residuals[:]
__snake_case : str = scheduler.timesteps[5]
__snake_case : Tuple = scheduler.timesteps[6]
__snake_case : List[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
__snake_case : List[str] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
__snake_case : Optional[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
__snake_case : Optional[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def snake_case__ ( self : Optional[Any] ):
for timesteps in [1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowercase_ , time_step=lowercase_ )
def snake_case__ ( self : List[str] ):
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ):
self.check_over_forward(num_inference_steps=lowercase_ , time_step=lowercase_ )
def snake_case__ ( self : Tuple ):
__snake_case : Union[str, Any] = self.full_loop()
__snake_case : str = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 2_54_05_29 ) < 10
| 357 | import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * power_factor
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | 0 |
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def __init__( self : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : List[str]=32 , _lowerCAmelCase : str=3 , _lowerCAmelCase : Optional[int]=10 , _lowerCAmelCase : int=[10, 20, 30, 40] , _lowerCAmelCase : Optional[Any]=[1, 1, 2, 1] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Optional[Any]="relu" , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : str=None , ):
__snake_case : Any = parent
__snake_case : str = batch_size
__snake_case : int = image_size
__snake_case : Tuple = num_channels
__snake_case : Any = embeddings_size
__snake_case : Dict = hidden_sizes
__snake_case : str = depths
__snake_case : str = is_training
__snake_case : str = use_labels
__snake_case : Union[str, Any] = hidden_act
__snake_case : str = num_labels
__snake_case : Dict = scope
__snake_case : Dict = len(__A )
def snake_case__ ( self : str ):
__snake_case : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : List[str] = self.get_config()
return config, pixel_values
def snake_case__ ( self : Union[str, Any] ):
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ):
__snake_case : Dict = FlaxRegNetModel(config=__A )
__snake_case : int = model(__A )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def snake_case__ ( self : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ):
__snake_case : Dict = self.num_labels
__snake_case : int = FlaxRegNetForImageClassification(config=__A )
__snake_case : Any = model(__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : List[Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case : str = config_and_inputs
__snake_case : List[str] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_flax
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ):
A : List[str] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
A : str = False
A : str = False
A : Any = False
def snake_case__ ( self : List[Any] ):
__snake_case : int = FlaxRegNetModelTester(self )
__snake_case : int = ConfigTester(self , config_class=__A , has_text_modality=__A )
def snake_case__ ( self : Dict ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def snake_case__ ( self : Any ):
return
def snake_case__ ( self : str ):
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def snake_case__ ( self : List[str] ):
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
@unittest.skip(reason="""RegNet does not use inputs_embeds""" )
def snake_case__ ( self : List[str] ):
pass
@unittest.skip(reason="""RegNet does not support input and output embeddings""" )
def snake_case__ ( self : List[Any] ):
pass
def snake_case__ ( self : str ):
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Optional[Any] = model_class(__A )
__snake_case : List[str] = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Optional[Any] = [*signature.parameters.keys()]
__snake_case : List[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __A )
def snake_case__ ( self : Tuple ):
def check_hidden_states_output(_lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ):
__snake_case : str = model_class(__A )
__snake_case : Optional[Any] = model(**self._prepare_for_class(__A , __A ) )
__snake_case : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__snake_case : List[str] = self.model_tester.num_stages
self.assertEqual(len(__A ) , expected_num_stages + 1 )
__snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = True
check_hidden_states_output(__A , __A , __A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : Dict = True
check_hidden_states_output(__A , __A , __A )
def snake_case__ ( self : Tuple ):
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__snake_case : List[str] = self._prepare_for_class(__A , __A )
__snake_case : List[str] = model_class(__A )
@jax.jit
def model_jitted(_lowerCAmelCase : Tuple , **_lowerCAmelCase : Tuple ):
return model(pixel_values=__A , **__A )
with self.subTest("""JIT Enabled""" ):
__snake_case : List[str] = model_jitted(**__A ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__snake_case : Any = model_jitted(**__A ).to_tuple()
self.assertEqual(len(__A ) , len(__A ) )
for jitted_output, output in zip(__A , __A ):
self.assertEqual(jitted_output.shape , output.shape )
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_flax
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@cached_property
def snake_case__ ( self : Dict ):
return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None
@slow
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Optional[Any] = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" )
__snake_case : Any = self.default_image_processor
__snake_case : Any = prepare_img()
__snake_case : List[Any] = image_processor(images=__A , return_tensors="""np""" )
__snake_case : Any = model(**__A )
# verify the logits
__snake_case : Any = (1, 10_00)
self.assertEqual(outputs.logits.shape , __A )
__snake_case : List[str] = jnp.array([-0.4180, -1.5051, -3.4836] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) )
| 358 | from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 20 | 0 |
lowercase_ = 8.3_144_598
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if temperature < 0:
raise Exception("""Temperature cannot be less than 0 K""" )
if molar_mass <= 0:
raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
lowercase_ = 3_00
lowercase_ = 28
lowercase_ = rms_speed_of_molecule(temperature, molar_mass)
print(F'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
| 359 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {
"configuration_blenderbot_small": [
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotSmallConfig",
"BlenderbotSmallOnnxConfig",
],
"tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["BlenderbotSmallTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
"BlenderbotSmallPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFBlenderbotSmallForConditionalGeneration",
"TFBlenderbotSmallModel",
"TFBlenderbotSmallPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxBlenderbotSmallForConditionalGeneration",
"FlaxBlenderbotSmallModel",
"FlaxBlenderbotSmallPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 0 |
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"""files""" , [
["""full:README.md""", """dataset_infos.json"""],
["""empty:README.md""", """dataset_infos.json"""],
["""dataset_infos.json"""],
["""full:README.md"""],
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
__snake_case : int = tmp_path_factory.mktemp("""dset_infos_dir""" )
if "full:README.md" in files:
with open(dataset_infos_dir / """README.md""" , """w""" ) as f:
f.write("""---\ndataset_info:\n dataset_size: 42\n---""" )
if "empty:README.md" in files:
with open(dataset_infos_dir / """README.md""" , """w""" ) as f:
f.write("""""" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f:
f.write("""{\"default\": {\"dataset_size\": 42}}""" )
__snake_case : Optional[int] = DatasetInfosDict.from_directory(_a )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 4_2
@pytest.mark.parametrize(
"""dataset_info""" , [
DatasetInfo(),
DatasetInfo(
description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : DatasetInfo ):
'''simple docstring'''
__snake_case : str = str(_a )
dataset_info.write_to_directory(_a )
__snake_case : List[Any] = DatasetInfo.from_directory(_a )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(_a , """dataset_info.json""" ) )
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : List[str] = DatasetInfo(
description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , )
__snake_case : str = dataset_info._to_yaml_dict()
assert sorted(_a ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) )
__snake_case : Optional[int] = yaml.safe_dump(_a )
__snake_case : Dict = yaml.safe_load(_a )
assert dataset_info_yaml_dict == reloaded
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Optional[Any] = DatasetInfo()
__snake_case : Optional[int] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"""dataset_infos_dict""" , [
DatasetInfosDict(),
DatasetInfosDict({"""default""": DatasetInfo()} ),
DatasetInfosDict({"""my_config_name""": DatasetInfo()} ),
DatasetInfosDict(
{
"""default""": DatasetInfo(
description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , )
} ),
DatasetInfosDict(
{
"""v1""": DatasetInfo(dataset_size=4_2 ),
"""v2""": DatasetInfo(dataset_size=1_3_3_7 ),
} ),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : DatasetInfosDict ):
'''simple docstring'''
__snake_case : List[str] = str(_a )
dataset_infos_dict.write_to_directory(_a )
__snake_case : Union[str, Any] = DatasetInfosDict.from_directory(_a )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
__snake_case : Any = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
__snake_case : Tuple = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(_a , """README.md""" ) )
| 360 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase_ = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["ViTFeatureExtractor"]
lowercase_ = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 0 |
"""simple docstring"""
import os
import shutil
import sys
import tempfile
import unittest
from pathlib import Path
import pytest
import transformers
from transformers import (
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoTokenizer,
BertConfig,
BertTokenizer,
BertTokenizerFast,
CTRLTokenizer,
GPTaTokenizer,
GPTaTokenizerFast,
PreTrainedTokenizerFast,
RobertaTokenizer,
RobertaTokenizerFast,
is_tokenizers_available,
)
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.auto.tokenization_auto import (
TOKENIZER_MAPPING,
get_tokenizer_config,
tokenizer_class_from_name,
)
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import (
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tokenizers,
slow,
)
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : Optional[Any] ):
__snake_case : Optional[Any] = 0
@slow
def snake_case__ ( self : Dict ):
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
__snake_case : str = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) )
self.assertGreater(len(snake_case__ ) , 0 )
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
__snake_case : Dict = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
self.assertIsInstance(snake_case__ , (GPTaTokenizer, GPTaTokenizerFast) )
self.assertGreater(len(snake_case__ ) , 0 )
def snake_case__ ( self : Any ):
__snake_case : List[str] = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 12 )
def snake_case__ ( self : Tuple ):
__snake_case : List[Any] = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , (RobertaTokenizer, RobertaTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 20 )
def snake_case__ ( self : int ):
__snake_case : Optional[Any] = AutoConfig.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
# Check that tokenizer_type ≠ model_type
__snake_case : Optional[Any] = AutoTokenizer.from_pretrained(snake_case__ , config=snake_case__ )
self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 12 )
def snake_case__ ( self : Optional[int] ):
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(snake_case__ , """vocab.txt""" ) )
__snake_case : int = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="""bert""" , use_fast=snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(snake_case__ , """vocab.json""" ) )
shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(snake_case__ , """merges.txt""" ) )
__snake_case : Any = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="""gpt2""" , use_fast=snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
@require_tokenizers
def snake_case__ ( self : Optional[int] ):
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(snake_case__ , """vocab.txt""" ) )
__snake_case : Optional[int] = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="""bert""" )
self.assertIsInstance(snake_case__ , snake_case__ )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(snake_case__ , """vocab.json""" ) )
shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(snake_case__ , """merges.txt""" ) )
__snake_case : Optional[Any] = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="""gpt2""" )
self.assertIsInstance(snake_case__ , snake_case__ )
def snake_case__ ( self : List[str] ):
with pytest.raises(snake_case__ ):
AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" )
@require_tokenizers
def snake_case__ ( self : Union[str, Any] ):
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
__snake_case : Any = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" )
self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) )
if isinstance(snake_case__ , snake_case__ ):
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , snake_case__ )
else:
self.assertEqual(tokenizer.do_lower_case , snake_case__ )
self.assertEqual(tokenizer.model_max_length , 5_12 )
@require_tokenizers
def snake_case__ ( self : List[Any] ):
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
with self.assertRaisesRegex(
snake_case__ , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ):
__snake_case : Dict = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" )
def snake_case__ ( self : str ):
__snake_case : Tuple = TOKENIZER_MAPPING.values()
__snake_case : Any = []
for slow_tok, fast_tok in tokenizers:
if slow_tok is not None:
tokenizer_names.append(slow_tok.__name__ )
if fast_tok is not None:
tokenizer_names.append(fast_tok.__name__ )
for tokenizer_name in tokenizer_names:
# must find the right class
tokenizer_class_from_name(snake_case__ )
@require_tokenizers
def snake_case__ ( self : Optional[Any] ):
self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=snake_case__ ) , snake_case__ )
self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , snake_case__ )
@require_tokenizers
def snake_case__ ( self : int ):
__snake_case : str = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=snake_case__ )
__snake_case : Tuple = '''Hello, world. How are you?'''
__snake_case : Optional[int] = tokenizer.tokenize(snake_case__ )
self.assertEqual("""[UNK]""" , tokens[0] )
__snake_case : Optional[int] = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=snake_case__ )
__snake_case : int = tokenizer.tokenize(snake_case__ )
self.assertEqual("""[UNK]""" , tokens[0] )
@require_tokenizers
def snake_case__ ( self : Any ):
__snake_case : Union[str, Any] = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" )
self.assertEqual(type(snake_case__ ) , snake_case__ )
self.assertEqual(tokenizer.model_max_length , 5_12 )
self.assertEqual(tokenizer.vocab_size , 3_00_00 )
self.assertEqual(tokenizer.unk_token , """[UNK]""" )
self.assertEqual(tokenizer.padding_side , """right""" )
self.assertEqual(tokenizer.truncation_side , """right""" )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Any = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ )
__snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , tokenizer.__class__ )
self.assertEqual(tokenizera.vocab_size , 12 )
def snake_case__ ( self : Optional[int] ):
__snake_case : int = AutoTokenizer.from_pretrained("""ctrl""" )
# There is no fast CTRL so this always gives us a slow tokenizer.
self.assertIsInstance(snake_case__ , snake_case__ )
def snake_case__ ( self : Any ):
__snake_case : Dict = get_tokenizer_config("""bert-base-cased""" )
__snake_case : Dict = config.pop("""_commit_hash""" , snake_case__ )
# If we ever update bert-base-cased tokenizer config, this dict here will need to be updated.
self.assertEqual(snake_case__ , {"""do_lower_case""": False} )
# This model does not have a tokenizer_config so we get back an empty dict.
__snake_case : List[str] = get_tokenizer_config(snake_case__ )
self.assertDictEqual(snake_case__ , {} )
# A tokenizer saved with `save_pretrained` always creates a tokenizer config.
__snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ )
__snake_case : Optional[Any] = get_tokenizer_config(snake_case__ )
# Check the class of the tokenizer was properly saved (note that it always saves the slow class).
self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" )
def snake_case__ ( self : Any ):
try:
AutoConfig.register("""custom""" , snake_case__ )
AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(snake_case__ ):
AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ )
__snake_case : Optional[Any] = CustomTokenizer.from_pretrained(snake_case__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ )
__snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
@require_tokenizers
def snake_case__ ( self : int ):
try:
AutoConfig.register("""custom""" , snake_case__ )
# Can register in two steps
AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) )
AutoTokenizer.register(snake_case__ , fast_tokenizer_class=snake_case__ )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
del TOKENIZER_MAPPING._extra_content[CustomConfig]
# Can register in one step
AutoTokenizer.register(
snake_case__ , slow_tokenizer_class=snake_case__ , fast_tokenizer_class=snake_case__ )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(snake_case__ ):
AutoTokenizer.register(snake_case__ , fast_tokenizer_class=snake_case__ )
# We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer
# and that model does not have a tokenizer.json
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : Optional[int] = BertTokenizerFast.from_pretrained(snake_case__ )
bert_tokenizer.save_pretrained(snake_case__ )
__snake_case : List[str] = CustomTokenizerFast.from_pretrained(snake_case__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ )
__snake_case : str = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
__snake_case : int = AutoTokenizer.from_pretrained(snake_case__ , use_fast=snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def snake_case__ ( self : Any ):
with self.assertRaises(snake_case__ ):
__snake_case : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(snake_case__ ):
__snake_case : Tuple = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=snake_case__ )
__snake_case : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=snake_case__ )
self.assertTrue(tokenizer.special_attribute_present )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ )
__snake_case : str = AutoTokenizer.from_pretrained(snake_case__ , trust_remote_code=snake_case__ )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" )
# Test we can also load the slow version
__snake_case : Any = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=snake_case__ , use_fast=snake_case__ )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ )
__snake_case : List[Any] = AutoTokenizer.from_pretrained(snake_case__ , trust_remote_code=snake_case__ , use_fast=snake_case__ )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
else:
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" )
@require_tokenizers
def snake_case__ ( self : int ):
class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ):
A : List[Any] = False
class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ):
A : Tuple = NewTokenizer
A : List[Any] = False
try:
AutoConfig.register("""custom""" , snake_case__ )
AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ )
AutoTokenizer.register(snake_case__ , fast_tokenizer_class=snake_case__ )
# If remote code is not set, the default is to use local
__snake_case : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertFalse(tokenizer.special_attribute_present )
__snake_case : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=snake_case__ )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertFalse(tokenizer.special_attribute_present )
# If remote code is disabled, we load the local one.
__snake_case : str = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=snake_case__ )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertFalse(tokenizer.special_attribute_present )
__snake_case : Optional[int] = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=snake_case__ , use_fast=snake_case__ )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertFalse(tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub
__snake_case : Tuple = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=snake_case__ )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertTrue(tokenizer.special_attribute_present )
__snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=snake_case__ , use_fast=snake_case__ )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertTrue(tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def snake_case__ ( self : Tuple ):
__snake_case : List[Any] = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=snake_case__ )
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
# Test we can also load the slow version
__snake_case : Tuple = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=snake_case__ , use_fast=snake_case__ )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
else:
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
def snake_case__ ( self : List[str] ):
with self.assertRaisesRegex(
snake_case__ , """bert-base is not a local folder and is not a valid model identifier""" ):
__snake_case : int = AutoTokenizer.from_pretrained("""bert-base""" )
def snake_case__ ( self : Optional[int] ):
with self.assertRaisesRegex(
snake_case__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
__snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case__ , revision="""aaaaaa""" )
def snake_case__ ( self : Any ):
__snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
with RequestCounter() as counter:
__snake_case : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 361 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if (direction == 1 and array[indexa] > array[indexa]) or (
direction == 0 and array[indexa] < array[indexa]
):
__snake_case , __snake_case : str = array[indexa], array[indexa]
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Tuple = int(length / 2 )
for i in range(__SCREAMING_SNAKE_CASE , low + middle ):
comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Optional[Any] = int(length / 2 )
bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 )
bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
bitonic_sort(unsorted, 0, len(unsorted), 1)
print("\nSorted array in ascending order is: ", end="")
print(*unsorted, sep=", ")
bitonic_merge(unsorted, 0, len(unsorted), 0)
print("Sorted array in descending order is: ", end="")
print(*unsorted, sep=", ")
| 20 | 0 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import DebertaVaConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
TFDebertaVaModel,
)
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any]=13 , _lowerCAmelCase : int=7 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Optional[int]=99 , _lowerCAmelCase : Optional[Any]=32 , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : List[Any]=37 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Dict=5_12 , _lowerCAmelCase : str=16 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : Dict=False , _lowerCAmelCase : int=True , _lowerCAmelCase : Union[str, Any]="None" , _lowerCAmelCase : int=3 , _lowerCAmelCase : Any=4 , _lowerCAmelCase : List[Any]=None , ):
__snake_case : List[str] = parent
__snake_case : int = batch_size
__snake_case : Optional[int] = seq_length
__snake_case : List[str] = is_training
__snake_case : Optional[int] = use_input_mask
__snake_case : Optional[Any] = use_token_type_ids
__snake_case : List[str] = use_labels
__snake_case : List[Any] = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : int = num_hidden_layers
__snake_case : str = num_attention_heads
__snake_case : Tuple = intermediate_size
__snake_case : Tuple = hidden_act
__snake_case : List[str] = hidden_dropout_prob
__snake_case : Optional[int] = attention_probs_dropout_prob
__snake_case : List[Any] = max_position_embeddings
__snake_case : Optional[Any] = type_vocab_size
__snake_case : Optional[Any] = type_sequence_label_size
__snake_case : Optional[Any] = initializer_range
__snake_case : int = num_labels
__snake_case : str = num_choices
__snake_case : Optional[int] = relative_attention
__snake_case : Optional[Any] = position_biased_input
__snake_case : Dict = pos_att_type
__snake_case : Tuple = scope
def snake_case__ ( self : Optional[Any] ):
__snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Optional[int] = None
if self.use_input_mask:
__snake_case : int = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Union[str, Any] = None
if self.use_token_type_ids:
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : str = None
__snake_case : int = None
__snake_case : List[str] = None
if self.use_labels:
__snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : Dict = DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=lowerCAmelCase__ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict ):
__snake_case : List[str] = TFDebertaVaModel(config=lowerCAmelCase__ )
__snake_case : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__snake_case : Any = [input_ids, input_mask]
__snake_case : str = model(lowerCAmelCase__ )
__snake_case : Tuple = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : str ):
__snake_case : Union[str, Any] = TFDebertaVaForMaskedLM(config=lowerCAmelCase__ )
__snake_case : Optional[Any] = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
__snake_case : Dict = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] ):
__snake_case : int = self.num_labels
__snake_case : Optional[int] = TFDebertaVaForSequenceClassification(config=lowerCAmelCase__ )
__snake_case : Any = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
__snake_case : List[str] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ):
__snake_case : Optional[int] = self.num_labels
__snake_case : int = TFDebertaVaForTokenClassification(config=lowerCAmelCase__ )
__snake_case : Optional[Any] = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
__snake_case : List[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple ):
__snake_case : Union[str, Any] = TFDebertaVaForQuestionAnswering(config=lowerCAmelCase__ )
__snake_case : Optional[Any] = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
__snake_case : str = model(lowerCAmelCase__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def snake_case__ ( self : List[str] ):
__snake_case : Dict = self.prepare_config_and_inputs()
(
__snake_case
) : Tuple = config_and_inputs
__snake_case : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE__ ( a__ , a__ , unittest.TestCase ):
A : Union[str, Any] = (
(
TFDebertaVaModel,
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
)
if is_tf_available()
else ()
)
A : List[str] = (
{
"""feature-extraction""": TFDebertaVaModel,
"""fill-mask""": TFDebertaVaForMaskedLM,
"""question-answering""": TFDebertaVaForQuestionAnswering,
"""text-classification""": TFDebertaVaForSequenceClassification,
"""token-classification""": TFDebertaVaForTokenClassification,
"""zero-shot""": TFDebertaVaForSequenceClassification,
}
if is_tf_available()
else {}
)
A : Union[str, Any] = False
A : Dict = False
def snake_case__ ( self : List[Any] ):
__snake_case : str = TFDebertaVaModelTester(self )
__snake_case : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 )
def snake_case__ ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def snake_case__ ( self : List[str] ):
__snake_case : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def snake_case__ ( self : Tuple ):
__snake_case : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ )
def snake_case__ ( self : List[str] ):
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ):
__snake_case : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ )
def snake_case__ ( self : Any ):
__snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ )
@slow
def snake_case__ ( self : List[Any] ):
__snake_case : str = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" )
self.assertIsNotNone(lowerCAmelCase__ )
@require_tf
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@unittest.skip(reason="""Model not available yet""" )
def snake_case__ ( self : List[Any] ):
pass
@slow
def snake_case__ ( self : Optional[Any] ):
__snake_case : int = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" )
__snake_case : Union[str, Any] = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] )
__snake_case : str = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
__snake_case : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0]
__snake_case : Any = tf.constant(
[[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] )
tf.debugging.assert_near(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 )
| 362 | import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ):
'''simple docstring'''
__snake_case : Optional[int] = {
"""7z""": (seven_zip_file, SevenZipExtractor),
"""bz2""": (bza_file, BzipaExtractor),
"""gzip""": (gz_file, GzipExtractor),
"""lz4""": (lza_file, LzaExtractor),
"""tar""": (tar_file, TarExtractor),
"""xz""": (xz_file, XzExtractor),
"""zip""": (zip_file, ZipExtractor),
"""zstd""": (zstd_file, ZstdExtractor),
}
__snake_case , __snake_case : Tuple = input_paths_and_base_extractors[compression_format]
if input_path is None:
__snake_case : Tuple = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE )
__snake_case : List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : List[str] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Optional[Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : int = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ):
'''simple docstring'''
__snake_case : Union[str, Any] = {
"""7z""": seven_zip_file,
"""bz2""": bza_file,
"""gzip""": gz_file,
"""lz4""": lza_file,
"""tar""": tar_file,
"""xz""": xz_file,
"""zip""": zip_file,
"""zstd""": zstd_file,
}
__snake_case : int = input_paths[compression_format]
if input_path is None:
__snake_case : int = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
__snake_case : Any = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE )
assert extractor_format is not None
__snake_case : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : Union[str, Any] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Union[str, Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : Optional[Any] = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
import tarfile
__snake_case : List[str] = tmp_path / """data_dot_dot"""
directory.mkdir()
__snake_case : Optional[Any] = directory / """tar_file_with_dot_dot.tar"""
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) )
return path
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
import tarfile
__snake_case : Dict = tmp_path / """data_sym_link"""
directory.mkdir()
__snake_case : Tuple = directory / """tar_file_with_sym_link.tar"""
os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE )
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
"""insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
__snake_case : Any = {
"""tar_file_with_dot_dot""": tar_file_with_dot_dot,
"""tar_file_with_sym_link""": tar_file_with_sym_link,
}
__snake_case : int = insecure_tar_files[insecure_tar_file]
__snake_case : Optional[int] = tmp_path / """extracted"""
TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
# We should have less false positives than zipfile.is_zipfile
# We do that by checking only the magic number
__snake_case : Optional[Any] = tmpdir / """not_a_zip_file"""
# From: https://github.com/python/cpython/pull/5053
__snake_case : List[str] = (
b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"""
b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"""
b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"""
b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"""
)
with not_a_zip_file.open("""wb""" ) as f:
f.write(__SCREAMING_SNAKE_CASE )
assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
| 20 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"""SCUT-DLVCLab/lilt-roberta-en-base""": (
"""https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json"""
),
}
class SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ ):
A : int = "lilt"
def __init__( self : Union[str, Any] , _lowerCAmelCase : int=3_05_22 , _lowerCAmelCase : Tuple=7_68 , _lowerCAmelCase : Optional[int]=12 , _lowerCAmelCase : List[str]=12 , _lowerCAmelCase : str=30_72 , _lowerCAmelCase : Union[str, Any]="gelu" , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : Dict=5_12 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Any=0.02 , _lowerCAmelCase : Dict=1e-12 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Union[str, Any]="absolute" , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Optional[int]=10_24 , **_lowerCAmelCase : str , ):
super().__init__(pad_token_id=a__ , **a__ )
__snake_case : List[Any] = vocab_size
__snake_case : Optional[Any] = hidden_size
__snake_case : Any = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : Any = hidden_act
__snake_case : Tuple = intermediate_size
__snake_case : List[Any] = hidden_dropout_prob
__snake_case : Dict = attention_probs_dropout_prob
__snake_case : List[Any] = max_position_embeddings
__snake_case : Tuple = type_vocab_size
__snake_case : Optional[int] = initializer_range
__snake_case : Optional[int] = layer_norm_eps
__snake_case : Any = position_embedding_type
__snake_case : List[str] = classifier_dropout
__snake_case : int = channel_shrink_ratio
__snake_case : Optional[int] = max_ad_position_embeddings
| 363 | import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : Any ):
__snake_case : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split()
__snake_case : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
__snake_case : List[str] = {
"""unk_token""": """<unk>""",
"""bos_token""": """<s>""",
"""eos_token""": """</s>""",
}
__snake_case : str = {
"""feature_size""": 1,
"""padding_value""": 0.0,
"""sampling_rate""": 1_60_00,
"""return_attention_mask""": False,
"""do_normalize""": True,
}
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__snake_case : Any = os.path.join(self.tmpdirname , _lowerCAmelCase )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
# load decoder from hub
__snake_case : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder"""
def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Tuple ):
__snake_case : int = self.add_kwargs_tokens_map.copy()
kwargs.update(_lowerCAmelCase )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , **_lowerCAmelCase : Optional[int] ):
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Dict , **_lowerCAmelCase : Tuple ):
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase )
def snake_case__ ( self : List[str] ):
shutil.rmtree(self.tmpdirname )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : Tuple = self.get_feature_extractor()
__snake_case : Dict = self.get_decoder()
__snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
__snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowerCAmelCase )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , _lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : Tuple = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
__snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def snake_case__ ( self : int ):
__snake_case : Tuple = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(["""xx"""] )
with self.assertRaisesRegex(_lowerCAmelCase , """include""" ):
WavaVecaProcessorWithLM(
tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def snake_case__ ( self : Dict ):
__snake_case : int = self.get_feature_extractor()
__snake_case : str = self.get_tokenizer()
__snake_case : Dict = self.get_decoder()
__snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : List[Any] = floats_list((3, 10_00) )
__snake_case : Optional[Any] = feature_extractor(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Tuple = processor(_lowerCAmelCase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def snake_case__ ( self : Optional[int] ):
__snake_case : Any = self.get_feature_extractor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : int = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Optional[int] = """This is a test string"""
__snake_case : Union[str, Any] = processor(text=_lowerCAmelCase )
__snake_case : Dict = tokenizer(_lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[Any]=(2, 10, 16) , _lowerCAmelCase : str=77 ):
np.random.seed(_lowerCAmelCase )
return np.random.rand(*_lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : List[str] = self.get_feature_extractor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : List[str] = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 )
__snake_case : int = processor.decode(_lowerCAmelCase )
__snake_case : Optional[int] = decoder.decode_beams(_lowerCAmelCase )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual("""</s> <s> </s>""" , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ["""fork"""], ["""spawn"""]] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] ):
__snake_case : int = self.get_feature_extractor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : int = self.get_decoder()
__snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : int = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
__snake_case : Tuple = processor.batch_decode(_lowerCAmelCase )
else:
with get_context(_lowerCAmelCase ).Pool() as pool:
__snake_case : int = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : int = list(_lowerCAmelCase )
with get_context("""fork""" ).Pool() as p:
__snake_case : Tuple = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase )
__snake_case , __snake_case , __snake_case : List[Any] = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(_lowerCAmelCase , decoded_processor.text )
self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text )
self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score )
self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score )
def snake_case__ ( self : Optional[int] ):
__snake_case : Optional[Any] = self.get_feature_extractor()
__snake_case : int = self.get_tokenizer()
__snake_case : str = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : int = self._get_dummy_logits()
__snake_case : List[str] = 15
__snake_case : Optional[Any] = -20.0
__snake_case : Tuple = -4.0
__snake_case : List[Any] = processor.batch_decode(
_lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , )
__snake_case : List[str] = decoded_processor_out.text
__snake_case : str = list(_lowerCAmelCase )
with get_context("""fork""" ).Pool() as pool:
__snake_case : Dict = decoder.decode_beams_batch(
_lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , )
__snake_case : int = [d[0][0] for d in decoded_decoder_out]
__snake_case : List[Any] = [d[0][2] for d in decoded_decoder_out]
__snake_case : List[Any] = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase )
self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1e-3 ) )
self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1e-3 ) )
def snake_case__ ( self : Any ):
__snake_case : List[Any] = self.get_feature_extractor()
__snake_case : Any = self.get_tokenizer()
__snake_case : Union[str, Any] = self.get_decoder()
__snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Any = self._get_dummy_logits()
__snake_case : Any = 2.0
__snake_case : int = 5.0
__snake_case : Optional[int] = -20.0
__snake_case : Optional[int] = True
__snake_case : Any = processor.batch_decode(
_lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , )
__snake_case : str = decoded_processor_out.text
__snake_case : int = list(_lowerCAmelCase )
decoder.reset_params(
alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , )
with get_context("""fork""" ).Pool() as pool:
__snake_case : Tuple = decoder.decode_beams_batch(
_lowerCAmelCase , _lowerCAmelCase , )
__snake_case : int = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase )
__snake_case : List[str] = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , _lowerCAmelCase )
def snake_case__ ( self : Dict ):
__snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key]
__snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute()
__snake_case : Union[str, Any] = os.listdir(_lowerCAmelCase )
__snake_case : List[str] = ["""alphabet.json""", """language_model"""]
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" )
__snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase )
__snake_case : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key]
__snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute()
__snake_case : List[str] = os.listdir(_lowerCAmelCase )
__snake_case : List[Any] = os.listdir(_lowerCAmelCase )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Optional[int] = floats_list((3, 10_00) )
__snake_case : Union[str, Any] = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Union[str, Any] = processor_auto(_lowerCAmelCase , return_tensors="""np""" )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 )
__snake_case : Dict = self._get_dummy_logits()
__snake_case : List[Any] = processor_wavaveca.batch_decode(_lowerCAmelCase )
__snake_case : List[Any] = processor_auto.batch_decode(_lowerCAmelCase )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def snake_case__ ( self : str ):
__snake_case : int = self.get_feature_extractor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : Optional[Any] = self.get_decoder()
__snake_case : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
@staticmethod
def snake_case__ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ):
__snake_case : Union[str, Any] = [d[key] for d in offsets]
return retrieved_list
def snake_case__ ( self : Dict ):
__snake_case : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : List[str] = self._get_dummy_logits()[0]
__snake_case : str = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""word_offsets""" in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] )
def snake_case__ ( self : List[str] ):
__snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Optional[int] = self._get_dummy_logits()
__snake_case : int = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""word_offsets""" in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertListEqual(
[""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def snake_case__ ( self : Optional[Any] ):
import torch
__snake_case : Optional[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase )
__snake_case : Any = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) )
__snake_case : List[Any] = iter(_lowerCAmelCase )
__snake_case : Optional[int] = next(_lowerCAmelCase )
__snake_case : str = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" )
__snake_case : str = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
__snake_case : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values
with torch.no_grad():
__snake_case : Dict = model(_lowerCAmelCase ).logits.cpu().numpy()
__snake_case : Any = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase )
__snake_case : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
__snake_case : Dict = [
{
"""start_time""": d["""start_offset"""] * time_offset,
"""end_time""": d["""end_offset"""] * time_offset,
"""word""": d["""word"""],
}
for d in output["""word_offsets"""]
]
__snake_case : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL"""
# output words
self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase )
self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text )
# output times
__snake_case : Dict = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) )
__snake_case : Optional[Any] = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) )
# fmt: off
__snake_case : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] )
__snake_case : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
| 20 | 0 |
from PIL import Image
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Image , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : Tuple = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level))
def contrast(__SCREAMING_SNAKE_CASE : int ) -> int:
return int(1_2_8 + factor * (c - 1_2_8) )
return img.point(snake_case__ )
if __name__ == "__main__":
# Load image
with Image.open("image_data/lena.jpg") as img:
# Change contrast to 170
lowercase_ = change_contrast(img, 1_70)
cont_img.save("image_data/lena_high_contrast.png", format="png")
| 364 | import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowercase_ = {
"text_branch": "text_model",
"audio_branch": "audio_model.audio_encoder",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc")
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ):
'''simple docstring'''
__snake_case , __snake_case : str = create_model(
"""HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , )
return model, model_cfg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : Union[str, Any] = {}
__snake_case : List[Any] = R""".*sequential.(\d+).*"""
__snake_case : Union[str, Any] = R""".*_projection.(\d+).*"""
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
__snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# replace sequential layers with list
__snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 )
__snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' )
elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
__snake_case : List[Any] = 1 if projecton_layer == 0 else 2
__snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' )
if "audio" and "qkv" in key:
# split qkv into query key and value
__snake_case : Optional[int] = value
__snake_case : Any = mixed_qkv.size(0 ) // 3
__snake_case : List[Any] = mixed_qkv[:qkv_dim]
__snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2]
__snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :]
__snake_case : Any = query_layer
__snake_case : Dict = key_layer
__snake_case : Optional[Any] = value_layer
else:
__snake_case : List[str] = value
return model_state_dict
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ):
'''simple docstring'''
__snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE )
clap_model.eval()
__snake_case : Tuple = clap_model.state_dict()
__snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = ClapConfig()
__snake_case : Tuple = enable_fusion
__snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE )
# ignore the spectrogram embedding layer
model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not")
lowercase_ = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 20 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.