code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
lowercase_ = [
(10_00, "M"),
(9_00, "CM"),
(5_00, "D"),
(4_00, "CD"),
(1_00, "C"),
(90, "XC"),
(50, "L"),
(40, "XL"),
(10, "X"),
(9, "IX"),
(5, "V"),
(4, "IV"),
(1, "I"),
]
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
__snake_case : int = {"""I""": 1, """V""": 5, """X""": 1_0, """L""": 5_0, """C""": 1_0_0, """D""": 5_0_0, """M""": 1_0_0_0}
__snake_case : Tuple = 0
__snake_case : List[Any] = 0
while place < len(__SCREAMING_SNAKE_CASE ):
if (place + 1 < len(__SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : Optional[Any] = []
for arabic, roman in ROMAN:
((__snake_case) , (__snake_case)) : List[str] = divmod(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
result.append(roman * factor )
if number == 0:
break
return "".join(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"
),
}
}
lowercase_ = {
"junnyu/roformer_chinese_small": 15_36,
"junnyu/roformer_chinese_base": 15_36,
"junnyu/roformer_chinese_char_small": 5_12,
"junnyu/roformer_chinese_char_base": 5_12,
"junnyu/roformer_small_discriminator": 1_28,
"junnyu/roformer_small_generator": 1_28,
}
lowercase_ = {
"junnyu/roformer_chinese_small": {"do_lower_case": True},
"junnyu/roformer_chinese_base": {"do_lower_case": True},
"junnyu/roformer_chinese_char_small": {"do_lower_case": True},
"junnyu/roformer_chinese_char_base": {"do_lower_case": True},
"junnyu/roformer_small_discriminator": {"do_lower_case": True},
"junnyu/roformer_small_generator": {"do_lower_case": True},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = VOCAB_FILES_NAMES
A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : int = PRETRAINED_INIT_CONFIGURATION
A : List[str] = RoFormerTokenizer
def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any="[UNK]" , _lowerCAmelCase : int="[SEP]" , _lowerCAmelCase : Optional[int]="[PAD]" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Dict , ):
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
__snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case
or pre_tok_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents
):
__snake_case : Tuple = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) )
__snake_case : List[Any] = do_lower_case
__snake_case : Optional[Any] = strip_accents
__snake_case : List[str] = pre_tok_class(**_lowerCAmelCase )
__snake_case : Optional[Any] = do_lower_case
def __getstate__( self : Optional[Any] ):
__snake_case : Optional[int] = self.__dict__.copy()
__snake_case : Optional[Any] = BertPreTokenizer()
return state
def __setstate__( self : str , _lowerCAmelCase : Dict ):
__snake_case : str = d
__snake_case : int = self.__dict__["""_tokenizer"""].get_vocab()
__snake_case : List[str] = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=None ):
__snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
def snake_case__ ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Tuple , ):
__snake_case : Tuple = BertPreTokenizer()
return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
| 20 | 1 |
from collections import defaultdict
from pathlib import Path
import pandas as pd
from rouge_cli import calculate_rouge_path
from utils import calculate_rouge
lowercase_ = [
"Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the"
" final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe"
" depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.",
"The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal"
" accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's"
" founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the"
" body.",
"Amnesty International releases its annual report on the death penalty. The report catalogs the use of"
" state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the"
" world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital"
" punishment.",
]
lowercase_ = [
"Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ."
" Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz"
" had informed his Lufthansa training school of an episode of severe depression, airline says .",
"Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ."
" Israel and the United States opposed the move, which could open the door to war crimes investigations against"
" Israelis .",
"Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to"
" death . Organization claims that governments around the world are using the threat of terrorism to advance"
" executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death"
" sentences up by 28% .",
]
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Any = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , bootstrap_aggregation=__SCREAMING_SNAKE_CASE , rouge_keys=["""rouge2""", """rougeL"""] )
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , bootstrap_aggregation=__SCREAMING_SNAKE_CASE , rouge_keys=["""rouge2"""] )
assert (
pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean()
== pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean()
)
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Any = """rougeLsum"""
__snake_case : int = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE , rouge_keys=[k] )[k]
__snake_case : List[Any] = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE , rouge_keys=[k] )[k]
assert score > score_no_sep
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Dict = ["""rouge1""", """rouge2""", """rougeL"""]
__snake_case : Optional[Any] = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE , rouge_keys=__SCREAMING_SNAKE_CASE )
__snake_case : Tuple = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE , rouge_keys=__SCREAMING_SNAKE_CASE )
assert score_sep == score_no_sep
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Union[str, Any] = [
"""Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""",
"""Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""",
]
__snake_case : int = [
"""Margot Frank, died in 1945, a month earlier than previously thought.""",
"""Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of"""
""" the final seconds on board Flight 9525.""",
]
assert calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE ) == calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : List[Any] = [
"""\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """
]
__snake_case : str = [
""" Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ."""
]
__snake_case : Optional[Any] = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rouge_keys=["""rougeLsum"""] , newline_sep=__SCREAMING_SNAKE_CASE )["""rougeLsum"""]
__snake_case : Union[str, Any] = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rouge_keys=["""rougeLsum"""] )["""rougeLsum"""]
assert new_score > prev_score
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : int = Path("""examples/seq2seq/test_data/wmt_en_ro""" )
__snake_case : Any = calculate_rouge_path(data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) )
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : int = calculate_rouge_path(
data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) , bootstrap_aggregation=__SCREAMING_SNAKE_CASE )
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 20 | from __future__ import annotations
import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if depth < 0:
raise ValueError("""Depth cannot be less than 0""" )
if len(__SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("""Scores cannot be empty""" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
return min(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3]
__snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 )
print("""Optimal value : """ , end="""""" )
print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 20 | 1 |
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 20 | import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
lowercase_ = None
lowercase_ = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
lowercase_ = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : bool = True
A : Optional[str] = None
# Automatically constructed
A : ClassVar[str] = "PIL.Image.Image"
A : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} )
A : str = field(default="Image" , init=__UpperCamelCase , repr=__UpperCamelCase )
def __call__( self : Any ):
return self.pa_type
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
__snake_case : str = np.array(_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": value, "bytes": None}
elif isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": None, "bytes": value}
elif isinstance(_lowerCAmelCase , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(_lowerCAmelCase )
elif isinstance(_lowerCAmelCase , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(_lowerCAmelCase )
elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("""path""" )}
elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )}
else:
raise ValueError(
f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def snake_case__ ( self : List[str] , _lowerCAmelCase : dict , _lowerCAmelCase : Dict=None ):
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support decoding images, please install 'Pillow'.""" )
if token_per_repo_id is None:
__snake_case : Tuple = {}
__snake_case , __snake_case : str = value["""path"""], value["""bytes"""]
if bytes_ is None:
if path is None:
raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
else:
if is_local_path(_lowerCAmelCase ):
__snake_case : str = PIL.Image.open(_lowerCAmelCase )
else:
__snake_case : List[str] = path.split("""::""" )[-1]
try:
__snake_case : Dict = string_to_dict(_lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""]
__snake_case : int = token_per_repo_id.get(_lowerCAmelCase )
except ValueError:
__snake_case : List[Any] = None
with xopen(_lowerCAmelCase , """rb""" , use_auth_token=_lowerCAmelCase ) as f:
__snake_case : Union[str, Any] = BytesIO(f.read() )
__snake_case : Dict = PIL.Image.open(bytes_ )
else:
__snake_case : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def snake_case__ ( self : Union[str, Any] ):
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("""binary""" ),
"path": Value("""string""" ),
}
)
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ):
if pa.types.is_string(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("""bytes""" ) >= 0:
__snake_case : List[str] = storage.field("""bytes""" )
else:
__snake_case : List[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
if storage.type.get_field_index("""path""" ) >= 0:
__snake_case : Optional[int] = storage.field("""path""" )
else:
__snake_case : int = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
__snake_case : Optional[Any] = pa.array(
[encode_np_array(np.array(_lowerCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
__snake_case : Optional[int] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays(
[bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : pa.StructArray ):
@no_op_if_value_is_null
def path_to_bytes(_lowerCAmelCase : Tuple ):
with xopen(_lowerCAmelCase , """rb""" ) as f:
__snake_case : Optional[int] = f.read()
return bytes_
__snake_case : Tuple = pa.array(
[
(path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
__snake_case : Optional[Any] = pa.array(
[os.path.basename(_lowerCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def __lowerCAmelCase ( ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
__snake_case : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
__snake_case : List[Any] = BytesIO()
if image.format in list_image_compression_formats():
__snake_case : Union[str, Any] = image.format
else:
__snake_case : List[Any] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF"""
image.save(__SCREAMING_SNAKE_CASE , format=__SCREAMING_SNAKE_CASE )
return buffer.getvalue()
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
if hasattr(__SCREAMING_SNAKE_CASE , """filename""" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
__snake_case : List[Any] = array.dtype
__snake_case : List[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER
__snake_case : Dict = dtype.kind
__snake_case : Union[str, Any] = dtype.itemsize
__snake_case : Tuple = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
__snake_case : int = np.dtype("""|u1""" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' )
if dtype is not dest_dtype:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
__snake_case : List[str] = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
__snake_case : int = dtype_byteorder + dtype_kind + str(__SCREAMING_SNAKE_CASE )
__snake_case : Any = np.dtype(__SCREAMING_SNAKE_CASE )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' )
__snake_case : Optional[int] = PIL.Image.fromarray(array.astype(__SCREAMING_SNAKE_CASE ) )
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if objs:
__snake_case , __snake_case : Any = first_non_null_value(__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
__snake_case : int = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ):
__snake_case : List[str] = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
else:
return objs
else:
return objs
| 20 | 1 |
from __future__ import annotations
import numpy as np
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ):
'''simple docstring'''
__snake_case , __snake_case : List[Any] = np.shape(__SCREAMING_SNAKE_CASE )
if rows != columns:
__snake_case : Dict = (
"""'table' has to be of square shaped array but got a """
F'''{rows}x{columns} array:\n{table}'''
)
raise ValueError(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = np.zeros((rows, columns) )
__snake_case : int = np.zeros((rows, columns) )
for i in range(__SCREAMING_SNAKE_CASE ):
for j in range(__SCREAMING_SNAKE_CASE ):
__snake_case : Dict = sum(lower[i][k] * upper[k][j] for k in range(__SCREAMING_SNAKE_CASE ) )
if upper[j][j] == 0:
raise ArithmeticError("""No LU decomposition exists""" )
__snake_case : Tuple = (table[i][j] - total) / upper[j][j]
__snake_case : Optional[int] = 1
for j in range(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__snake_case : Any = sum(lower[i][k] * upper[k][j] for k in range(__SCREAMING_SNAKE_CASE ) )
__snake_case : Tuple = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(__UpperCamelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ):
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = {}
__snake_case : int = {}
if prompt is not None:
__snake_case : Dict = prompt
if generate_kwargs is not None:
__snake_case : List[Any] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__snake_case : Optional[int] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
__snake_case : Any = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ):
return super().__call__(_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = load_image(_lowerCAmelCase )
if prompt is not None:
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
raise ValueError(
f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
__snake_case : Tuple = self.model.config.model_type
if model_type == "git":
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids
__snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids
__snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
__snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework )
model_inputs.update(_lowerCAmelCase )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
__snake_case : int = None
return model_inputs
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ):
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase )
and all(x is None for x in model_inputs["""input_ids"""] )
):
__snake_case : List[Any] = None
if generate_kwargs is None:
__snake_case : Dict = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__snake_case : Dict = model_inputs.pop(self.model.main_input_name )
__snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase )
return model_outputs
def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ):
__snake_case : Union[str, Any] = []
for output_ids in model_outputs:
__snake_case : Union[str, Any] = {
"""generated_text""": self.tokenizer.decode(
_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , )
}
records.append(_lowerCAmelCase )
return records
| 20 | 1 |
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
__snake_case : Union[str, Any] = len(__SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = max(__SCREAMING_SNAKE_CASE )
__snake_case : Dict = min(__SCREAMING_SNAKE_CASE )
# create the counting array
__snake_case : str = coll_max + 1 - coll_min
__snake_case : Any = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , __SCREAMING_SNAKE_CASE ):
__snake_case : Any = counting_arr[i] + counting_arr[i - 1]
# create the output collection
__snake_case : Union[str, Any] = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , __SCREAMING_SNAKE_CASE ) ):
__snake_case : Optional[Any] = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
return "".join([chr(__SCREAMING_SNAKE_CASE ) for i in counting_sort([ord(__SCREAMING_SNAKE_CASE ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt"
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
lowercase_ = [int(item) for item in user_input.split(",")]
print(counting_sort(unsorted))
| 20 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowercase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["YolosFeatureExtractor"]
lowercase_ = ["YolosImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST",
"YolosForObjectDetection",
"YolosModel",
"YolosPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int = 4_0_0_0_0_0_0 ):
'''simple docstring'''
__snake_case : int = [0, 1]
__snake_case : List[Any] = 0
while fib[i] <= n:
fib.append(fib[i] + fib[i + 1] )
if fib[i + 2] > n:
break
i += 1
__snake_case : Tuple = 0
for j in range(len(__SCREAMING_SNAKE_CASE ) - 1 ):
if fib[j] % 2 == 0:
total += fib[j]
return total
if __name__ == "__main__":
print(F'''{solution() = }''')
| 20 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = "microsoft/speecht5_tts"
A : List[Any] = (
"This is a tool that reads an English text out loud. It takes an input named `text` which should contain the "
"text to read (in English) and returns a waveform object containing the sound."
)
A : str = "text_reader"
A : Optional[Any] = SpeechTaProcessor
A : Any = SpeechTaForTextToSpeech
A : Optional[Any] = SpeechTaHifiGan
A : str = ["text"]
A : Union[str, Any] = ["audio"]
def snake_case__ ( self : List[Any] ):
if self.post_processor is None:
__snake_case : Tuple = """microsoft/speecht5_hifigan"""
super().setup()
def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ):
__snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" )
__snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" )
__snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ):
with torch.no_grad():
return self.model.generate_speech(**_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
with torch.no_grad():
return self.post_processor(_lowerCAmelCase ).cpu().detach()
| 20 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowercase_ = {
"configuration_maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig"],
"configuration_maskformer_swin": ["MaskFormerSwinConfig"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["MaskFormerFeatureExtractor"]
lowercase_ = ["MaskFormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"MaskFormerForInstanceSegmentation",
"MaskFormerModel",
"MaskFormerPreTrainedModel",
]
lowercase_ = [
"MaskFormerSwinBackbone",
"MaskFormerSwinModel",
"MaskFormerSwinPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig
from .configuration_maskformer_swin import MaskFormerSwinConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_maskformer import MaskFormerFeatureExtractor
from .image_processing_maskformer import MaskFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskformer import (
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskFormerForInstanceSegmentation,
MaskFormerModel,
MaskFormerPreTrainedModel,
)
from .modeling_maskformer_swin import (
MaskFormerSwinBackbone,
MaskFormerSwinModel,
MaskFormerSwinPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 20 | import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * power_factor
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | 1 |
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : list[str] ):
'''simple docstring'''
__snake_case : Union[str, Any] = """"""
for word_or_phrase in separated:
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
raise Exception("""join() accepts only strings to be joined""" )
joined += word_or_phrase + separator
return joined.strip(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 20 | from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 20 | 1 |
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
lowercase_ = logging.getLogger(__name__)
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : Union[str, Any] , _lowerCAmelCase : Optional[Any]=-1 ):
# in NER datasets, the last column is usually reserved for NER label
__snake_case : Tuple = label_idx
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[Split, str] ):
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
__snake_case : Optional[int] = mode.value
__snake_case : Optional[Any] = os.path.join(_lowerCAmelCase , f'''{mode}.txt''' )
__snake_case : int = 1
__snake_case : Optional[int] = []
with open(_lowerCAmelCase , encoding="""utf-8""" ) as f:
__snake_case : Union[str, Any] = []
__snake_case : int = []
for line in f:
if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=_lowerCAmelCase , labels=_lowerCAmelCase ) )
guid_index += 1
__snake_case : Optional[int] = []
__snake_case : Dict = []
else:
__snake_case : Any = line.split(""" """ )
words.append(splits[0] )
if len(_lowerCAmelCase ) > 1:
labels.append(splits[self.label_idx].replace("""\n""" , """""" ) )
else:
# Examples could have no label for mode = "test"
labels.append("""O""" )
if words:
examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=_lowerCAmelCase , labels=_lowerCAmelCase ) )
return examples
def snake_case__ ( self : int , _lowerCAmelCase : TextIO , _lowerCAmelCase : TextIO , _lowerCAmelCase : List ):
__snake_case : List[str] = 0
for line in test_input_reader:
if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n":
writer.write(_lowerCAmelCase )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
__snake_case : List[Any] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n"""
writer.write(_lowerCAmelCase )
else:
logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] )
def snake_case__ ( self : int , _lowerCAmelCase : str ):
if path:
with open(_lowerCAmelCase , """r""" ) as f:
__snake_case : Dict = f.read().splitlines()
if "O" not in labels:
__snake_case : str = ["""O"""] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : List[Any] ):
# in CONLL2003 dataset chunk column is second-to-last
super().__init__(label_idx=-2 )
def snake_case__ ( self : List[str] , _lowerCAmelCase : str ):
if path:
with open(_lowerCAmelCase , """r""" ) as f:
__snake_case : Tuple = f.read().splitlines()
if "O" not in labels:
__snake_case : int = ["""O"""] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def snake_case__ ( self : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[Split, str] ):
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
__snake_case : Optional[int] = mode.value
__snake_case : Any = os.path.join(_lowerCAmelCase , f'''{mode}.txt''' )
__snake_case : List[Any] = 1
__snake_case : Any = []
with open(_lowerCAmelCase , encoding="""utf-8""" ) as f:
for sentence in parse_incr(_lowerCAmelCase ):
__snake_case : int = []
__snake_case : str = []
for token in sentence:
words.append(token["""form"""] )
labels.append(token["""upos"""] )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
if words:
examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=_lowerCAmelCase , labels=_lowerCAmelCase ) )
guid_index += 1
return examples
def snake_case__ ( self : Any , _lowerCAmelCase : TextIO , _lowerCAmelCase : TextIO , _lowerCAmelCase : List ):
__snake_case : List[Any] = 0
for sentence in parse_incr(_lowerCAmelCase ):
__snake_case : str = preds_list[example_id]
__snake_case : List[Any] = """"""
for token in sentence:
out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) '''
out += "\n"
writer.write(_lowerCAmelCase )
example_id += 1
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str ):
if path:
with open(_lowerCAmelCase , """r""" ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 20 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {
"configuration_blenderbot_small": [
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotSmallConfig",
"BlenderbotSmallOnnxConfig",
],
"tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["BlenderbotSmallTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
"BlenderbotSmallPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFBlenderbotSmallForConditionalGeneration",
"TFBlenderbotSmallModel",
"TFBlenderbotSmallPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxBlenderbotSmallForConditionalGeneration",
"FlaxBlenderbotSmallModel",
"FlaxBlenderbotSmallPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
import inspect
import logging
import os
import random
import shutil
import tempfile
import unittest
import pytest
import torch
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_cuda
from accelerate.utils import ProjectConfiguration, set_seed
lowercase_ = logging.getLogger(__name__)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Dict=3 , __SCREAMING_SNAKE_CASE : List[str]=1_6 , __SCREAMING_SNAKE_CASE : int = 1_0 , __SCREAMING_SNAKE_CASE : int = 2 ):
'''simple docstring'''
def get_dataset(__SCREAMING_SNAKE_CASE : Tuple ):
__snake_case : Optional[Any] = torch.randn(batch_size * n_batches , 1 )
return TensorDataset(__SCREAMING_SNAKE_CASE , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) )
__snake_case : Optional[int] = get_dataset(__SCREAMING_SNAKE_CASE )
__snake_case : int = get_dataset(__SCREAMING_SNAKE_CASE )
__snake_case : str = DataLoader(__SCREAMING_SNAKE_CASE , shuffle=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , num_workers=4 )
__snake_case : Optional[int] = DataLoader(__SCREAMING_SNAKE_CASE , shuffle=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , num_workers=4 )
return (train_dataloader, valid_dataloader)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple=None ):
'''simple docstring'''
__snake_case : Union[str, Any] = []
for epoch in range(__SCREAMING_SNAKE_CASE ):
# Train quickly
model.train()
for batch in dataloader:
__snake_case , __snake_case : Optional[Any] = batch
__snake_case : Optional[Any] = model(__SCREAMING_SNAKE_CASE )
__snake_case : str = torch.nn.functional.mse_loss(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
accelerator.backward(__SCREAMING_SNAKE_CASE )
optimizer.step()
optimizer.zero_grad()
rands.append(random.random() ) # Introduce some randomness
if scheduler is not None:
scheduler.step()
return rands
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self : Optional[int] ):
super().__init__()
__snake_case : int = nn.Parameter(torch.randn(1 ) )
__snake_case : str = nn.Parameter(torch.randn(1 ) )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Optional[Any] ):
return x * self.a + self.b
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : List[Any] ):
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__snake_case : Tuple = DummyModel()
__snake_case : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
__snake_case , __snake_case : Optional[int] = dummy_dataloaders()
__snake_case : Optional[int] = ProjectConfiguration(total_limit=1 , project_dir=_lowerCAmelCase , automatic_checkpoint_naming=_lowerCAmelCase )
# Train baseline
__snake_case : Any = Accelerator(project_config=_lowerCAmelCase )
__snake_case , __snake_case , __snake_case , __snake_case : Dict = accelerator.prepare(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Save initial
accelerator.save_state()
# Save second state
accelerator.save_state()
self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 )
def snake_case__ ( self : List[Any] ):
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__snake_case : Dict = DummyModel()
__snake_case : Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
__snake_case , __snake_case : List[Any] = dummy_dataloaders()
# Train baseline
__snake_case : List[str] = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = accelerator.prepare(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Save initial
__snake_case : List[str] = os.path.join(_lowerCAmelCase , """initial""" )
accelerator.save_state(_lowerCAmelCase )
((__snake_case) , (__snake_case)) : Optional[Any] = model.a.item(), model.b.item()
__snake_case : Optional[int] = optimizer.state_dict()
__snake_case : List[Any] = train(3 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
((__snake_case) , (__snake_case)) : int = model.a.item(), model.b.item()
__snake_case : int = optimizer.state_dict()
# Train partially
set_seed(42 )
__snake_case : List[str] = DummyModel()
__snake_case : Tuple = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
__snake_case , __snake_case : Union[str, Any] = dummy_dataloaders()
__snake_case : Dict = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = accelerator.prepare(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
accelerator.load_state(_lowerCAmelCase )
((__snake_case) , (__snake_case)) : int = model.a.item(), model.b.item()
__snake_case : Optional[Any] = optimizer.state_dict()
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : Optional[int] = train(2 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Save everything
__snake_case : Optional[int] = os.path.join(_lowerCAmelCase , """checkpoint""" )
accelerator.save_state(_lowerCAmelCase )
# Load everything back in and make sure all states work
accelerator.load_state(_lowerCAmelCase )
test_rands += train(1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
((__snake_case) , (__snake_case)) : Optional[Any] = model.a.item(), model.b.item()
__snake_case : Dict = optimizer.state_dict()
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : int ):
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__snake_case : Optional[Any] = DummyModel()
__snake_case : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
__snake_case , __snake_case : str = dummy_dataloaders()
__snake_case : Dict = ProjectConfiguration(automatic_checkpoint_naming=_lowerCAmelCase )
# Train baseline
__snake_case : Dict = Accelerator(project_dir=_lowerCAmelCase , project_config=_lowerCAmelCase )
__snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Save initial
accelerator.save_state()
((__snake_case) , (__snake_case)) : Any = model.a.item(), model.b.item()
__snake_case : Optional[Any] = optimizer.state_dict()
__snake_case : Optional[Any] = train(3 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
((__snake_case) , (__snake_case)) : List[str] = model.a.item(), model.b.item()
__snake_case : List[Any] = optimizer.state_dict()
# Train partially
set_seed(42 )
__snake_case : Any = DummyModel()
__snake_case : List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
__snake_case , __snake_case : List[str] = dummy_dataloaders()
__snake_case : Optional[Any] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_lowerCAmelCase )
__snake_case : Tuple = Accelerator(project_dir=_lowerCAmelCase , project_config=_lowerCAmelCase )
__snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
accelerator.load_state(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_0""" ) )
((__snake_case) , (__snake_case)) : Dict = model.a.item(), model.b.item()
__snake_case : Tuple = optimizer.state_dict()
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : int = train(2 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Save everything
accelerator.save_state()
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_1""" ) )
test_rands += train(1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
((__snake_case) , (__snake_case)) : Union[str, Any] = model.a.item(), model.b.item()
__snake_case : Tuple = optimizer.state_dict()
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : str ):
__snake_case : Tuple = torch.tensor([1, 2, 3] )
__snake_case : Optional[Any] = torch.tensor([2, 3, 4] )
__snake_case : Optional[int] = DummyModel()
__snake_case : Optional[int] = torch.optim.Adam(net.parameters() )
__snake_case : int = Accelerator()
with self.assertRaises(_lowerCAmelCase ) as ve:
accelerator.register_for_checkpointing(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : int = str(ve.exception )
self.assertTrue("""Item at index 0""" in message )
self.assertTrue("""Item at index 1""" in message )
self.assertFalse("""Item at index 2""" in message )
self.assertFalse("""Item at index 3""" in message )
def snake_case__ ( self : str ):
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__snake_case : Tuple = DummyModel()
__snake_case : List[str] = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
__snake_case : str = torch.optim.lr_scheduler.StepLR(_lowerCAmelCase , step_size=1 , gamma=0.99 )
__snake_case , __snake_case : str = dummy_dataloaders()
__snake_case : List[str] = ProjectConfiguration(automatic_checkpoint_naming=_lowerCAmelCase )
# Train baseline
__snake_case : Optional[Any] = Accelerator(project_dir=_lowerCAmelCase , project_config=_lowerCAmelCase )
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : int = accelerator.prepare(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Save initial
accelerator.save_state()
__snake_case : List[Any] = scheduler.state_dict()
train(3 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
self.assertNotEqual(_lowerCAmelCase , scheduler.state_dict() )
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_0""" ) )
self.assertEqual(_lowerCAmelCase , scheduler.state_dict() )
def snake_case__ ( self : str ):
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__snake_case : str = DummyModel()
__snake_case : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=_lowerCAmelCase , total_limit=2 )
# Train baseline
__snake_case : Any = Accelerator(project_dir=_lowerCAmelCase , project_config=_lowerCAmelCase )
__snake_case : str = accelerator.prepare(_lowerCAmelCase )
# Save 3 states:
for _ in range(11 ):
accelerator.save_state()
self.assertTrue(not os.path.exists(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_9""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_10""" ) ) )
@require_cuda
def snake_case__ ( self : Optional[Any] ):
__snake_case : Optional[Any] = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(_lowerCAmelCase , env=os.environ.copy() )
if __name__ == "__main__":
lowercase_ = "/tmp/accelerate/state_checkpointing"
lowercase_ = DummyModel()
lowercase_ = torch.optim.Adam(params=model.parameters(), lr=1E-3)
lowercase_ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99)
lowercase_ , lowercase_ = dummy_dataloaders()
lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=True)
# Train baseline
lowercase_ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no")
if accelerator.process_index == 0:
if os.path.exists(savedir):
shutil.rmtree(savedir)
os.makedirs(savedir)
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader, scheduler
)
lowercase_ , lowercase_ = accelerator.prepare(model, optimizer)
train(3, model, train_dataloader, optimizer, accelerator, scheduler)
# Check that the intial optimizer is loaded on the GPU
for group in optimizer.param_groups:
lowercase_ = group["params"][0].device
break
assert param_device.type == accelerator.device.type
lowercase_ = model.cpu()
accelerator.wait_for_everyone()
accelerator.save_state()
accelerator.wait_for_everyone()
# Check CPU state
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu")
for group in optimizer.param_groups:
lowercase_ = group["params"][0].device
break
assert (
param_device.type == torch.device("cpu").type
), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}"
# Check device state
model.to(accelerator.device)
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device")
for group in optimizer.param_groups:
lowercase_ = group["params"][0].device
break
assert (
param_device.type == accelerator.device.type
), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}"
# Check error
with pytest.raises(TypeError, match="Unsupported optimizer map location passed"):
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid")
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
shutil.rmtree(savedir)
accelerator.wait_for_everyone()
| 20 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase_ = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["ViTFeatureExtractor"]
lowercase_ = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : int ):
__snake_case : int = tempfile.mkdtemp()
# fmt: off
__snake_case : Any = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""]
# fmt: on
__snake_case : Any = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
__snake_case : List[str] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""]
__snake_case : str = {"""unk_token""": """<unk>"""}
__snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(_lowerCAmelCase ) )
__snake_case : Union[str, Any] = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.48145466, 0.4578275, 0.40821073],
"""image_std""": [0.26862954, 0.26130258, 0.27577711],
}
__snake_case : Union[str, Any] = os.path.join(self.tmpdirname , _lowerCAmelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Tuple , **_lowerCAmelCase : Optional[int] ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **_lowerCAmelCase )
def snake_case__ ( self : Optional[int] , **_lowerCAmelCase : Optional[Any] ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **_lowerCAmelCase )
def snake_case__ ( self : Any , **_lowerCAmelCase : int ):
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Any ):
shutil.rmtree(self.tmpdirname )
def snake_case__ ( self : List[Any] ):
__snake_case : Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__snake_case : int = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def snake_case__ ( self : str ):
__snake_case : Any = self.get_tokenizer()
__snake_case : Any = self.get_rust_tokenizer()
__snake_case : Union[str, Any] = self.get_image_processor()
__snake_case : List[Any] = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase )
processor_slow.save_pretrained(self.tmpdirname )
__snake_case : Any = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCAmelCase )
__snake_case : str = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase )
processor_fast.save_pretrained(self.tmpdirname )
__snake_case : int = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , _lowerCAmelCase )
self.assertIsInstance(processor_fast.tokenizer , _lowerCAmelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , _lowerCAmelCase )
self.assertIsInstance(processor_fast.image_processor , _lowerCAmelCase )
def snake_case__ ( self : List[str] ):
__snake_case : Dict = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__snake_case : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__snake_case : List[str] = self.get_image_processor(do_normalize=_lowerCAmelCase )
__snake_case : List[str] = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowerCAmelCase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowerCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Tuple = self.get_image_processor()
__snake_case : List[Any] = self.get_tokenizer()
__snake_case : Tuple = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase )
__snake_case : Union[str, Any] = self.prepare_image_inputs()
__snake_case : List[str] = image_processor(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Dict = processor(images=_lowerCAmelCase , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Any = self.get_image_processor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : List[Any] = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase )
__snake_case : Optional[Any] = """lower newer"""
__snake_case : Dict = processor(text=_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="""np""" )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def snake_case__ ( self : Any ):
__snake_case : Optional[Any] = self.get_image_processor()
__snake_case : Tuple = self.get_tokenizer()
__snake_case : Tuple = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase )
__snake_case : List[str] = """lower newer"""
__snake_case : int = self.prepare_image_inputs()
__snake_case : List[str] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(_lowerCAmelCase ):
processor()
def snake_case__ ( self : Any ):
__snake_case : str = """google/owlvit-base-patch32"""
__snake_case : List[str] = OwlViTProcessor.from_pretrained(_lowerCAmelCase )
__snake_case : Any = ["""cat""", """nasa badge"""]
__snake_case : Optional[int] = processor(text=_lowerCAmelCase )
__snake_case : int = 16
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] )
self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(_lowerCAmelCase ):
processor()
def snake_case__ ( self : Dict ):
__snake_case : List[str] = """google/owlvit-base-patch32"""
__snake_case : List[Any] = OwlViTProcessor.from_pretrained(_lowerCAmelCase )
__snake_case : Any = [["""cat""", """nasa badge"""], ["""person"""]]
__snake_case : Optional[Any] = processor(text=_lowerCAmelCase )
__snake_case : Union[str, Any] = 16
__snake_case : Dict = len(_lowerCAmelCase )
__snake_case : Optional[Any] = max([len(_lowerCAmelCase ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] )
self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(_lowerCAmelCase ):
processor()
def snake_case__ ( self : Optional[int] ):
__snake_case : int = """google/owlvit-base-patch32"""
__snake_case : Union[str, Any] = OwlViTProcessor.from_pretrained(_lowerCAmelCase )
__snake_case : int = ["""cat""", """nasa badge"""]
__snake_case : Any = processor(text=_lowerCAmelCase )
__snake_case : Optional[Any] = 16
__snake_case : Any = inputs["""input_ids"""]
__snake_case : str = [
[4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] )
self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def snake_case__ ( self : List[Any] ):
__snake_case : str = self.get_image_processor()
__snake_case : Dict = self.get_tokenizer()
__snake_case : str = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase )
__snake_case : List[Any] = self.prepare_image_inputs()
__snake_case : int = self.prepare_image_inputs()
__snake_case : List[str] = processor(images=_lowerCAmelCase , query_images=_lowerCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(_lowerCAmelCase ):
processor()
def snake_case__ ( self : Any ):
__snake_case : Optional[Any] = self.get_image_processor()
__snake_case : Any = self.get_tokenizer()
__snake_case : Dict = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase )
__snake_case : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__snake_case : Any = processor.batch_decode(_lowerCAmelCase )
__snake_case : str = tokenizer.batch_decode(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
| 20 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if (direction == 1 and array[indexa] > array[indexa]) or (
direction == 0 and array[indexa] < array[indexa]
):
__snake_case , __snake_case : str = array[indexa], array[indexa]
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Tuple = int(length / 2 )
for i in range(__SCREAMING_SNAKE_CASE , low + middle ):
comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Optional[Any] = int(length / 2 )
bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 )
bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
bitonic_sort(unsorted, 0, len(unsorted), 1)
print("\nSorted array in ascending order is: ", end="")
print(*unsorted, sep=", ")
bitonic_merge(unsorted, 0, len(unsorted), 0)
print("Sorted array in descending order is: ", end="")
print(*unsorted, sep=", ")
| 20 | 1 |
from math import sqrt
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' must been an int and positive"
__snake_case : Dict = True
# 0 and 1 are none primes.
if number <= 1:
__snake_case : Optional[int] = False
for divisor in range(2 , int(round(sqrt(__SCREAMING_SNAKE_CASE ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__snake_case : Dict = False
break
# precondition
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'status' must been from type bool"
return status
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__snake_case : Union[str, Any] = list(range(2 , n + 1 ) )
__snake_case : Union[str, Any] = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
for j in range(i + 1 , len(__SCREAMING_SNAKE_CASE ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__snake_case : List[str] = 0
# filters actual prime numbers.
__snake_case : Dict = [x for x in begin_list if x != 0]
# precondition
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type list"
return ans
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2"
__snake_case : List[str] = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(__SCREAMING_SNAKE_CASE ):
ans.append(__SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type list"
return ans
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and number >= 0, "'number' must been an int and >= 0"
__snake_case : Dict = [] # this list will be returns of the function.
# potential prime number factors.
__snake_case : Any = 2
__snake_case : Any = number
if number == 0 or number == 1:
ans.append(__SCREAMING_SNAKE_CASE )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(__SCREAMING_SNAKE_CASE ):
while quotient != 1:
if is_prime(__SCREAMING_SNAKE_CASE ) and (quotient % factor == 0):
ans.append(__SCREAMING_SNAKE_CASE )
quotient /= factor
else:
factor += 1
else:
ans.append(__SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type list"
return ans
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' bust been an int and >= 0"
__snake_case : Optional[int] = 0
# prime factorization of 'number'
__snake_case : List[Any] = prime_factorization(__SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = max(__SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type int"
return ans
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' bust been an int and >= 0"
__snake_case : Optional[Any] = 0
# prime factorization of 'number'
__snake_case : Optional[int] = prime_factorization(__SCREAMING_SNAKE_CASE )
__snake_case : List[str] = min(__SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type int"
return ans
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'number' must been an int"
assert isinstance(number % 2 == 0 , __SCREAMING_SNAKE_CASE ), "compare bust been from type bool"
return number % 2 == 0
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'number' must been an int"
assert isinstance(number % 2 != 0 , __SCREAMING_SNAKE_CASE ), "compare bust been from type bool"
return number % 2 != 0
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
assert (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (number > 2) and is_even(__SCREAMING_SNAKE_CASE )
), "'number' must been an int, even and > 2"
__snake_case : Any = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__snake_case : List[Any] = get_prime_numbers(__SCREAMING_SNAKE_CASE )
__snake_case : Dict = len(__SCREAMING_SNAKE_CASE )
# run variable for while-loops.
__snake_case : Tuple = 0
__snake_case : Optional[int] = None
# exit variable. for break up the loops
__snake_case : Dict = True
while i < len_pn and loop:
__snake_case : int = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__snake_case : Dict = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and (len(__SCREAMING_SNAKE_CASE ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
assert (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__snake_case : str = 0
while numbera != 0:
__snake_case : Optional[int] = numbera % numbera
__snake_case : int = numbera
__snake_case : List[str] = rest
# precondition
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
assert (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__snake_case : Union[str, Any] = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__snake_case : List[Any] = prime_factorization(__SCREAMING_SNAKE_CASE )
__snake_case : Union[str, Any] = prime_factorization(__SCREAMING_SNAKE_CASE )
elif numbera == 1 or numbera == 1:
__snake_case : Union[str, Any] = []
__snake_case : Union[str, Any] = []
__snake_case : Union[str, Any] = max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Any = 0
__snake_case : str = 0
__snake_case : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__snake_case : str = prime_fac_a.count(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = prime_fac_a.count(__SCREAMING_SNAKE_CASE )
for _ in range(max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ):
ans *= n
else:
__snake_case : Optional[int] = prime_fac_a.count(__SCREAMING_SNAKE_CASE )
for _ in range(__SCREAMING_SNAKE_CASE ):
ans *= n
done.append(__SCREAMING_SNAKE_CASE )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__snake_case : str = prime_fac_a.count(__SCREAMING_SNAKE_CASE )
for _ in range(__SCREAMING_SNAKE_CASE ):
ans *= n
done.append(__SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n >= 0), "'number' must been a positive int"
__snake_case : Optional[Any] = 0
__snake_case : Tuple = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(__SCREAMING_SNAKE_CASE ):
ans += 1
# precondition
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and is_prime(
__SCREAMING_SNAKE_CASE ), "'ans' must been a prime number and from type int"
return ans
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
assert (
is_prime(__SCREAMING_SNAKE_CASE ) and is_prime(__SCREAMING_SNAKE_CASE ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__snake_case : str = p_number_a + 1 # jump to the next number
__snake_case : int = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(__SCREAMING_SNAKE_CASE ):
number += 1
while number < p_number_a:
ans.append(__SCREAMING_SNAKE_CASE )
number += 1
# fetch the next prime number.
while not is_prime(__SCREAMING_SNAKE_CASE ):
number += 1
# precondition
assert (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and ans[0] != p_number_a
and ans[len(__SCREAMING_SNAKE_CASE ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n >= 1), "'n' must been int and >= 1"
__snake_case : List[str] = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(__SCREAMING_SNAKE_CASE )
# precondition
assert ans[0] == 1 and ans[len(__SCREAMING_SNAKE_CASE ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (
number > 1
), "'number' must been an int and >= 1"
__snake_case : List[Any] = get_divisors(__SCREAMING_SNAKE_CASE )
# precondition
assert (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and (divisors[0] == 1)
and (divisors[len(__SCREAMING_SNAKE_CASE ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
assert (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__snake_case : int = gcd(abs(__SCREAMING_SNAKE_CASE ) , abs(__SCREAMING_SNAKE_CASE ) )
# precondition
assert (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been a int and >= 0"
__snake_case : Tuple = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been an int and >= 0"
__snake_case : Tuple = 0
__snake_case : int = 1
__snake_case : Tuple = 1 # this will be return
for _ in range(n - 1 ):
__snake_case : Any = ans
ans += fiba
__snake_case : Dict = tmp
return ans
| 20 | import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ):
'''simple docstring'''
__snake_case : Optional[int] = {
"""7z""": (seven_zip_file, SevenZipExtractor),
"""bz2""": (bza_file, BzipaExtractor),
"""gzip""": (gz_file, GzipExtractor),
"""lz4""": (lza_file, LzaExtractor),
"""tar""": (tar_file, TarExtractor),
"""xz""": (xz_file, XzExtractor),
"""zip""": (zip_file, ZipExtractor),
"""zstd""": (zstd_file, ZstdExtractor),
}
__snake_case , __snake_case : Tuple = input_paths_and_base_extractors[compression_format]
if input_path is None:
__snake_case : Tuple = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE )
__snake_case : List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : List[str] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Optional[Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : int = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ):
'''simple docstring'''
__snake_case : Union[str, Any] = {
"""7z""": seven_zip_file,
"""bz2""": bza_file,
"""gzip""": gz_file,
"""lz4""": lza_file,
"""tar""": tar_file,
"""xz""": xz_file,
"""zip""": zip_file,
"""zstd""": zstd_file,
}
__snake_case : int = input_paths[compression_format]
if input_path is None:
__snake_case : int = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
__snake_case : Any = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE )
assert extractor_format is not None
__snake_case : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : Union[str, Any] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Union[str, Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : Optional[Any] = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
import tarfile
__snake_case : List[str] = tmp_path / """data_dot_dot"""
directory.mkdir()
__snake_case : Optional[Any] = directory / """tar_file_with_dot_dot.tar"""
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) )
return path
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
import tarfile
__snake_case : Dict = tmp_path / """data_sym_link"""
directory.mkdir()
__snake_case : Tuple = directory / """tar_file_with_sym_link.tar"""
os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE )
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
"""insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
__snake_case : Any = {
"""tar_file_with_dot_dot""": tar_file_with_dot_dot,
"""tar_file_with_sym_link""": tar_file_with_sym_link,
}
__snake_case : int = insecure_tar_files[insecure_tar_file]
__snake_case : Optional[int] = tmp_path / """extracted"""
TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
# We should have less false positives than zipfile.is_zipfile
# We do that by checking only the magic number
__snake_case : Optional[Any] = tmpdir / """not_a_zip_file"""
# From: https://github.com/python/cpython/pull/5053
__snake_case : List[str] = (
b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"""
b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"""
b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"""
b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"""
)
with not_a_zip_file.open("""wb""" ) as f:
f.write(__SCREAMING_SNAKE_CASE )
assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
| 20 | 1 |
from collections.abc import Sequence
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Sequence[float] , __SCREAMING_SNAKE_CASE : bool = False ):
'''simple docstring'''
if not arr:
return 0
__snake_case : Dict = 0 if allow_empty_subarrays else float("""-inf""" )
__snake_case : Any = 0.0
for num in arr:
__snake_case : Tuple = max(0 if allow_empty_subarrays else num , curr_sum + num )
__snake_case : Union[str, Any] = max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
lowercase_ = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(F'''{max_subarray_sum(nums) = }''')
| 20 | import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : Any ):
__snake_case : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split()
__snake_case : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
__snake_case : List[str] = {
"""unk_token""": """<unk>""",
"""bos_token""": """<s>""",
"""eos_token""": """</s>""",
}
__snake_case : str = {
"""feature_size""": 1,
"""padding_value""": 0.0,
"""sampling_rate""": 1_60_00,
"""return_attention_mask""": False,
"""do_normalize""": True,
}
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__snake_case : Any = os.path.join(self.tmpdirname , _lowerCAmelCase )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
# load decoder from hub
__snake_case : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder"""
def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Tuple ):
__snake_case : int = self.add_kwargs_tokens_map.copy()
kwargs.update(_lowerCAmelCase )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , **_lowerCAmelCase : Optional[int] ):
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Dict , **_lowerCAmelCase : Tuple ):
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase )
def snake_case__ ( self : List[str] ):
shutil.rmtree(self.tmpdirname )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : Tuple = self.get_feature_extractor()
__snake_case : Dict = self.get_decoder()
__snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
__snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowerCAmelCase )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , _lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : Tuple = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
__snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def snake_case__ ( self : int ):
__snake_case : Tuple = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(["""xx"""] )
with self.assertRaisesRegex(_lowerCAmelCase , """include""" ):
WavaVecaProcessorWithLM(
tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def snake_case__ ( self : Dict ):
__snake_case : int = self.get_feature_extractor()
__snake_case : str = self.get_tokenizer()
__snake_case : Dict = self.get_decoder()
__snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : List[Any] = floats_list((3, 10_00) )
__snake_case : Optional[Any] = feature_extractor(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Tuple = processor(_lowerCAmelCase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def snake_case__ ( self : Optional[int] ):
__snake_case : Any = self.get_feature_extractor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : int = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Optional[int] = """This is a test string"""
__snake_case : Union[str, Any] = processor(text=_lowerCAmelCase )
__snake_case : Dict = tokenizer(_lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[Any]=(2, 10, 16) , _lowerCAmelCase : str=77 ):
np.random.seed(_lowerCAmelCase )
return np.random.rand(*_lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : List[str] = self.get_feature_extractor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : List[str] = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 )
__snake_case : int = processor.decode(_lowerCAmelCase )
__snake_case : Optional[int] = decoder.decode_beams(_lowerCAmelCase )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual("""</s> <s> </s>""" , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ["""fork"""], ["""spawn"""]] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] ):
__snake_case : int = self.get_feature_extractor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : int = self.get_decoder()
__snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : int = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
__snake_case : Tuple = processor.batch_decode(_lowerCAmelCase )
else:
with get_context(_lowerCAmelCase ).Pool() as pool:
__snake_case : int = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : int = list(_lowerCAmelCase )
with get_context("""fork""" ).Pool() as p:
__snake_case : Tuple = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase )
__snake_case , __snake_case , __snake_case : List[Any] = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(_lowerCAmelCase , decoded_processor.text )
self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text )
self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score )
self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score )
def snake_case__ ( self : Optional[int] ):
__snake_case : Optional[Any] = self.get_feature_extractor()
__snake_case : int = self.get_tokenizer()
__snake_case : str = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : int = self._get_dummy_logits()
__snake_case : List[str] = 15
__snake_case : Optional[Any] = -20.0
__snake_case : Tuple = -4.0
__snake_case : List[Any] = processor.batch_decode(
_lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , )
__snake_case : List[str] = decoded_processor_out.text
__snake_case : str = list(_lowerCAmelCase )
with get_context("""fork""" ).Pool() as pool:
__snake_case : Dict = decoder.decode_beams_batch(
_lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , )
__snake_case : int = [d[0][0] for d in decoded_decoder_out]
__snake_case : List[Any] = [d[0][2] for d in decoded_decoder_out]
__snake_case : List[Any] = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase )
self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1e-3 ) )
self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1e-3 ) )
def snake_case__ ( self : Any ):
__snake_case : List[Any] = self.get_feature_extractor()
__snake_case : Any = self.get_tokenizer()
__snake_case : Union[str, Any] = self.get_decoder()
__snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Any = self._get_dummy_logits()
__snake_case : Any = 2.0
__snake_case : int = 5.0
__snake_case : Optional[int] = -20.0
__snake_case : Optional[int] = True
__snake_case : Any = processor.batch_decode(
_lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , )
__snake_case : str = decoded_processor_out.text
__snake_case : int = list(_lowerCAmelCase )
decoder.reset_params(
alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , )
with get_context("""fork""" ).Pool() as pool:
__snake_case : Tuple = decoder.decode_beams_batch(
_lowerCAmelCase , _lowerCAmelCase , )
__snake_case : int = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase )
__snake_case : List[str] = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , _lowerCAmelCase )
def snake_case__ ( self : Dict ):
__snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key]
__snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute()
__snake_case : Union[str, Any] = os.listdir(_lowerCAmelCase )
__snake_case : List[str] = ["""alphabet.json""", """language_model"""]
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" )
__snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase )
__snake_case : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key]
__snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute()
__snake_case : List[str] = os.listdir(_lowerCAmelCase )
__snake_case : List[Any] = os.listdir(_lowerCAmelCase )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Optional[int] = floats_list((3, 10_00) )
__snake_case : Union[str, Any] = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Union[str, Any] = processor_auto(_lowerCAmelCase , return_tensors="""np""" )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 )
__snake_case : Dict = self._get_dummy_logits()
__snake_case : List[Any] = processor_wavaveca.batch_decode(_lowerCAmelCase )
__snake_case : List[Any] = processor_auto.batch_decode(_lowerCAmelCase )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def snake_case__ ( self : str ):
__snake_case : int = self.get_feature_extractor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : Optional[Any] = self.get_decoder()
__snake_case : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
@staticmethod
def snake_case__ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ):
__snake_case : Union[str, Any] = [d[key] for d in offsets]
return retrieved_list
def snake_case__ ( self : Dict ):
__snake_case : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : List[str] = self._get_dummy_logits()[0]
__snake_case : str = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""word_offsets""" in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] )
def snake_case__ ( self : List[str] ):
__snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Optional[int] = self._get_dummy_logits()
__snake_case : int = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""word_offsets""" in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertListEqual(
[""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def snake_case__ ( self : Optional[Any] ):
import torch
__snake_case : Optional[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase )
__snake_case : Any = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) )
__snake_case : List[Any] = iter(_lowerCAmelCase )
__snake_case : Optional[int] = next(_lowerCAmelCase )
__snake_case : str = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" )
__snake_case : str = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
__snake_case : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values
with torch.no_grad():
__snake_case : Dict = model(_lowerCAmelCase ).logits.cpu().numpy()
__snake_case : Any = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase )
__snake_case : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
__snake_case : Dict = [
{
"""start_time""": d["""start_offset"""] * time_offset,
"""end_time""": d["""end_offset"""] * time_offset,
"""word""": d["""word"""],
}
for d in output["""word_offsets"""]
]
__snake_case : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL"""
# output words
self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase )
self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text )
# output times
__snake_case : Dict = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) )
__snake_case : Optional[Any] = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) )
# fmt: off
__snake_case : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] )
__snake_case : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
| 20 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {
"configuration_blenderbot_small": [
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotSmallConfig",
"BlenderbotSmallOnnxConfig",
],
"tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["BlenderbotSmallTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
"BlenderbotSmallPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFBlenderbotSmallForConditionalGeneration",
"TFBlenderbotSmallModel",
"TFBlenderbotSmallPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxBlenderbotSmallForConditionalGeneration",
"FlaxBlenderbotSmallModel",
"FlaxBlenderbotSmallPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowercase_ = {
"text_branch": "text_model",
"audio_branch": "audio_model.audio_encoder",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc")
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ):
'''simple docstring'''
__snake_case , __snake_case : str = create_model(
"""HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , )
return model, model_cfg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : Union[str, Any] = {}
__snake_case : List[Any] = R""".*sequential.(\d+).*"""
__snake_case : Union[str, Any] = R""".*_projection.(\d+).*"""
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
__snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# replace sequential layers with list
__snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 )
__snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' )
elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
__snake_case : List[Any] = 1 if projecton_layer == 0 else 2
__snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' )
if "audio" and "qkv" in key:
# split qkv into query key and value
__snake_case : Optional[int] = value
__snake_case : Any = mixed_qkv.size(0 ) // 3
__snake_case : List[Any] = mixed_qkv[:qkv_dim]
__snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2]
__snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :]
__snake_case : Any = query_layer
__snake_case : Dict = key_layer
__snake_case : Optional[Any] = value_layer
else:
__snake_case : List[str] = value
return model_state_dict
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ):
'''simple docstring'''
__snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE )
clap_model.eval()
__snake_case : Tuple = clap_model.state_dict()
__snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = ClapConfig()
__snake_case : Tuple = enable_fusion
__snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE )
# ignore the spectrogram embedding layer
model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not")
lowercase_ = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 20 | 1 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {
"configuration_autoformer": [
"AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AutoformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"AutoformerForPrediction",
"AutoformerModel",
"AutoformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = "▁"
lowercase_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
lowercase_ = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
lowercase_ = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
lowercase_ = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
lowercase_ = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = ["input_ids"]
A : Tuple = VOCAB_FILES_NAMES
A : List[Any] = PRETRAINED_INIT_CONFIGURATION
A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
A : Optional[Any] = RESOURCE_FILES_NAMES
def __init__( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]="utf8" , _lowerCAmelCase : Optional[Any]="[UNK]" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : List[Any]="[MASK]" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Any , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , vocab_file=_lowerCAmelCase , encoding=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , )
__snake_case : List[Any] = do_lower_case
__snake_case : Any = sentencepiece_model_ckpt
__snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCAmelCase )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
__snake_case : int = self.load_vocab(filepath=_lowerCAmelCase )
else:
__snake_case : Tuple = {self.sp_model.id_to_piece(_lowerCAmelCase ): id for id in range(self.sp_model.get_piece_size() )}
__snake_case : str = {v: k for k, v in self.vocab.items()}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[Any] ):
if text is None:
return None
__snake_case : List[Any] = self.tokenize(_lowerCAmelCase )
__snake_case , __snake_case : Optional[Any] = """""", []
for i, ch in enumerate(_lowerCAmelCase ):
if ch in self.SP_CHAR_MAPPING:
__snake_case : Any = self.SP_CHAR_MAPPING.get(_lowerCAmelCase )
else:
__snake_case : Dict = unicodedata.normalize("""NFKC""" , _lowerCAmelCase )
if self.is_whitespace(_lowerCAmelCase ):
continue
normalized_text += ch
char_mapping.extend([i] * len(_lowerCAmelCase ) )
__snake_case , __snake_case , __snake_case : str = normalized_text, [], 0
if self.do_lower_case:
__snake_case : int = text.lower()
for token in split_tokens:
if token[:1] == "▁":
__snake_case : int = token[1:]
__snake_case : Optional[int] = text[offset:].index(_lowerCAmelCase ) + offset
__snake_case : int = start + len(_lowerCAmelCase )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
__snake_case : str = end
return token_mapping
@property
def snake_case__ ( self : Tuple ):
return len(self.vocab )
def snake_case__ ( self : Dict ):
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : int ):
__snake_case : str = self.__dict__.copy()
__snake_case : Union[str, Any] = None
return state
def __setstate__( self : Optional[Any] , _lowerCAmelCase : List[str] ):
__snake_case : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__snake_case : Optional[Any] = {}
__snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] ):
return "".join((self.SP_CHAR_MAPPING.get(_lowerCAmelCase , _lowerCAmelCase ) for c in text) )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[int]=0.1 ):
if self.sp_model_kwargs.get("""enable_sampling""" ) is True:
__snake_case : List[str] = True
if self.sp_model_kwargs.get("""alpha""" ) is not None:
__snake_case : Dict = self.sp_model_kwargs.get("""alpha""" )
if self.sp_model_kwargs.get("""nbest_size""" ) is not None:
__snake_case : List[Any] = self.sp_model_kwargs.get("""nbest_size""" )
if not enable_sampling:
__snake_case : str = self.sp_model.EncodeAsPieces(_lowerCAmelCase )
else:
__snake_case : Tuple = self.sp_model.SampleEncodeAsPieces(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : Union[str, Any] = []
for pi, piece in enumerate(_lowerCAmelCase ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(_lowerCAmelCase ) and pi != 0:
new_pieces.append(_lowerCAmelCase )
continue
else:
continue
__snake_case : Optional[int] = 0
for i, chunk in enumerate(_lowerCAmelCase ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(_lowerCAmelCase ) or self.is_punct(_lowerCAmelCase ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(_lowerCAmelCase )
__snake_case : Tuple = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : Tuple = i
if len(_lowerCAmelCase ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
__snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
__snake_case : int = self.convert_ids_to_tokens(_lowerCAmelCase )
__snake_case : Any = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict ):
return self.reverse_vocab.get(_lowerCAmelCase , self.unk_token )
def snake_case__ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
__snake_case : Optional[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ):
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1]
return [1] + ([0] * len(_lowerCAmelCase )) + [1]
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(_lowerCAmelCase ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(_lowerCAmelCase ) + 1) + [1] * (len(_lowerCAmelCase ) + 3)
def snake_case__ ( self : Tuple , _lowerCAmelCase : List[str] ):
if "\u4e00" <= char <= "\u9fff":
return True
return False
def snake_case__ ( self : List[str] , _lowerCAmelCase : Any ):
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def snake_case__ ( self : int , _lowerCAmelCase : List[Any] ):
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def snake_case__ ( self : str , _lowerCAmelCase : Optional[Any] ):
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(_lowerCAmelCase ) == 1:
__snake_case : Dict = unicodedata.category(_lowerCAmelCase )
if cat == "Zs":
return True
return False
def snake_case__ ( self : str , _lowerCAmelCase : List[Any] ):
__snake_case : Dict = {}
with io.open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for index, line in enumerate(_lowerCAmelCase ):
__snake_case : Tuple = line.rstrip("""\n""" )
__snake_case : List[str] = int(_lowerCAmelCase )
return token_to_idx
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : Optional[int] = 0
if os.path.isdir(_lowerCAmelCase ):
__snake_case : int = os.path.join(
_lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
else:
__snake_case : Optional[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory
with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
""" Please check that the vocabulary is not corrupted!""" )
__snake_case : Union[str, Any] = token_index
writer.write(token + """\n""" )
index += 1
__snake_case : List[Any] = os.path.join(_lowerCAmelCase , """sentencepiece.bpe.model""" )
with open(_lowerCAmelCase , """wb""" ) as fi:
__snake_case : List[Any] = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (vocab_file,)
| 20 | 1 |
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : int
A : TreeNode | None = None
A : TreeNode | None = None
lowercase_ = namedtuple("CoinsDistribResult", "moves excess")
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : TreeNode | None ):
'''simple docstring'''
if root is None:
return 0
# Validation
def count_nodes(__SCREAMING_SNAKE_CASE : TreeNode | None ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(__SCREAMING_SNAKE_CASE : TreeNode | None ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(__SCREAMING_SNAKE_CASE ) != count_coins(__SCREAMING_SNAKE_CASE ):
raise ValueError("""The nodes number should be same as the number of coins""" )
# Main calculation
def get_distrib(__SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
__snake_case , __snake_case : Tuple = get_distrib(node.left )
__snake_case , __snake_case : str = get_distrib(node.right )
__snake_case : List[str] = 1 - left_distrib_excess
__snake_case : str = 1 - right_distrib_excess
__snake_case : List[Any] = (
left_distrib_moves
+ right_distrib_moves
+ abs(__SCREAMING_SNAKE_CASE )
+ abs(__SCREAMING_SNAKE_CASE )
)
__snake_case : Any = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return get_distrib(__SCREAMING_SNAKE_CASE )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json",
"xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json",
"xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json",
"xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json",
"xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json",
"xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json",
"xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json",
"xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json",
"xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json",
"xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = "xlm"
A : List[str] = {
"hidden_size": "emb_dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
"n_words": "vocab_size", # For backward compatibility
}
def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any]=3_01_45 , _lowerCAmelCase : Optional[Any]=20_48 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : int=16 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=5_12 , _lowerCAmelCase : List[Any]=20_48**-0.5 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple="first" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Tuple , ):
__snake_case : Optional[Any] = vocab_size
__snake_case : Tuple = emb_dim
__snake_case : int = n_layers
__snake_case : List[str] = n_heads
__snake_case : Union[str, Any] = dropout
__snake_case : Optional[int] = attention_dropout
__snake_case : Optional[Any] = gelu_activation
__snake_case : Tuple = sinusoidal_embeddings
__snake_case : List[Any] = causal
__snake_case : Dict = asm
__snake_case : int = n_langs
__snake_case : str = use_lang_emb
__snake_case : Dict = layer_norm_eps
__snake_case : List[Any] = bos_index
__snake_case : Union[str, Any] = eos_index
__snake_case : Dict = pad_index
__snake_case : Any = unk_index
__snake_case : Dict = mask_index
__snake_case : Any = is_encoder
__snake_case : Dict = max_position_embeddings
__snake_case : Optional[Any] = embed_init_std
__snake_case : List[Any] = init_std
__snake_case : str = summary_type
__snake_case : Optional[Any] = summary_use_proj
__snake_case : str = summary_activation
__snake_case : Optional[int] = summary_proj_to_labels
__snake_case : Dict = summary_first_dropout
__snake_case : Dict = start_n_top
__snake_case : int = end_n_top
__snake_case : str = mask_token_id
__snake_case : int = lang_id
if "n_words" in kwargs:
__snake_case : Dict = kwargs["""n_words"""]
super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
@property
def snake_case__ ( self : Dict ):
if self.task == "multiple-choice":
__snake_case : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__snake_case : Tuple = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 20 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
lowercase_ = logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
A : Optional[str] = field(
default=__UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
A : Optional[str] = field(
default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} )
A : Optional[str] = field(
default=__UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
A : bool = field(default=__UpperCamelCase , metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
A : Optional[str] = field(
default=__UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : str = field(
metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} )
A : Optional[str] = field(
default=__UpperCamelCase , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , )
A : int = field(
default=128 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
A : bool = field(
default=__UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} )
def __lowerCAmelCase ( ):
'''simple docstring'''
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__snake_case : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__snake_case , __snake_case , __snake_case : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__snake_case , __snake_case , __snake_case : Union[str, Any] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
""" --overwrite_output_dir to overcome.""" )
__snake_case : Optional[Any] = import_module("""tasks""" )
try:
__snake_case : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , model_args.task_type )
__snake_case : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" , __SCREAMING_SNAKE_CASE )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
__snake_case : Any = token_classification_task.get_labels(data_args.labels )
__snake_case : Dict[int, str] = dict(enumerate(__SCREAMING_SNAKE_CASE ) )
__snake_case : Any = len(__SCREAMING_SNAKE_CASE )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__snake_case : Tuple = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__SCREAMING_SNAKE_CASE , idalabel=__SCREAMING_SNAKE_CASE , labelaid={label: i for i, label in enumerate(__SCREAMING_SNAKE_CASE )} , cache_dir=model_args.cache_dir , )
__snake_case : List[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
__snake_case : List[Any] = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , )
# Get datasets
__snake_case : Union[str, Any] = (
TokenClassificationDataset(
token_classification_task=__SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__snake_case : Dict = (
TokenClassificationDataset(
token_classification_task=__SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(__SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : np.ndarray ) -> Tuple[List[int], List[int]]:
__snake_case : Union[str, Any] = np.argmax(__SCREAMING_SNAKE_CASE , axis=2 )
__snake_case , __snake_case : Tuple = preds.shape
__snake_case : List[Any] = [[] for _ in range(__SCREAMING_SNAKE_CASE )]
__snake_case : Any = [[] for _ in range(__SCREAMING_SNAKE_CASE )]
for i in range(__SCREAMING_SNAKE_CASE ):
for j in range(__SCREAMING_SNAKE_CASE ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(__SCREAMING_SNAKE_CASE : EvalPrediction ) -> Dict:
__snake_case , __snake_case : List[str] = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),
"precision": precision_score(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),
"recall": recall_score(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),
"f1": fa_score(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),
}
# Data collator
__snake_case : List[Any] = DataCollatorWithPadding(__SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__snake_case : int = Trainer(
model=__SCREAMING_SNAKE_CASE , args=__SCREAMING_SNAKE_CASE , train_dataset=__SCREAMING_SNAKE_CASE , eval_dataset=__SCREAMING_SNAKE_CASE , compute_metrics=__SCREAMING_SNAKE_CASE , data_collator=__SCREAMING_SNAKE_CASE , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__snake_case : Union[str, Any] = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__snake_case : Dict = trainer.evaluate()
__snake_case : str = os.path.join(training_args.output_dir , """eval_results.txt""" )
if trainer.is_world_process_zero():
with open(__SCREAMING_SNAKE_CASE , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in result.items():
logger.info(""" %s = %s""" , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
writer.write("""%s = %s\n""" % (key, value) )
results.update(__SCREAMING_SNAKE_CASE )
# Predict
if training_args.do_predict:
__snake_case : Tuple = TokenClassificationDataset(
token_classification_task=__SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
__snake_case , __snake_case , __snake_case : List[str] = trainer.predict(__SCREAMING_SNAKE_CASE )
__snake_case , __snake_case : List[Any] = align_predictions(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : str = os.path.join(training_args.output_dir , """test_results.txt""" )
if trainer.is_world_process_zero():
with open(__SCREAMING_SNAKE_CASE , """w""" ) as writer:
for key, value in metrics.items():
logger.info(""" %s = %s""" , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
writer.write("""%s = %s\n""" % (key, value) )
# Save predictions
__snake_case : List[str] = os.path.join(training_args.output_dir , """test_predictions.txt""" )
if trainer.is_world_process_zero():
with open(__SCREAMING_SNAKE_CASE , """w""" ) as writer:
with open(os.path.join(data_args.data_dir , """test.txt""" ) , """r""" ) as f:
token_classification_task.write_predictions_to_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return results
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 20 | import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json",
"facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[Any] = "encodec"
def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase : Tuple=2_40_00 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : int=1_28 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Union[str, Any]=[8, 5, 4, 2] , _lowerCAmelCase : str="weight_norm" , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict="reflect" , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : Optional[int]=10_24 , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , **_lowerCAmelCase : List[Any] , ):
__snake_case : Optional[int] = target_bandwidths
__snake_case : int = sampling_rate
__snake_case : List[Any] = audio_channels
__snake_case : str = normalize
__snake_case : Union[str, Any] = chunk_length_s
__snake_case : Union[str, Any] = overlap
__snake_case : Union[str, Any] = hidden_size
__snake_case : Union[str, Any] = num_filters
__snake_case : Optional[Any] = num_residual_layers
__snake_case : List[Any] = upsampling_ratios
__snake_case : List[str] = norm_type
__snake_case : Union[str, Any] = kernel_size
__snake_case : Optional[int] = last_kernel_size
__snake_case : Optional[Any] = residual_kernel_size
__snake_case : Dict = dilation_growth_rate
__snake_case : int = use_causal_conv
__snake_case : Tuple = pad_mode
__snake_case : str = compress
__snake_case : Optional[Any] = num_lstm_layers
__snake_case : List[Any] = trim_right_ratio
__snake_case : Any = codebook_size
__snake_case : int = codebook_dim if codebook_dim is not None else hidden_size
__snake_case : int = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' )
super().__init__(**_lowerCAmelCase )
@property
def snake_case__ ( self : int ):
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def snake_case__ ( self : int ):
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def snake_case__ ( self : Union[str, Any] ):
__snake_case : List[str] = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def snake_case__ ( self : Tuple ):
return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 20 | 1 |
import random
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
__snake_case , __snake_case , __snake_case : Tuple = [], [], []
for element in data:
if element < pivot:
less.append(__SCREAMING_SNAKE_CASE )
elif element > pivot:
greater.append(__SCREAMING_SNAKE_CASE )
else:
equal.append(__SCREAMING_SNAKE_CASE )
return less, equal, greater
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
# index = len(items) // 2 when trying to find the median
# (value of index when items is sorted)
# invalid input
if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0:
return None
__snake_case : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )]
__snake_case : Tuple = 0
__snake_case , __snake_case , __snake_case : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE )
__snake_case : int = len(__SCREAMING_SNAKE_CASE )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# must be in larger
else:
return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
| 20 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : str = []
__snake_case , __snake_case : List[str] = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
__snake_case : List[Any] = result + left + right
return input_list
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
if len(__SCREAMING_SNAKE_CASE ) <= 1:
return input_list
__snake_case : Union[str, Any] = list(__SCREAMING_SNAKE_CASE )
# iteration for two-way merging
__snake_case : Tuple = 2
while p <= len(__SCREAMING_SNAKE_CASE ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = i
__snake_case : str = i + p - 1
__snake_case : Optional[Any] = (low + high + 1) // 2
__snake_case : str = merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# final merge of last two parts
if p * 2 >= len(__SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = i
__snake_case : str = merge(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
if user_input == "":
lowercase_ = []
else:
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
print(iter_merge_sort(unsorted))
| 20 | 1 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowercase_ = logging.get_logger(__name__)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any]=False ):
'''simple docstring'''
__snake_case : List[str] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """deit.embeddings.cls_token"""),
("""dist_token""", """deit.embeddings.distillation_token"""),
("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """deit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
("""pre_logits.fc.weight""", """pooler.dense.weight"""),
("""pre_logits.fc.bias""", """pooler.dense.bias"""),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
__snake_case : str = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
("""norm.weight""", """deit.layernorm.weight"""),
("""norm.bias""", """deit.layernorm.bias"""),
("""head.weight""", """cls_classifier.weight"""),
("""head.bias""", """cls_classifier.bias"""),
("""head_dist.weight""", """distillation_classifier.weight"""),
("""head_dist.bias""", """distillation_classifier.bias"""),
] )
return rename_keys
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int]=False ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
__snake_case : int = """"""
else:
__snake_case : Dict = """deit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__snake_case : Union[str, Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' )
__snake_case : str = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
__snake_case : Any = in_proj_weight[
: config.hidden_size, :
]
__snake_case : int = in_proj_bias[: config.hidden_size]
__snake_case : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__snake_case : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__snake_case : Any = in_proj_weight[
-config.hidden_size :, :
]
__snake_case : List[Any] = in_proj_bias[-config.hidden_size :]
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
__snake_case : Tuple = dct.pop(__SCREAMING_SNAKE_CASE )
__snake_case : Dict = val
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Any = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__snake_case : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
__snake_case : Optional[int] = DeiTConfig()
# all deit models have fine-tuned heads
__snake_case : List[Any] = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
__snake_case : Optional[Any] = 1_0_0_0
__snake_case : Union[str, Any] = """huggingface/label-files"""
__snake_case : Union[str, Any] = """imagenet-1k-id2label.json"""
__snake_case : Tuple = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) )
__snake_case : Union[str, Any] = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__snake_case : Dict = idalabel
__snake_case : Any = {v: k for k, v in idalabel.items()}
__snake_case : int = int(deit_name[-6:-4] )
__snake_case : Tuple = int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith("""tiny""" ):
__snake_case : List[str] = 1_9_2
__snake_case : Optional[int] = 7_6_8
__snake_case : Optional[Any] = 1_2
__snake_case : int = 3
elif deit_name[9:].startswith("""small""" ):
__snake_case : Union[str, Any] = 3_8_4
__snake_case : Optional[Any] = 1_5_3_6
__snake_case : List[Any] = 1_2
__snake_case : Dict = 6
if deit_name[9:].startswith("""base""" ):
pass
elif deit_name[4:].startswith("""large""" ):
__snake_case : int = 1_0_2_4
__snake_case : Tuple = 4_0_9_6
__snake_case : Union[str, Any] = 2_4
__snake_case : List[Any] = 1_6
# load original model from timm
__snake_case : Optional[int] = timm.create_model(__SCREAMING_SNAKE_CASE , pretrained=__SCREAMING_SNAKE_CASE )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
__snake_case : Union[str, Any] = timm_model.state_dict()
__snake_case : Union[str, Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# load HuggingFace model
__snake_case : Any = DeiTForImageClassificationWithTeacher(__SCREAMING_SNAKE_CASE ).eval()
model.load_state_dict(__SCREAMING_SNAKE_CASE )
# Check outputs on an image, prepared by DeiTImageProcessor
__snake_case : Optional[Any] = int(
(2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
__snake_case : Optional[int] = DeiTImageProcessor(size=__SCREAMING_SNAKE_CASE , crop_size=config.image_size )
__snake_case : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" )
__snake_case : List[Any] = encoding["""pixel_values"""]
__snake_case : str = model(__SCREAMING_SNAKE_CASE )
__snake_case : Any = timm_model(__SCREAMING_SNAKE_CASE )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__SCREAMING_SNAKE_CASE , outputs.logits , atol=1E-3 )
Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--deit_name",
default="vit_deit_base_distilled_patch16_224",
type=str,
help="Name of the DeiT timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
lowercase_ = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 20 | import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
lowercase_ = "Usage of script: script_name <size_of_canvas:int>"
lowercase_ = [0] * 1_00 + [1] * 10
random.shuffle(choice)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : List[str] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )]
return canvas
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
for i, row in enumerate(__SCREAMING_SNAKE_CASE ):
for j, _ in enumerate(__SCREAMING_SNAKE_CASE ):
__snake_case : int = bool(random.getrandbits(1 ) )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
__snake_case : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) )
for r, row in enumerate(__SCREAMING_SNAKE_CASE ):
for c, pt in enumerate(__SCREAMING_SNAKE_CASE ):
__snake_case : Optional[Any] = __judge_point(
__SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] )
__snake_case : List[str] = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
__snake_case : list[list[bool]] = current_canvas.tolist()
return return_canvas
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
__snake_case : Any = 0
__snake_case : Dict = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status:
alive += 1
else:
dead += 1
# handling duplicate entry for focus pt.
if pt:
alive -= 1
else:
dead -= 1
# running the rules of game here.
__snake_case : str = pt
if pt:
if alive < 2:
__snake_case : Optional[Any] = False
elif alive == 2 or alive == 3:
__snake_case : Union[str, Any] = True
elif alive > 3:
__snake_case : Optional[int] = False
else:
if alive == 3:
__snake_case : List[Any] = True
return state
if __name__ == "__main__":
if len(sys.argv) != 2:
raise Exception(usage_doc)
lowercase_ = int(sys.argv[1])
# main working structure of this module.
lowercase_ = create_canvas(canvas_size)
seed(c)
lowercase_ , lowercase_ = plt.subplots()
fig.show()
lowercase_ = ListedColormap(["w", "k"])
try:
while True:
lowercase_ = run(c)
ax.matshow(c, cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass
| 20 | 1 |
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401
from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401
deprecate(
"stable diffusion controlnet",
"0.22.0",
"Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.",
standard_warn=False,
stacklevel=3,
)
| 20 | import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Union[Dict, Any]] = None , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : int=2 ):
'''simple docstring'''
from .. import __version__
__snake_case : List[Any] = take_from
__snake_case : List[Any] = ()
if not isinstance(args[0] , __SCREAMING_SNAKE_CASE ):
__snake_case : str = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(__SCREAMING_SNAKE_CASE ):
raise ValueError(
F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''''
F''' version {__version__} is >= {version_name}''' )
__snake_case : Optional[Any] = None
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__SCREAMING_SNAKE_CASE ),)
__snake_case : Optional[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''
elif hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
values += (getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),)
__snake_case : Any = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''
elif deprecated_kwargs is None:
__snake_case : Tuple = F'''`{attribute}` is deprecated and will be removed in version {version_name}.'''
if warning is not None:
__snake_case : Optional[Any] = warning + """ """ if standard_warn else """"""
warnings.warn(warning + message , __SCREAMING_SNAKE_CASE , stacklevel=__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) > 0:
__snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1]
__snake_case : int = call_frame.filename
__snake_case : int = call_frame.lineno
__snake_case : List[str] = call_frame.function
__snake_case , __snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' )
if len(__SCREAMING_SNAKE_CASE ) == 0:
return
elif len(__SCREAMING_SNAKE_CASE ) == 1:
return values[0]
return values
| 20 | 1 |
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
lowercase_ = "pt"
elif is_tf_available():
lowercase_ = "tf"
else:
lowercase_ = "jax"
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ):
A : int = ByTaTokenizer
A : Tuple = False
def snake_case__ ( self : List[Any] ):
super().setUp()
__snake_case : int = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def snake_case__ ( self : Tuple ):
return ByTaTokenizer.from_pretrained("""google/byt5-small""" )
def snake_case__ ( self : List[Any] , **_lowerCAmelCase : int ):
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Union[str, Any]=20 , _lowerCAmelCase : int=5 ):
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for ByT5 because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
__snake_case : Union[str, Any] = []
for i in range(len(_lowerCAmelCase ) ):
try:
__snake_case : Dict = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
__snake_case : Optional[int] = list(filter(lambda _lowerCAmelCase : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , _lowerCAmelCase ) )
__snake_case : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) )
if max_length is not None and len(_lowerCAmelCase ) > max_length:
__snake_case : Any = toks[:max_length]
if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0:
while len(_lowerCAmelCase ) < min_length:
__snake_case : Optional[int] = toks + toks
# toks_str = [t[1] for t in toks]
__snake_case : int = [t[0] for t in toks]
# Ensure consistency
__snake_case : Dict = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
if " " not in output_txt and len(_lowerCAmelCase ) > 1:
__snake_case : Optional[Any] = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase )
+ """ """
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase )
)
if with_prefix_space:
__snake_case : List[str] = """ """ + output_txt
__snake_case : str = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
return output_txt, output_ids
def snake_case__ ( self : List[Any] ):
__snake_case : Optional[Any] = self.ta_base_tokenizer
__snake_case : Optional[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] )
__snake_case : Tuple = tokenizer(["""hi""", """I went to the gym""", """"""] )
self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] )
def snake_case__ ( self : Dict ):
__snake_case : Dict = self.ta_base_tokenizer
__snake_case : Any = """Unicode €."""
__snake_case : Dict = tokenizer(_lowerCAmelCase )
__snake_case : Optional[Any] = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1]
self.assertEqual(encoded["""input_ids"""] , _lowerCAmelCase )
# decoding
__snake_case : List[Any] = tokenizer.decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , """Unicode €.</s>""" )
__snake_case : List[Any] = tokenizer("""e è é ê ë""" )
__snake_case : Any = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1]
self.assertEqual(encoded["""input_ids"""] , _lowerCAmelCase )
# decoding
__snake_case : Dict = tokenizer.decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , """e è é ê ë</s>""" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" )
def snake_case__ ( self : Tuple ):
__snake_case : List[str] = self.ta_base_tokenizer
__snake_case : Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
# fmt: off
__snake_case : Optional[int] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0]
# fmt: on
__snake_case : int = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
if FRAMEWORK != "jax":
__snake_case : Optional[int] = list(batch.input_ids.numpy()[0] )
else:
__snake_case : Union[str, Any] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual((2, 37) , batch.input_ids.shape )
self.assertEqual((2, 37) , batch.attention_mask.shape )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Optional[int] = self.ta_base_tokenizer
__snake_case : Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
__snake_case : Union[str, Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("""input_ids""" , _lowerCAmelCase )
self.assertIn("""attention_mask""" , _lowerCAmelCase )
self.assertNotIn("""decoder_input_ids""" , _lowerCAmelCase )
self.assertNotIn("""decoder_attention_mask""" , _lowerCAmelCase )
def snake_case__ ( self : Any ):
__snake_case : Optional[int] = self.ta_base_tokenizer
__snake_case : int = [
"""Summary of the text.""",
"""Another summary.""",
]
__snake_case : Optional[Any] = tokenizer(
text_target=_lowerCAmelCase , max_length=32 , padding="""max_length""" , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def snake_case__ ( self : Optional[int] ):
__snake_case : List[str] = self.ta_base_tokenizer
__snake_case : Optional[Any] = ["""A long paragraph for summarization. </s>"""]
__snake_case : Dict = ["""Summary of the text. </s>"""]
# fmt: off
__snake_case : List[str] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1]
__snake_case : str = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1]
# fmt: on
__snake_case : List[Any] = tokenizer(_lowerCAmelCase , text_target=_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , batch["""input_ids"""][0] )
self.assertEqual(_lowerCAmelCase , batch["""labels"""][0] )
def snake_case__ ( self : Optional[int] ):
# safety check on max_len default value so we are sure the test works
__snake_case : Tuple = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : int = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : List[str] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
__snake_case : Optional[int] = tokenizer.__class__.from_pretrained(_lowerCAmelCase )
__snake_case : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
shutil.rmtree(_lowerCAmelCase )
__snake_case : Any = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Tuple = tempfile.mkdtemp()
__snake_case : Dict = """ He is very happy, UNwant\u00E9d,running"""
tokenizer.add_tokens(["""bim""", """bambam"""] )
__snake_case : Any = tokenizer.additional_special_tokens
additional_special_tokens.append("""new_additional_special_token""" )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
__snake_case : str = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
__snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase )
__snake_case : Optional[int] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : Any = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(_lowerCAmelCase )
def snake_case__ ( self : str ):
__snake_case : Tuple = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Optional[int] = json.load(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : str = json.load(_lowerCAmelCase )
__snake_case : Union[str, Any] = [f'''<extra_id_{i}>''' for i in range(1_25 )]
__snake_case : str = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
__snake_case : Dict = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
with open(os.path.join(_lowerCAmelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : Any = tokenizer_class.from_pretrained(
_lowerCAmelCase , )
self.assertIn(
"""an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : Optional[Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=_lowerCAmelCase )]
__snake_case : Optional[int] = tokenizer_class.from_pretrained(
_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , )
self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens )
self.assertEqual(
["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , )
def snake_case__ ( self : Optional[Any] ):
__snake_case : int = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_lowerCAmelCase )
__snake_case : Optional[Any] = tokenizer_class.from_pretrained(_lowerCAmelCase )
self.assertTrue(tokenizer.decode([2_55] ) == """""" )
def snake_case__ ( self : List[Any] ):
pass
def snake_case__ ( self : Optional[int] ):
pass
def snake_case__ ( self : Dict ):
pass
def snake_case__ ( self : Union[str, Any] ):
pass
def snake_case__ ( self : Tuple ):
# The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings
# and special added tokens as tokens
__snake_case : int = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : Optional[int] = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""]
__snake_case : str = tokenizer.convert_tokens_to_string(_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : int ):
__snake_case : Any = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : int = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
__snake_case : Optional[int] = 0
__snake_case : str = tokenizer.convert_ids_to_tokens(
_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
for attr in attributes_list:
setattr(_lowerCAmelCase , attr + """_id""" , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , attr + """_id""" ) , _lowerCAmelCase )
setattr(_lowerCAmelCase , attr + """_id""" , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , attr + """_id""" ) , _lowerCAmelCase )
setattr(_lowerCAmelCase , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(_lowerCAmelCase , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(_lowerCAmelCase , """additional_special_tokens_ids""" ) , [] )
setattr(_lowerCAmelCase , """additional_special_tokens_ids""" , [token_id_to_test_setters] )
self.assertListEqual(getattr(_lowerCAmelCase , """additional_special_tokens""" ) , [token_to_test_setters] )
self.assertListEqual(getattr(_lowerCAmelCase , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
| 20 | import argparse
import os
from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPTaConfig,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
TaConfig,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPTaLMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFTaForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWavaVecaModel,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
WavaVecaConfig,
WavaVecaModel,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tfa_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPTaLMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
TaForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
logging.set_verbosity_info()
lowercase_ = {
"bart": (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"bert": (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-base-cased-finetuned-mrpc": (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"dpr": (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"gpt2": (
GPTaConfig,
TFGPTaLMHeadModel,
GPTaLMHeadModel,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlnet": (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm": (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm-roberta": (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"transfo-xl": (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"openai-gpt": (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"roberta": (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"layoutlm": (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"roberta-large-mnli": (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"camembert": (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"flaubert": (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert": (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert-base-distilled-squad": (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert": (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert-visual-feature-encoder": (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"ctrl": (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"albert": (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"t5": (
TaConfig,
TFTaForConditionalGeneration,
TaForConditionalGeneration,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"electra": (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"wav2vec2": (
WavaVecaConfig,
TFWavaVecaModel,
WavaVecaModel,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=True ):
'''simple docstring'''
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' )
__snake_case , __snake_case , __snake_case , __snake_case : Any = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
__snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
__snake_case : Dict = config_class.from_json_file(__SCREAMING_SNAKE_CASE )
__snake_case : Tuple = True
__snake_case : Union[str, Any] = True
print(F'''Building TensorFlow model from configuration: {config}''' )
__snake_case : List[Any] = model_class(__SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
__snake_case : Optional[Any] = cached_file(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
# Load PyTorch checkpoint in tf2 model:
__snake_case : List[Any] = load_pytorch_checkpoint_in_tfa_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if compare_with_pt_model:
__snake_case : Tuple = tf_model(tf_model.dummy_inputs , training=__SCREAMING_SNAKE_CASE ) # build the network
__snake_case : List[str] = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" )
__snake_case : Any = pt_model_class.from_pretrained(
pretrained_model_name_or_path=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE , state_dict=__SCREAMING_SNAKE_CASE )
with torch.no_grad():
__snake_case : Union[str, Any] = pt_model(**pt_model.dummy_inputs )
__snake_case : Any = pto[0].numpy()
__snake_case : Optional[int] = tfo[0].numpy()
__snake_case : Optional[int] = np.amax(np.abs(np_pt - np_tf ) )
print(F'''Max absolute difference between models outputs {diff}''' )
assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}'''
# Save pytorch-model
print(F'''Save TensorFlow model to {tf_dump_path}''' )
tf_model.save_weights(__SCREAMING_SNAKE_CASE , save_format="""h5""" )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Any=False , ):
'''simple docstring'''
if args_model_type is None:
__snake_case : Tuple = list(MODEL_CLASSES.keys() )
else:
__snake_case : Union[str, Any] = [args_model_type]
for j, model_type in enumerate(__SCREAMING_SNAKE_CASE , start=1 ):
print("""=""" * 1_0_0 )
print(F''' Converting model type {j}/{len(__SCREAMING_SNAKE_CASE )}: {model_type}''' )
print("""=""" * 1_0_0 )
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' )
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
__snake_case : int = list(aws_model_maps.keys() )
if config_shortcut_names_or_path is None:
__snake_case : Union[str, Any] = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , start=1 ):
print("""-""" * 1_0_0 )
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' )
continue
__snake_case : List[Any] = model_shortcut_name
elif only_convert_finetuned_models:
print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' )
continue
print(
F''' Converting checkpoint {i}/{len(__SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}''' )
print("""-""" * 1_0_0 )
if config_shortcut_name in aws_config_map:
__snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
else:
__snake_case : Dict = config_shortcut_name
if model_shortcut_name in aws_model_maps:
__snake_case : Union[str, Any] = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
else:
__snake_case : List[Any] = model_shortcut_name
if os.path.isfile(__SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = """converted_model"""
convert_pt_checkpoint_to_tf(
model_type=__SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=__SCREAMING_SNAKE_CASE , config_file=__SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(__SCREAMING_SNAKE_CASE , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__SCREAMING_SNAKE_CASE , )
if remove_cached_files:
os.remove(__SCREAMING_SNAKE_CASE )
os.remove(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file."
)
parser.add_argument(
"--model_type",
default=None,
type=str,
help=(
F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and '''
"convert all the models from AWS."
),
)
parser.add_argument(
"--pytorch_checkpoint_path",
default=None,
type=str,
help=(
"Path to the PyTorch checkpoint path or shortcut name to download from AWS. "
"If not given, will download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--config_file",
default=None,
type=str,
help=(
"The config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture. If not given and "
"--pytorch_checkpoint_path is not given or is a shortcut name "
"use the configuration associated to the shortcut name on the AWS"
),
)
parser.add_argument(
"--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions."
)
parser.add_argument(
"--use_cached_models",
action="store_true",
help="Use cached models if possible instead of updating to latest checkpoint versions.",
)
parser.add_argument(
"--remove_cached_files",
action="store_true",
help="Remove pytorch models after conversion (save memory when converting in batches).",
)
parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.")
lowercase_ = parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
| 20 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {
"configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["LlamaTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["LlamaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"LlamaForCausalLM",
"LlamaModel",
"LlamaPreTrainedModel",
"LlamaForSequenceClassification",
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | import random
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
__snake_case , __snake_case , __snake_case : Tuple = [], [], []
for element in data:
if element < pivot:
less.append(__SCREAMING_SNAKE_CASE )
elif element > pivot:
greater.append(__SCREAMING_SNAKE_CASE )
else:
equal.append(__SCREAMING_SNAKE_CASE )
return less, equal, greater
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
# index = len(items) // 2 when trying to find the median
# (value of index when items is sorted)
# invalid input
if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0:
return None
__snake_case : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )]
__snake_case : Tuple = 0
__snake_case , __snake_case , __snake_case : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE )
__snake_case : int = len(__SCREAMING_SNAKE_CASE )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# must be in larger
else:
return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
| 20 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_realm import RealmTokenizer
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"google/realm-cc-news-pretrained-embedder": (
"https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt"
),
"google/realm-cc-news-pretrained-encoder": (
"https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt"
),
"google/realm-cc-news-pretrained-scorer": (
"https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt"
),
"google/realm-cc-news-pretrained-openqa": (
"https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt"
),
"google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt",
"google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt",
"google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt",
"google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt",
},
"tokenizer_file": {
"google/realm-cc-news-pretrained-embedder": (
"https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont"
),
"google/realm-cc-news-pretrained-encoder": (
"https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json"
),
"google/realm-cc-news-pretrained-scorer": (
"https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json"
),
"google/realm-cc-news-pretrained-openqa": (
"https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json"
),
"google/realm-orqa-nq-openqa": (
"https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json"
),
"google/realm-orqa-nq-reader": (
"https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json"
),
"google/realm-orqa-wq-openqa": (
"https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json"
),
"google/realm-orqa-wq-reader": (
"https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json"
),
},
}
lowercase_ = {
"google/realm-cc-news-pretrained-embedder": 5_12,
"google/realm-cc-news-pretrained-encoder": 5_12,
"google/realm-cc-news-pretrained-scorer": 5_12,
"google/realm-cc-news-pretrained-openqa": 5_12,
"google/realm-orqa-nq-openqa": 5_12,
"google/realm-orqa-nq-reader": 5_12,
"google/realm-orqa-wq-openqa": 5_12,
"google/realm-orqa-wq-reader": 5_12,
}
lowercase_ = {
"google/realm-cc-news-pretrained-embedder": {"do_lower_case": True},
"google/realm-cc-news-pretrained-encoder": {"do_lower_case": True},
"google/realm-cc-news-pretrained-scorer": {"do_lower_case": True},
"google/realm-cc-news-pretrained-openqa": {"do_lower_case": True},
"google/realm-orqa-nq-openqa": {"do_lower_case": True},
"google/realm-orqa-nq-reader": {"do_lower_case": True},
"google/realm-orqa-wq-openqa": {"do_lower_case": True},
"google/realm-orqa-wq-reader": {"do_lower_case": True},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[Any] = VOCAB_FILES_NAMES
A : Tuple = PRETRAINED_VOCAB_FILES_MAP
A : Tuple = PRETRAINED_INIT_CONFIGURATION
A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Union[str, Any] = RealmTokenizer
def __init__( self : Optional[Any] , _lowerCAmelCase : int=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Any=True , _lowerCAmelCase : str="[UNK]" , _lowerCAmelCase : Any="[SEP]" , _lowerCAmelCase : Optional[Any]="[PAD]" , _lowerCAmelCase : Optional[Any]="[CLS]" , _lowerCAmelCase : Tuple="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : List[Any] , ):
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
__snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , _lowerCAmelCase ) != tokenize_chinese_chars
):
__snake_case : Union[str, Any] = getattr(_lowerCAmelCase , normalizer_state.pop("""type""" ) )
__snake_case : Optional[int] = do_lower_case
__snake_case : Any = strip_accents
__snake_case : str = tokenize_chinese_chars
__snake_case : Union[str, Any] = normalizer_class(**_lowerCAmelCase )
__snake_case : Union[str, Any] = do_lower_case
def snake_case__ ( self : Tuple , _lowerCAmelCase : List[Any] , **_lowerCAmelCase : Optional[int] ):
__snake_case : str = PaddingStrategy.MAX_LENGTH
__snake_case : int = text
__snake_case : List[Any] = kwargs.pop("""text_pair""" , _lowerCAmelCase )
__snake_case : List[Any] = kwargs.pop("""return_tensors""" , _lowerCAmelCase )
__snake_case : str = {
"""input_ids""": [],
"""attention_mask""": [],
"""token_type_ids""": [],
}
for idx, candidate_text in enumerate(_lowerCAmelCase ):
if batch_text_pair is not None:
__snake_case : str = batch_text_pair[idx]
else:
__snake_case : Optional[Any] = None
__snake_case : Optional[int] = super().__call__(_lowerCAmelCase , _lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
__snake_case : Dict = encoded_candidates.get("""input_ids""" )
__snake_case : int = encoded_candidates.get("""attention_mask""" )
__snake_case : Dict = encoded_candidates.get("""token_type_ids""" )
if encoded_input_ids is not None:
output_data["input_ids"].append(_lowerCAmelCase )
if encoded_attention_mask is not None:
output_data["attention_mask"].append(_lowerCAmelCase )
if encoded_token_type_ids is not None:
output_data["token_type_ids"].append(_lowerCAmelCase )
__snake_case : Any = {key: item for key, item in output_data.items() if len(_lowerCAmelCase ) != 0}
return BatchEncoding(_lowerCAmelCase , tensor_type=_lowerCAmelCase )
def snake_case__ ( self : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None ):
__snake_case : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
__snake_case : Optional[Any] = [self.sep_token_id]
__snake_case : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 20 | import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"
),
}
}
lowercase_ = {
"junnyu/roformer_chinese_small": 15_36,
"junnyu/roformer_chinese_base": 15_36,
"junnyu/roformer_chinese_char_small": 5_12,
"junnyu/roformer_chinese_char_base": 5_12,
"junnyu/roformer_small_discriminator": 1_28,
"junnyu/roformer_small_generator": 1_28,
}
lowercase_ = {
"junnyu/roformer_chinese_small": {"do_lower_case": True},
"junnyu/roformer_chinese_base": {"do_lower_case": True},
"junnyu/roformer_chinese_char_small": {"do_lower_case": True},
"junnyu/roformer_chinese_char_base": {"do_lower_case": True},
"junnyu/roformer_small_discriminator": {"do_lower_case": True},
"junnyu/roformer_small_generator": {"do_lower_case": True},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = VOCAB_FILES_NAMES
A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : int = PRETRAINED_INIT_CONFIGURATION
A : List[str] = RoFormerTokenizer
def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any="[UNK]" , _lowerCAmelCase : int="[SEP]" , _lowerCAmelCase : Optional[int]="[PAD]" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Dict , ):
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
__snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case
or pre_tok_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents
):
__snake_case : Tuple = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) )
__snake_case : List[Any] = do_lower_case
__snake_case : Optional[Any] = strip_accents
__snake_case : List[str] = pre_tok_class(**_lowerCAmelCase )
__snake_case : Optional[Any] = do_lower_case
def __getstate__( self : Optional[Any] ):
__snake_case : Optional[int] = self.__dict__.copy()
__snake_case : Optional[Any] = BertPreTokenizer()
return state
def __setstate__( self : str , _lowerCAmelCase : Dict ):
__snake_case : str = d
__snake_case : int = self.__dict__["""_tokenizer"""].get_vocab()
__snake_case : List[str] = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=None ):
__snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
def snake_case__ ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Tuple , ):
__snake_case : Tuple = BertPreTokenizer()
return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
| 20 | 1 |
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if a < 0 or b < 0:
raise ValueError("""the value of both inputs must be positive""" )
__snake_case : Tuple = str(bin(__SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b"
__snake_case : Any = str(bin(__SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b"
__snake_case : str = max(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) )
return "0b" + "".join(
str(int(char_a == """1""" and char_b == """1""" ) )
for char_a, char_b in zip(a_binary.zfill(__SCREAMING_SNAKE_CASE ) , b_binary.zfill(__SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | from __future__ import annotations
import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if depth < 0:
raise ValueError("""Depth cannot be less than 0""" )
if len(__SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("""Scores cannot be empty""" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
return min(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3]
__snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 )
print("""Optimal value : """ , end="""""" )
print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 20 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
lowercase_ = None
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"
),
},
}
lowercase_ = {
"facebook/nllb-large-en-ro": 10_24,
"facebook/nllb-200-distilled-600M": 10_24,
}
# fmt: off
lowercase_ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"]
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : str = VOCAB_FILES_NAMES
A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Tuple = PRETRAINED_VOCAB_FILES_MAP
A : List[Any] = ["input_ids", "attention_mask"]
A : Dict = NllbTokenizer
A : List[int] = []
A : List[int] = []
def __init__( self : Union[str, Any] , _lowerCAmelCase : str=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Dict="<s>" , _lowerCAmelCase : Tuple="</s>" , _lowerCAmelCase : Any="</s>" , _lowerCAmelCase : str="<s>" , _lowerCAmelCase : Tuple="<unk>" , _lowerCAmelCase : List[str]="<pad>" , _lowerCAmelCase : Optional[Any]="<mask>" , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : str=False , **_lowerCAmelCase : Any , ):
# Mask token behave like a normal word, i.e. include the space before it
__snake_case : List[str] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token
__snake_case : Any = legacy_behaviour
super().__init__(
vocab_file=_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , src_lang=_lowerCAmelCase , tgt_lang=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , legacy_behaviour=_lowerCAmelCase , **_lowerCAmelCase , )
__snake_case : Dict = vocab_file
__snake_case : Optional[int] = False if not self.vocab_file else True
__snake_case : Any = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} )
__snake_case : str = {
lang_code: self.convert_tokens_to_ids(_lowerCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__snake_case : Tuple = src_lang if src_lang is not None else """eng_Latn"""
__snake_case : Optional[Any] = self.convert_tokens_to_ids(self._src_lang )
__snake_case : Optional[int] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def snake_case__ ( self : Dict ):
return self._src_lang
@src_lang.setter
def snake_case__ ( self : int , _lowerCAmelCase : str ):
__snake_case : List[str] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def snake_case__ ( self : int , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
__snake_case : List[Any] = [self.sep_token_id]
__snake_case : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] , _lowerCAmelCase : Optional[str] , **_lowerCAmelCase : List[Any] ):
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
__snake_case : Tuple = src_lang
__snake_case : int = self(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
__snake_case : str = self.convert_tokens_to_ids(_lowerCAmelCase )
__snake_case : Dict = tgt_lang_id
return inputs
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : str = "eng_Latn" , _lowerCAmelCase : Optional[List[str]] = None , _lowerCAmelCase : str = "fra_Latn" , **_lowerCAmelCase : Optional[int] , ):
__snake_case : List[Any] = src_lang
__snake_case : Dict = tgt_lang
return super().prepare_seqaseq_batch(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
return self.set_src_lang_special_tokens(self.src_lang )
def snake_case__ ( self : int ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str ):
__snake_case : Optional[int] = self.convert_tokens_to_ids(_lowerCAmelCase )
if self.legacy_behaviour:
__snake_case : int = []
__snake_case : Optional[Any] = [self.eos_token_id, self.cur_lang_code]
else:
__snake_case : List[str] = [self.cur_lang_code]
__snake_case : Dict = [self.eos_token_id]
__snake_case : Any = self.convert_ids_to_tokens(self.prefix_tokens )
__snake_case : List[str] = self.convert_ids_to_tokens(self.suffix_tokens )
__snake_case : Any = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def snake_case__ ( self : List[str] , _lowerCAmelCase : str ):
__snake_case : Union[str, Any] = self.convert_tokens_to_ids(_lowerCAmelCase )
if self.legacy_behaviour:
__snake_case : Dict = []
__snake_case : Tuple = [self.eos_token_id, self.cur_lang_code]
else:
__snake_case : int = [self.cur_lang_code]
__snake_case : List[str] = [self.eos_token_id]
__snake_case : Tuple = self.convert_ids_to_tokens(self.prefix_tokens )
__snake_case : List[str] = self.convert_ids_to_tokens(self.suffix_tokens )
__snake_case : Union[str, Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def snake_case__ ( self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_lowerCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' )
return
__snake_case : Union[str, Any] = os.path.join(
_lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ):
copyfile(self.vocab_file , _lowerCAmelCase )
return (out_vocab_file,)
| 20 | import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
lowercase_ = None
lowercase_ = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
lowercase_ = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : bool = True
A : Optional[str] = None
# Automatically constructed
A : ClassVar[str] = "PIL.Image.Image"
A : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} )
A : str = field(default="Image" , init=__UpperCamelCase , repr=__UpperCamelCase )
def __call__( self : Any ):
return self.pa_type
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
__snake_case : str = np.array(_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": value, "bytes": None}
elif isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": None, "bytes": value}
elif isinstance(_lowerCAmelCase , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(_lowerCAmelCase )
elif isinstance(_lowerCAmelCase , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(_lowerCAmelCase )
elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("""path""" )}
elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )}
else:
raise ValueError(
f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def snake_case__ ( self : List[str] , _lowerCAmelCase : dict , _lowerCAmelCase : Dict=None ):
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support decoding images, please install 'Pillow'.""" )
if token_per_repo_id is None:
__snake_case : Tuple = {}
__snake_case , __snake_case : str = value["""path"""], value["""bytes"""]
if bytes_ is None:
if path is None:
raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
else:
if is_local_path(_lowerCAmelCase ):
__snake_case : str = PIL.Image.open(_lowerCAmelCase )
else:
__snake_case : List[str] = path.split("""::""" )[-1]
try:
__snake_case : Dict = string_to_dict(_lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""]
__snake_case : int = token_per_repo_id.get(_lowerCAmelCase )
except ValueError:
__snake_case : List[Any] = None
with xopen(_lowerCAmelCase , """rb""" , use_auth_token=_lowerCAmelCase ) as f:
__snake_case : Union[str, Any] = BytesIO(f.read() )
__snake_case : Dict = PIL.Image.open(bytes_ )
else:
__snake_case : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def snake_case__ ( self : Union[str, Any] ):
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("""binary""" ),
"path": Value("""string""" ),
}
)
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ):
if pa.types.is_string(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("""bytes""" ) >= 0:
__snake_case : List[str] = storage.field("""bytes""" )
else:
__snake_case : List[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
if storage.type.get_field_index("""path""" ) >= 0:
__snake_case : Optional[int] = storage.field("""path""" )
else:
__snake_case : int = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
__snake_case : Optional[Any] = pa.array(
[encode_np_array(np.array(_lowerCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
__snake_case : Optional[int] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays(
[bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : pa.StructArray ):
@no_op_if_value_is_null
def path_to_bytes(_lowerCAmelCase : Tuple ):
with xopen(_lowerCAmelCase , """rb""" ) as f:
__snake_case : Optional[int] = f.read()
return bytes_
__snake_case : Tuple = pa.array(
[
(path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
__snake_case : Optional[Any] = pa.array(
[os.path.basename(_lowerCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def __lowerCAmelCase ( ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
__snake_case : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
__snake_case : List[Any] = BytesIO()
if image.format in list_image_compression_formats():
__snake_case : Union[str, Any] = image.format
else:
__snake_case : List[Any] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF"""
image.save(__SCREAMING_SNAKE_CASE , format=__SCREAMING_SNAKE_CASE )
return buffer.getvalue()
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
if hasattr(__SCREAMING_SNAKE_CASE , """filename""" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
__snake_case : List[Any] = array.dtype
__snake_case : List[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER
__snake_case : Dict = dtype.kind
__snake_case : Union[str, Any] = dtype.itemsize
__snake_case : Tuple = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
__snake_case : int = np.dtype("""|u1""" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' )
if dtype is not dest_dtype:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
__snake_case : List[str] = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
__snake_case : int = dtype_byteorder + dtype_kind + str(__SCREAMING_SNAKE_CASE )
__snake_case : Any = np.dtype(__SCREAMING_SNAKE_CASE )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' )
__snake_case : Optional[int] = PIL.Image.fromarray(array.astype(__SCREAMING_SNAKE_CASE ) )
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if objs:
__snake_case , __snake_case : Any = first_non_null_value(__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
__snake_case : int = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ):
__snake_case : List[str] = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
else:
return objs
else:
return objs
| 20 | 1 |
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
lowercase_ = sys.version_info >= (3, 10)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Optional[int]=None ):
'''simple docstring'''
return field(default_factory=lambda: default , metadata=__SCREAMING_SNAKE_CASE )
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : int
A : float
A : str
A : bool
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : int = 42
A : str = field(default="toto" , metadata={"help": "help message"} )
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : bool = False
A : bool = True
A : Optional[bool] = None
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Tuple = "titi"
A : List[str] = "toto"
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[Any] = "titi"
A : Tuple = "toto"
A : Optional[int] = 42
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : BasicEnum = "toto"
def snake_case__ ( self : Any ):
__snake_case : Tuple = BasicEnum(self.foo )
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : MixedTypeEnum = "toto"
def snake_case__ ( self : Optional[Any] ):
__snake_case : Optional[int] = MixedTypeEnum(self.foo )
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : Optional[int] = None
A : Optional[float] = field(default=__UpperCamelCase , metadata={"help": "help message"} )
A : Optional[str] = None
A : Optional[List[str]] = list_field(default=[] )
A : Optional[List[int]] = list_field(default=[] )
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : List[int] = list_field(default=[] )
A : List[int] = list_field(default=[1, 2, 3] )
A : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] )
A : List[float] = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : List[int] = field()
A : str = field()
A : BasicEnum = field()
def snake_case__ ( self : Optional[Any] ):
__snake_case : Union[str, Any] = BasicEnum(self.required_enum )
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : int
A : "BasicEnum" = field()
A : "Optional[bool]" = None
A : "str" = field(default="toto" , metadata={"help": "help message"} )
A : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] )
if is_python_no_less_than_3_10:
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : bool = False
A : bool = True
A : bool | None = None
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : int | None = None
A : float | None = field(default=__UpperCamelCase , metadata={"help": "help message"} )
A : str | None = None
A : list[str] | None = list_field(default=[] )
A : list[int] | None = list_field(default=[] )
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : Dict , _lowerCAmelCase : argparse.ArgumentParser , _lowerCAmelCase : argparse.ArgumentParser ):
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
__snake_case : Optional[Any] = {k: v for k, v in vars(_lowerCAmelCase ).items() if k != """container"""}
__snake_case : Tuple = {k: v for k, v in vars(_lowerCAmelCase ).items() if k != """container"""}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get("""choices""" , _lowerCAmelCase ) and yy.get("""choices""" , _lowerCAmelCase ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx["""type"""](_lowerCAmelCase ) , yy["""type"""](_lowerCAmelCase ) )
del xx["type"], yy["type"]
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Dict ):
__snake_case : int = HfArgumentParser(_lowerCAmelCase )
__snake_case : Tuple = argparse.ArgumentParser()
expected.add_argument("""--foo""" , type=_lowerCAmelCase , required=_lowerCAmelCase )
expected.add_argument("""--bar""" , type=_lowerCAmelCase , required=_lowerCAmelCase )
expected.add_argument("""--baz""" , type=_lowerCAmelCase , required=_lowerCAmelCase )
expected.add_argument("""--flag""" , type=_lowerCAmelCase , default=_lowerCAmelCase , const=_lowerCAmelCase , nargs="""?""" )
self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : Dict = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""]
((__snake_case) , ) : str = parser.parse_args_into_dataclasses(_lowerCAmelCase , look_for_args_file=_lowerCAmelCase )
self.assertFalse(example.flag )
def snake_case__ ( self : List[str] ):
__snake_case : str = HfArgumentParser(_lowerCAmelCase )
__snake_case : Optional[int] = argparse.ArgumentParser()
expected.add_argument("""--foo""" , default=42 , type=_lowerCAmelCase )
expected.add_argument("""--baz""" , default="""toto""" , type=_lowerCAmelCase , help="""help message""" )
self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Optional[int] = argparse.ArgumentParser()
expected.add_argument("""--foo""" , type=_lowerCAmelCase , default=_lowerCAmelCase , const=_lowerCAmelCase , nargs="""?""" )
expected.add_argument("""--baz""" , type=_lowerCAmelCase , default=_lowerCAmelCase , const=_lowerCAmelCase , nargs="""?""" )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument("""--no_baz""" , action="""store_false""" , default=_lowerCAmelCase , dest="""baz""" )
expected.add_argument("""--opt""" , type=_lowerCAmelCase , default=_lowerCAmelCase )
__snake_case : List[str] = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(_lowerCAmelCase )
for dataclass_type in dataclass_types:
__snake_case : str = HfArgumentParser(_lowerCAmelCase )
self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : Any = parser.parse_args([] )
self.assertEqual(_lowerCAmelCase , Namespace(foo=_lowerCAmelCase , baz=_lowerCAmelCase , opt=_lowerCAmelCase ) )
__snake_case : List[Any] = parser.parse_args(["""--foo""", """--no_baz"""] )
self.assertEqual(_lowerCAmelCase , Namespace(foo=_lowerCAmelCase , baz=_lowerCAmelCase , opt=_lowerCAmelCase ) )
__snake_case : Optional[int] = parser.parse_args(["""--foo""", """--baz"""] )
self.assertEqual(_lowerCAmelCase , Namespace(foo=_lowerCAmelCase , baz=_lowerCAmelCase , opt=_lowerCAmelCase ) )
__snake_case : int = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] )
self.assertEqual(_lowerCAmelCase , Namespace(foo=_lowerCAmelCase , baz=_lowerCAmelCase , opt=_lowerCAmelCase ) )
__snake_case : Tuple = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] )
self.assertEqual(_lowerCAmelCase , Namespace(foo=_lowerCAmelCase , baz=_lowerCAmelCase , opt=_lowerCAmelCase ) )
def snake_case__ ( self : List[str] ):
__snake_case : Optional[Any] = HfArgumentParser(_lowerCAmelCase )
__snake_case : Optional[int] = argparse.ArgumentParser()
expected.add_argument(
"""--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , )
self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : str = parser.parse_args([] )
self.assertEqual(args.foo , """toto""" )
__snake_case : Optional[Any] = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
__snake_case : Tuple = parser.parse_args(["""--foo""", """titi"""] )
self.assertEqual(args.foo , """titi""" )
__snake_case : str = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
__snake_case : List[str] = parser.parse_args(["""--foo""", """42"""] )
self.assertEqual(args.foo , 42 )
__snake_case : List[Any] = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def snake_case__ ( self : Dict ):
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : Literal["titi", "toto", 42] = "toto"
__snake_case : Any = HfArgumentParser(_lowerCAmelCase )
__snake_case : int = argparse.ArgumentParser()
expected.add_argument(
"""--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , )
self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : Tuple = parser.parse_args([] )
self.assertEqual(args.foo , """toto""" )
__snake_case : List[Any] = parser.parse_args(["""--foo""", """titi"""] )
self.assertEqual(args.foo , """titi""" )
__snake_case : Tuple = parser.parse_args(["""--foo""", """42"""] )
self.assertEqual(args.foo , 42 )
def snake_case__ ( self : Dict ):
__snake_case : Optional[int] = HfArgumentParser(_lowerCAmelCase )
__snake_case : List[Any] = argparse.ArgumentParser()
expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=_lowerCAmelCase )
expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=_lowerCAmelCase )
expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_lowerCAmelCase )
expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=_lowerCAmelCase )
self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : int = parser.parse_args([] )
self.assertEqual(
_lowerCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , )
__snake_case : Tuple = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() )
self.assertEqual(_lowerCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) )
def snake_case__ ( self : str ):
__snake_case : List[Any] = argparse.ArgumentParser()
expected.add_argument("""--foo""" , default=_lowerCAmelCase , type=_lowerCAmelCase )
expected.add_argument("""--bar""" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="""help message""" )
expected.add_argument("""--baz""" , default=_lowerCAmelCase , type=_lowerCAmelCase )
expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=_lowerCAmelCase )
expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=_lowerCAmelCase )
__snake_case : Optional[Any] = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(_lowerCAmelCase )
for dataclass_type in dataclass_types:
__snake_case : Optional[Any] = HfArgumentParser(_lowerCAmelCase )
self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : List[Any] = parser.parse_args([] )
self.assertEqual(_lowerCAmelCase , Namespace(foo=_lowerCAmelCase , bar=_lowerCAmelCase , baz=_lowerCAmelCase , ces=[] , des=[] ) )
__snake_case : List[Any] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() )
self.assertEqual(_lowerCAmelCase , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : List[str] = HfArgumentParser(_lowerCAmelCase )
__snake_case : Any = argparse.ArgumentParser()
expected.add_argument("""--required_list""" , nargs="""+""" , type=_lowerCAmelCase , required=_lowerCAmelCase )
expected.add_argument("""--required_str""" , type=_lowerCAmelCase , required=_lowerCAmelCase )
expected.add_argument(
"""--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=_lowerCAmelCase , )
self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : str ):
__snake_case : Optional[Any] = HfArgumentParser(_lowerCAmelCase )
__snake_case : Dict = argparse.ArgumentParser()
expected.add_argument("""--foo""" , type=_lowerCAmelCase , required=_lowerCAmelCase )
expected.add_argument(
"""--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=_lowerCAmelCase , )
expected.add_argument("""--opt""" , type=_lowerCAmelCase , default=_lowerCAmelCase )
expected.add_argument("""--baz""" , default="""toto""" , type=_lowerCAmelCase , help="""help message""" )
expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_lowerCAmelCase )
self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[int] ):
__snake_case : str = HfArgumentParser(_lowerCAmelCase )
__snake_case : int = {
"""foo""": 12,
"""bar""": 3.14,
"""baz""": """42""",
"""flag""": True,
}
__snake_case : Tuple = parser.parse_dict(_lowerCAmelCase )[0]
__snake_case : int = BasicExample(**_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[int] ):
__snake_case : Optional[Any] = HfArgumentParser(_lowerCAmelCase )
__snake_case : str = {
"""foo""": 12,
"""bar""": 3.14,
"""baz""": """42""",
"""flag""": True,
"""extra""": 42,
}
self.assertRaises(_lowerCAmelCase , parser.parse_dict , _lowerCAmelCase , allow_extra_keys=_lowerCAmelCase )
def snake_case__ ( self : Any ):
__snake_case : Optional[int] = HfArgumentParser(_lowerCAmelCase )
__snake_case : int = {
"""foo""": 12,
"""bar""": 3.14,
"""baz""": """42""",
"""flag""": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : Tuple = os.path.join(_lowerCAmelCase , """temp_json""" )
os.mkdir(_lowerCAmelCase )
with open(temp_local_path + """.json""" , """w+""" ) as f:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : List[str] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0]
__snake_case : int = BasicExample(**_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : List[Any] = HfArgumentParser(_lowerCAmelCase )
__snake_case : Any = {
"""foo""": 12,
"""bar""": 3.14,
"""baz""": """42""",
"""flag""": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : int = os.path.join(_lowerCAmelCase , """temp_yaml""" )
os.mkdir(_lowerCAmelCase )
with open(temp_local_path + """.yaml""" , """w+""" ) as f:
yaml.dump(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : str = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0]
__snake_case : Tuple = BasicExample(**_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : List[str] = HfArgumentParser(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
| 20 | from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(__UpperCamelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ):
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = {}
__snake_case : int = {}
if prompt is not None:
__snake_case : Dict = prompt
if generate_kwargs is not None:
__snake_case : List[Any] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__snake_case : Optional[int] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
__snake_case : Any = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ):
return super().__call__(_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = load_image(_lowerCAmelCase )
if prompt is not None:
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
raise ValueError(
f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
__snake_case : Tuple = self.model.config.model_type
if model_type == "git":
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids
__snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids
__snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
__snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework )
model_inputs.update(_lowerCAmelCase )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
__snake_case : int = None
return model_inputs
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ):
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase )
and all(x is None for x in model_inputs["""input_ids"""] )
):
__snake_case : List[Any] = None
if generate_kwargs is None:
__snake_case : Dict = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__snake_case : Dict = model_inputs.pop(self.model.main_input_name )
__snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase )
return model_outputs
def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ):
__snake_case : Union[str, Any] = []
for output_ids in model_outputs:
__snake_case : Union[str, Any] = {
"""generated_text""": self.tokenizer.decode(
_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , )
}
records.append(_lowerCAmelCase )
return records
| 20 | 1 |
import os
import sys
import unittest
lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
lowercase_ = os.path.join(git_repo_path, "src", "transformers")
lowercase_ = "\n{0} = None\n"
lowercase_ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n"
lowercase_ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : List[str] ):
__snake_case : List[str] = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" )
self.assertIsNone(_lowerCAmelCase )
__snake_case : Dict = find_backend(""" if not is_tokenizers_available():""" )
self.assertEqual(_lowerCAmelCase , """tokenizers""" )
__snake_case : List[Any] = find_backend(""" if not is_tensorflow_text_available():""" )
self.assertEqual(_lowerCAmelCase , """tensorflow_text""" )
__snake_case : List[str] = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" )
self.assertEqual(_lowerCAmelCase , """sentencepiece_and_tokenizers""" )
__snake_case : Union[str, Any] = find_backend(
""" if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" )
self.assertEqual(_lowerCAmelCase , """sentencepiece_and_tensorflow_text""" )
__snake_case : Tuple = find_backend(
""" if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" )
self.assertEqual(_lowerCAmelCase , """sentencepiece_and_tokenizers_and_vision""" )
def snake_case__ ( self : int ):
__snake_case : Optional[Any] = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("""torch""" , _lowerCAmelCase )
self.assertIn("""tensorflow_text""" , _lowerCAmelCase )
self.assertIn("""sentencepiece_and_tokenizers""" , _lowerCAmelCase )
# Likewise, we can't assert on the exact content of a key
self.assertIn("""BertModel""" , objects["""torch"""] )
self.assertIn("""TFBertModel""" , objects["""tf"""] )
self.assertIn("""FlaxBertModel""" , objects["""flax"""] )
self.assertIn("""BertModel""" , objects["""torch"""] )
self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""] )
self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""] )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : int = create_dummy_object("""CONSTANT""" , """'torch'""" )
self.assertEqual(_lowerCAmelCase , """\nCONSTANT = None\n""" )
__snake_case : Dict = create_dummy_object("""function""" , """'torch'""" )
self.assertEqual(
_lowerCAmelCase , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" )
__snake_case : List[Any] = """
class FakeClass(metaclass=DummyObject):
_backends = 'torch'
def __init__(self, *args, **kwargs):
requires_backends(self, 'torch')
"""
__snake_case : Any = create_dummy_object("""FakeClass""" , """'torch'""" )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : str ):
__snake_case : str = """# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, [\"torch\"])
class FakeClass(metaclass=DummyObject):
_backends = [\"torch\"]
def __init__(self, *args, **kwargs):
requires_backends(self, [\"torch\"])
"""
__snake_case : Any = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} )
self.assertEqual(dummy_files["""torch"""] , _lowerCAmelCase )
| 20 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowercase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["YolosFeatureExtractor"]
lowercase_ = ["YolosImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST",
"YolosForObjectDetection",
"YolosModel",
"YolosPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
import argparse
import os
import re
import tensorflow as tf
import torch
from transformers import BertConfig, BertModel
from transformers.utils import logging
logging.set_verbosity_info()
lowercase_ = logging.get_logger(__name__)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
__snake_case : Union[str, Any] = os.path.abspath(__SCREAMING_SNAKE_CASE )
logger.info(F'''Converting TensorFlow checkpoint from {tf_path}''' )
# Load weights from TF model
__snake_case : Optional[Any] = tf.train.list_variables(__SCREAMING_SNAKE_CASE )
__snake_case : Any = []
__snake_case : Union[str, Any] = []
__snake_case : Optional[Any] = []
for full_name, shape in init_vars:
# logger.info(f"Loading TF weight {name} with shape {shape}")
__snake_case : str = full_name.split("""/""" )
if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]:
logger.info(F'''Skipping non-model layer {full_name}''' )
continue
if "optimizer" in full_name:
logger.info(F'''Skipping optimization layer {full_name}''' )
continue
if name[0] == "model":
# ignore initial 'model'
__snake_case : Optional[Any] = name[1:]
# figure out how many levels deep the name is
__snake_case : List[Any] = 0
for _name in name:
if _name.startswith("""layer_with_weights""" ):
depth += 1
else:
break
layer_depth.append(__SCREAMING_SNAKE_CASE )
# read data
__snake_case : Union[str, Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
names.append("""/""".join(__SCREAMING_SNAKE_CASE ) )
arrays.append(__SCREAMING_SNAKE_CASE )
logger.info(F'''Read a total of {len(__SCREAMING_SNAKE_CASE ):,} layers''' )
# Sanity check
if len(set(__SCREAMING_SNAKE_CASE ) ) != 1:
raise ValueError(F'''Found layer names with different depths (layer depth {list(set(__SCREAMING_SNAKE_CASE ) )})''' )
__snake_case : Optional[int] = list(set(__SCREAMING_SNAKE_CASE ) )[0]
if layer_depth != 1:
raise ValueError(
"""The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP"""
""" heads.""" )
# convert layers
logger.info("""Converting weights...""" )
for full_name, array in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__snake_case : str = full_name.split("""/""" )
__snake_case : str = model
__snake_case : Optional[Any] = []
for i, m_name in enumerate(__SCREAMING_SNAKE_CASE ):
if m_name == ".ATTRIBUTES":
# variable names end with .ATTRIBUTES/VARIABLE_VALUE
break
if m_name.startswith("""layer_with_weights""" ):
__snake_case : Optional[int] = int(m_name.split("""-""" )[-1] )
if layer_num <= 2:
# embedding layers
# layer_num 0: word_embeddings
# layer_num 1: position_embeddings
# layer_num 2: token_type_embeddings
continue
elif layer_num == 3:
# embedding LayerNorm
trace.extend(["""embeddings""", """LayerNorm"""] )
__snake_case : str = getattr(__SCREAMING_SNAKE_CASE , """embeddings""" )
__snake_case : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , """LayerNorm""" )
elif layer_num > 3 and layer_num < config.num_hidden_layers + 4:
# encoder layers
trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] )
__snake_case : Any = getattr(__SCREAMING_SNAKE_CASE , """encoder""" )
__snake_case : Dict = getattr(__SCREAMING_SNAKE_CASE , """layer""" )
__snake_case : int = pointer[layer_num - 4]
elif layer_num == config.num_hidden_layers + 4:
# pooler layer
trace.extend(["""pooler""", """dense"""] )
__snake_case : List[Any] = getattr(__SCREAMING_SNAKE_CASE , """pooler""" )
__snake_case : int = getattr(__SCREAMING_SNAKE_CASE , """dense""" )
elif m_name == "embeddings":
trace.append("""embeddings""" )
__snake_case : Tuple = getattr(__SCREAMING_SNAKE_CASE , """embeddings""" )
if layer_num == 0:
trace.append("""word_embeddings""" )
__snake_case : List[str] = getattr(__SCREAMING_SNAKE_CASE , """word_embeddings""" )
elif layer_num == 1:
trace.append("""position_embeddings""" )
__snake_case : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , """position_embeddings""" )
elif layer_num == 2:
trace.append("""token_type_embeddings""" )
__snake_case : Tuple = getattr(__SCREAMING_SNAKE_CASE , """token_type_embeddings""" )
else:
raise ValueError(F'''Unknown embedding layer with name {full_name}''' )
trace.append("""weight""" )
__snake_case : List[Any] = getattr(__SCREAMING_SNAKE_CASE , """weight""" )
elif m_name == "_attention_layer":
# self-attention layer
trace.extend(["""attention""", """self"""] )
__snake_case : str = getattr(__SCREAMING_SNAKE_CASE , """attention""" )
__snake_case : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , """self""" )
elif m_name == "_attention_layer_norm":
# output attention norm
trace.extend(["""attention""", """output""", """LayerNorm"""] )
__snake_case : Any = getattr(__SCREAMING_SNAKE_CASE , """attention""" )
__snake_case : Any = getattr(__SCREAMING_SNAKE_CASE , """output""" )
__snake_case : Dict = getattr(__SCREAMING_SNAKE_CASE , """LayerNorm""" )
elif m_name == "_attention_output_dense":
# output attention dense
trace.extend(["""attention""", """output""", """dense"""] )
__snake_case : int = getattr(__SCREAMING_SNAKE_CASE , """attention""" )
__snake_case : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , """output""" )
__snake_case : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , """dense""" )
elif m_name == "_output_dense":
# output dense
trace.extend(["""output""", """dense"""] )
__snake_case : List[str] = getattr(__SCREAMING_SNAKE_CASE , """output""" )
__snake_case : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , """dense""" )
elif m_name == "_output_layer_norm":
# output dense
trace.extend(["""output""", """LayerNorm"""] )
__snake_case : List[str] = getattr(__SCREAMING_SNAKE_CASE , """output""" )
__snake_case : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , """LayerNorm""" )
elif m_name == "_key_dense":
# attention key
trace.append("""key""" )
__snake_case : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , """key""" )
elif m_name == "_query_dense":
# attention query
trace.append("""query""" )
__snake_case : Tuple = getattr(__SCREAMING_SNAKE_CASE , """query""" )
elif m_name == "_value_dense":
# attention value
trace.append("""value""" )
__snake_case : List[Any] = getattr(__SCREAMING_SNAKE_CASE , """value""" )
elif m_name == "_intermediate_dense":
# attention intermediate dense
trace.extend(["""intermediate""", """dense"""] )
__snake_case : int = getattr(__SCREAMING_SNAKE_CASE , """intermediate""" )
__snake_case : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , """dense""" )
elif m_name == "_output_layer_norm":
# output layer norm
trace.append("""output""" )
__snake_case : Any = getattr(__SCREAMING_SNAKE_CASE , """output""" )
# weights & biases
elif m_name in ["bias", "beta"]:
trace.append("""bias""" )
__snake_case : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , """bias""" )
elif m_name in ["kernel", "gamma"]:
trace.append("""weight""" )
__snake_case : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , """weight""" )
else:
logger.warning(F'''Ignored {m_name}''' )
# for certain layers reshape is necessary
__snake_case : Any = """.""".join(__SCREAMING_SNAKE_CASE )
if re.match(R"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , __SCREAMING_SNAKE_CASE ) or re.match(
R"""(\S+)\.attention\.output\.dense\.weight""" , __SCREAMING_SNAKE_CASE ):
__snake_case : int = array.reshape(pointer.data.shape )
if "kernel" in full_name:
__snake_case : Union[str, Any] = array.transpose()
if pointer.shape == array.shape:
__snake_case : Union[str, Any] = torch.from_numpy(__SCREAMING_SNAKE_CASE )
else:
raise ValueError(
F'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:'''
F''' {array.shape}''' )
logger.info(F'''Successfully set variable {full_name} to PyTorch layer {trace}''' )
return model
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
# Instantiate model
logger.info(F'''Loading model based on config from {config_path}...''' )
__snake_case : List[Any] = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = BertModel(__SCREAMING_SNAKE_CASE )
# Load weights from checkpoint
logger.info(F'''Loading weights from checkpoint {tf_checkpoint_path}...''' )
load_tfa_weights_in_bert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Save pytorch-model
logger.info(F'''Saving PyTorch model to {pytorch_dump_path}...''' )
torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model (must include filename).",
)
lowercase_ = parser.parse_args()
convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 20 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = "microsoft/speecht5_tts"
A : List[Any] = (
"This is a tool that reads an English text out loud. It takes an input named `text` which should contain the "
"text to read (in English) and returns a waveform object containing the sound."
)
A : str = "text_reader"
A : Optional[Any] = SpeechTaProcessor
A : Any = SpeechTaForTextToSpeech
A : Optional[Any] = SpeechTaHifiGan
A : str = ["text"]
A : Union[str, Any] = ["audio"]
def snake_case__ ( self : List[Any] ):
if self.post_processor is None:
__snake_case : Tuple = """microsoft/speecht5_hifigan"""
super().setup()
def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ):
__snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" )
__snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" )
__snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ):
with torch.no_grad():
return self.model.generate_speech(**_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
with torch.no_grad():
return self.post_processor(_lowerCAmelCase ).cpu().detach()
| 20 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowercase_ = {
"configuration_altclip": [
"ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AltCLIPConfig",
"AltCLIPTextConfig",
"AltCLIPVisionConfig",
],
"processing_altclip": ["AltCLIPProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"AltCLIPPreTrainedModel",
"AltCLIPModel",
"AltCLIPTextModel",
"AltCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * power_factor
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_lxmert import LxmertTokenizer
lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt",
},
"tokenizer_file": {
"unc-nlp/lxmert-base-uncased": (
"https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json"
),
},
}
lowercase_ = {
"unc-nlp/lxmert-base-uncased": 5_12,
}
lowercase_ = {
"unc-nlp/lxmert-base-uncased": {"do_lower_case": True},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[Any] = VOCAB_FILES_NAMES
A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
A : Optional[int] = PRETRAINED_INIT_CONFIGURATION
A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : List[str] = LxmertTokenizer
def __init__( self : int , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]="[UNK]" , _lowerCAmelCase : str="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Optional[Any]="[CLS]" , _lowerCAmelCase : List[str]="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=None , **_lowerCAmelCase : Optional[int] , ):
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
__snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , _lowerCAmelCase ) != tokenize_chinese_chars
):
__snake_case : Union[str, Any] = getattr(_lowerCAmelCase , normalizer_state.pop("""type""" ) )
__snake_case : List[Any] = do_lower_case
__snake_case : Optional[int] = strip_accents
__snake_case : List[str] = tokenize_chinese_chars
__snake_case : Optional[int] = normalizer_class(**_lowerCAmelCase )
__snake_case : Optional[Any] = do_lower_case
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any=None ):
__snake_case : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
__snake_case : Union[str, Any] = [self.sep_token_id]
__snake_case : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : List[Any] = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 20 | from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 20 | 1 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json",
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Union[str, Any] = "gptj"
A : Optional[Any] = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : List[str] , _lowerCAmelCase : str=5_04_00 , _lowerCAmelCase : List[str]=20_48 , _lowerCAmelCase : str=40_96 , _lowerCAmelCase : Optional[Any]=28 , _lowerCAmelCase : Any=16 , _lowerCAmelCase : Dict=64 , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[Any]="gelu_new" , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : Optional[int]=1e-5 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=5_02_56 , _lowerCAmelCase : Optional[Any]=5_02_56 , _lowerCAmelCase : Dict=False , **_lowerCAmelCase : Tuple , ):
__snake_case : List[Any] = vocab_size
__snake_case : List[Any] = n_positions
__snake_case : str = n_embd
__snake_case : List[Any] = n_layer
__snake_case : Optional[int] = n_head
__snake_case : List[Any] = n_inner
__snake_case : Optional[Any] = rotary_dim
__snake_case : Any = activation_function
__snake_case : Optional[int] = resid_pdrop
__snake_case : List[Any] = embd_pdrop
__snake_case : Optional[Any] = attn_pdrop
__snake_case : Dict = layer_norm_epsilon
__snake_case : Any = initializer_range
__snake_case : Union[str, Any] = use_cache
__snake_case : Optional[int] = bos_token_id
__snake_case : Tuple = eos_token_id
super().__init__(
bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , **_lowerCAmelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : int , _lowerCAmelCase : PretrainedConfig , _lowerCAmelCase : str = "default" , _lowerCAmelCase : List[PatchingSpec] = None , _lowerCAmelCase : bool = False , ):
super().__init__(_lowerCAmelCase , task=_lowerCAmelCase , patching_specs=_lowerCAmelCase , use_past=_lowerCAmelCase )
if not getattr(self._config , """pad_token_id""" , _lowerCAmelCase ):
# TODO: how to do that better?
__snake_case : List[str] = 0
@property
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Tuple = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(_lowerCAmelCase , direction="""inputs""" )
__snake_case : Any = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__snake_case : Tuple = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def snake_case__ ( self : Tuple ):
return self._config.n_layer
@property
def snake_case__ ( self : List[str] ):
return self._config.n_head
def snake_case__ ( self : str , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ):
__snake_case : Tuple = super(_lowerCAmelCase , self ).generate_dummy_inputs(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
# We need to order the input in the way they appears in the forward()
__snake_case : Optional[int] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__snake_case , __snake_case : str = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__snake_case : List[str] = seqlen + 2
__snake_case : List[str] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__snake_case : List[str] = [
(torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers )
]
__snake_case : Dict = common_inputs["""attention_mask"""]
if self.use_past:
__snake_case : Tuple = ordered_inputs["""attention_mask"""].dtype
__snake_case : Union[str, Any] = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 )
return ordered_inputs
@property
def snake_case__ ( self : List[str] ):
return 13
| 20 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {
"configuration_blenderbot_small": [
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotSmallConfig",
"BlenderbotSmallOnnxConfig",
],
"tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["BlenderbotSmallTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
"BlenderbotSmallPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFBlenderbotSmallForConditionalGeneration",
"TFBlenderbotSmallModel",
"TFBlenderbotSmallPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxBlenderbotSmallForConditionalGeneration",
"FlaxBlenderbotSmallModel",
"FlaxBlenderbotSmallPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
from ...configuration_utils import PretrainedConfig
lowercase_ = {
"google/tapas-base-finetuned-sqa": (
"https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json"
),
"google/tapas-base-finetuned-wtq": (
"https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json"
),
"google/tapas-base-finetuned-wikisql-supervised": (
"https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json"
),
"google/tapas-base-finetuned-tabfact": (
"https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json"
),
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[Any] = "tapas"
def __init__( self : Optional[int] , _lowerCAmelCase : List[str]=3_05_22 , _lowerCAmelCase : Tuple=7_68 , _lowerCAmelCase : int=12 , _lowerCAmelCase : List[str]=12 , _lowerCAmelCase : Optional[Any]=30_72 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=10_24 , _lowerCAmelCase : Dict=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] , _lowerCAmelCase : int=0.02 , _lowerCAmelCase : List[Any]=1e-12 , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : Dict=10.0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : int=None , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=1.0 , _lowerCAmelCase : List[str]=1.0 , _lowerCAmelCase : Any=False , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Union[str, Any]="ratio" , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=None , _lowerCAmelCase : Dict=64 , _lowerCAmelCase : str=32 , _lowerCAmelCase : str=False , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=False , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Tuple=None , **_lowerCAmelCase : Union[str, Any] , ):
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
__snake_case : List[str] = vocab_size
__snake_case : Dict = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : List[Any] = num_attention_heads
__snake_case : List[str] = hidden_act
__snake_case : Any = intermediate_size
__snake_case : Union[str, Any] = hidden_dropout_prob
__snake_case : str = attention_probs_dropout_prob
__snake_case : Tuple = max_position_embeddings
__snake_case : List[str] = type_vocab_sizes
__snake_case : Dict = initializer_range
__snake_case : Dict = layer_norm_eps
# Fine-tuning task hyperparameters
__snake_case : int = positive_label_weight
__snake_case : str = num_aggregation_labels
__snake_case : Dict = aggregation_loss_weight
__snake_case : Dict = use_answer_as_supervision
__snake_case : Dict = answer_loss_importance
__snake_case : Union[str, Any] = use_normalized_answer_loss
__snake_case : Optional[Any] = huber_loss_delta
__snake_case : List[Any] = temperature
__snake_case : int = aggregation_temperature
__snake_case : Any = use_gumbel_for_cells
__snake_case : str = use_gumbel_for_aggregation
__snake_case : Any = average_approximation_function
__snake_case : int = cell_selection_preference
__snake_case : Dict = answer_loss_cutoff
__snake_case : Any = max_num_rows
__snake_case : List[Any] = max_num_columns
__snake_case : Tuple = average_logits_per_cell
__snake_case : int = select_one_column
__snake_case : Dict = allow_empty_column_selection
__snake_case : Tuple = init_cell_selection_weights_to_zero
__snake_case : Dict = reset_position_index_per_cell
__snake_case : Union[str, Any] = disable_per_token_loss
# Aggregation hyperparameters
__snake_case : Any = aggregation_labels
__snake_case : Dict = no_aggregation_label_index
if isinstance(self.aggregation_labels , _lowerCAmelCase ):
__snake_case : List[Any] = {int(_lowerCAmelCase ): v for k, v in aggregation_labels.items()}
| 20 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase_ = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["ViTFeatureExtractor"]
lowercase_ = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
def snake_case__ ( self : Any ):
__snake_case : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" )
__snake_case : List[str] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__snake_case : Union[str, Any] = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim
__snake_case : List[str] = torch.tensor(
[[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__snake_case : Dict = model(_lowerCAmelCase )["""last_hidden_state"""].detach()
self.assertEqual(output.shape , _lowerCAmelCase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCAmelCase , atol=1e-3 ) )
@slow
def snake_case__ ( self : Tuple ):
__snake_case : Union[str, Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" )
__snake_case : Union[str, Any] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__snake_case : Union[str, Any] = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim
__snake_case : Optional[Any] = torch.tensor(
[[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__snake_case : str = model(_lowerCAmelCase )["""last_hidden_state"""].detach()
self.assertEqual(output.shape , _lowerCAmelCase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCAmelCase , atol=1e-3 ) )
| 20 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if (direction == 1 and array[indexa] > array[indexa]) or (
direction == 0 and array[indexa] < array[indexa]
):
__snake_case , __snake_case : str = array[indexa], array[indexa]
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Tuple = int(length / 2 )
for i in range(__SCREAMING_SNAKE_CASE , low + middle ):
comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Optional[Any] = int(length / 2 )
bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 )
bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
bitonic_sort(unsorted, 0, len(unsorted), 1)
print("\nSorted array in ascending order is: ", end="")
print(*unsorted, sep=", ")
bitonic_merge(unsorted, 0, len(unsorted), 0)
print("Sorted array in descending order is: ", end="")
print(*unsorted, sep=", ")
| 20 | 1 |
import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ):
'''simple docstring'''
__snake_case : Optional[int] = {
"""7z""": (seven_zip_file, SevenZipExtractor),
"""bz2""": (bza_file, BzipaExtractor),
"""gzip""": (gz_file, GzipExtractor),
"""lz4""": (lza_file, LzaExtractor),
"""tar""": (tar_file, TarExtractor),
"""xz""": (xz_file, XzExtractor),
"""zip""": (zip_file, ZipExtractor),
"""zstd""": (zstd_file, ZstdExtractor),
}
__snake_case , __snake_case : Tuple = input_paths_and_base_extractors[compression_format]
if input_path is None:
__snake_case : Tuple = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE )
__snake_case : List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : List[str] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Optional[Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : int = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ):
'''simple docstring'''
__snake_case : Union[str, Any] = {
"""7z""": seven_zip_file,
"""bz2""": bza_file,
"""gzip""": gz_file,
"""lz4""": lza_file,
"""tar""": tar_file,
"""xz""": xz_file,
"""zip""": zip_file,
"""zstd""": zstd_file,
}
__snake_case : int = input_paths[compression_format]
if input_path is None:
__snake_case : int = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
__snake_case : Any = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE )
assert extractor_format is not None
__snake_case : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : Union[str, Any] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Union[str, Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : Optional[Any] = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
import tarfile
__snake_case : List[str] = tmp_path / """data_dot_dot"""
directory.mkdir()
__snake_case : Optional[Any] = directory / """tar_file_with_dot_dot.tar"""
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) )
return path
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
import tarfile
__snake_case : Dict = tmp_path / """data_sym_link"""
directory.mkdir()
__snake_case : Tuple = directory / """tar_file_with_sym_link.tar"""
os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE )
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
"""insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
__snake_case : Any = {
"""tar_file_with_dot_dot""": tar_file_with_dot_dot,
"""tar_file_with_sym_link""": tar_file_with_sym_link,
}
__snake_case : int = insecure_tar_files[insecure_tar_file]
__snake_case : Optional[int] = tmp_path / """extracted"""
TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
# We should have less false positives than zipfile.is_zipfile
# We do that by checking only the magic number
__snake_case : Optional[Any] = tmpdir / """not_a_zip_file"""
# From: https://github.com/python/cpython/pull/5053
__snake_case : List[str] = (
b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"""
b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"""
b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"""
b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"""
)
with not_a_zip_file.open("""wb""" ) as f:
f.write(__SCREAMING_SNAKE_CASE )
assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
| 20 | import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ):
'''simple docstring'''
__snake_case : Optional[int] = {
"""7z""": (seven_zip_file, SevenZipExtractor),
"""bz2""": (bza_file, BzipaExtractor),
"""gzip""": (gz_file, GzipExtractor),
"""lz4""": (lza_file, LzaExtractor),
"""tar""": (tar_file, TarExtractor),
"""xz""": (xz_file, XzExtractor),
"""zip""": (zip_file, ZipExtractor),
"""zstd""": (zstd_file, ZstdExtractor),
}
__snake_case , __snake_case : Tuple = input_paths_and_base_extractors[compression_format]
if input_path is None:
__snake_case : Tuple = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE )
__snake_case : List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : List[str] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Optional[Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : int = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ):
'''simple docstring'''
__snake_case : Union[str, Any] = {
"""7z""": seven_zip_file,
"""bz2""": bza_file,
"""gzip""": gz_file,
"""lz4""": lza_file,
"""tar""": tar_file,
"""xz""": xz_file,
"""zip""": zip_file,
"""zstd""": zstd_file,
}
__snake_case : int = input_paths[compression_format]
if input_path is None:
__snake_case : int = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
__snake_case : Any = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE )
assert extractor_format is not None
__snake_case : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : Union[str, Any] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Union[str, Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : Optional[Any] = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
import tarfile
__snake_case : List[str] = tmp_path / """data_dot_dot"""
directory.mkdir()
__snake_case : Optional[Any] = directory / """tar_file_with_dot_dot.tar"""
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) )
return path
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
import tarfile
__snake_case : Dict = tmp_path / """data_sym_link"""
directory.mkdir()
__snake_case : Tuple = directory / """tar_file_with_sym_link.tar"""
os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE )
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
"""insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
__snake_case : Any = {
"""tar_file_with_dot_dot""": tar_file_with_dot_dot,
"""tar_file_with_sym_link""": tar_file_with_sym_link,
}
__snake_case : int = insecure_tar_files[insecure_tar_file]
__snake_case : Optional[int] = tmp_path / """extracted"""
TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
# We should have less false positives than zipfile.is_zipfile
# We do that by checking only the magic number
__snake_case : Optional[Any] = tmpdir / """not_a_zip_file"""
# From: https://github.com/python/cpython/pull/5053
__snake_case : List[str] = (
b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"""
b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"""
b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"""
b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"""
)
with not_a_zip_file.open("""wb""" ) as f:
f.write(__SCREAMING_SNAKE_CASE )
assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
| 20 | 1 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {
"configuration_trajectory_transformer": [
"TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TrajectoryTransformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrajectoryTransformerModel",
"TrajectoryTransformerPreTrainedModel",
"load_tf_weights_in_trajectory_transformer",
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : Any ):
__snake_case : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split()
__snake_case : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
__snake_case : List[str] = {
"""unk_token""": """<unk>""",
"""bos_token""": """<s>""",
"""eos_token""": """</s>""",
}
__snake_case : str = {
"""feature_size""": 1,
"""padding_value""": 0.0,
"""sampling_rate""": 1_60_00,
"""return_attention_mask""": False,
"""do_normalize""": True,
}
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__snake_case : Any = os.path.join(self.tmpdirname , _lowerCAmelCase )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
# load decoder from hub
__snake_case : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder"""
def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Tuple ):
__snake_case : int = self.add_kwargs_tokens_map.copy()
kwargs.update(_lowerCAmelCase )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , **_lowerCAmelCase : Optional[int] ):
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Dict , **_lowerCAmelCase : Tuple ):
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase )
def snake_case__ ( self : List[str] ):
shutil.rmtree(self.tmpdirname )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : Tuple = self.get_feature_extractor()
__snake_case : Dict = self.get_decoder()
__snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
__snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowerCAmelCase )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , _lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : Tuple = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
__snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def snake_case__ ( self : int ):
__snake_case : Tuple = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(["""xx"""] )
with self.assertRaisesRegex(_lowerCAmelCase , """include""" ):
WavaVecaProcessorWithLM(
tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def snake_case__ ( self : Dict ):
__snake_case : int = self.get_feature_extractor()
__snake_case : str = self.get_tokenizer()
__snake_case : Dict = self.get_decoder()
__snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : List[Any] = floats_list((3, 10_00) )
__snake_case : Optional[Any] = feature_extractor(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Tuple = processor(_lowerCAmelCase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def snake_case__ ( self : Optional[int] ):
__snake_case : Any = self.get_feature_extractor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : int = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Optional[int] = """This is a test string"""
__snake_case : Union[str, Any] = processor(text=_lowerCAmelCase )
__snake_case : Dict = tokenizer(_lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[Any]=(2, 10, 16) , _lowerCAmelCase : str=77 ):
np.random.seed(_lowerCAmelCase )
return np.random.rand(*_lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : List[str] = self.get_feature_extractor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : List[str] = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 )
__snake_case : int = processor.decode(_lowerCAmelCase )
__snake_case : Optional[int] = decoder.decode_beams(_lowerCAmelCase )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual("""</s> <s> </s>""" , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ["""fork"""], ["""spawn"""]] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] ):
__snake_case : int = self.get_feature_extractor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : int = self.get_decoder()
__snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : int = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
__snake_case : Tuple = processor.batch_decode(_lowerCAmelCase )
else:
with get_context(_lowerCAmelCase ).Pool() as pool:
__snake_case : int = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : int = list(_lowerCAmelCase )
with get_context("""fork""" ).Pool() as p:
__snake_case : Tuple = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase )
__snake_case , __snake_case , __snake_case : List[Any] = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(_lowerCAmelCase , decoded_processor.text )
self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text )
self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score )
self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score )
def snake_case__ ( self : Optional[int] ):
__snake_case : Optional[Any] = self.get_feature_extractor()
__snake_case : int = self.get_tokenizer()
__snake_case : str = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : int = self._get_dummy_logits()
__snake_case : List[str] = 15
__snake_case : Optional[Any] = -20.0
__snake_case : Tuple = -4.0
__snake_case : List[Any] = processor.batch_decode(
_lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , )
__snake_case : List[str] = decoded_processor_out.text
__snake_case : str = list(_lowerCAmelCase )
with get_context("""fork""" ).Pool() as pool:
__snake_case : Dict = decoder.decode_beams_batch(
_lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , )
__snake_case : int = [d[0][0] for d in decoded_decoder_out]
__snake_case : List[Any] = [d[0][2] for d in decoded_decoder_out]
__snake_case : List[Any] = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase )
self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1e-3 ) )
self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1e-3 ) )
def snake_case__ ( self : Any ):
__snake_case : List[Any] = self.get_feature_extractor()
__snake_case : Any = self.get_tokenizer()
__snake_case : Union[str, Any] = self.get_decoder()
__snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Any = self._get_dummy_logits()
__snake_case : Any = 2.0
__snake_case : int = 5.0
__snake_case : Optional[int] = -20.0
__snake_case : Optional[int] = True
__snake_case : Any = processor.batch_decode(
_lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , )
__snake_case : str = decoded_processor_out.text
__snake_case : int = list(_lowerCAmelCase )
decoder.reset_params(
alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , )
with get_context("""fork""" ).Pool() as pool:
__snake_case : Tuple = decoder.decode_beams_batch(
_lowerCAmelCase , _lowerCAmelCase , )
__snake_case : int = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase )
__snake_case : List[str] = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , _lowerCAmelCase )
def snake_case__ ( self : Dict ):
__snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key]
__snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute()
__snake_case : Union[str, Any] = os.listdir(_lowerCAmelCase )
__snake_case : List[str] = ["""alphabet.json""", """language_model"""]
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" )
__snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase )
__snake_case : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key]
__snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute()
__snake_case : List[str] = os.listdir(_lowerCAmelCase )
__snake_case : List[Any] = os.listdir(_lowerCAmelCase )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Optional[int] = floats_list((3, 10_00) )
__snake_case : Union[str, Any] = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Union[str, Any] = processor_auto(_lowerCAmelCase , return_tensors="""np""" )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 )
__snake_case : Dict = self._get_dummy_logits()
__snake_case : List[Any] = processor_wavaveca.batch_decode(_lowerCAmelCase )
__snake_case : List[Any] = processor_auto.batch_decode(_lowerCAmelCase )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def snake_case__ ( self : str ):
__snake_case : int = self.get_feature_extractor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : Optional[Any] = self.get_decoder()
__snake_case : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
@staticmethod
def snake_case__ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ):
__snake_case : Union[str, Any] = [d[key] for d in offsets]
return retrieved_list
def snake_case__ ( self : Dict ):
__snake_case : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : List[str] = self._get_dummy_logits()[0]
__snake_case : str = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""word_offsets""" in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] )
def snake_case__ ( self : List[str] ):
__snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Optional[int] = self._get_dummy_logits()
__snake_case : int = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""word_offsets""" in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertListEqual(
[""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def snake_case__ ( self : Optional[Any] ):
import torch
__snake_case : Optional[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase )
__snake_case : Any = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) )
__snake_case : List[Any] = iter(_lowerCAmelCase )
__snake_case : Optional[int] = next(_lowerCAmelCase )
__snake_case : str = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" )
__snake_case : str = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
__snake_case : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values
with torch.no_grad():
__snake_case : Dict = model(_lowerCAmelCase ).logits.cpu().numpy()
__snake_case : Any = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase )
__snake_case : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
__snake_case : Dict = [
{
"""start_time""": d["""start_offset"""] * time_offset,
"""end_time""": d["""end_offset"""] * time_offset,
"""word""": d["""word"""],
}
for d in output["""word_offsets"""]
]
__snake_case : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL"""
# output words
self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase )
self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text )
# output times
__snake_case : Dict = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) )
__snake_case : Optional[Any] = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) )
# fmt: off
__snake_case : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] )
__snake_case : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
| 20 | 1 |
import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
lowercase_ = "Usage of script: script_name <size_of_canvas:int>"
lowercase_ = [0] * 1_00 + [1] * 10
random.shuffle(choice)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : List[str] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )]
return canvas
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
for i, row in enumerate(__SCREAMING_SNAKE_CASE ):
for j, _ in enumerate(__SCREAMING_SNAKE_CASE ):
__snake_case : int = bool(random.getrandbits(1 ) )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
__snake_case : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) )
for r, row in enumerate(__SCREAMING_SNAKE_CASE ):
for c, pt in enumerate(__SCREAMING_SNAKE_CASE ):
__snake_case : Optional[Any] = __judge_point(
__SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] )
__snake_case : List[str] = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
__snake_case : list[list[bool]] = current_canvas.tolist()
return return_canvas
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
__snake_case : Any = 0
__snake_case : Dict = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status:
alive += 1
else:
dead += 1
# handling duplicate entry for focus pt.
if pt:
alive -= 1
else:
dead -= 1
# running the rules of game here.
__snake_case : str = pt
if pt:
if alive < 2:
__snake_case : Optional[Any] = False
elif alive == 2 or alive == 3:
__snake_case : Union[str, Any] = True
elif alive > 3:
__snake_case : Optional[int] = False
else:
if alive == 3:
__snake_case : List[Any] = True
return state
if __name__ == "__main__":
if len(sys.argv) != 2:
raise Exception(usage_doc)
lowercase_ = int(sys.argv[1])
# main working structure of this module.
lowercase_ = create_canvas(canvas_size)
seed(c)
lowercase_ , lowercase_ = plt.subplots()
fig.show()
lowercase_ = ListedColormap(["w", "k"])
try:
while True:
lowercase_ = run(c)
ax.matshow(c, cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass
| 20 | import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowercase_ = {
"text_branch": "text_model",
"audio_branch": "audio_model.audio_encoder",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc")
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ):
'''simple docstring'''
__snake_case , __snake_case : str = create_model(
"""HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , )
return model, model_cfg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : Union[str, Any] = {}
__snake_case : List[Any] = R""".*sequential.(\d+).*"""
__snake_case : Union[str, Any] = R""".*_projection.(\d+).*"""
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
__snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# replace sequential layers with list
__snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 )
__snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' )
elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
__snake_case : List[Any] = 1 if projecton_layer == 0 else 2
__snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' )
if "audio" and "qkv" in key:
# split qkv into query key and value
__snake_case : Optional[int] = value
__snake_case : Any = mixed_qkv.size(0 ) // 3
__snake_case : List[Any] = mixed_qkv[:qkv_dim]
__snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2]
__snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :]
__snake_case : Any = query_layer
__snake_case : Dict = key_layer
__snake_case : Optional[Any] = value_layer
else:
__snake_case : List[str] = value
return model_state_dict
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ):
'''simple docstring'''
__snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE )
clap_model.eval()
__snake_case : Tuple = clap_model.state_dict()
__snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = ClapConfig()
__snake_case : Tuple = enable_fusion
__snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE )
# ignore the spectrogram embedding layer
model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not")
lowercase_ = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 20 | 1 |
from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=1E-12 ):
'''simple docstring'''
__snake_case : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__SCREAMING_SNAKE_CASE , axis=1 ) , a_min=__SCREAMING_SNAKE_CASE ) ).T
__snake_case : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__SCREAMING_SNAKE_CASE , axis=1 ) , a_min=__SCREAMING_SNAKE_CASE ) ).T
return jnp.matmul(__SCREAMING_SNAKE_CASE , norm_emb_a.T )
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
A : CLIPConfig
A : jnp.dtype = jnp.floataa
def snake_case__ ( self : str ):
__snake_case : List[Any] = FlaxCLIPVisionModule(self.config.vision_config )
__snake_case : Union[str, Any] = nn.Dense(self.config.projection_dim , use_bias=_lowerCAmelCase , dtype=self.dtype )
__snake_case : Optional[Any] = self.param("""concept_embeds""" , jax.nn.initializers.ones , (17, self.config.projection_dim) )
__snake_case : Optional[int] = self.param(
"""special_care_embeds""" , jax.nn.initializers.ones , (3, self.config.projection_dim) )
__snake_case : Union[str, Any] = self.param("""concept_embeds_weights""" , jax.nn.initializers.ones , (17,) )
__snake_case : List[str] = self.param("""special_care_embeds_weights""" , jax.nn.initializers.ones , (3,) )
def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] ):
__snake_case : Tuple = self.vision_model(_lowerCAmelCase )[1]
__snake_case : int = self.visual_projection(_lowerCAmelCase )
__snake_case : List[Any] = jax_cosine_distance(_lowerCAmelCase , self.special_care_embeds )
__snake_case : Optional[int] = jax_cosine_distance(_lowerCAmelCase , self.concept_embeds )
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
__snake_case : List[str] = 0.0
__snake_case : List[str] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
__snake_case : Tuple = jnp.round(_lowerCAmelCase , 3 )
__snake_case : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=_lowerCAmelCase )
# Use a lower threshold if an image has any special care concept
__snake_case : str = is_special_care * 0.01
__snake_case : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
__snake_case : Any = jnp.round(_lowerCAmelCase , 3 )
__snake_case : Optional[int] = jnp.any(concept_scores > 0 , axis=1 )
return has_nsfw_concepts
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Union[str, Any] = CLIPConfig
A : List[str] = "clip_input"
A : str = FlaxStableDiffusionSafetyCheckerModule
def __init__( self : Tuple , _lowerCAmelCase : CLIPConfig , _lowerCAmelCase : Optional[Tuple] = None , _lowerCAmelCase : int = 0 , _lowerCAmelCase : jnp.dtype = jnp.floataa , _lowerCAmelCase : bool = True , **_lowerCAmelCase : List[Any] , ):
if input_shape is None:
__snake_case : List[str] = (1, 2_24, 2_24, 3)
__snake_case : Dict = self.module_class(config=_lowerCAmelCase , dtype=_lowerCAmelCase , **_lowerCAmelCase )
super().__init__(_lowerCAmelCase , _lowerCAmelCase , input_shape=_lowerCAmelCase , seed=_lowerCAmelCase , dtype=_lowerCAmelCase , _do_init=_do_init )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : jax.random.KeyArray , _lowerCAmelCase : Tuple , _lowerCAmelCase : FrozenDict = None ):
# init input tensor
__snake_case : int = jax.random.normal(_lowerCAmelCase , _lowerCAmelCase )
__snake_case , __snake_case : Dict = jax.random.split(_lowerCAmelCase )
__snake_case : Dict = {"""params""": params_rng, """dropout""": dropout_rng}
__snake_case : Union[str, Any] = self.module.init(_lowerCAmelCase , _lowerCAmelCase )["""params"""]
return random_params
def __call__( self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : dict = None , ):
__snake_case : Optional[int] = jnp.transpose(_lowerCAmelCase , (0, 2, 3, 1) )
return self.module.apply(
{"""params""": params or self.params} , jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) , rngs={} , )
| 20 | import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = "▁"
lowercase_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
lowercase_ = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
lowercase_ = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
lowercase_ = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
lowercase_ = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = ["input_ids"]
A : Tuple = VOCAB_FILES_NAMES
A : List[Any] = PRETRAINED_INIT_CONFIGURATION
A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
A : Optional[Any] = RESOURCE_FILES_NAMES
def __init__( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]="utf8" , _lowerCAmelCase : Optional[Any]="[UNK]" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : List[Any]="[MASK]" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Any , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , vocab_file=_lowerCAmelCase , encoding=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , )
__snake_case : List[Any] = do_lower_case
__snake_case : Any = sentencepiece_model_ckpt
__snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCAmelCase )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
__snake_case : int = self.load_vocab(filepath=_lowerCAmelCase )
else:
__snake_case : Tuple = {self.sp_model.id_to_piece(_lowerCAmelCase ): id for id in range(self.sp_model.get_piece_size() )}
__snake_case : str = {v: k for k, v in self.vocab.items()}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[Any] ):
if text is None:
return None
__snake_case : List[Any] = self.tokenize(_lowerCAmelCase )
__snake_case , __snake_case : Optional[Any] = """""", []
for i, ch in enumerate(_lowerCAmelCase ):
if ch in self.SP_CHAR_MAPPING:
__snake_case : Any = self.SP_CHAR_MAPPING.get(_lowerCAmelCase )
else:
__snake_case : Dict = unicodedata.normalize("""NFKC""" , _lowerCAmelCase )
if self.is_whitespace(_lowerCAmelCase ):
continue
normalized_text += ch
char_mapping.extend([i] * len(_lowerCAmelCase ) )
__snake_case , __snake_case , __snake_case : str = normalized_text, [], 0
if self.do_lower_case:
__snake_case : int = text.lower()
for token in split_tokens:
if token[:1] == "▁":
__snake_case : int = token[1:]
__snake_case : Optional[int] = text[offset:].index(_lowerCAmelCase ) + offset
__snake_case : int = start + len(_lowerCAmelCase )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
__snake_case : str = end
return token_mapping
@property
def snake_case__ ( self : Tuple ):
return len(self.vocab )
def snake_case__ ( self : Dict ):
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : int ):
__snake_case : str = self.__dict__.copy()
__snake_case : Union[str, Any] = None
return state
def __setstate__( self : Optional[Any] , _lowerCAmelCase : List[str] ):
__snake_case : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__snake_case : Optional[Any] = {}
__snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] ):
return "".join((self.SP_CHAR_MAPPING.get(_lowerCAmelCase , _lowerCAmelCase ) for c in text) )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[int]=0.1 ):
if self.sp_model_kwargs.get("""enable_sampling""" ) is True:
__snake_case : List[str] = True
if self.sp_model_kwargs.get("""alpha""" ) is not None:
__snake_case : Dict = self.sp_model_kwargs.get("""alpha""" )
if self.sp_model_kwargs.get("""nbest_size""" ) is not None:
__snake_case : List[Any] = self.sp_model_kwargs.get("""nbest_size""" )
if not enable_sampling:
__snake_case : str = self.sp_model.EncodeAsPieces(_lowerCAmelCase )
else:
__snake_case : Tuple = self.sp_model.SampleEncodeAsPieces(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : Union[str, Any] = []
for pi, piece in enumerate(_lowerCAmelCase ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(_lowerCAmelCase ) and pi != 0:
new_pieces.append(_lowerCAmelCase )
continue
else:
continue
__snake_case : Optional[int] = 0
for i, chunk in enumerate(_lowerCAmelCase ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(_lowerCAmelCase ) or self.is_punct(_lowerCAmelCase ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(_lowerCAmelCase )
__snake_case : Tuple = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : Tuple = i
if len(_lowerCAmelCase ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
__snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
__snake_case : int = self.convert_ids_to_tokens(_lowerCAmelCase )
__snake_case : Any = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict ):
return self.reverse_vocab.get(_lowerCAmelCase , self.unk_token )
def snake_case__ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
__snake_case : Optional[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ):
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1]
return [1] + ([0] * len(_lowerCAmelCase )) + [1]
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(_lowerCAmelCase ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(_lowerCAmelCase ) + 1) + [1] * (len(_lowerCAmelCase ) + 3)
def snake_case__ ( self : Tuple , _lowerCAmelCase : List[str] ):
if "\u4e00" <= char <= "\u9fff":
return True
return False
def snake_case__ ( self : List[str] , _lowerCAmelCase : Any ):
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def snake_case__ ( self : int , _lowerCAmelCase : List[Any] ):
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def snake_case__ ( self : str , _lowerCAmelCase : Optional[Any] ):
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(_lowerCAmelCase ) == 1:
__snake_case : Dict = unicodedata.category(_lowerCAmelCase )
if cat == "Zs":
return True
return False
def snake_case__ ( self : str , _lowerCAmelCase : List[Any] ):
__snake_case : Dict = {}
with io.open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for index, line in enumerate(_lowerCAmelCase ):
__snake_case : Tuple = line.rstrip("""\n""" )
__snake_case : List[str] = int(_lowerCAmelCase )
return token_to_idx
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : Optional[int] = 0
if os.path.isdir(_lowerCAmelCase ):
__snake_case : int = os.path.join(
_lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
else:
__snake_case : Optional[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory
with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
""" Please check that the vocabulary is not corrupted!""" )
__snake_case : Union[str, Any] = token_index
writer.write(token + """\n""" )
index += 1
__snake_case : List[Any] = os.path.join(_lowerCAmelCase , """sentencepiece.bpe.model""" )
with open(_lowerCAmelCase , """wb""" ) as fi:
__snake_case : List[Any] = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (vocab_file,)
| 20 | 1 |
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
lowercase_ = logging.getLogger(__name__)
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Any ):
__snake_case : Dict = False
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ):
if not self.initialized:
__snake_case : str = RagRetriever(
_lowerCAmelCase , question_encoder_tokenizer=_lowerCAmelCase , generator_tokenizer=_lowerCAmelCase , index=_lowerCAmelCase , init_retrieval=_lowerCAmelCase , )
__snake_case : Any = True
def snake_case__ ( self : Optional[int] ):
self.retriever.index.init_index()
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] ):
__snake_case , __snake_case : List[Any] = self.retriever._main_retrieve(_lowerCAmelCase , _lowerCAmelCase )
return doc_ids, retrieved_doc_embeds
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : str=None ):
if index is not None and index.is_initialized() and len(_lowerCAmelCase ) > 0:
raise ValueError(
"""When using Ray for distributed fine-tuning, """
"""you'll need to provide the paths instead, """
"""as the dataset and the index are loaded """
"""separately. More info in examples/rag/use_own_knowledge_dataset.py """ )
super().__init__(
_lowerCAmelCase , question_encoder_tokenizer=_lowerCAmelCase , generator_tokenizer=_lowerCAmelCase , index=_lowerCAmelCase , init_retrieval=_lowerCAmelCase , )
__snake_case : str = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
for worker in self.retrieval_workers
] )
def snake_case__ ( self : Any ):
logger.info("""initializing retrieval""" )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def snake_case__ ( self : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple ):
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
__snake_case : List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
__snake_case , __snake_case : Optional[Any] = ray.get(random_worker.retrieve.remote(_lowerCAmelCase , _lowerCAmelCase ) )
else:
__snake_case , __snake_case : List[Any] = self._main_retrieve(_lowerCAmelCase , _lowerCAmelCase )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_lowerCAmelCase )
@classmethod
def snake_case__ ( cls : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None , **_lowerCAmelCase : Optional[int] ):
return super(_lowerCAmelCase , cls ).get_tokenizers(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
@classmethod
def snake_case__ ( cls : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str]=None , **_lowerCAmelCase : Optional[Any] ):
__snake_case : List[str] = kwargs.pop("""config""" , _lowerCAmelCase ) or RagConfig.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase )
__snake_case : Dict = RagTokenizer.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase )
__snake_case : Any = rag_tokenizer.question_encoder
__snake_case : Any = rag_tokenizer.generator
if indexed_dataset is not None:
__snake_case : Dict = """custom"""
__snake_case : List[Any] = CustomHFIndex(config.retrieval_vector_size , _lowerCAmelCase )
else:
__snake_case : Optional[int] = cls._build_index(_lowerCAmelCase )
return cls(
_lowerCAmelCase , question_encoder_tokenizer=_lowerCAmelCase , generator_tokenizer=_lowerCAmelCase , retrieval_workers=_lowerCAmelCase , index=_lowerCAmelCase , )
| 20 | from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json",
"xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json",
"xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json",
"xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json",
"xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json",
"xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json",
"xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json",
"xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json",
"xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json",
"xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = "xlm"
A : List[str] = {
"hidden_size": "emb_dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
"n_words": "vocab_size", # For backward compatibility
}
def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any]=3_01_45 , _lowerCAmelCase : Optional[Any]=20_48 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : int=16 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=5_12 , _lowerCAmelCase : List[Any]=20_48**-0.5 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple="first" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Tuple , ):
__snake_case : Optional[Any] = vocab_size
__snake_case : Tuple = emb_dim
__snake_case : int = n_layers
__snake_case : List[str] = n_heads
__snake_case : Union[str, Any] = dropout
__snake_case : Optional[int] = attention_dropout
__snake_case : Optional[Any] = gelu_activation
__snake_case : Tuple = sinusoidal_embeddings
__snake_case : List[Any] = causal
__snake_case : Dict = asm
__snake_case : int = n_langs
__snake_case : str = use_lang_emb
__snake_case : Dict = layer_norm_eps
__snake_case : List[Any] = bos_index
__snake_case : Union[str, Any] = eos_index
__snake_case : Dict = pad_index
__snake_case : Any = unk_index
__snake_case : Dict = mask_index
__snake_case : Any = is_encoder
__snake_case : Dict = max_position_embeddings
__snake_case : Optional[Any] = embed_init_std
__snake_case : List[Any] = init_std
__snake_case : str = summary_type
__snake_case : Optional[Any] = summary_use_proj
__snake_case : str = summary_activation
__snake_case : Optional[int] = summary_proj_to_labels
__snake_case : Dict = summary_first_dropout
__snake_case : Dict = start_n_top
__snake_case : int = end_n_top
__snake_case : str = mask_token_id
__snake_case : int = lang_id
if "n_words" in kwargs:
__snake_case : Dict = kwargs["""n_words"""]
super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
@property
def snake_case__ ( self : Dict ):
if self.task == "multiple-choice":
__snake_case : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__snake_case : Tuple = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 20 | 1 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class SCREAMING_SNAKE_CASE__ :
def __init__( self : str , _lowerCAmelCase : Any , _lowerCAmelCase : int=13 , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : int=True , _lowerCAmelCase : List[str]=99 , _lowerCAmelCase : Any=32 , _lowerCAmelCase : str=5 , _lowerCAmelCase : str=4 , _lowerCAmelCase : Dict=37 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[str]=5_12 , _lowerCAmelCase : Optional[Any]=16 , _lowerCAmelCase : str=2 , _lowerCAmelCase : Union[str, Any]=0.02 , _lowerCAmelCase : int=3 , _lowerCAmelCase : int=4 , _lowerCAmelCase : Optional[int]=None , ):
__snake_case : int = parent
__snake_case : str = batch_size
__snake_case : str = seq_length
__snake_case : Any = is_training
__snake_case : Tuple = use_token_type_ids
__snake_case : Optional[Any] = use_labels
__snake_case : Optional[int] = vocab_size
__snake_case : Any = hidden_size
__snake_case : Any = num_hidden_layers
__snake_case : Any = num_attention_heads
__snake_case : List[Any] = intermediate_size
__snake_case : Optional[Any] = hidden_act
__snake_case : List[Any] = hidden_dropout_prob
__snake_case : List[Any] = attention_probs_dropout_prob
__snake_case : int = max_position_embeddings
__snake_case : Optional[int] = type_vocab_size
__snake_case : int = type_sequence_label_size
__snake_case : int = initializer_range
__snake_case : int = num_labels
__snake_case : Tuple = num_choices
__snake_case : Tuple = scope
__snake_case : List[str] = self.vocab_size - 1
def snake_case__ ( self : Tuple ):
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Optional[int] = None
if self.use_token_type_ids:
__snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : str = None
__snake_case : Dict = None
__snake_case : Any = None
if self.use_labels:
__snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
__snake_case : List[str] = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
__snake_case : Dict = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , *_lowerCAmelCase : List[str] ):
__snake_case : int = OpenAIGPTModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case : Any = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase )
__snake_case : Dict = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
__snake_case : List[Any] = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , *_lowerCAmelCase : Any ):
__snake_case : Optional[int] = OpenAIGPTLMHeadModel(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case : Optional[int] = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , *_lowerCAmelCase : Optional[Any] ):
__snake_case : Any = OpenAIGPTDoubleHeadsModel(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case : int = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : List[str] ):
__snake_case : int = self.num_labels
__snake_case : str = OpenAIGPTForSequenceClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : Tuple = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case__ ( self : Tuple ):
__snake_case : Optional[int] = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Optional[Any] = config_and_inputs
__snake_case : Dict = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ):
A : Union[str, Any] = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
A : Union[str, Any] = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
A : Optional[Any] = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def snake_case__ ( self : str , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ):
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=False ):
__snake_case : List[Any] = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
__snake_case : List[str] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase , )
__snake_case : List[Any] = inputs_dict["""labels"""]
__snake_case : str = inputs_dict["""labels"""]
__snake_case : List[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_lowerCAmelCase , )
__snake_case : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase )
return inputs_dict
def snake_case__ ( self : Any ):
__snake_case : Tuple = OpenAIGPTModelTester(self )
__snake_case : Optional[Any] = ConfigTester(self , config_class=_lowerCAmelCase , n_embd=37 )
def snake_case__ ( self : str ):
self.config_tester.run_common_tests()
def snake_case__ ( self : str ):
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*_lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*_lowerCAmelCase )
def snake_case__ ( self : str ):
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_lowerCAmelCase )
@slow
def snake_case__ ( self : int ):
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Optional[Any] = OpenAIGPTModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
def snake_case__ ( self : List[str] ):
__snake_case : List[str] = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" )
model.to(_lowerCAmelCase )
__snake_case : List[str] = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_lowerCAmelCase ) # the president is
__snake_case : int = [
4_81,
47_35,
5_44,
2_46,
9_63,
8_70,
7_62,
2_39,
2_44,
4_04_77,
2_44,
2_49,
7_19,
8_81,
4_87,
5_44,
2_40,
2_44,
6_03,
4_81,
] # the president is a very good man. " \n " i\'m sure he is, " said the
__snake_case : Optional[Any] = model.generate(_lowerCAmelCase , do_sample=_lowerCAmelCase )
self.assertListEqual(output_ids[0].tolist() , _lowerCAmelCase )
| 20 | import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json",
"facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[Any] = "encodec"
def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase : Tuple=2_40_00 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : int=1_28 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Union[str, Any]=[8, 5, 4, 2] , _lowerCAmelCase : str="weight_norm" , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict="reflect" , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : Optional[int]=10_24 , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , **_lowerCAmelCase : List[Any] , ):
__snake_case : Optional[int] = target_bandwidths
__snake_case : int = sampling_rate
__snake_case : List[Any] = audio_channels
__snake_case : str = normalize
__snake_case : Union[str, Any] = chunk_length_s
__snake_case : Union[str, Any] = overlap
__snake_case : Union[str, Any] = hidden_size
__snake_case : Union[str, Any] = num_filters
__snake_case : Optional[Any] = num_residual_layers
__snake_case : List[Any] = upsampling_ratios
__snake_case : List[str] = norm_type
__snake_case : Union[str, Any] = kernel_size
__snake_case : Optional[int] = last_kernel_size
__snake_case : Optional[Any] = residual_kernel_size
__snake_case : Dict = dilation_growth_rate
__snake_case : int = use_causal_conv
__snake_case : Tuple = pad_mode
__snake_case : str = compress
__snake_case : Optional[Any] = num_lstm_layers
__snake_case : List[Any] = trim_right_ratio
__snake_case : Any = codebook_size
__snake_case : int = codebook_dim if codebook_dim is not None else hidden_size
__snake_case : int = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' )
super().__init__(**_lowerCAmelCase )
@property
def snake_case__ ( self : int ):
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def snake_case__ ( self : int ):
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def snake_case__ ( self : Union[str, Any] ):
__snake_case : List[str] = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def snake_case__ ( self : Tuple ):
return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 20 | 1 |
from math import ceil
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int = 1_0_0_1 ):
'''simple docstring'''
__snake_case : Optional[Any] = 1
for i in range(1 , int(ceil(n / 2.0 ) ) ):
__snake_case : Tuple = 2 * i + 1
__snake_case : Optional[Any] = 2 * i
__snake_case : Optional[Any] = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
lowercase_ = int(sys.argv[1])
print(solution(n))
except ValueError:
print("Invalid entry - please enter a number")
| 20 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : str = []
__snake_case , __snake_case : List[str] = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
__snake_case : List[Any] = result + left + right
return input_list
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
if len(__SCREAMING_SNAKE_CASE ) <= 1:
return input_list
__snake_case : Union[str, Any] = list(__SCREAMING_SNAKE_CASE )
# iteration for two-way merging
__snake_case : Tuple = 2
while p <= len(__SCREAMING_SNAKE_CASE ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = i
__snake_case : str = i + p - 1
__snake_case : Optional[Any] = (low + high + 1) // 2
__snake_case : str = merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# final merge of last two parts
if p * 2 >= len(__SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = i
__snake_case : str = merge(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
if user_input == "":
lowercase_ = []
else:
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
print(iter_merge_sort(unsorted))
| 20 | 1 |
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
lowercase_ = logging.get_logger(__name__)
# General docstring
lowercase_ = "RegNetConfig"
# Base docstring
lowercase_ = "facebook/regnet-y-040"
lowercase_ = [1, 10_88, 7, 7]
# Image classification docstring
lowercase_ = "facebook/regnet-y-040"
lowercase_ = "tabby, tabby cat"
lowercase_ = [
"facebook/regnet-y-040",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ):
def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : Optional[str] = "relu" , **_lowerCAmelCase : Union[str, Any] , ):
super().__init__(**_lowerCAmelCase )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
__snake_case : Dict = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
__snake_case : Optional[Any] = tf.keras.layers.ConvaD(
filters=_lowerCAmelCase , kernel_size=_lowerCAmelCase , strides=_lowerCAmelCase , padding="""VALID""" , groups=_lowerCAmelCase , use_bias=_lowerCAmelCase , name="""convolution""" , )
__snake_case : str = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" )
__snake_case : int = ACTaFN[activation] if activation is not None else tf.identity
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Dict ):
__snake_case : List[Any] = self.convolution(self.padding(_lowerCAmelCase ) )
__snake_case : List[str] = self.normalization(_lowerCAmelCase )
__snake_case : Optional[int] = self.activation(_lowerCAmelCase )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ):
def __init__( self : str , _lowerCAmelCase : RegNetConfig , **_lowerCAmelCase : List[str] ):
super().__init__(**_lowerCAmelCase )
__snake_case : Tuple = config.num_channels
__snake_case : Any = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Optional[int] ):
__snake_case : List[str] = shape_list(_lowerCAmelCase )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"""Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
__snake_case : Tuple = tf.transpose(_lowerCAmelCase , perm=(0, 2, 3, 1) )
__snake_case : Union[str, Any] = self.embedder(_lowerCAmelCase )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ):
def __init__( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int = 2 , **_lowerCAmelCase : Dict ):
super().__init__(**_lowerCAmelCase )
__snake_case : int = tf.keras.layers.ConvaD(
filters=_lowerCAmelCase , kernel_size=1 , strides=_lowerCAmelCase , use_bias=_lowerCAmelCase , name="""convolution""" )
__snake_case : Any = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" )
def snake_case__ ( self : List[str] , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : bool = False ):
return self.normalization(self.convolution(_lowerCAmelCase ) , training=_lowerCAmelCase )
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ):
def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int , **_lowerCAmelCase : Optional[int] ):
super().__init__(**_lowerCAmelCase )
__snake_case : str = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowerCAmelCase , name="""pooler""" )
__snake_case : int = [
tf.keras.layers.ConvaD(filters=_lowerCAmelCase , kernel_size=1 , activation="""relu""" , name="""attention.0""" ),
tf.keras.layers.ConvaD(filters=_lowerCAmelCase , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ),
]
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Optional[int] ):
# [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels]
__snake_case : Optional[int] = self.pooler(_lowerCAmelCase )
for layer_module in self.attention:
__snake_case : int = layer_module(_lowerCAmelCase )
__snake_case : List[Any] = hidden_state * pooled
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ):
def __init__( self : str , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 1 , **_lowerCAmelCase : Dict ):
super().__init__(**_lowerCAmelCase )
__snake_case : str = in_channels != out_channels or stride != 1
__snake_case : int = max(1 , out_channels // config.groups_width )
__snake_case : Dict = (
TFRegNetShortCut(_lowerCAmelCase , stride=_lowerCAmelCase , name="""shortcut""" )
if should_apply_shortcut
else tf.keras.layers.Activation("""linear""" , name="""shortcut""" )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
__snake_case : Any = [
TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ),
TFRegNetConvLayer(
_lowerCAmelCase , stride=_lowerCAmelCase , groups=_lowerCAmelCase , activation=config.hidden_act , name="""layer.1""" ),
TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=_lowerCAmelCase , name="""layer.2""" ),
]
__snake_case : Optional[int] = ACTaFN[config.hidden_act]
def snake_case__ ( self : Tuple , _lowerCAmelCase : Union[str, Any] ):
__snake_case : Optional[Any] = hidden_state
for layer_module in self.layers:
__snake_case : List[str] = layer_module(_lowerCAmelCase )
__snake_case : Union[str, Any] = self.shortcut(_lowerCAmelCase )
hidden_state += residual
__snake_case : Any = self.activation(_lowerCAmelCase )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 1 , **_lowerCAmelCase : Optional[int] ):
super().__init__(**_lowerCAmelCase )
__snake_case : Optional[Any] = in_channels != out_channels or stride != 1
__snake_case : Dict = max(1 , out_channels // config.groups_width )
__snake_case : Optional[Any] = (
TFRegNetShortCut(_lowerCAmelCase , stride=_lowerCAmelCase , name="""shortcut""" )
if should_apply_shortcut
else tf.keras.layers.Activation("""linear""" , name="""shortcut""" )
)
__snake_case : int = [
TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ),
TFRegNetConvLayer(
_lowerCAmelCase , stride=_lowerCAmelCase , groups=_lowerCAmelCase , activation=config.hidden_act , name="""layer.1""" ),
TFRegNetSELayer(_lowerCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ),
TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=_lowerCAmelCase , name="""layer.3""" ),
]
__snake_case : Tuple = ACTaFN[config.hidden_act]
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[Any] ):
__snake_case : int = hidden_state
for layer_module in self.layers:
__snake_case : List[str] = layer_module(_lowerCAmelCase )
__snake_case : Union[str, Any] = self.shortcut(_lowerCAmelCase )
hidden_state += residual
__snake_case : int = self.activation(_lowerCAmelCase )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ):
def __init__( self : str , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , **_lowerCAmelCase : List[Any] ):
super().__init__(**_lowerCAmelCase )
__snake_case : Tuple = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer
__snake_case : Optional[Any] = [
# downsampling is done in the first layer with stride of 2
layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , stride=_lowerCAmelCase , name="""layers.0""" ),
*[layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )],
]
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ):
for layer_module in self.layers:
__snake_case : int = layer_module(_lowerCAmelCase )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ):
def __init__( self : Tuple , _lowerCAmelCase : RegNetConfig , **_lowerCAmelCase : int ):
super().__init__(**_lowerCAmelCase )
__snake_case : Union[str, Any] = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
_lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) )
__snake_case : Optional[int] = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(_lowerCAmelCase , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , depth=_lowerCAmelCase , name=f'''stages.{i+1}''' ) )
def snake_case__ ( self : Any , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True ):
__snake_case : Union[str, Any] = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__snake_case : Optional[Any] = hidden_states + (hidden_state,)
__snake_case : Optional[Any] = stage_module(_lowerCAmelCase )
if output_hidden_states:
__snake_case : int = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=_lowerCAmelCase , hidden_states=_lowerCAmelCase )
@keras_serializable
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ):
A : List[Any] = RegNetConfig
def __init__( self : Tuple , _lowerCAmelCase : List[Any] , **_lowerCAmelCase : str ):
super().__init__(**_lowerCAmelCase )
__snake_case : List[str] = config
__snake_case : List[str] = TFRegNetEmbeddings(_lowerCAmelCase , name="""embedder""" )
__snake_case : Any = TFRegNetEncoder(_lowerCAmelCase , name="""encoder""" )
__snake_case : Optional[int] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowerCAmelCase , name="""pooler""" )
@unpack_inputs
def snake_case__ ( self : Dict , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , ):
__snake_case : List[Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__snake_case : List[str] = return_dict if return_dict is not None else self.config.use_return_dict
__snake_case : Tuple = self.embedder(_lowerCAmelCase , training=_lowerCAmelCase )
__snake_case : str = self.encoder(
_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase )
__snake_case : str = encoder_outputs[0]
__snake_case : List[Any] = self.pooler(_lowerCAmelCase )
# Change to NCHW output format have uniformity in the modules
__snake_case : Dict = tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) )
__snake_case : int = tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
__snake_case : Tuple = tuple([tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_lowerCAmelCase , pooler_output=_lowerCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Union[str, Any] = RegNetConfig
A : str = "regnet"
A : Any = "pixel_values"
@property
def snake_case__ ( self : Optional[int] ):
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )}
lowercase_ = r"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n"
lowercase_ = r"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." , __UpperCamelCase , )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : List[Any] , _lowerCAmelCase : RegNetConfig , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : List[str] ):
super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase )
__snake_case : Optional[int] = TFRegNetMainLayer(_lowerCAmelCase , name="""regnet""" )
@unpack_inputs
@add_start_docstrings_to_model_forward(_lowerCAmelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def snake_case__ ( self : str , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : List[Any]=False , ):
__snake_case : Optional[int] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__snake_case : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict
__snake_case : List[Any] = self.regnet(
pixel_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __UpperCamelCase , )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase ):
def __init__( self : str , _lowerCAmelCase : RegNetConfig , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Optional[Any] ):
super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase )
__snake_case : Union[str, Any] = config.num_labels
__snake_case : Optional[Any] = TFRegNetMainLayer(_lowerCAmelCase , name="""regnet""" )
# classification head
__snake_case : List[Any] = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(_lowerCAmelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : tf.Tensor = None , _lowerCAmelCase : tf.Tensor = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict=False , ):
__snake_case : int = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict
__snake_case : List[str] = self.regnet(
_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase )
__snake_case : Dict = outputs.pooler_output if return_dict else outputs[1]
__snake_case : Dict = self.classifier[0](_lowerCAmelCase )
__snake_case : Any = self.classifier[1](_lowerCAmelCase )
__snake_case : Optional[int] = None if labels is None else self.hf_compute_loss(labels=_lowerCAmelCase , logits=_lowerCAmelCase )
if not return_dict:
__snake_case : Tuple = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=_lowerCAmelCase , logits=_lowerCAmelCase , hidden_states=outputs.hidden_states )
| 20 | import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
lowercase_ = "Usage of script: script_name <size_of_canvas:int>"
lowercase_ = [0] * 1_00 + [1] * 10
random.shuffle(choice)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : List[str] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )]
return canvas
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
for i, row in enumerate(__SCREAMING_SNAKE_CASE ):
for j, _ in enumerate(__SCREAMING_SNAKE_CASE ):
__snake_case : int = bool(random.getrandbits(1 ) )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
__snake_case : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) )
for r, row in enumerate(__SCREAMING_SNAKE_CASE ):
for c, pt in enumerate(__SCREAMING_SNAKE_CASE ):
__snake_case : Optional[Any] = __judge_point(
__SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] )
__snake_case : List[str] = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
__snake_case : list[list[bool]] = current_canvas.tolist()
return return_canvas
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
__snake_case : Any = 0
__snake_case : Dict = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status:
alive += 1
else:
dead += 1
# handling duplicate entry for focus pt.
if pt:
alive -= 1
else:
dead -= 1
# running the rules of game here.
__snake_case : str = pt
if pt:
if alive < 2:
__snake_case : Optional[Any] = False
elif alive == 2 or alive == 3:
__snake_case : Union[str, Any] = True
elif alive > 3:
__snake_case : Optional[int] = False
else:
if alive == 3:
__snake_case : List[Any] = True
return state
if __name__ == "__main__":
if len(sys.argv) != 2:
raise Exception(usage_doc)
lowercase_ = int(sys.argv[1])
# main working structure of this module.
lowercase_ = create_canvas(canvas_size)
seed(c)
lowercase_ , lowercase_ = plt.subplots()
fig.show()
lowercase_ = ListedColormap(["w", "k"])
try:
while True:
lowercase_ = run(c)
ax.matshow(c, cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass
| 20 | 1 |
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
return round(float(moles / volume ) * nfactor )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
return round(float((moles * 0.08_21 * temperature) / (volume) ) )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
return round(float((moles * 0.08_21 * temperature) / (pressure) ) )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
return round(float((pressure * volume) / (0.08_21 * moles) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Union[Dict, Any]] = None , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : int=2 ):
'''simple docstring'''
from .. import __version__
__snake_case : List[Any] = take_from
__snake_case : List[Any] = ()
if not isinstance(args[0] , __SCREAMING_SNAKE_CASE ):
__snake_case : str = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(__SCREAMING_SNAKE_CASE ):
raise ValueError(
F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''''
F''' version {__version__} is >= {version_name}''' )
__snake_case : Optional[Any] = None
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__SCREAMING_SNAKE_CASE ),)
__snake_case : Optional[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''
elif hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
values += (getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),)
__snake_case : Any = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''
elif deprecated_kwargs is None:
__snake_case : Tuple = F'''`{attribute}` is deprecated and will be removed in version {version_name}.'''
if warning is not None:
__snake_case : Optional[Any] = warning + """ """ if standard_warn else """"""
warnings.warn(warning + message , __SCREAMING_SNAKE_CASE , stacklevel=__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) > 0:
__snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1]
__snake_case : int = call_frame.filename
__snake_case : int = call_frame.lineno
__snake_case : List[str] = call_frame.function
__snake_case , __snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' )
if len(__SCREAMING_SNAKE_CASE ) == 0:
return
elif len(__SCREAMING_SNAKE_CASE ) == 1:
return values[0]
return values
| 20 | 1 |
from __future__ import annotations
import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if depth < 0:
raise ValueError("""Depth cannot be less than 0""" )
if len(__SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("""Scores cannot be empty""" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
return min(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3]
__snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 )
print("""Optimal value : """ , end="""""" )
print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 20 | import argparse
import os
from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPTaConfig,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
TaConfig,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPTaLMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFTaForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWavaVecaModel,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
WavaVecaConfig,
WavaVecaModel,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tfa_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPTaLMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
TaForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
logging.set_verbosity_info()
lowercase_ = {
"bart": (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"bert": (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-base-cased-finetuned-mrpc": (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"dpr": (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"gpt2": (
GPTaConfig,
TFGPTaLMHeadModel,
GPTaLMHeadModel,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlnet": (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm": (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm-roberta": (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"transfo-xl": (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"openai-gpt": (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"roberta": (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"layoutlm": (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"roberta-large-mnli": (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"camembert": (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"flaubert": (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert": (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert-base-distilled-squad": (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert": (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert-visual-feature-encoder": (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"ctrl": (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"albert": (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"t5": (
TaConfig,
TFTaForConditionalGeneration,
TaForConditionalGeneration,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"electra": (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"wav2vec2": (
WavaVecaConfig,
TFWavaVecaModel,
WavaVecaModel,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=True ):
'''simple docstring'''
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' )
__snake_case , __snake_case , __snake_case , __snake_case : Any = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
__snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
__snake_case : Dict = config_class.from_json_file(__SCREAMING_SNAKE_CASE )
__snake_case : Tuple = True
__snake_case : Union[str, Any] = True
print(F'''Building TensorFlow model from configuration: {config}''' )
__snake_case : List[Any] = model_class(__SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
__snake_case : Optional[Any] = cached_file(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
# Load PyTorch checkpoint in tf2 model:
__snake_case : List[Any] = load_pytorch_checkpoint_in_tfa_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if compare_with_pt_model:
__snake_case : Tuple = tf_model(tf_model.dummy_inputs , training=__SCREAMING_SNAKE_CASE ) # build the network
__snake_case : List[str] = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" )
__snake_case : Any = pt_model_class.from_pretrained(
pretrained_model_name_or_path=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE , state_dict=__SCREAMING_SNAKE_CASE )
with torch.no_grad():
__snake_case : Union[str, Any] = pt_model(**pt_model.dummy_inputs )
__snake_case : Any = pto[0].numpy()
__snake_case : Optional[int] = tfo[0].numpy()
__snake_case : Optional[int] = np.amax(np.abs(np_pt - np_tf ) )
print(F'''Max absolute difference between models outputs {diff}''' )
assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}'''
# Save pytorch-model
print(F'''Save TensorFlow model to {tf_dump_path}''' )
tf_model.save_weights(__SCREAMING_SNAKE_CASE , save_format="""h5""" )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Any=False , ):
'''simple docstring'''
if args_model_type is None:
__snake_case : Tuple = list(MODEL_CLASSES.keys() )
else:
__snake_case : Union[str, Any] = [args_model_type]
for j, model_type in enumerate(__SCREAMING_SNAKE_CASE , start=1 ):
print("""=""" * 1_0_0 )
print(F''' Converting model type {j}/{len(__SCREAMING_SNAKE_CASE )}: {model_type}''' )
print("""=""" * 1_0_0 )
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' )
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
__snake_case : int = list(aws_model_maps.keys() )
if config_shortcut_names_or_path is None:
__snake_case : Union[str, Any] = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , start=1 ):
print("""-""" * 1_0_0 )
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' )
continue
__snake_case : List[Any] = model_shortcut_name
elif only_convert_finetuned_models:
print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' )
continue
print(
F''' Converting checkpoint {i}/{len(__SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}''' )
print("""-""" * 1_0_0 )
if config_shortcut_name in aws_config_map:
__snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
else:
__snake_case : Dict = config_shortcut_name
if model_shortcut_name in aws_model_maps:
__snake_case : Union[str, Any] = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
else:
__snake_case : List[Any] = model_shortcut_name
if os.path.isfile(__SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = """converted_model"""
convert_pt_checkpoint_to_tf(
model_type=__SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=__SCREAMING_SNAKE_CASE , config_file=__SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(__SCREAMING_SNAKE_CASE , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__SCREAMING_SNAKE_CASE , )
if remove_cached_files:
os.remove(__SCREAMING_SNAKE_CASE )
os.remove(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file."
)
parser.add_argument(
"--model_type",
default=None,
type=str,
help=(
F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and '''
"convert all the models from AWS."
),
)
parser.add_argument(
"--pytorch_checkpoint_path",
default=None,
type=str,
help=(
"Path to the PyTorch checkpoint path or shortcut name to download from AWS. "
"If not given, will download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--config_file",
default=None,
type=str,
help=(
"The config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture. If not given and "
"--pytorch_checkpoint_path is not given or is a shortcut name "
"use the configuration associated to the shortcut name on the AWS"
),
)
parser.add_argument(
"--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions."
)
parser.add_argument(
"--use_cached_models",
action="store_true",
help="Use cached models if possible instead of updating to latest checkpoint versions.",
)
parser.add_argument(
"--remove_cached_files",
action="store_true",
help="Remove pytorch models after conversion (save memory when converting in batches).",
)
parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.")
lowercase_ = parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
| 20 | 1 |
from typing import List
from .keymap import KEYMAP, get_character
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
def decorator(__SCREAMING_SNAKE_CASE : List[str] ):
__snake_case : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , """handle_key""" , [] )
handle += [key]
setattr(__SCREAMING_SNAKE_CASE , """handle_key""" , __SCREAMING_SNAKE_CASE )
return func
return decorator
def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
def decorator(__SCREAMING_SNAKE_CASE : Dict ):
__snake_case : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , """handle_key""" , [] )
handle += keys
setattr(__SCREAMING_SNAKE_CASE , """handle_key""" , __SCREAMING_SNAKE_CASE )
return func
return decorator
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __new__( cls : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ):
__snake_case : Tuple = super().__new__(cls , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if not hasattr(_lowerCAmelCase , """key_handler""" ):
setattr(_lowerCAmelCase , """key_handler""" , {} )
setattr(_lowerCAmelCase , """handle_input""" , KeyHandler.handle_input )
for value in attrs.values():
__snake_case : Optional[Any] = getattr(_lowerCAmelCase , """handle_key""" , [] )
for key in handled_keys:
__snake_case : int = value
return new_cls
@staticmethod
def snake_case__ ( cls : Optional[Any] ):
__snake_case : Optional[int] = get_character()
if char != KEYMAP["undefined"]:
__snake_case : Tuple = ord(_lowerCAmelCase )
__snake_case : List[Any] = cls.key_handler.get(_lowerCAmelCase )
if handler:
__snake_case : Union[str, Any] = char
return handler(cls )
else:
return None
def __lowerCAmelCase ( cls : Optional[int] ):
'''simple docstring'''
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 20 | import random
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
__snake_case , __snake_case , __snake_case : Tuple = [], [], []
for element in data:
if element < pivot:
less.append(__SCREAMING_SNAKE_CASE )
elif element > pivot:
greater.append(__SCREAMING_SNAKE_CASE )
else:
equal.append(__SCREAMING_SNAKE_CASE )
return less, equal, greater
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
# index = len(items) // 2 when trying to find the median
# (value of index when items is sorted)
# invalid input
if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0:
return None
__snake_case : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )]
__snake_case : Tuple = 0
__snake_case , __snake_case , __snake_case : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE )
__snake_case : int = len(__SCREAMING_SNAKE_CASE )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# must be in larger
else:
return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
| 20 | 1 |
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
lowercase_ = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
lowercase_ = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n"
lowercase_ = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
def snake_case__ ( self : Union[str, Any] ):
if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ):
raise ImportWarning(
"""To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"""
"""You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[
"""https://github.com/m-popovic/chrF""",
] , )
def snake_case__ ( self : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : int = CHRF.CHAR_ORDER , _lowerCAmelCase : int = CHRF.WORD_ORDER , _lowerCAmelCase : int = CHRF.BETA , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , ):
__snake_case : List[str] = len(references[0] )
if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""" )
__snake_case : Tuple = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )]
__snake_case : Any = CHRF(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : List[Any] = sb_chrf.corpus_score(_lowerCAmelCase , _lowerCAmelCase )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 20 | import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"
),
}
}
lowercase_ = {
"junnyu/roformer_chinese_small": 15_36,
"junnyu/roformer_chinese_base": 15_36,
"junnyu/roformer_chinese_char_small": 5_12,
"junnyu/roformer_chinese_char_base": 5_12,
"junnyu/roformer_small_discriminator": 1_28,
"junnyu/roformer_small_generator": 1_28,
}
lowercase_ = {
"junnyu/roformer_chinese_small": {"do_lower_case": True},
"junnyu/roformer_chinese_base": {"do_lower_case": True},
"junnyu/roformer_chinese_char_small": {"do_lower_case": True},
"junnyu/roformer_chinese_char_base": {"do_lower_case": True},
"junnyu/roformer_small_discriminator": {"do_lower_case": True},
"junnyu/roformer_small_generator": {"do_lower_case": True},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = VOCAB_FILES_NAMES
A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : int = PRETRAINED_INIT_CONFIGURATION
A : List[str] = RoFormerTokenizer
def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any="[UNK]" , _lowerCAmelCase : int="[SEP]" , _lowerCAmelCase : Optional[int]="[PAD]" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Dict , ):
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
__snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case
or pre_tok_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents
):
__snake_case : Tuple = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) )
__snake_case : List[Any] = do_lower_case
__snake_case : Optional[Any] = strip_accents
__snake_case : List[str] = pre_tok_class(**_lowerCAmelCase )
__snake_case : Optional[Any] = do_lower_case
def __getstate__( self : Optional[Any] ):
__snake_case : Optional[int] = self.__dict__.copy()
__snake_case : Optional[Any] = BertPreTokenizer()
return state
def __setstate__( self : str , _lowerCAmelCase : Dict ):
__snake_case : str = d
__snake_case : int = self.__dict__["""_tokenizer"""].get_vocab()
__snake_case : List[str] = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=None ):
__snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
def snake_case__ ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Tuple , ):
__snake_case : Tuple = BertPreTokenizer()
return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
| 20 | 1 |
import unittest
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class SCREAMING_SNAKE_CASE__ :
@staticmethod
def snake_case__ ( *_lowerCAmelCase : Tuple , **_lowerCAmelCase : str ):
pass
@is_pipeline_test
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
A : Optional[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int ):
__snake_case : Dict = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" )
__snake_case : Any = [
{
"""image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ),
"""question""": """How many cats are there?""",
},
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""question""": """How many cats are there?""",
},
]
return vqa_pipeline, examples
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ):
__snake_case : Union[str, Any] = vqa_pipeline(_lowerCAmelCase , top_k=1 )
self.assertEqual(
_lowerCAmelCase , [
[{"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}],
[{"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}],
] , )
@require_torch
def snake_case__ ( self : List[str] ):
__snake_case : Dict = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" )
__snake_case : int = """./tests/fixtures/tests_samples/COCO/000000039769.png"""
__snake_case : str = """How many cats are there?"""
__snake_case : Tuple = vqa_pipeline(image=_lowerCAmelCase , question="""How many cats are there?""" , top_k=2 )
self.assertEqual(
_lowerCAmelCase , [{"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}, {"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}] )
__snake_case : Any = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 )
self.assertEqual(
_lowerCAmelCase , [{"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}, {"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}] )
@slow
@require_torch
def snake_case__ ( self : str ):
__snake_case : Dict = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" )
__snake_case : List[Any] = """./tests/fixtures/tests_samples/COCO/000000039769.png"""
__snake_case : int = """How many cats are there?"""
__snake_case : int = vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] )
__snake_case : Union[str, Any] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] )
__snake_case : List[str] = vqa_pipeline(
[{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}]] * 2 , )
@require_tf
@unittest.skip("""Visual question answering not implemented in TF""" )
def snake_case__ ( self : Any ):
pass
| 20 | from __future__ import annotations
import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if depth < 0:
raise ValueError("""Depth cannot be less than 0""" )
if len(__SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("""Scores cannot be empty""" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
return min(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3]
__snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 )
print("""Optimal value : """ , end="""""" )
print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 20 | 1 |
import argparse
import os
from pathlib import Path
import torch
from bark.generation import _load_model as _bark_load_model
from huggingface_hub import hf_hub_download
from transformers import EncodecConfig, EncodecModel, set_seed
from transformers.models.bark.configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
)
from transformers.models.bark.generation_configuration_bark import (
BarkCoarseGenerationConfig,
BarkFineGenerationConfig,
BarkGenerationConfig,
BarkSemanticGenerationConfig,
)
from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel
from transformers.utils import logging
logging.set_verbosity_info()
lowercase_ = logging.get_logger(__name__)
set_seed(7_70)
lowercase_ = {
"c_attn": "att_proj",
"c_proj": "out_proj",
"c_fc": "in_proj",
"transformer.": "",
"h.": "layers.",
"ln_1": "layernorm_1",
"ln_2": "layernorm_2",
"ln_f": "layernorm_final",
"wpe": "position_embeds_layer",
"wte": "input_embeds_layer",
}
lowercase_ = {
"text_small": {
"repo_id": "suno/bark",
"file_name": "text.pt",
},
"coarse_small": {
"repo_id": "suno/bark",
"file_name": "coarse.pt",
},
"fine_small": {
"repo_id": "suno/bark",
"file_name": "fine.pt",
},
"text": {
"repo_id": "suno/bark",
"file_name": "text_2.pt",
},
"coarse": {
"repo_id": "suno/bark",
"file_name": "coarse_2.pt",
},
"fine": {
"repo_id": "suno/bark",
"file_name": "fine_2.pt",
},
}
lowercase_ = os.path.dirname(os.path.abspath(__file__))
lowercase_ = os.path.join(os.path.expanduser("~"), ".cache")
lowercase_ = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0")
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str]=False ):
'''simple docstring'''
__snake_case : Tuple = model_type
if use_small:
key += "_small"
return os.path.join(__SCREAMING_SNAKE_CASE , REMOTE_MODEL_PATHS[key]["""file_name"""] )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE )
hf_hub_download(repo_id=__SCREAMING_SNAKE_CASE , filename=__SCREAMING_SNAKE_CASE , local_dir=__SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : List[str]="text" ):
'''simple docstring'''
if model_type == "text":
__snake_case : Optional[Any] = BarkSemanticModel
__snake_case : str = BarkSemanticConfig
__snake_case : Union[str, Any] = BarkSemanticGenerationConfig
elif model_type == "coarse":
__snake_case : Optional[Any] = BarkCoarseModel
__snake_case : List[str] = BarkCoarseConfig
__snake_case : Dict = BarkCoarseGenerationConfig
elif model_type == "fine":
__snake_case : Tuple = BarkFineModel
__snake_case : Tuple = BarkFineConfig
__snake_case : Tuple = BarkFineGenerationConfig
else:
raise NotImplementedError()
__snake_case : Tuple = F'''{model_type}_small''' if use_small else model_type
__snake_case : Optional[int] = REMOTE_MODEL_PATHS[model_key]
if not os.path.exists(__SCREAMING_SNAKE_CASE ):
logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' )
_download(model_info["""repo_id"""] , model_info["""file_name"""] )
__snake_case : Dict = torch.load(__SCREAMING_SNAKE_CASE , map_location=__SCREAMING_SNAKE_CASE )
# this is a hack
__snake_case : Optional[Any] = checkpoint["""model_args"""]
if "input_vocab_size" not in model_args:
__snake_case : List[Any] = model_args["""vocab_size"""]
__snake_case : str = model_args["""vocab_size"""]
del model_args["vocab_size"]
# convert Bark model arguments to HF Bark model arguments
__snake_case : Tuple = model_args.pop("""n_head""" )
__snake_case : List[str] = model_args.pop("""n_embd""" )
__snake_case : str = model_args.pop("""n_layer""" )
__snake_case : int = ConfigClass(**checkpoint["""model_args"""] )
__snake_case : int = ModelClass(config=__SCREAMING_SNAKE_CASE )
__snake_case : List[str] = GenerationConfigClass()
__snake_case : List[str] = model_generation_config
__snake_case : Dict = checkpoint["""model"""]
# fixup checkpoint
__snake_case : Union[str, Any] = """_orig_mod."""
for k, v in list(state_dict.items() ):
if k.startswith(__SCREAMING_SNAKE_CASE ):
# replace part of the key with corresponding layer name in HF implementation
__snake_case : Optional[Any] = k[len(__SCREAMING_SNAKE_CASE ) :]
for old_layer_name in new_layer_name_dict:
__snake_case : str = new_k.replace(__SCREAMING_SNAKE_CASE , new_layer_name_dict[old_layer_name] )
__snake_case : Tuple = state_dict.pop(__SCREAMING_SNAKE_CASE )
__snake_case : Union[str, Any] = set(state_dict.keys() ) - set(model.state_dict().keys() )
__snake_case : Optional[int] = {k for k in extra_keys if not k.endswith(""".attn.bias""" )}
__snake_case : Optional[int] = set(model.state_dict().keys() ) - set(state_dict.keys() )
__snake_case : int = {k for k in missing_keys if not k.endswith(""".attn.bias""" )}
if len(__SCREAMING_SNAKE_CASE ) != 0:
raise ValueError(F'''extra keys found: {extra_keys}''' )
if len(__SCREAMING_SNAKE_CASE ) != 0:
raise ValueError(F'''missing keys: {missing_keys}''' )
model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE )
__snake_case : Optional[int] = model.num_parameters(exclude_embeddings=__SCREAMING_SNAKE_CASE )
__snake_case : Union[str, Any] = checkpoint["""best_val_loss"""].item()
logger.info(F'''model loaded: {round(n_params/1E6 , 1 )}M params, {round(__SCREAMING_SNAKE_CASE , 3 )} loss''' )
model.eval()
model.to(__SCREAMING_SNAKE_CASE )
del checkpoint, state_dict
return model
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : Optional[int]="text" ):
'''simple docstring'''
if model_type not in ("text", "coarse", "fine"):
raise NotImplementedError()
__snake_case : Union[str, Any] = """cpu""" # do conversion on cpu
__snake_case : Union[str, Any] = _get_ckpt_path(__SCREAMING_SNAKE_CASE , use_small=__SCREAMING_SNAKE_CASE )
__snake_case : Any = _load_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , model_type=__SCREAMING_SNAKE_CASE , use_small=__SCREAMING_SNAKE_CASE )
# load bark initial model
__snake_case : Optional[int] = _bark_load_model(__SCREAMING_SNAKE_CASE , """cpu""" , model_type=__SCREAMING_SNAKE_CASE , use_small=__SCREAMING_SNAKE_CASE )
if model_type == "text":
__snake_case : Tuple = bark_model["""model"""]
if model.num_parameters(exclude_embeddings=__SCREAMING_SNAKE_CASE ) != bark_model.get_num_params():
raise ValueError("""initial and new models don't have the same number of parameters""" )
# check if same output as the bark model
__snake_case : Dict = 5
__snake_case : str = 1_0
if model_type in ["text", "coarse"]:
__snake_case : Optional[int] = torch.randint(2_5_6 , (batch_size, sequence_length) , dtype=torch.int )
__snake_case : Tuple = bark_model(__SCREAMING_SNAKE_CASE )[0]
__snake_case : Dict = model(__SCREAMING_SNAKE_CASE )
# take last logits
__snake_case : List[Any] = output_new_model_total.logits[:, [-1], :]
else:
__snake_case : Any = 3
__snake_case : Dict = 8
__snake_case : Any = torch.randint(2_5_6 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int )
__snake_case : List[str] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Dict = bark_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Union[str, Any] = output_new_model_total.logits
# output difference should come from the difference of self-attention implementation design
if output_new_model.shape != output_old_model.shape:
raise ValueError("""initial and new outputs don't have the same shape""" )
if (output_new_model - output_old_model).abs().max().item() > 1E-3:
raise ValueError("""initial and new outputs are not equal""" )
Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , ):
'''simple docstring'''
__snake_case : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = BarkSemanticConfig.from_pretrained(os.path.join(__SCREAMING_SNAKE_CASE , """config.json""" ) )
__snake_case : Optional[Any] = BarkCoarseConfig.from_pretrained(os.path.join(__SCREAMING_SNAKE_CASE , """config.json""" ) )
__snake_case : Dict = BarkFineConfig.from_pretrained(os.path.join(__SCREAMING_SNAKE_CASE , """config.json""" ) )
__snake_case : Dict = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" )
__snake_case : int = BarkSemanticModel.from_pretrained(__SCREAMING_SNAKE_CASE )
__snake_case : Dict = BarkCoarseModel.from_pretrained(__SCREAMING_SNAKE_CASE )
__snake_case : Dict = BarkFineModel.from_pretrained(__SCREAMING_SNAKE_CASE )
__snake_case : str = EncodecModel.from_pretrained("""facebook/encodec_24khz""" )
__snake_case : List[Any] = BarkConfig.from_sub_model_configs(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : str = BarkGenerationConfig.from_sub_model_configs(
semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config )
__snake_case : int = BarkModel(__SCREAMING_SNAKE_CASE )
__snake_case : List[str] = semantic
__snake_case : Any = coarseAcoustic
__snake_case : Optional[Any] = fineAcoustic
__snake_case : Optional[int] = codec
__snake_case : str = bark_generation_config
Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
bark.save_pretrained(__SCREAMING_SNAKE_CASE , repo_id=__SCREAMING_SNAKE_CASE , push_to_hub=__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("model_type", type=str, help="text, coarse or fine.")
parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.")
lowercase_ = parser.parse_args()
load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
| 20 | import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
lowercase_ = None
lowercase_ = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
lowercase_ = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : bool = True
A : Optional[str] = None
# Automatically constructed
A : ClassVar[str] = "PIL.Image.Image"
A : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} )
A : str = field(default="Image" , init=__UpperCamelCase , repr=__UpperCamelCase )
def __call__( self : Any ):
return self.pa_type
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
__snake_case : str = np.array(_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": value, "bytes": None}
elif isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": None, "bytes": value}
elif isinstance(_lowerCAmelCase , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(_lowerCAmelCase )
elif isinstance(_lowerCAmelCase , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(_lowerCAmelCase )
elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("""path""" )}
elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )}
else:
raise ValueError(
f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def snake_case__ ( self : List[str] , _lowerCAmelCase : dict , _lowerCAmelCase : Dict=None ):
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support decoding images, please install 'Pillow'.""" )
if token_per_repo_id is None:
__snake_case : Tuple = {}
__snake_case , __snake_case : str = value["""path"""], value["""bytes"""]
if bytes_ is None:
if path is None:
raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
else:
if is_local_path(_lowerCAmelCase ):
__snake_case : str = PIL.Image.open(_lowerCAmelCase )
else:
__snake_case : List[str] = path.split("""::""" )[-1]
try:
__snake_case : Dict = string_to_dict(_lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""]
__snake_case : int = token_per_repo_id.get(_lowerCAmelCase )
except ValueError:
__snake_case : List[Any] = None
with xopen(_lowerCAmelCase , """rb""" , use_auth_token=_lowerCAmelCase ) as f:
__snake_case : Union[str, Any] = BytesIO(f.read() )
__snake_case : Dict = PIL.Image.open(bytes_ )
else:
__snake_case : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def snake_case__ ( self : Union[str, Any] ):
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("""binary""" ),
"path": Value("""string""" ),
}
)
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ):
if pa.types.is_string(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("""bytes""" ) >= 0:
__snake_case : List[str] = storage.field("""bytes""" )
else:
__snake_case : List[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
if storage.type.get_field_index("""path""" ) >= 0:
__snake_case : Optional[int] = storage.field("""path""" )
else:
__snake_case : int = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
__snake_case : Optional[Any] = pa.array(
[encode_np_array(np.array(_lowerCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
__snake_case : Optional[int] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays(
[bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : pa.StructArray ):
@no_op_if_value_is_null
def path_to_bytes(_lowerCAmelCase : Tuple ):
with xopen(_lowerCAmelCase , """rb""" ) as f:
__snake_case : Optional[int] = f.read()
return bytes_
__snake_case : Tuple = pa.array(
[
(path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
__snake_case : Optional[Any] = pa.array(
[os.path.basename(_lowerCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def __lowerCAmelCase ( ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
__snake_case : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
__snake_case : List[Any] = BytesIO()
if image.format in list_image_compression_formats():
__snake_case : Union[str, Any] = image.format
else:
__snake_case : List[Any] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF"""
image.save(__SCREAMING_SNAKE_CASE , format=__SCREAMING_SNAKE_CASE )
return buffer.getvalue()
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
if hasattr(__SCREAMING_SNAKE_CASE , """filename""" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
__snake_case : List[Any] = array.dtype
__snake_case : List[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER
__snake_case : Dict = dtype.kind
__snake_case : Union[str, Any] = dtype.itemsize
__snake_case : Tuple = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
__snake_case : int = np.dtype("""|u1""" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' )
if dtype is not dest_dtype:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
__snake_case : List[str] = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
__snake_case : int = dtype_byteorder + dtype_kind + str(__SCREAMING_SNAKE_CASE )
__snake_case : Any = np.dtype(__SCREAMING_SNAKE_CASE )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' )
__snake_case : Optional[int] = PIL.Image.fromarray(array.astype(__SCREAMING_SNAKE_CASE ) )
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if objs:
__snake_case , __snake_case : Any = first_non_null_value(__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
__snake_case : int = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ):
__snake_case : List[str] = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
else:
return objs
else:
return objs
| 20 | 1 |
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 20 | from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(__UpperCamelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ):
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = {}
__snake_case : int = {}
if prompt is not None:
__snake_case : Dict = prompt
if generate_kwargs is not None:
__snake_case : List[Any] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__snake_case : Optional[int] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
__snake_case : Any = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ):
return super().__call__(_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = load_image(_lowerCAmelCase )
if prompt is not None:
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
raise ValueError(
f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
__snake_case : Tuple = self.model.config.model_type
if model_type == "git":
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids
__snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids
__snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
__snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework )
model_inputs.update(_lowerCAmelCase )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
__snake_case : int = None
return model_inputs
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ):
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase )
and all(x is None for x in model_inputs["""input_ids"""] )
):
__snake_case : List[Any] = None
if generate_kwargs is None:
__snake_case : Dict = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__snake_case : Dict = model_inputs.pop(self.model.main_input_name )
__snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase )
return model_outputs
def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ):
__snake_case : Union[str, Any] = []
for output_ids in model_outputs:
__snake_case : Union[str, Any] = {
"""generated_text""": self.tokenizer.decode(
_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , )
}
records.append(_lowerCAmelCase )
return records
| 20 | 1 |
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
lowercase_ = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n"
lowercase_ = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n"
lowercase_ = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n"
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
return float((preds == labels).mean() )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
__snake_case : Tuple = simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : int = float(fa_score(y_true=__SCREAMING_SNAKE_CASE , y_pred=__SCREAMING_SNAKE_CASE ) )
return {
"accuracy": acc,
"f1": fa,
}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
__snake_case : List[str] = float(pearsonr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )[0] )
__snake_case : List[Any] = float(spearmanr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )[0] )
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
def snake_case__ ( self : Optional[int] ):
if self.config_name not in [
"sst2",
"mnli",
"mnli_mismatched",
"mnli_matched",
"cola",
"stsb",
"mrpc",
"qqp",
"qnli",
"rte",
"wnli",
"hans",
]:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """
"""\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ),
"""references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ),
} ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , )
def snake_case__ ( self : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ):
if self.config_name == "cola":
return {"matthews_correlation": matthews_corrcoef(_lowerCAmelCase , _lowerCAmelCase )}
elif self.config_name == "stsb":
return pearson_and_spearman(_lowerCAmelCase , _lowerCAmelCase )
elif self.config_name in ["mrpc", "qqp"]:
return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase )
elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
return {"accuracy": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )}
else:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """
"""\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
| 20 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowercase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["YolosFeatureExtractor"]
lowercase_ = ["YolosImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST",
"YolosForObjectDetection",
"YolosModel",
"YolosPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple=0.9_99 , __SCREAMING_SNAKE_CASE : Union[str, Any]="cosine" , ):
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(__SCREAMING_SNAKE_CASE : Tuple ):
return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__SCREAMING_SNAKE_CASE : Optional[Any] ):
return math.exp(t * -12.0 )
else:
raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
__snake_case : List[str] = []
for i in range(__SCREAMING_SNAKE_CASE ):
__snake_case : Tuple = i / num_diffusion_timesteps
__snake_case : Dict = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__SCREAMING_SNAKE_CASE ) / alpha_bar_fn(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) )
return torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.floataa )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase ):
A : Any = [e.name for e in KarrasDiffusionSchedulers]
A : Optional[Any] = 2
@register_to_config
def __init__( self : Optional[int] , _lowerCAmelCase : int = 10_00 , _lowerCAmelCase : float = 0.00085 , _lowerCAmelCase : float = 0.012 , _lowerCAmelCase : str = "linear" , _lowerCAmelCase : Optional[Union[np.ndarray, List[float]]] = None , _lowerCAmelCase : str = "epsilon" , _lowerCAmelCase : Optional[bool] = False , _lowerCAmelCase : Optional[bool] = False , _lowerCAmelCase : float = 1.0 , _lowerCAmelCase : str = "linspace" , _lowerCAmelCase : int = 0 , ):
if trained_betas is not None:
__snake_case : Tuple = torch.tensor(_lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "linear":
__snake_case : int = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__snake_case : Tuple = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__snake_case : Union[str, Any] = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="""cosine""" )
elif beta_schedule == "exp":
__snake_case : Optional[Any] = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="""exp""" )
else:
raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' )
__snake_case : Union[str, Any] = 1.0 - self.betas
__snake_case : Optional[Any] = torch.cumprod(self.alphas , dim=0 )
# set all values
self.set_timesteps(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : Optional[Any] = use_karras_sigmas
def snake_case__ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int=None ):
if schedule_timesteps is None:
__snake_case : List[str] = self.timesteps
__snake_case : str = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
__snake_case : Union[str, Any] = 1 if len(_lowerCAmelCase ) > 1 else 0
else:
__snake_case : List[Any] = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep
__snake_case : int = self._index_counter[timestep_int]
return indices[pos].item()
@property
def snake_case__ ( self : Optional[Any] ):
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : Union[float, torch.FloatTensor] , ):
__snake_case : Dict = self.index_for_timestep(_lowerCAmelCase )
__snake_case : Optional[Any] = self.sigmas[step_index]
__snake_case : str = sample / ((sigma**2 + 1) ** 0.5)
return sample
def snake_case__ ( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, torch.device] = None , _lowerCAmelCase : Optional[int] = None , ):
__snake_case : int = num_inference_steps
__snake_case : Dict = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
__snake_case : Any = np.linspace(0 , num_train_timesteps - 1 , _lowerCAmelCase , dtype=_lowerCAmelCase )[::-1].copy()
elif self.config.timestep_spacing == "leading":
__snake_case : Optional[int] = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__snake_case : List[Any] = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(_lowerCAmelCase )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
__snake_case : Optional[int] = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__snake_case : Tuple = (np.arange(_lowerCAmelCase , 0 , -step_ratio )).round().copy().astype(_lowerCAmelCase )
timesteps -= 1
else:
raise ValueError(
f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' )
__snake_case : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
__snake_case : Optional[int] = np.log(_lowerCAmelCase )
__snake_case : Tuple = np.interp(_lowerCAmelCase , np.arange(0 , len(_lowerCAmelCase ) ) , _lowerCAmelCase )
if self.config.use_karras_sigmas:
__snake_case : List[str] = self._convert_to_karras(in_sigmas=_lowerCAmelCase , num_inference_steps=self.num_inference_steps )
__snake_case : Dict = np.array([self._sigma_to_t(_lowerCAmelCase , _lowerCAmelCase ) for sigma in sigmas] )
__snake_case : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
__snake_case : str = torch.from_numpy(_lowerCAmelCase ).to(device=_lowerCAmelCase )
__snake_case : Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] )
__snake_case : int = torch.from_numpy(_lowerCAmelCase )
__snake_case : int = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] )
if str(_lowerCAmelCase ).startswith("""mps""" ):
# mps does not support float64
__snake_case : Union[str, Any] = timesteps.to(_lowerCAmelCase , dtype=torch.floataa )
else:
__snake_case : List[Any] = timesteps.to(device=_lowerCAmelCase )
# empty dt and derivative
__snake_case : Tuple = None
__snake_case : List[str] = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
__snake_case : Optional[int] = defaultdict(_lowerCAmelCase )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ):
# get log sigma
__snake_case : Optional[Any] = np.log(_lowerCAmelCase )
# get distribution
__snake_case : str = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
__snake_case : Union[str, Any] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 )
__snake_case : Optional[Any] = low_idx + 1
__snake_case : int = log_sigmas[low_idx]
__snake_case : int = log_sigmas[high_idx]
# interpolate sigmas
__snake_case : Union[str, Any] = (low - log_sigma) / (low - high)
__snake_case : Any = np.clip(_lowerCAmelCase , 0 , 1 )
# transform interpolation to time range
__snake_case : List[str] = (1 - w) * low_idx + w * high_idx
__snake_case : int = t.reshape(sigma.shape )
return t
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : List[Any] ):
__snake_case : float = in_sigmas[-1].item()
__snake_case : float = in_sigmas[0].item()
__snake_case : Optional[int] = 7.0 # 7.0 is the value used in the paper
__snake_case : int = np.linspace(0 , 1 , _lowerCAmelCase )
__snake_case : Dict = sigma_min ** (1 / rho)
__snake_case : Any = sigma_max ** (1 / rho)
__snake_case : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
@property
def snake_case__ ( self : Optional[int] ):
return self.dt is None
def snake_case__ ( self : Any , _lowerCAmelCase : Union[torch.FloatTensor, np.ndarray] , _lowerCAmelCase : Union[float, torch.FloatTensor] , _lowerCAmelCase : Union[torch.FloatTensor, np.ndarray] , _lowerCAmelCase : bool = True , ):
__snake_case : List[str] = self.index_for_timestep(_lowerCAmelCase )
# advance index counter by 1
__snake_case : Optional[int] = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
__snake_case : Any = self.sigmas[step_index]
__snake_case : Tuple = self.sigmas[step_index + 1]
else:
# 2nd order / Heun's method
__snake_case : Any = self.sigmas[step_index - 1]
__snake_case : int = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
__snake_case : List[Any] = 0
__snake_case : Optional[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
__snake_case : Optional[Any] = sigma_hat if self.state_in_first_order else sigma_next
__snake_case : List[str] = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
__snake_case : List[str] = sigma_hat if self.state_in_first_order else sigma_next
__snake_case : int = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
__snake_case : Dict = model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' )
if self.config.clip_sample:
__snake_case : List[Any] = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
__snake_case : Any = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
__snake_case : Dict = sigma_next - sigma_hat
# store for 2nd order step
__snake_case : int = derivative
__snake_case : Optional[int] = dt
__snake_case : List[Any] = sample
else:
# 2. 2nd order / Heun's method
__snake_case : str = (sample - pred_original_sample) / sigma_next
__snake_case : str = (self.prev_derivative + derivative) / 2
# 3. take prev timestep & sample
__snake_case : int = self.dt
__snake_case : List[Any] = self.sample
# free dt and derivative
# Note, this puts the scheduler in "first order mode"
__snake_case : int = None
__snake_case : Union[str, Any] = None
__snake_case : int = None
__snake_case : List[str] = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_lowerCAmelCase )
def snake_case__ ( self : Any , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : torch.FloatTensor , ):
# Make sure sigmas and timesteps have the same device and dtype as original_samples
__snake_case : List[str] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(_lowerCAmelCase ):
# mps does not support float64
__snake_case : Any = self.timesteps.to(original_samples.device , dtype=torch.floataa )
__snake_case : int = timesteps.to(original_samples.device , dtype=torch.floataa )
else:
__snake_case : Any = self.timesteps.to(original_samples.device )
__snake_case : Tuple = timesteps.to(original_samples.device )
__snake_case : List[str] = [self.index_for_timestep(_lowerCAmelCase , _lowerCAmelCase ) for t in timesteps]
__snake_case : Optional[int] = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
__snake_case : List[Any] = sigma.unsqueeze(-1 )
__snake_case : Dict = original_samples + noise * sigma
return noisy_samples
def __len__( self : Tuple ):
return self.config.num_train_timesteps
| 20 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = "microsoft/speecht5_tts"
A : List[Any] = (
"This is a tool that reads an English text out loud. It takes an input named `text` which should contain the "
"text to read (in English) and returns a waveform object containing the sound."
)
A : str = "text_reader"
A : Optional[Any] = SpeechTaProcessor
A : Any = SpeechTaForTextToSpeech
A : Optional[Any] = SpeechTaHifiGan
A : str = ["text"]
A : Union[str, Any] = ["audio"]
def snake_case__ ( self : List[Any] ):
if self.post_processor is None:
__snake_case : Tuple = """microsoft/speecht5_hifigan"""
super().setup()
def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ):
__snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" )
__snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" )
__snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ):
with torch.no_grad():
return self.model.generate_speech(**_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
with torch.no_grad():
return self.post_processor(_lowerCAmelCase ).cpu().detach()
| 20 | 1 |
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Dict=13 , _lowerCAmelCase : int=7 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : str=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Optional[Any]=99 , _lowerCAmelCase : int=32 , _lowerCAmelCase : int=2 , _lowerCAmelCase : List[Any]=4 , _lowerCAmelCase : Any=37 , _lowerCAmelCase : str="gelu" , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : str=5_12 , _lowerCAmelCase : Optional[Any]=16 , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : str=3 , _lowerCAmelCase : str=4 , _lowerCAmelCase : Tuple=None , ):
__snake_case : List[Any] = parent
__snake_case : str = 13
__snake_case : Optional[int] = 7
__snake_case : Union[str, Any] = True
__snake_case : Union[str, Any] = True
__snake_case : List[str] = True
__snake_case : Union[str, Any] = True
__snake_case : str = 99
__snake_case : int = 32
__snake_case : Dict = 2
__snake_case : Union[str, Any] = 4
__snake_case : Dict = 37
__snake_case : List[str] = """gelu"""
__snake_case : List[str] = 0.1
__snake_case : Union[str, Any] = 0.1
__snake_case : List[Any] = 5_12
__snake_case : Optional[int] = 16
__snake_case : Dict = 2
__snake_case : List[str] = 0.02
__snake_case : List[Any] = 3
__snake_case : Any = 4
__snake_case : Union[str, Any] = None
def snake_case__ ( self : Any ):
__snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Union[str, Any] = None
if self.use_input_mask:
__snake_case : int = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Any = None
if self.use_token_type_ids:
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Any = None
__snake_case : List[Any] = None
__snake_case : Union[str, Any] = None
if self.use_labels:
__snake_case : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : Any = ids_tensor([self.batch_size] , self.num_choices )
__snake_case : int = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowerCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ):
__snake_case : Optional[int] = TFRoFormerModel(config=_lowerCAmelCase )
__snake_case : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__snake_case : Union[str, Any] = [input_ids, input_mask]
__snake_case : Optional[int] = model(_lowerCAmelCase )
__snake_case : str = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ):
__snake_case : List[str] = True
__snake_case : List[str] = TFRoFormerForCausalLM(config=_lowerCAmelCase )
__snake_case : List[Any] = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
__snake_case : Union[str, Any] = model(_lowerCAmelCase )["""logits"""]
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] ):
__snake_case : Any = TFRoFormerForMaskedLM(config=_lowerCAmelCase )
__snake_case : Union[str, Any] = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
__snake_case : str = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple ):
__snake_case : List[Any] = self.num_labels
__snake_case : List[str] = TFRoFormerForSequenceClassification(config=_lowerCAmelCase )
__snake_case : Union[str, Any] = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
__snake_case : Dict = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case__ ( self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ):
__snake_case : Dict = self.num_choices
__snake_case : Optional[Any] = TFRoFormerForMultipleChoice(config=_lowerCAmelCase )
__snake_case : str = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
__snake_case : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
__snake_case : List[str] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
__snake_case : List[str] = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
"""token_type_ids""": multiple_choice_token_type_ids,
}
__snake_case : Tuple = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def snake_case__ ( self : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ):
__snake_case : str = self.num_labels
__snake_case : List[Any] = TFRoFormerForTokenClassification(config=_lowerCAmelCase )
__snake_case : str = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
__snake_case : Optional[Any] = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__ ( self : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ):
__snake_case : Optional[Any] = TFRoFormerForQuestionAnswering(config=_lowerCAmelCase )
__snake_case : Optional[int] = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
__snake_case : List[str] = model(_lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def snake_case__ ( self : Dict ):
__snake_case : List[Any] = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Optional[int] = config_and_inputs
__snake_case : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ):
A : Union[str, Any] = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
A : str = (
{
"feature-extraction": TFRoFormerModel,
"fill-mask": TFRoFormerForMaskedLM,
"question-answering": TFRoFormerForQuestionAnswering,
"text-classification": TFRoFormerForSequenceClassification,
"text-generation": TFRoFormerForCausalLM,
"token-classification": TFRoFormerForTokenClassification,
"zero-shot": TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
A : Optional[int] = False
A : Optional[int] = False
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ):
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def snake_case__ ( self : Union[str, Any] ):
__snake_case : List[Any] = TFRoFormerModelTester(self )
__snake_case : Dict = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 )
def snake_case__ ( self : str ):
self.config_tester.run_common_tests()
def snake_case__ ( self : Optional[Any] ):
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def snake_case__ ( self : Optional[int] ):
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase )
def snake_case__ ( self : Any ):
__snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase )
def snake_case__ ( self : str ):
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase )
def snake_case__ ( self : List[Any] ):
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase )
def snake_case__ ( self : str ):
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase )
@slow
def snake_case__ ( self : List[Any] ):
__snake_case : Union[str, Any] = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" )
self.assertIsNotNone(_lowerCAmelCase )
@require_tf
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
def snake_case__ ( self : Tuple ):
__snake_case : Any = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
__snake_case : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] )
__snake_case : Dict = model(_lowerCAmelCase )[0]
# TODO Replace vocab size
__snake_case : Any = 5_00_00
__snake_case : Union[str, Any] = [1, 6, vocab_size]
self.assertEqual(output.shape , _lowerCAmelCase )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
__snake_case : str = tf.constant(
[
[
[-0.12053341, -1.0264901, 0.29221946],
[-1.5133783, 0.197433, 0.15190607],
[-5.0135403, -3.900256, -0.84038764],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 )
@require_tf
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
A : List[str] = 1e-4
def snake_case__ ( self : str ):
__snake_case : List[str] = tf.constant([[4, 10]] )
__snake_case : int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
__snake_case : Tuple = emba(input_ids.shape )
__snake_case : str = tf.constant(
[[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] )
tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , atol=self.tolerance )
def snake_case__ ( self : List[Any] ):
__snake_case : Optional[int] = tf.constant(
[
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.8415, 0.8219, 0.8020, 0.7819, 0.7617],
[0.9093, 0.9364, 0.9581, 0.9749, 0.9870],
] )
__snake_case : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 )
emba([2, 16, 5_12] )
__snake_case : str = emba.weight[:3, :5]
tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , atol=self.tolerance )
@require_tf
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
A : Any = 1e-4
def snake_case__ ( self : List[str] ):
# 2,12,16,64
__snake_case : Dict = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00
__snake_case : Optional[Any] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00
__snake_case : Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 )
__snake_case : Any = embed_positions([2, 16, 7_68] )[None, None, :, :]
__snake_case , __snake_case : Optional[int] = TFRoFormerSelfAttention.apply_rotary_position_embeddings(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : List[str] = tf.constant(
[
[0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700],
[-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343],
[-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985],
[-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871],
[0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980],
[3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253],
] )
__snake_case : Tuple = tf.constant(
[
[0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700],
[0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343],
[1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985],
[2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871],
[-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980],
[-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , _lowerCAmelCase , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , _lowerCAmelCase , atol=self.tolerance )
| 20 | import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * power_factor
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | 1 |
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : Dict ):
__snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : int = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase )
__snake_case : Dict = -1
__snake_case : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
__snake_case : List[Any] = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase )
__snake_case : Dict = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
__snake_case : Tuple = TextStreamer(_lowerCAmelCase )
model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
__snake_case : List[Any] = cs.out[:-1]
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : str ):
__snake_case : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Tuple = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase )
__snake_case : List[Any] = -1
__snake_case : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
__snake_case : str = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase )
__snake_case : Optional[int] = tokenizer.decode(greedy_ids[0] )
__snake_case : List[Any] = TextIteratorStreamer(_lowerCAmelCase )
__snake_case : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer}
__snake_case : str = Thread(target=model.generate , kwargs=_lowerCAmelCase )
thread.start()
__snake_case : Optional[Any] = """"""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : int ):
__snake_case : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase )
__snake_case : Any = -1
__snake_case : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
__snake_case : Dict = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase )
__snake_case : Optional[int] = greedy_ids[:, input_ids.shape[1] :]
__snake_case : List[Any] = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
__snake_case : int = TextStreamer(_lowerCAmelCase , skip_prompt=_lowerCAmelCase )
model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
__snake_case : Dict = cs.out[:-1]
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[int] ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
__snake_case : Union[str, Any] = AutoTokenizer.from_pretrained("""distilgpt2""" )
__snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(_lowerCAmelCase )
__snake_case : List[str] = -1
__snake_case : List[Any] = torch.ones((1, 5) , device=_lowerCAmelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
__snake_case : int = TextStreamer(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
model.generate(_lowerCAmelCase , max_new_tokens=1 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
__snake_case : Dict = cs.out[:-1] # Remove the final "\n"
__snake_case : List[Any] = tokenizer(_lowerCAmelCase , return_tensors="""pt""" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def snake_case__ ( self : Optional[int] ):
__snake_case : int = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Tuple = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase )
__snake_case : Union[str, Any] = -1
__snake_case : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
__snake_case : List[str] = TextIteratorStreamer(_lowerCAmelCase , timeout=0.001 )
__snake_case : List[Any] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer}
__snake_case : List[str] = Thread(target=model.generate , kwargs=_lowerCAmelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(_lowerCAmelCase ):
__snake_case : Tuple = """"""
for new_text in streamer:
streamer_text += new_text
| 20 | from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 20 | 1 |
from pathlib import Path
import fire
from tqdm import tqdm
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int="ro" , __SCREAMING_SNAKE_CASE : Any="en" , __SCREAMING_SNAKE_CASE : Optional[Any]="wmt16" , __SCREAMING_SNAKE_CASE : Any=None ):
'''simple docstring'''
try:
import datasets
except (ModuleNotFoundError, ImportError):
raise ImportError("""run pip install datasets""" )
__snake_case : str = F'''{src_lang}-{tgt_lang}'''
print(F'''Converting {dataset}-{pair}''' )
__snake_case : str = datasets.load_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if save_dir is None:
__snake_case : List[Any] = F'''{dataset}-{pair}'''
__snake_case : Optional[Any] = Path(__SCREAMING_SNAKE_CASE )
save_dir.mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
for split in ds.keys():
print(F'''Splitting {split} with {ds[split].num_rows} records''' )
# to save to val.source, val.target like summary datasets
__snake_case : str = """val""" if split == """validation""" else split
__snake_case : str = save_dir.joinpath(F'''{fn}.source''' )
__snake_case : List[str] = save_dir.joinpath(F'''{fn}.target''' )
__snake_case : str = src_path.open("""w+""" )
__snake_case : Optional[Any] = tgt_path.open("""w+""" )
# reader is the bottleneck so writing one record at a time doesn't slow things down
for x in tqdm(ds[split] ):
__snake_case : str = x["""translation"""]
src_fp.write(ex[src_lang] + """\n""" )
tgt_fp.write(ex[tgt_lang] + """\n""" )
print(F'''Saved {dataset} dataset to {save_dir}''' )
if __name__ == "__main__":
fire.Fire(download_wmt_dataset)
| 20 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {
"configuration_blenderbot_small": [
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotSmallConfig",
"BlenderbotSmallOnnxConfig",
],
"tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["BlenderbotSmallTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
"BlenderbotSmallPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFBlenderbotSmallForConditionalGeneration",
"TFBlenderbotSmallModel",
"TFBlenderbotSmallPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxBlenderbotSmallForConditionalGeneration",
"FlaxBlenderbotSmallModel",
"FlaxBlenderbotSmallPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if (direction == 1 and array[indexa] > array[indexa]) or (
direction == 0 and array[indexa] < array[indexa]
):
__snake_case , __snake_case : str = array[indexa], array[indexa]
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Tuple = int(length / 2 )
for i in range(__SCREAMING_SNAKE_CASE , low + middle ):
comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Optional[Any] = int(length / 2 )
bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 )
bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
bitonic_sort(unsorted, 0, len(unsorted), 1)
print("\nSorted array in ascending order is: ", end="")
print(*unsorted, sep=", ")
bitonic_merge(unsorted, 0, len(unsorted), 0)
print("Sorted array in descending order is: ", end="")
print(*unsorted, sep=", ")
| 20 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase_ = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["ViTFeatureExtractor"]
lowercase_ = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any]=13 , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Any=99 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Optional[Any]=36 , _lowerCAmelCase : Dict=6 , _lowerCAmelCase : Dict=6 , _lowerCAmelCase : Tuple=6 , _lowerCAmelCase : Optional[Any]=37 , _lowerCAmelCase : Optional[int]="gelu" , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Dict=5_12 , _lowerCAmelCase : Tuple=16 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : str=None , ):
__snake_case : Any = parent
__snake_case : str = batch_size
__snake_case : List[str] = seq_length
__snake_case : str = is_training
__snake_case : Optional[int] = use_input_mask
__snake_case : Optional[Any] = use_token_type_ids
__snake_case : Optional[Any] = use_labels
__snake_case : str = vocab_size
__snake_case : int = embedding_size
__snake_case : Any = hidden_size
__snake_case : List[Any] = num_hidden_layers
__snake_case : Tuple = num_hidden_groups
__snake_case : List[str] = num_attention_heads
__snake_case : List[str] = intermediate_size
__snake_case : Dict = hidden_act
__snake_case : Optional[int] = hidden_dropout_prob
__snake_case : int = attention_probs_dropout_prob
__snake_case : Any = max_position_embeddings
__snake_case : List[str] = type_vocab_size
__snake_case : List[Any] = type_sequence_label_size
__snake_case : List[Any] = initializer_range
__snake_case : Tuple = num_labels
__snake_case : Tuple = num_choices
__snake_case : Dict = scope
def snake_case__ ( self : int ):
__snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : List[str] = None
if self.use_input_mask:
__snake_case : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : List[Any] = None
__snake_case : Optional[Any] = None
__snake_case : Optional[Any] = None
if self.use_labels:
__snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : str = ids_tensor([self.batch_size] , self.num_choices )
__snake_case : List[Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__ ( self : Dict ):
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ):
__snake_case : List[Any] = AlbertModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case : Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
__snake_case : List[Any] = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
__snake_case : Tuple = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def snake_case__ ( self : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ):
__snake_case : Union[str, Any] = AlbertForPreTraining(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case : Optional[int] = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , sentence_order_label=_lowerCAmelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] ):
__snake_case : Union[str, Any] = AlbertForMaskedLM(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case : Union[str, Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__ ( self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str ):
__snake_case : Tuple = AlbertForQuestionAnswering(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case : Dict = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def snake_case__ ( self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : List[str] ):
__snake_case : Dict = self.num_labels
__snake_case : Optional[Any] = AlbertForSequenceClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case : Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : str ):
__snake_case : List[str] = self.num_labels
__snake_case : Dict = AlbertForTokenClassification(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case : List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ):
__snake_case : Optional[Any] = self.num_choices
__snake_case : Union[str, Any] = AlbertForMultipleChoice(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : List[Any] = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def snake_case__ ( self : Optional[Any] ):
__snake_case : int = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Any = config_and_inputs
__snake_case : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ):
A : List[str] = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
A : Any = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
A : Tuple = True
def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int]=False ):
__snake_case : Union[str, Any] = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase )
if return_labels:
if model_class in get_values(_lowerCAmelCase ):
__snake_case : Optional[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase )
__snake_case : Any = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase )
return inputs_dict
def snake_case__ ( self : Optional[Any] ):
__snake_case : Dict = AlbertModelTester(self )
__snake_case : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 )
def snake_case__ ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def snake_case__ ( self : Any ):
__snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def snake_case__ ( self : Any ):
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase )
def snake_case__ ( self : str ):
__snake_case : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase )
def snake_case__ ( self : Dict ):
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : List[str] = type
self.model_tester.create_and_check_model(*_lowerCAmelCase )
@slow
def snake_case__ ( self : Tuple ):
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Optional[Any] = AlbertModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
def snake_case__ ( self : int ):
__snake_case : str = AlbertModel.from_pretrained("""albert-base-v2""" )
__snake_case : Optional[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__snake_case : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__snake_case : Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0]
__snake_case : Tuple = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , _lowerCAmelCase )
__snake_case : List[str] = torch.tensor(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1e-4 ) )
| 20 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if (direction == 1 and array[indexa] > array[indexa]) or (
direction == 0 and array[indexa] < array[indexa]
):
__snake_case , __snake_case : str = array[indexa], array[indexa]
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Tuple = int(length / 2 )
for i in range(__SCREAMING_SNAKE_CASE , low + middle ):
comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Optional[Any] = int(length / 2 )
bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 )
bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
bitonic_sort(unsorted, 0, len(unsorted), 1)
print("\nSorted array in ascending order is: ", end="")
print(*unsorted, sep=", ")
bitonic_merge(unsorted, 0, len(unsorted), 0)
print("Sorted array in descending order is: ", end="")
print(*unsorted, sep=", ")
| 20 | 1 |
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
__snake_case : Dict = gray_code_sequence_string(__SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
__snake_case : List[Any] = int(sequence[i] , 2 )
return sequence
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
__snake_case : Optional[Any] = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
__snake_case : int = gray_code_sequence_string(bit_count - 1 )
__snake_case : Union[str, Any] = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
__snake_case : Any = """0""" + smaller_sequence[i]
sequence.append(__SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
__snake_case : str = """1""" + smaller_sequence[i]
sequence.append(__SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ):
'''simple docstring'''
__snake_case : Optional[int] = {
"""7z""": (seven_zip_file, SevenZipExtractor),
"""bz2""": (bza_file, BzipaExtractor),
"""gzip""": (gz_file, GzipExtractor),
"""lz4""": (lza_file, LzaExtractor),
"""tar""": (tar_file, TarExtractor),
"""xz""": (xz_file, XzExtractor),
"""zip""": (zip_file, ZipExtractor),
"""zstd""": (zstd_file, ZstdExtractor),
}
__snake_case , __snake_case : Tuple = input_paths_and_base_extractors[compression_format]
if input_path is None:
__snake_case : Tuple = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE )
__snake_case : List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : List[str] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Optional[Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : int = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ):
'''simple docstring'''
__snake_case : Union[str, Any] = {
"""7z""": seven_zip_file,
"""bz2""": bza_file,
"""gzip""": gz_file,
"""lz4""": lza_file,
"""tar""": tar_file,
"""xz""": xz_file,
"""zip""": zip_file,
"""zstd""": zstd_file,
}
__snake_case : int = input_paths[compression_format]
if input_path is None:
__snake_case : int = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
__snake_case : Any = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE )
assert extractor_format is not None
__snake_case : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : Union[str, Any] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Union[str, Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : Optional[Any] = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
import tarfile
__snake_case : List[str] = tmp_path / """data_dot_dot"""
directory.mkdir()
__snake_case : Optional[Any] = directory / """tar_file_with_dot_dot.tar"""
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) )
return path
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
import tarfile
__snake_case : Dict = tmp_path / """data_sym_link"""
directory.mkdir()
__snake_case : Tuple = directory / """tar_file_with_sym_link.tar"""
os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE )
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
"""insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
__snake_case : Any = {
"""tar_file_with_dot_dot""": tar_file_with_dot_dot,
"""tar_file_with_sym_link""": tar_file_with_sym_link,
}
__snake_case : int = insecure_tar_files[insecure_tar_file]
__snake_case : Optional[int] = tmp_path / """extracted"""
TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
# We should have less false positives than zipfile.is_zipfile
# We do that by checking only the magic number
__snake_case : Optional[Any] = tmpdir / """not_a_zip_file"""
# From: https://github.com/python/cpython/pull/5053
__snake_case : List[str] = (
b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"""
b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"""
b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"""
b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"""
)
with not_a_zip_file.open("""wb""" ) as f:
f.write(__SCREAMING_SNAKE_CASE )
assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
| 20 | 1 |
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
__snake_case : Optional[Any] = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
__snake_case : str = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" )
__snake_case : str = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" )
__snake_case : Dict = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" )
__snake_case : Union[str, Any] = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" )
__snake_case : Any = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" )
__snake_case : int = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" )
__snake_case : int = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" )
__snake_case : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" )
__snake_case : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" )
__snake_case : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" )
__snake_case : Dict = key.replace("""text_encoder.module""" , """flava.text_model""" )
__snake_case : int = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" )
__snake_case : Union[str, Any] = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" )
__snake_case : Optional[Any] = key.replace("""text_projection""" , """flava.text_projection""" )
__snake_case : List[str] = key.replace("""image_projection""" , """flava.image_projection""" )
__snake_case : Optional[Any] = value.float()
for key, value in codebook_state_dict.items():
__snake_case : Optional[Any] = value
return upgrade
@torch.no_grad()
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any=None ):
'''simple docstring'''
if config_path is not None:
__snake_case : Tuple = FlavaConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
else:
__snake_case : Dict = FlavaConfig()
__snake_case : List[Any] = FlavaForPreTraining(__SCREAMING_SNAKE_CASE ).eval()
__snake_case : int = convert_dalle_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , save_checkpoint=__SCREAMING_SNAKE_CASE )
if os.path.exists(__SCREAMING_SNAKE_CASE ):
__snake_case : List[Any] = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" )
else:
__snake_case : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location="""cpu""" )
__snake_case : Dict = upgrade_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
hf_model.load_state_dict(__SCREAMING_SNAKE_CASE )
__snake_case : Tuple = hf_model.state_dict()
__snake_case : Union[str, Any] = count_parameters(__SCREAMING_SNAKE_CASE )
__snake_case : Dict = count_parameters(__SCREAMING_SNAKE_CASE ) + count_parameters(__SCREAMING_SNAKE_CASE )
assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 )
hf_model.save_pretrained(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint")
parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
lowercase_ = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 20 | import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : Any ):
__snake_case : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split()
__snake_case : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
__snake_case : List[str] = {
"""unk_token""": """<unk>""",
"""bos_token""": """<s>""",
"""eos_token""": """</s>""",
}
__snake_case : str = {
"""feature_size""": 1,
"""padding_value""": 0.0,
"""sampling_rate""": 1_60_00,
"""return_attention_mask""": False,
"""do_normalize""": True,
}
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__snake_case : Any = os.path.join(self.tmpdirname , _lowerCAmelCase )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
# load decoder from hub
__snake_case : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder"""
def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Tuple ):
__snake_case : int = self.add_kwargs_tokens_map.copy()
kwargs.update(_lowerCAmelCase )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , **_lowerCAmelCase : Optional[int] ):
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Dict , **_lowerCAmelCase : Tuple ):
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase )
def snake_case__ ( self : List[str] ):
shutil.rmtree(self.tmpdirname )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : Tuple = self.get_feature_extractor()
__snake_case : Dict = self.get_decoder()
__snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
__snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowerCAmelCase )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , _lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : Tuple = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
__snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def snake_case__ ( self : int ):
__snake_case : Tuple = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(["""xx"""] )
with self.assertRaisesRegex(_lowerCAmelCase , """include""" ):
WavaVecaProcessorWithLM(
tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def snake_case__ ( self : Dict ):
__snake_case : int = self.get_feature_extractor()
__snake_case : str = self.get_tokenizer()
__snake_case : Dict = self.get_decoder()
__snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : List[Any] = floats_list((3, 10_00) )
__snake_case : Optional[Any] = feature_extractor(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Tuple = processor(_lowerCAmelCase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def snake_case__ ( self : Optional[int] ):
__snake_case : Any = self.get_feature_extractor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : int = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Optional[int] = """This is a test string"""
__snake_case : Union[str, Any] = processor(text=_lowerCAmelCase )
__snake_case : Dict = tokenizer(_lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[Any]=(2, 10, 16) , _lowerCAmelCase : str=77 ):
np.random.seed(_lowerCAmelCase )
return np.random.rand(*_lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : List[str] = self.get_feature_extractor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : List[str] = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 )
__snake_case : int = processor.decode(_lowerCAmelCase )
__snake_case : Optional[int] = decoder.decode_beams(_lowerCAmelCase )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual("""</s> <s> </s>""" , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ["""fork"""], ["""spawn"""]] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] ):
__snake_case : int = self.get_feature_extractor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : int = self.get_decoder()
__snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : int = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
__snake_case : Tuple = processor.batch_decode(_lowerCAmelCase )
else:
with get_context(_lowerCAmelCase ).Pool() as pool:
__snake_case : int = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : int = list(_lowerCAmelCase )
with get_context("""fork""" ).Pool() as p:
__snake_case : Tuple = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase )
__snake_case , __snake_case , __snake_case : List[Any] = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(_lowerCAmelCase , decoded_processor.text )
self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text )
self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score )
self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score )
def snake_case__ ( self : Optional[int] ):
__snake_case : Optional[Any] = self.get_feature_extractor()
__snake_case : int = self.get_tokenizer()
__snake_case : str = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : int = self._get_dummy_logits()
__snake_case : List[str] = 15
__snake_case : Optional[Any] = -20.0
__snake_case : Tuple = -4.0
__snake_case : List[Any] = processor.batch_decode(
_lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , )
__snake_case : List[str] = decoded_processor_out.text
__snake_case : str = list(_lowerCAmelCase )
with get_context("""fork""" ).Pool() as pool:
__snake_case : Dict = decoder.decode_beams_batch(
_lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , )
__snake_case : int = [d[0][0] for d in decoded_decoder_out]
__snake_case : List[Any] = [d[0][2] for d in decoded_decoder_out]
__snake_case : List[Any] = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase )
self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1e-3 ) )
self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1e-3 ) )
def snake_case__ ( self : Any ):
__snake_case : List[Any] = self.get_feature_extractor()
__snake_case : Any = self.get_tokenizer()
__snake_case : Union[str, Any] = self.get_decoder()
__snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Any = self._get_dummy_logits()
__snake_case : Any = 2.0
__snake_case : int = 5.0
__snake_case : Optional[int] = -20.0
__snake_case : Optional[int] = True
__snake_case : Any = processor.batch_decode(
_lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , )
__snake_case : str = decoded_processor_out.text
__snake_case : int = list(_lowerCAmelCase )
decoder.reset_params(
alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , )
with get_context("""fork""" ).Pool() as pool:
__snake_case : Tuple = decoder.decode_beams_batch(
_lowerCAmelCase , _lowerCAmelCase , )
__snake_case : int = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase )
__snake_case : List[str] = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , _lowerCAmelCase )
def snake_case__ ( self : Dict ):
__snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key]
__snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute()
__snake_case : Union[str, Any] = os.listdir(_lowerCAmelCase )
__snake_case : List[str] = ["""alphabet.json""", """language_model"""]
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" )
__snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase )
__snake_case : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key]
__snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute()
__snake_case : List[str] = os.listdir(_lowerCAmelCase )
__snake_case : List[Any] = os.listdir(_lowerCAmelCase )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Optional[int] = floats_list((3, 10_00) )
__snake_case : Union[str, Any] = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Union[str, Any] = processor_auto(_lowerCAmelCase , return_tensors="""np""" )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 )
__snake_case : Dict = self._get_dummy_logits()
__snake_case : List[Any] = processor_wavaveca.batch_decode(_lowerCAmelCase )
__snake_case : List[Any] = processor_auto.batch_decode(_lowerCAmelCase )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def snake_case__ ( self : str ):
__snake_case : int = self.get_feature_extractor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : Optional[Any] = self.get_decoder()
__snake_case : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
@staticmethod
def snake_case__ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ):
__snake_case : Union[str, Any] = [d[key] for d in offsets]
return retrieved_list
def snake_case__ ( self : Dict ):
__snake_case : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : List[str] = self._get_dummy_logits()[0]
__snake_case : str = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""word_offsets""" in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] )
def snake_case__ ( self : List[str] ):
__snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Optional[int] = self._get_dummy_logits()
__snake_case : int = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""word_offsets""" in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertListEqual(
[""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def snake_case__ ( self : Optional[Any] ):
import torch
__snake_case : Optional[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase )
__snake_case : Any = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) )
__snake_case : List[Any] = iter(_lowerCAmelCase )
__snake_case : Optional[int] = next(_lowerCAmelCase )
__snake_case : str = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" )
__snake_case : str = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
__snake_case : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values
with torch.no_grad():
__snake_case : Dict = model(_lowerCAmelCase ).logits.cpu().numpy()
__snake_case : Any = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase )
__snake_case : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
__snake_case : Dict = [
{
"""start_time""": d["""start_offset"""] * time_offset,
"""end_time""": d["""end_offset"""] * time_offset,
"""word""": d["""word"""],
}
for d in output["""word_offsets"""]
]
__snake_case : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL"""
# output words
self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase )
self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text )
# output times
__snake_case : Dict = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) )
__snake_case : Optional[Any] = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) )
# fmt: off
__snake_case : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] )
__snake_case : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
| 20 | 1 |
import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * power_factor
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowercase_ = {
"text_branch": "text_model",
"audio_branch": "audio_model.audio_encoder",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc")
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ):
'''simple docstring'''
__snake_case , __snake_case : str = create_model(
"""HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , )
return model, model_cfg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : Union[str, Any] = {}
__snake_case : List[Any] = R""".*sequential.(\d+).*"""
__snake_case : Union[str, Any] = R""".*_projection.(\d+).*"""
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
__snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# replace sequential layers with list
__snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 )
__snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' )
elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
__snake_case : List[Any] = 1 if projecton_layer == 0 else 2
__snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' )
if "audio" and "qkv" in key:
# split qkv into query key and value
__snake_case : Optional[int] = value
__snake_case : Any = mixed_qkv.size(0 ) // 3
__snake_case : List[Any] = mixed_qkv[:qkv_dim]
__snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2]
__snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :]
__snake_case : Any = query_layer
__snake_case : Dict = key_layer
__snake_case : Optional[Any] = value_layer
else:
__snake_case : List[str] = value
return model_state_dict
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ):
'''simple docstring'''
__snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE )
clap_model.eval()
__snake_case : Tuple = clap_model.state_dict()
__snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = ClapConfig()
__snake_case : Tuple = enable_fusion
__snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE )
# ignore the spectrogram embedding layer
model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not")
lowercase_ = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 20 | 1 |
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
def get_matched_characters(__SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> str:
__snake_case : Dict = []
__snake_case : Optional[Any] = min(len(_stra ) , len(_stra ) ) // 2
for i, l in enumerate(_stra ):
__snake_case : int = int(max(0 , i - limit ) )
__snake_case : Optional[int] = int(min(i + limit + 1 , len(_stra ) ) )
if l in _stra[left:right]:
matched.append(__SCREAMING_SNAKE_CASE )
__snake_case : Dict = F'''{_stra[0:_stra.index(__SCREAMING_SNAKE_CASE )]} {_stra[_stra.index(__SCREAMING_SNAKE_CASE ) + 1:]}'''
return "".join(__SCREAMING_SNAKE_CASE )
# matching characters
__snake_case : List[Any] = get_matched_characters(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Dict = get_matched_characters(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Union[str, Any] = len(__SCREAMING_SNAKE_CASE )
# transposition
__snake_case : Optional[int] = (
len([(ca, ca) for ca, ca in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if ca != ca] ) // 2
)
if not match_count:
__snake_case : List[str] = 0.0
else:
__snake_case : List[str] = (
1
/ 3
* (
match_count / len(__SCREAMING_SNAKE_CASE )
+ match_count / len(__SCREAMING_SNAKE_CASE )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
__snake_case : List[Any] = 0
for ca, ca in zip(stra[:4] , stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler("hello", "world"))
| 20 | import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = "▁"
lowercase_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
lowercase_ = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
lowercase_ = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
lowercase_ = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
lowercase_ = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = ["input_ids"]
A : Tuple = VOCAB_FILES_NAMES
A : List[Any] = PRETRAINED_INIT_CONFIGURATION
A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
A : Optional[Any] = RESOURCE_FILES_NAMES
def __init__( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]="utf8" , _lowerCAmelCase : Optional[Any]="[UNK]" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : List[Any]="[MASK]" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Any , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , vocab_file=_lowerCAmelCase , encoding=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , )
__snake_case : List[Any] = do_lower_case
__snake_case : Any = sentencepiece_model_ckpt
__snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCAmelCase )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
__snake_case : int = self.load_vocab(filepath=_lowerCAmelCase )
else:
__snake_case : Tuple = {self.sp_model.id_to_piece(_lowerCAmelCase ): id for id in range(self.sp_model.get_piece_size() )}
__snake_case : str = {v: k for k, v in self.vocab.items()}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[Any] ):
if text is None:
return None
__snake_case : List[Any] = self.tokenize(_lowerCAmelCase )
__snake_case , __snake_case : Optional[Any] = """""", []
for i, ch in enumerate(_lowerCAmelCase ):
if ch in self.SP_CHAR_MAPPING:
__snake_case : Any = self.SP_CHAR_MAPPING.get(_lowerCAmelCase )
else:
__snake_case : Dict = unicodedata.normalize("""NFKC""" , _lowerCAmelCase )
if self.is_whitespace(_lowerCAmelCase ):
continue
normalized_text += ch
char_mapping.extend([i] * len(_lowerCAmelCase ) )
__snake_case , __snake_case , __snake_case : str = normalized_text, [], 0
if self.do_lower_case:
__snake_case : int = text.lower()
for token in split_tokens:
if token[:1] == "▁":
__snake_case : int = token[1:]
__snake_case : Optional[int] = text[offset:].index(_lowerCAmelCase ) + offset
__snake_case : int = start + len(_lowerCAmelCase )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
__snake_case : str = end
return token_mapping
@property
def snake_case__ ( self : Tuple ):
return len(self.vocab )
def snake_case__ ( self : Dict ):
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : int ):
__snake_case : str = self.__dict__.copy()
__snake_case : Union[str, Any] = None
return state
def __setstate__( self : Optional[Any] , _lowerCAmelCase : List[str] ):
__snake_case : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__snake_case : Optional[Any] = {}
__snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] ):
return "".join((self.SP_CHAR_MAPPING.get(_lowerCAmelCase , _lowerCAmelCase ) for c in text) )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[int]=0.1 ):
if self.sp_model_kwargs.get("""enable_sampling""" ) is True:
__snake_case : List[str] = True
if self.sp_model_kwargs.get("""alpha""" ) is not None:
__snake_case : Dict = self.sp_model_kwargs.get("""alpha""" )
if self.sp_model_kwargs.get("""nbest_size""" ) is not None:
__snake_case : List[Any] = self.sp_model_kwargs.get("""nbest_size""" )
if not enable_sampling:
__snake_case : str = self.sp_model.EncodeAsPieces(_lowerCAmelCase )
else:
__snake_case : Tuple = self.sp_model.SampleEncodeAsPieces(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : Union[str, Any] = []
for pi, piece in enumerate(_lowerCAmelCase ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(_lowerCAmelCase ) and pi != 0:
new_pieces.append(_lowerCAmelCase )
continue
else:
continue
__snake_case : Optional[int] = 0
for i, chunk in enumerate(_lowerCAmelCase ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(_lowerCAmelCase ) or self.is_punct(_lowerCAmelCase ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(_lowerCAmelCase )
__snake_case : Tuple = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : Tuple = i
if len(_lowerCAmelCase ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
__snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
__snake_case : int = self.convert_ids_to_tokens(_lowerCAmelCase )
__snake_case : Any = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict ):
return self.reverse_vocab.get(_lowerCAmelCase , self.unk_token )
def snake_case__ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
__snake_case : Optional[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ):
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1]
return [1] + ([0] * len(_lowerCAmelCase )) + [1]
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(_lowerCAmelCase ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(_lowerCAmelCase ) + 1) + [1] * (len(_lowerCAmelCase ) + 3)
def snake_case__ ( self : Tuple , _lowerCAmelCase : List[str] ):
if "\u4e00" <= char <= "\u9fff":
return True
return False
def snake_case__ ( self : List[str] , _lowerCAmelCase : Any ):
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def snake_case__ ( self : int , _lowerCAmelCase : List[Any] ):
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def snake_case__ ( self : str , _lowerCAmelCase : Optional[Any] ):
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(_lowerCAmelCase ) == 1:
__snake_case : Dict = unicodedata.category(_lowerCAmelCase )
if cat == "Zs":
return True
return False
def snake_case__ ( self : str , _lowerCAmelCase : List[Any] ):
__snake_case : Dict = {}
with io.open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for index, line in enumerate(_lowerCAmelCase ):
__snake_case : Tuple = line.rstrip("""\n""" )
__snake_case : List[str] = int(_lowerCAmelCase )
return token_to_idx
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : Optional[int] = 0
if os.path.isdir(_lowerCAmelCase ):
__snake_case : int = os.path.join(
_lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
else:
__snake_case : Optional[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory
with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
""" Please check that the vocabulary is not corrupted!""" )
__snake_case : Union[str, Any] = token_index
writer.write(token + """\n""" )
index += 1
__snake_case : List[Any] = os.path.join(_lowerCAmelCase , """sentencepiece.bpe.model""" )
with open(_lowerCAmelCase , """wb""" ) as fi:
__snake_case : List[Any] = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (vocab_file,)
| 20 | 1 |
from functools import reduce
lowercase_ = (
"73167176531330624919225119674426574742355349194934"
"96983520312774506326239578318016984801869478851843"
"85861560789112949495459501737958331952853208805511"
"12540698747158523863050715693290963295227443043557"
"66896648950445244523161731856403098711121722383113"
"62229893423380308135336276614282806444486645238749"
"30358907296290491560440772390713810515859307960866"
"70172427121883998797908792274921901699720888093776"
"65727333001053367881220235421809751254540594752243"
"52584907711670556013604839586446706324415722155397"
"53697817977846174064955149290862569321978468622482"
"83972241375657056057490261407972968652414535100474"
"82166370484403199890008895243450658541227588666881"
"16427171479924442928230863465674813919123162824586"
"17866458359124566529476545682848912883142607690042"
"24219022671055626321111109370544217506941658960408"
"07198403850962455444362981230987879927244284909188"
"84580156166097919133875499200524063689912560717606"
"05886116467109405077541002256983155200055935729725"
"71636269561882670428252483600823257530420752963450"
)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str = N ):
'''simple docstring'''
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str(int(__SCREAMING_SNAKE_CASE ) * int(__SCREAMING_SNAKE_CASE ) ) , n[i : i + 1_3] ) )
for i in range(len(__SCREAMING_SNAKE_CASE ) - 1_2 ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 20 | from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json",
"xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json",
"xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json",
"xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json",
"xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json",
"xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json",
"xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json",
"xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json",
"xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json",
"xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = "xlm"
A : List[str] = {
"hidden_size": "emb_dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
"n_words": "vocab_size", # For backward compatibility
}
def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any]=3_01_45 , _lowerCAmelCase : Optional[Any]=20_48 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : int=16 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=5_12 , _lowerCAmelCase : List[Any]=20_48**-0.5 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple="first" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Tuple , ):
__snake_case : Optional[Any] = vocab_size
__snake_case : Tuple = emb_dim
__snake_case : int = n_layers
__snake_case : List[str] = n_heads
__snake_case : Union[str, Any] = dropout
__snake_case : Optional[int] = attention_dropout
__snake_case : Optional[Any] = gelu_activation
__snake_case : Tuple = sinusoidal_embeddings
__snake_case : List[Any] = causal
__snake_case : Dict = asm
__snake_case : int = n_langs
__snake_case : str = use_lang_emb
__snake_case : Dict = layer_norm_eps
__snake_case : List[Any] = bos_index
__snake_case : Union[str, Any] = eos_index
__snake_case : Dict = pad_index
__snake_case : Any = unk_index
__snake_case : Dict = mask_index
__snake_case : Any = is_encoder
__snake_case : Dict = max_position_embeddings
__snake_case : Optional[Any] = embed_init_std
__snake_case : List[Any] = init_std
__snake_case : str = summary_type
__snake_case : Optional[Any] = summary_use_proj
__snake_case : str = summary_activation
__snake_case : Optional[int] = summary_proj_to_labels
__snake_case : Dict = summary_first_dropout
__snake_case : Dict = start_n_top
__snake_case : int = end_n_top
__snake_case : str = mask_token_id
__snake_case : int = lang_id
if "n_words" in kwargs:
__snake_case : Dict = kwargs["""n_words"""]
super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
@property
def snake_case__ ( self : Dict ):
if self.task == "multiple-choice":
__snake_case : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__snake_case : Tuple = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 20 | 1 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Dict = "instructblip_vision_model"
def __init__( self : int , _lowerCAmelCase : Union[str, Any]=14_08 , _lowerCAmelCase : List[Any]=61_44 , _lowerCAmelCase : Union[str, Any]=39 , _lowerCAmelCase : Dict=16 , _lowerCAmelCase : Optional[int]=2_24 , _lowerCAmelCase : Dict=14 , _lowerCAmelCase : Optional[Any]="gelu" , _lowerCAmelCase : Optional[Any]=1e-6 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Any=1e-10 , _lowerCAmelCase : Dict=True , **_lowerCAmelCase : Optional[int] , ):
super().__init__(**_lowerCAmelCase )
__snake_case : int = hidden_size
__snake_case : Optional[Any] = intermediate_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : int = num_attention_heads
__snake_case : Tuple = patch_size
__snake_case : Any = image_size
__snake_case : List[Any] = initializer_range
__snake_case : List[Any] = attention_dropout
__snake_case : Dict = layer_norm_eps
__snake_case : int = hidden_act
__snake_case : Tuple = qkv_bias
@classmethod
def snake_case__ ( cls : int , _lowerCAmelCase : Union[str, os.PathLike] , **_lowerCAmelCase : Optional[Any] ):
cls._set_token_in_kwargs(_lowerCAmelCase )
__snake_case , __snake_case : List[str] = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get("""model_type""" ) == "instructblip":
__snake_case : Tuple = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : int = "instructblip_qformer"
def __init__( self : str , _lowerCAmelCase : str=3_05_22 , _lowerCAmelCase : List[Any]=7_68 , _lowerCAmelCase : List[str]=12 , _lowerCAmelCase : Any=12 , _lowerCAmelCase : List[str]=30_72 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Any=5_12 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : List[str]="absolute" , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : Union[str, Any]=14_08 , **_lowerCAmelCase : List[Any] , ):
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
__snake_case : Optional[Any] = vocab_size
__snake_case : Tuple = hidden_size
__snake_case : Dict = num_hidden_layers
__snake_case : List[str] = num_attention_heads
__snake_case : List[Any] = hidden_act
__snake_case : Tuple = intermediate_size
__snake_case : Optional[int] = hidden_dropout_prob
__snake_case : Dict = attention_probs_dropout_prob
__snake_case : List[str] = max_position_embeddings
__snake_case : Tuple = initializer_range
__snake_case : Dict = layer_norm_eps
__snake_case : Dict = position_embedding_type
__snake_case : Any = cross_attention_frequency
__snake_case : Optional[Any] = encoder_hidden_size
@classmethod
def snake_case__ ( cls : Dict , _lowerCAmelCase : Union[str, os.PathLike] , **_lowerCAmelCase : Tuple ):
cls._set_token_in_kwargs(_lowerCAmelCase )
__snake_case , __snake_case : str = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get("""model_type""" ) == "instructblip":
__snake_case : List[Any] = config_dict["""qformer_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : int = "instructblip"
A : str = True
def __init__( self : Optional[int] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Dict=32 , **_lowerCAmelCase : str ):
super().__init__(**_lowerCAmelCase )
if vision_config is None:
__snake_case : List[str] = {}
logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" )
if qformer_config is None:
__snake_case : Optional[int] = {}
logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" )
if text_config is None:
__snake_case : Any = {}
logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" )
__snake_case : Union[str, Any] = InstructBlipVisionConfig(**_lowerCAmelCase )
__snake_case : Optional[int] = InstructBlipQFormerConfig(**_lowerCAmelCase )
__snake_case : Optional[int] = text_config["""model_type"""] if """model_type""" in text_config else """opt"""
__snake_case : List[str] = CONFIG_MAPPING[text_model_type](**_lowerCAmelCase )
__snake_case : Tuple = self.text_config.tie_word_embeddings
__snake_case : Dict = self.text_config.is_encoder_decoder
__snake_case : Union[str, Any] = num_query_tokens
__snake_case : int = self.vision_config.hidden_size
__snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
__snake_case : Tuple = 1.0
__snake_case : Tuple = 0.02
@classmethod
def snake_case__ ( cls : Tuple , _lowerCAmelCase : InstructBlipVisionConfig , _lowerCAmelCase : InstructBlipQFormerConfig , _lowerCAmelCase : PretrainedConfig , **_lowerCAmelCase : Union[str, Any] , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_lowerCAmelCase , )
def snake_case__ ( self : str ):
__snake_case : str = copy.deepcopy(self.__dict__ )
__snake_case : List[str] = self.vision_config.to_dict()
__snake_case : Any = self.qformer_config.to_dict()
__snake_case : List[Any] = self.text_config.to_dict()
__snake_case : Optional[Any] = self.__class__.model_type
return output
| 20 | import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json",
"facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[Any] = "encodec"
def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase : Tuple=2_40_00 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : int=1_28 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Union[str, Any]=[8, 5, 4, 2] , _lowerCAmelCase : str="weight_norm" , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict="reflect" , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : Optional[int]=10_24 , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , **_lowerCAmelCase : List[Any] , ):
__snake_case : Optional[int] = target_bandwidths
__snake_case : int = sampling_rate
__snake_case : List[Any] = audio_channels
__snake_case : str = normalize
__snake_case : Union[str, Any] = chunk_length_s
__snake_case : Union[str, Any] = overlap
__snake_case : Union[str, Any] = hidden_size
__snake_case : Union[str, Any] = num_filters
__snake_case : Optional[Any] = num_residual_layers
__snake_case : List[Any] = upsampling_ratios
__snake_case : List[str] = norm_type
__snake_case : Union[str, Any] = kernel_size
__snake_case : Optional[int] = last_kernel_size
__snake_case : Optional[Any] = residual_kernel_size
__snake_case : Dict = dilation_growth_rate
__snake_case : int = use_causal_conv
__snake_case : Tuple = pad_mode
__snake_case : str = compress
__snake_case : Optional[Any] = num_lstm_layers
__snake_case : List[Any] = trim_right_ratio
__snake_case : Any = codebook_size
__snake_case : int = codebook_dim if codebook_dim is not None else hidden_size
__snake_case : int = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' )
super().__init__(**_lowerCAmelCase )
@property
def snake_case__ ( self : int ):
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def snake_case__ ( self : int ):
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def snake_case__ ( self : Union[str, Any] ):
__snake_case : List[str] = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def snake_case__ ( self : Tuple ):
return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 20 | 1 |
import argparse
import collections
import os
import re
import tempfile
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
lowercase_ = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
lowercase_ = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
lowercase_ = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
lowercase_ = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
lowercase_ = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
lowercase_ = [
("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"),
("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"),
("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"),
("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"),
("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"),
("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"),
("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"),
("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"),
("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"),
(
"zero-shot-object-detection",
"MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES",
"AutoModelForZeroShotObjectDetection",
),
("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"),
("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"),
("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"),
("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"),
(
"table-question-answering",
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForTableQuestionAnswering",
),
("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"),
("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"),
(
"next-sentence-prediction",
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES",
"AutoModelForNextSentencePrediction",
),
(
"audio-frame-classification",
"MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES",
"AutoModelForAudioFrameClassification",
),
("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"),
(
"document-question-answering",
"MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForDocumentQuestionAnswering",
),
(
"visual-question-answering",
"MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForVisualQuestionAnswering",
),
("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"),
(
"zero-shot-image-classification",
"MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES",
"AutoModelForZeroShotImageClassification",
),
("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"),
("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"),
("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"),
]
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
__snake_case : Union[str, Any] = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , __SCREAMING_SNAKE_CASE )
return [m.group(0 ) for m in matches]
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
__snake_case : Tuple = {
config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
__snake_case : str = collections.defaultdict(__SCREAMING_SNAKE_CASE )
__snake_case : Tuple = collections.defaultdict(__SCREAMING_SNAKE_CASE )
__snake_case : Union[str, Any] = collections.defaultdict(__SCREAMING_SNAKE_CASE )
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(__SCREAMING_SNAKE_CASE ):
__snake_case : str = None
if _re_tf_models.match(__SCREAMING_SNAKE_CASE ) is not None:
__snake_case : List[Any] = tf_models
__snake_case : Dict = _re_tf_models.match(__SCREAMING_SNAKE_CASE ).groups()[0]
elif _re_flax_models.match(__SCREAMING_SNAKE_CASE ) is not None:
__snake_case : List[str] = flax_models
__snake_case : Any = _re_flax_models.match(__SCREAMING_SNAKE_CASE ).groups()[0]
elif _re_pt_models.match(__SCREAMING_SNAKE_CASE ) is not None:
__snake_case : Union[str, Any] = pt_models
__snake_case : Union[str, Any] = _re_pt_models.match(__SCREAMING_SNAKE_CASE ).groups()[0]
if lookup_dict is not None:
while len(__SCREAMING_SNAKE_CASE ) > 0:
if attr_name in model_prefix_to_model_type:
__snake_case : Any = True
break
# Try again after removing the last word in the name
__snake_case : int = """""".join(camel_case_split(__SCREAMING_SNAKE_CASE )[:-1] )
__snake_case : Union[str, Any] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) )
__snake_case : List[Any] = list(__SCREAMING_SNAKE_CASE )
all_models.sort()
__snake_case : Dict = {"""model_type""": all_models}
__snake_case : Optional[Any] = [pt_models[t] for t in all_models]
__snake_case : List[Any] = [tf_models[t] for t in all_models]
__snake_case : Tuple = [flax_models[t] for t in all_models]
# Now let's use the auto-mapping names to make sure
__snake_case : Any = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
__snake_case : Union[str, Any] = """AutoProcessor"""
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
__snake_case : Dict = """AutoTokenizer"""
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
__snake_case : Tuple = """AutoFeatureExtractor"""
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
__snake_case : Tuple = """AutoTokenizer"""
__snake_case : Optional[int] = [processors[t] for t in all_models]
return pd.DataFrame(__SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
__snake_case : Union[str, Any] = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
__snake_case : str = [model_mapping, F'''TF_{model_mapping}''', F'''FLAX_{model_mapping}''']
__snake_case : int = [auto_class, F'''TF_{auto_class}''', F'''Flax_{auto_class}''']
# Loop through all three frameworks
for module, cls, mapping in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# The type of pipeline may not exist in this framework
if not hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
continue
# First extract all model_names
__snake_case : List[str] = []
for name in getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).values():
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
model_names.append(__SCREAMING_SNAKE_CASE )
else:
model_names.extend(list(__SCREAMING_SNAKE_CASE ) )
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names} )
return table
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
__snake_case : Dict = get_frameworks_table()
__snake_case : Tuple = Dataset.from_pandas(__SCREAMING_SNAKE_CASE )
__snake_case : int = hf_hub_download(
"""huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=__SCREAMING_SNAKE_CASE )
__snake_case : Dict = Dataset.from_json(__SCREAMING_SNAKE_CASE )
__snake_case : Any = {
tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""])
for i in range(len(__SCREAMING_SNAKE_CASE ) )
}
__snake_case : Optional[int] = update_pipeline_and_auto_class_table(__SCREAMING_SNAKE_CASE )
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
__snake_case : Optional[int] = sorted(table.keys() )
__snake_case : Union[str, Any] = pd.DataFrame(
{
"""model_class""": model_classes,
"""pipeline_tag""": [table[m][0] for m in model_classes],
"""auto_class""": [table[m][1] for m in model_classes],
} )
__snake_case : Any = Dataset.from_pandas(__SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(__SCREAMING_SNAKE_CASE , """frameworks.json""" ) )
tags_dataset.to_json(os.path.join(__SCREAMING_SNAKE_CASE , """pipeline_tags.json""" ) )
if commit_sha is not None:
__snake_case : Dict = (
F'''Update with commit {commit_sha}\n\nSee: '''
F'''https://github.com/huggingface/transformers/commit/{commit_sha}'''
)
else:
__snake_case : List[Any] = """Update"""
upload_folder(
repo_id="""huggingface/transformers-metadata""" , folder_path=__SCREAMING_SNAKE_CASE , repo_type="""dataset""" , token=__SCREAMING_SNAKE_CASE , commit_message=__SCREAMING_SNAKE_CASE , )
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : List[Any] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
__snake_case : Dict = transformers_module.pipelines.SUPPORTED_TASKS
__snake_case : Tuple = []
for key in pipeline_tasks:
if key not in in_table:
__snake_case : Dict = pipeline_tasks[key]["""pt"""]
if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ):
__snake_case : Tuple = model[0]
__snake_case : Optional[Any] = model.__name__
if model not in in_table.values():
missing.append(__SCREAMING_SNAKE_CASE )
if len(__SCREAMING_SNAKE_CASE ) > 0:
__snake_case : Union[str, Any] = """, """.join(__SCREAMING_SNAKE_CASE )
raise ValueError(
"""The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """
F'''`utils/update_metadata.py`: {msg}. Please add them!''' )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.")
parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.")
parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.")
lowercase_ = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)
| 20 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : str = []
__snake_case , __snake_case : List[str] = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
__snake_case : List[Any] = result + left + right
return input_list
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
if len(__SCREAMING_SNAKE_CASE ) <= 1:
return input_list
__snake_case : Union[str, Any] = list(__SCREAMING_SNAKE_CASE )
# iteration for two-way merging
__snake_case : Tuple = 2
while p <= len(__SCREAMING_SNAKE_CASE ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = i
__snake_case : str = i + p - 1
__snake_case : Optional[Any] = (low + high + 1) // 2
__snake_case : str = merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# final merge of last two parts
if p * 2 >= len(__SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = i
__snake_case : str = merge(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
if user_input == "":
lowercase_ = []
else:
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
print(iter_merge_sort(unsorted))
| 20 | 1 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(__UpperCamelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : Optional[Any] , *_lowerCAmelCase : int , **_lowerCAmelCase : List[Any] ):
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Any=None ):
__snake_case : Any = {}
if top_k is not None:
__snake_case : Optional[int] = top_k
return {}, {}, postprocess_params
def __call__( self : Any , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Tuple ):
return super().__call__(_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Tuple ):
__snake_case : int = load_image(_lowerCAmelCase )
__snake_case : List[Any] = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
return model_inputs
def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] ):
__snake_case : int = self.model(**_lowerCAmelCase )
return model_outputs
def snake_case__ ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=5 ):
if top_k > self.model.config.num_labels:
__snake_case : Optional[Any] = self.model.config.num_labels
if self.framework == "pt":
__snake_case : Any = model_outputs.logits.softmax(-1 )[0]
__snake_case , __snake_case : List[Any] = probs.topk(_lowerCAmelCase )
elif self.framework == "tf":
__snake_case : Optional[Any] = stable_softmax(model_outputs.logits , axis=-1 )[0]
__snake_case : Union[str, Any] = tf.math.top_k(_lowerCAmelCase , k=_lowerCAmelCase )
__snake_case , __snake_case : Tuple = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
__snake_case : Any = scores.tolist()
__snake_case : List[str] = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_lowerCAmelCase , _lowerCAmelCase )]
| 20 | import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
lowercase_ = "Usage of script: script_name <size_of_canvas:int>"
lowercase_ = [0] * 1_00 + [1] * 10
random.shuffle(choice)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : List[str] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )]
return canvas
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
for i, row in enumerate(__SCREAMING_SNAKE_CASE ):
for j, _ in enumerate(__SCREAMING_SNAKE_CASE ):
__snake_case : int = bool(random.getrandbits(1 ) )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
__snake_case : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) )
for r, row in enumerate(__SCREAMING_SNAKE_CASE ):
for c, pt in enumerate(__SCREAMING_SNAKE_CASE ):
__snake_case : Optional[Any] = __judge_point(
__SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] )
__snake_case : List[str] = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
__snake_case : list[list[bool]] = current_canvas.tolist()
return return_canvas
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
__snake_case : Any = 0
__snake_case : Dict = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status:
alive += 1
else:
dead += 1
# handling duplicate entry for focus pt.
if pt:
alive -= 1
else:
dead -= 1
# running the rules of game here.
__snake_case : str = pt
if pt:
if alive < 2:
__snake_case : Optional[Any] = False
elif alive == 2 or alive == 3:
__snake_case : Union[str, Any] = True
elif alive > 3:
__snake_case : Optional[int] = False
else:
if alive == 3:
__snake_case : List[Any] = True
return state
if __name__ == "__main__":
if len(sys.argv) != 2:
raise Exception(usage_doc)
lowercase_ = int(sys.argv[1])
# main working structure of this module.
lowercase_ = create_canvas(canvas_size)
seed(c)
lowercase_ , lowercase_ = plt.subplots()
fig.show()
lowercase_ = ListedColormap(["w", "k"])
try:
while True:
lowercase_ = run(c)
ax.matshow(c, cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass
| 20 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"microsoft/trocr-base-handwritten": (
"https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[Any] = "trocr"
A : List[Any] = ["past_key_values"]
A : Dict = {
"num_attention_heads": "decoder_attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "decoder_layers",
}
def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=5_02_65 , _lowerCAmelCase : Union[str, Any]=10_24 , _lowerCAmelCase : List[str]=12 , _lowerCAmelCase : Dict=16 , _lowerCAmelCase : Optional[int]=40_96 , _lowerCAmelCase : Tuple="gelu" , _lowerCAmelCase : str=5_12 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : str=2 , _lowerCAmelCase : Optional[Any]=0.02 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : str=True , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : str=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=1 , _lowerCAmelCase : Optional[int]=0 , _lowerCAmelCase : Optional[Any]=2 , **_lowerCAmelCase : Optional[Any] , ):
__snake_case : Dict = vocab_size
__snake_case : Optional[Any] = d_model
__snake_case : str = decoder_layers
__snake_case : List[Any] = decoder_attention_heads
__snake_case : Dict = decoder_ffn_dim
__snake_case : Tuple = activation_function
__snake_case : Dict = max_position_embeddings
__snake_case : str = dropout
__snake_case : str = attention_dropout
__snake_case : Dict = activation_dropout
__snake_case : Any = init_std
__snake_case : Optional[Any] = decoder_layerdrop
__snake_case : Optional[Any] = use_cache
__snake_case : Optional[int] = scale_embedding
__snake_case : Any = use_learned_position_embeddings
__snake_case : Optional[int] = layernorm_embedding
super().__init__(
pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
| 20 | import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Union[Dict, Any]] = None , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : int=2 ):
'''simple docstring'''
from .. import __version__
__snake_case : List[Any] = take_from
__snake_case : List[Any] = ()
if not isinstance(args[0] , __SCREAMING_SNAKE_CASE ):
__snake_case : str = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(__SCREAMING_SNAKE_CASE ):
raise ValueError(
F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''''
F''' version {__version__} is >= {version_name}''' )
__snake_case : Optional[Any] = None
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__SCREAMING_SNAKE_CASE ),)
__snake_case : Optional[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''
elif hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
values += (getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),)
__snake_case : Any = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''
elif deprecated_kwargs is None:
__snake_case : Tuple = F'''`{attribute}` is deprecated and will be removed in version {version_name}.'''
if warning is not None:
__snake_case : Optional[Any] = warning + """ """ if standard_warn else """"""
warnings.warn(warning + message , __SCREAMING_SNAKE_CASE , stacklevel=__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) > 0:
__snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1]
__snake_case : int = call_frame.filename
__snake_case : int = call_frame.lineno
__snake_case : List[str] = call_frame.function
__snake_case , __snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' )
if len(__SCREAMING_SNAKE_CASE ) == 0:
return
elif len(__SCREAMING_SNAKE_CASE ) == 1:
return values[0]
return values
| 20 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def __init__( self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str]=7 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Optional[int]=18 , _lowerCAmelCase : str=30 , _lowerCAmelCase : int=4_00 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[int]=None , ):
__snake_case : Tuple = size if size is not None else {"""shortest_edge""": 20}
__snake_case : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
__snake_case : List[str] = parent
__snake_case : Union[str, Any] = batch_size
__snake_case : Dict = num_channels
__snake_case : Dict = image_size
__snake_case : Optional[Any] = min_resolution
__snake_case : Tuple = max_resolution
__snake_case : int = do_resize
__snake_case : int = size
__snake_case : List[str] = do_center_crop
__snake_case : Any = crop_size
def snake_case__ ( self : Union[str, Any] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ):
A : Tuple = MobileNetVaImageProcessor if is_vision_available() else None
def snake_case__ ( self : List[str] ):
__snake_case : Optional[int] = MobileNetVaImageProcessingTester(self )
@property
def snake_case__ ( self : Dict ):
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : Any ):
__snake_case : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) )
self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) )
self.assertTrue(hasattr(_lowerCAmelCase , """do_center_crop""" ) )
self.assertTrue(hasattr(_lowerCAmelCase , """crop_size""" ) )
def snake_case__ ( self : Any ):
__snake_case : str = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 20} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
__snake_case : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def snake_case__ ( self : Optional[int] ):
pass
def snake_case__ ( self : Optional[int] ):
# Initialize image_processing
__snake_case : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , Image.Image )
# Test not batched input
__snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
__snake_case : Optional[Any] = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def snake_case__ ( self : int ):
# Initialize image_processing
__snake_case : Dict = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , np.ndarray )
# Test not batched input
__snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
__snake_case : int = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def snake_case__ ( self : Dict ):
# Initialize image_processing
__snake_case : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__snake_case : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , torch.Tensor )
# Test not batched input
__snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
__snake_case : Tuple = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 20 | import argparse
import os
from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPTaConfig,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
TaConfig,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPTaLMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFTaForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWavaVecaModel,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
WavaVecaConfig,
WavaVecaModel,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tfa_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPTaLMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
TaForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
logging.set_verbosity_info()
lowercase_ = {
"bart": (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"bert": (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-base-cased-finetuned-mrpc": (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"dpr": (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"gpt2": (
GPTaConfig,
TFGPTaLMHeadModel,
GPTaLMHeadModel,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlnet": (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm": (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm-roberta": (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"transfo-xl": (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"openai-gpt": (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"roberta": (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"layoutlm": (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"roberta-large-mnli": (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"camembert": (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"flaubert": (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert": (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert-base-distilled-squad": (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert": (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert-visual-feature-encoder": (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"ctrl": (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"albert": (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"t5": (
TaConfig,
TFTaForConditionalGeneration,
TaForConditionalGeneration,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"electra": (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"wav2vec2": (
WavaVecaConfig,
TFWavaVecaModel,
WavaVecaModel,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=True ):
'''simple docstring'''
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' )
__snake_case , __snake_case , __snake_case , __snake_case : Any = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
__snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
__snake_case : Dict = config_class.from_json_file(__SCREAMING_SNAKE_CASE )
__snake_case : Tuple = True
__snake_case : Union[str, Any] = True
print(F'''Building TensorFlow model from configuration: {config}''' )
__snake_case : List[Any] = model_class(__SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
__snake_case : Optional[Any] = cached_file(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
# Load PyTorch checkpoint in tf2 model:
__snake_case : List[Any] = load_pytorch_checkpoint_in_tfa_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if compare_with_pt_model:
__snake_case : Tuple = tf_model(tf_model.dummy_inputs , training=__SCREAMING_SNAKE_CASE ) # build the network
__snake_case : List[str] = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" )
__snake_case : Any = pt_model_class.from_pretrained(
pretrained_model_name_or_path=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE , state_dict=__SCREAMING_SNAKE_CASE )
with torch.no_grad():
__snake_case : Union[str, Any] = pt_model(**pt_model.dummy_inputs )
__snake_case : Any = pto[0].numpy()
__snake_case : Optional[int] = tfo[0].numpy()
__snake_case : Optional[int] = np.amax(np.abs(np_pt - np_tf ) )
print(F'''Max absolute difference between models outputs {diff}''' )
assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}'''
# Save pytorch-model
print(F'''Save TensorFlow model to {tf_dump_path}''' )
tf_model.save_weights(__SCREAMING_SNAKE_CASE , save_format="""h5""" )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Any=False , ):
'''simple docstring'''
if args_model_type is None:
__snake_case : Tuple = list(MODEL_CLASSES.keys() )
else:
__snake_case : Union[str, Any] = [args_model_type]
for j, model_type in enumerate(__SCREAMING_SNAKE_CASE , start=1 ):
print("""=""" * 1_0_0 )
print(F''' Converting model type {j}/{len(__SCREAMING_SNAKE_CASE )}: {model_type}''' )
print("""=""" * 1_0_0 )
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' )
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
__snake_case : int = list(aws_model_maps.keys() )
if config_shortcut_names_or_path is None:
__snake_case : Union[str, Any] = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , start=1 ):
print("""-""" * 1_0_0 )
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' )
continue
__snake_case : List[Any] = model_shortcut_name
elif only_convert_finetuned_models:
print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' )
continue
print(
F''' Converting checkpoint {i}/{len(__SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}''' )
print("""-""" * 1_0_0 )
if config_shortcut_name in aws_config_map:
__snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
else:
__snake_case : Dict = config_shortcut_name
if model_shortcut_name in aws_model_maps:
__snake_case : Union[str, Any] = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
else:
__snake_case : List[Any] = model_shortcut_name
if os.path.isfile(__SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = """converted_model"""
convert_pt_checkpoint_to_tf(
model_type=__SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=__SCREAMING_SNAKE_CASE , config_file=__SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(__SCREAMING_SNAKE_CASE , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__SCREAMING_SNAKE_CASE , )
if remove_cached_files:
os.remove(__SCREAMING_SNAKE_CASE )
os.remove(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file."
)
parser.add_argument(
"--model_type",
default=None,
type=str,
help=(
F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and '''
"convert all the models from AWS."
),
)
parser.add_argument(
"--pytorch_checkpoint_path",
default=None,
type=str,
help=(
"Path to the PyTorch checkpoint path or shortcut name to download from AWS. "
"If not given, will download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--config_file",
default=None,
type=str,
help=(
"The config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture. If not given and "
"--pytorch_checkpoint_path is not given or is a shortcut name "
"use the configuration associated to the shortcut name on the AWS"
),
)
parser.add_argument(
"--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions."
)
parser.add_argument(
"--use_cached_models",
action="store_true",
help="Use cached models if possible instead of updating to latest checkpoint versions.",
)
parser.add_argument(
"--remove_cached_files",
action="store_true",
help="Remove pytorch models after conversion (save memory when converting in batches).",
)
parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.")
lowercase_ = parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
| 20 | 1 |
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ):
A : Tuple = BioGptTokenizer
A : List[Any] = False
def snake_case__ ( self : Union[str, Any] ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__snake_case : Any = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""w</w>""",
"""r</w>""",
"""t</w>""",
"""lo""",
"""low""",
"""er</w>""",
"""low</w>""",
"""lowest</w>""",
"""newer</w>""",
"""wider</w>""",
"""<unk>""",
]
__snake_case : Optional[Any] = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
__snake_case : Tuple = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""]
__snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) )
with open(self.merges_file , """w""" ) as fp:
fp.write("""\n""".join(_lowerCAmelCase ) )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Tuple ):
__snake_case : Optional[int] = """lower newer"""
__snake_case : Any = """lower newer"""
return input_text, output_text
def snake_case__ ( self : Any ):
__snake_case : Dict = BioGptTokenizer(self.vocab_file , self.merges_file )
__snake_case : int = """lower"""
__snake_case : List[str] = ["""low""", """er</w>"""]
__snake_case : Any = tokenizer.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : Any = tokens + ["""<unk>"""]
__snake_case : int = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase )
@slow
def snake_case__ ( self : List[Any] ):
__snake_case : Union[str, Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
__snake_case : Union[str, Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase )
__snake_case : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase )
__snake_case : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase )
__snake_case : Dict = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 20 | import random
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
__snake_case , __snake_case , __snake_case : Tuple = [], [], []
for element in data:
if element < pivot:
less.append(__SCREAMING_SNAKE_CASE )
elif element > pivot:
greater.append(__SCREAMING_SNAKE_CASE )
else:
equal.append(__SCREAMING_SNAKE_CASE )
return less, equal, greater
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
# index = len(items) // 2 when trying to find the median
# (value of index when items is sorted)
# invalid input
if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0:
return None
__snake_case : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )]
__snake_case : Tuple = 0
__snake_case , __snake_case , __snake_case : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE )
__snake_case : int = len(__SCREAMING_SNAKE_CASE )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# must be in larger
else:
return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
| 20 | 1 |
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def __lowerCAmelCase ( ):
'''simple docstring'''
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
__snake_case : Optional[int] = """__test_patch_submodule_mock__"""
with patch_submodule(_test_patching , """os.path.join""" , __SCREAMING_SNAKE_CASE ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def __lowerCAmelCase ( ):
'''simple docstring'''
assert _test_patching.open is open
__snake_case : Optional[int] = """__test_patch_submodule_builtin_mock__"""
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , """open""" , __SCREAMING_SNAKE_CASE ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def __lowerCAmelCase ( ):
'''simple docstring'''
# pandas.read_csv is not present in _test_patching
__snake_case : Dict = """__test_patch_submodule_missing_mock__"""
with patch_submodule(_test_patching , """pandas.read_csv""" , __SCREAMING_SNAKE_CASE ):
pass
def __lowerCAmelCase ( ):
'''simple docstring'''
# builtin should always be mocked even if they're not in the globals
# in case they're loaded at one point
__snake_case : Optional[Any] = """__test_patch_submodule_missing_builtin_mock__"""
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , """len""" , __SCREAMING_SNAKE_CASE ) is None
with patch_submodule(_test_patching , """len""" , __SCREAMING_SNAKE_CASE ):
assert _test_patching.len is mock
assert _test_patching.len is len
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Dict = """__test_patch_submodule_start_and_stop_mock__"""
__snake_case : Dict = patch_submodule(_test_patching , """open""" , __SCREAMING_SNAKE_CASE )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def __lowerCAmelCase ( ):
'''simple docstring'''
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
__snake_case : int = """__test_patch_submodule_successive_join__"""
__snake_case : Tuple = """__test_patch_submodule_successive_dirname__"""
__snake_case : Dict = """__test_patch_submodule_successive_rename__"""
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , """os.path.join""" , __SCREAMING_SNAKE_CASE ):
with patch_submodule(_test_patching , """os.rename""" , __SCREAMING_SNAKE_CASE ):
with patch_submodule(_test_patching , """os.path.dirname""" , __SCREAMING_SNAKE_CASE ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , """os.rename""" , __SCREAMING_SNAKE_CASE ):
with patch_submodule(_test_patching , """os.path.join""" , __SCREAMING_SNAKE_CASE ):
with patch_submodule(_test_patching , """os.path.dirname""" , __SCREAMING_SNAKE_CASE ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Optional[int] = """__test_patch_submodule_doesnt_exist_mock__"""
with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , __SCREAMING_SNAKE_CASE ):
pass
with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , __SCREAMING_SNAKE_CASE ):
pass
| 20 | import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"
),
}
}
lowercase_ = {
"junnyu/roformer_chinese_small": 15_36,
"junnyu/roformer_chinese_base": 15_36,
"junnyu/roformer_chinese_char_small": 5_12,
"junnyu/roformer_chinese_char_base": 5_12,
"junnyu/roformer_small_discriminator": 1_28,
"junnyu/roformer_small_generator": 1_28,
}
lowercase_ = {
"junnyu/roformer_chinese_small": {"do_lower_case": True},
"junnyu/roformer_chinese_base": {"do_lower_case": True},
"junnyu/roformer_chinese_char_small": {"do_lower_case": True},
"junnyu/roformer_chinese_char_base": {"do_lower_case": True},
"junnyu/roformer_small_discriminator": {"do_lower_case": True},
"junnyu/roformer_small_generator": {"do_lower_case": True},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = VOCAB_FILES_NAMES
A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : int = PRETRAINED_INIT_CONFIGURATION
A : List[str] = RoFormerTokenizer
def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any="[UNK]" , _lowerCAmelCase : int="[SEP]" , _lowerCAmelCase : Optional[int]="[PAD]" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Dict , ):
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
__snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case
or pre_tok_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents
):
__snake_case : Tuple = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) )
__snake_case : List[Any] = do_lower_case
__snake_case : Optional[Any] = strip_accents
__snake_case : List[str] = pre_tok_class(**_lowerCAmelCase )
__snake_case : Optional[Any] = do_lower_case
def __getstate__( self : Optional[Any] ):
__snake_case : Optional[int] = self.__dict__.copy()
__snake_case : Optional[Any] = BertPreTokenizer()
return state
def __setstate__( self : str , _lowerCAmelCase : Dict ):
__snake_case : str = d
__snake_case : int = self.__dict__["""_tokenizer"""].get_vocab()
__snake_case : List[str] = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=None ):
__snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
def snake_case__ ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Tuple , ):
__snake_case : Tuple = BertPreTokenizer()
return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
| 20 | 1 |
from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : str = []
__snake_case , __snake_case : List[str] = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
__snake_case : List[Any] = result + left + right
return input_list
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
if len(__SCREAMING_SNAKE_CASE ) <= 1:
return input_list
__snake_case : Union[str, Any] = list(__SCREAMING_SNAKE_CASE )
# iteration for two-way merging
__snake_case : Tuple = 2
while p <= len(__SCREAMING_SNAKE_CASE ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = i
__snake_case : str = i + p - 1
__snake_case : Optional[Any] = (low + high + 1) // 2
__snake_case : str = merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# final merge of last two parts
if p * 2 >= len(__SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = i
__snake_case : str = merge(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
if user_input == "":
lowercase_ = []
else:
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
print(iter_merge_sort(unsorted))
| 20 | from __future__ import annotations
import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if depth < 0:
raise ValueError("""Depth cannot be less than 0""" )
if len(__SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("""Scores cannot be empty""" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
return min(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3]
__snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 )
print("""Optimal value : """ , end="""""" )
print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 20 | 1 |
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Tuple , _lowerCAmelCase : int ):
__snake_case : Optional[int] = size
__snake_case : List[Any] = [0] * size
__snake_case : Dict = [0] * size
@staticmethod
def snake_case__ ( _lowerCAmelCase : int ):
return index | (index + 1)
@staticmethod
def snake_case__ ( _lowerCAmelCase : int ):
return (index & (index + 1)) - 1
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ):
__snake_case : Any = value
while index < self.size:
__snake_case : Optional[int] = self.get_prev(_lowerCAmelCase ) + 1
if current_left_border == index:
__snake_case : Dict = value
else:
__snake_case : str = max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : Optional[Any] = self.get_next(_lowerCAmelCase )
def snake_case__ ( self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : int ):
right -= 1 # Because of right is exclusive
__snake_case : Optional[Any] = 0
while left <= right:
__snake_case : List[str] = self.get_prev(_lowerCAmelCase )
if left <= current_left:
__snake_case : Optional[Any] = max(_lowerCAmelCase , self.tree[right] )
__snake_case : List[str] = current_left
else:
__snake_case : Union[str, Any] = max(_lowerCAmelCase , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
lowercase_ = None
lowercase_ = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
lowercase_ = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : bool = True
A : Optional[str] = None
# Automatically constructed
A : ClassVar[str] = "PIL.Image.Image"
A : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} )
A : str = field(default="Image" , init=__UpperCamelCase , repr=__UpperCamelCase )
def __call__( self : Any ):
return self.pa_type
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
__snake_case : str = np.array(_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": value, "bytes": None}
elif isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": None, "bytes": value}
elif isinstance(_lowerCAmelCase , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(_lowerCAmelCase )
elif isinstance(_lowerCAmelCase , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(_lowerCAmelCase )
elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("""path""" )}
elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )}
else:
raise ValueError(
f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def snake_case__ ( self : List[str] , _lowerCAmelCase : dict , _lowerCAmelCase : Dict=None ):
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support decoding images, please install 'Pillow'.""" )
if token_per_repo_id is None:
__snake_case : Tuple = {}
__snake_case , __snake_case : str = value["""path"""], value["""bytes"""]
if bytes_ is None:
if path is None:
raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
else:
if is_local_path(_lowerCAmelCase ):
__snake_case : str = PIL.Image.open(_lowerCAmelCase )
else:
__snake_case : List[str] = path.split("""::""" )[-1]
try:
__snake_case : Dict = string_to_dict(_lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""]
__snake_case : int = token_per_repo_id.get(_lowerCAmelCase )
except ValueError:
__snake_case : List[Any] = None
with xopen(_lowerCAmelCase , """rb""" , use_auth_token=_lowerCAmelCase ) as f:
__snake_case : Union[str, Any] = BytesIO(f.read() )
__snake_case : Dict = PIL.Image.open(bytes_ )
else:
__snake_case : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def snake_case__ ( self : Union[str, Any] ):
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("""binary""" ),
"path": Value("""string""" ),
}
)
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ):
if pa.types.is_string(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("""bytes""" ) >= 0:
__snake_case : List[str] = storage.field("""bytes""" )
else:
__snake_case : List[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
if storage.type.get_field_index("""path""" ) >= 0:
__snake_case : Optional[int] = storage.field("""path""" )
else:
__snake_case : int = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
__snake_case : Optional[Any] = pa.array(
[encode_np_array(np.array(_lowerCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
__snake_case : Optional[int] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays(
[bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : pa.StructArray ):
@no_op_if_value_is_null
def path_to_bytes(_lowerCAmelCase : Tuple ):
with xopen(_lowerCAmelCase , """rb""" ) as f:
__snake_case : Optional[int] = f.read()
return bytes_
__snake_case : Tuple = pa.array(
[
(path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
__snake_case : Optional[Any] = pa.array(
[os.path.basename(_lowerCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def __lowerCAmelCase ( ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
__snake_case : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
__snake_case : List[Any] = BytesIO()
if image.format in list_image_compression_formats():
__snake_case : Union[str, Any] = image.format
else:
__snake_case : List[Any] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF"""
image.save(__SCREAMING_SNAKE_CASE , format=__SCREAMING_SNAKE_CASE )
return buffer.getvalue()
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
if hasattr(__SCREAMING_SNAKE_CASE , """filename""" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
__snake_case : List[Any] = array.dtype
__snake_case : List[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER
__snake_case : Dict = dtype.kind
__snake_case : Union[str, Any] = dtype.itemsize
__snake_case : Tuple = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
__snake_case : int = np.dtype("""|u1""" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' )
if dtype is not dest_dtype:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
__snake_case : List[str] = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
__snake_case : int = dtype_byteorder + dtype_kind + str(__SCREAMING_SNAKE_CASE )
__snake_case : Any = np.dtype(__SCREAMING_SNAKE_CASE )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' )
__snake_case : Optional[int] = PIL.Image.fromarray(array.astype(__SCREAMING_SNAKE_CASE ) )
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if objs:
__snake_case , __snake_case : Any = first_non_null_value(__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
__snake_case : int = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ):
__snake_case : List[str] = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
else:
return objs
else:
return objs
| 20 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
BertTokenizerFast,
BlipImageProcessor,
GPTaTokenizer,
InstructBlipProcessor,
PreTrainedTokenizerFast,
)
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : Tuple ):
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : str = BlipImageProcessor()
__snake_case : Union[str, Any] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" )
__snake_case : Optional[int] = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
__snake_case : str = InstructBlipProcessor(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
def snake_case__ ( self : List[Any] , **_lowerCAmelCase : Optional[int] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).tokenizer
def snake_case__ ( self : Dict , **_lowerCAmelCase : List[str] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).image_processor
def snake_case__ ( self : List[Any] , **_lowerCAmelCase : Dict ):
return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).qformer_tokenizer
def snake_case__ ( self : Any ):
shutil.rmtree(self.tmpdirname )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Optional[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__snake_case : Union[str, Any] = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def snake_case__ ( self : List[Any] ):
__snake_case : int = InstructBlipProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , )
processor.save_pretrained(self.tmpdirname )
__snake_case : List[str] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__snake_case : Union[str, Any] = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 )
__snake_case : List[str] = InstructBlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowerCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowerCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _lowerCAmelCase )
self.assertIsInstance(processor.qformer_tokenizer , _lowerCAmelCase )
def snake_case__ ( self : str ):
__snake_case : Union[str, Any] = self.get_image_processor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : Dict = self.get_qformer_tokenizer()
__snake_case : str = InstructBlipProcessor(
tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase )
__snake_case : Union[str, Any] = self.prepare_image_inputs()
__snake_case : Any = image_processor(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : int = processor(images=_lowerCAmelCase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def snake_case__ ( self : int ):
__snake_case : List[Any] = self.get_image_processor()
__snake_case : Tuple = self.get_tokenizer()
__snake_case : Union[str, Any] = self.get_qformer_tokenizer()
__snake_case : Optional[int] = InstructBlipProcessor(
tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase )
__snake_case : Any = """lower newer"""
__snake_case : Union[str, Any] = processor(text=_lowerCAmelCase )
__snake_case : List[str] = tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase )
__snake_case : List[Any] = qformer_tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase )
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key] , encoded_processor[key] )
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Dict = self.get_image_processor()
__snake_case : Tuple = self.get_tokenizer()
__snake_case : Optional[int] = self.get_qformer_tokenizer()
__snake_case : Optional[int] = InstructBlipProcessor(
tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase )
__snake_case : Union[str, Any] = """lower newer"""
__snake_case : List[Any] = self.prepare_image_inputs()
__snake_case : Optional[int] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase )
self.assertListEqual(
list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
# test if it raises when no input is passed
with pytest.raises(_lowerCAmelCase ):
processor()
def snake_case__ ( self : str ):
__snake_case : Optional[int] = self.get_image_processor()
__snake_case : Any = self.get_tokenizer()
__snake_case : List[str] = self.get_qformer_tokenizer()
__snake_case : int = InstructBlipProcessor(
tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase )
__snake_case : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__snake_case : Union[str, Any] = processor.batch_decode(_lowerCAmelCase )
__snake_case : List[Any] = tokenizer.batch_decode(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : str = self.get_image_processor()
__snake_case : List[Any] = self.get_tokenizer()
__snake_case : List[str] = self.get_qformer_tokenizer()
__snake_case : str = InstructBlipProcessor(
tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase )
__snake_case : Union[str, Any] = """lower newer"""
__snake_case : List[str] = self.prepare_image_inputs()
__snake_case : List[Any] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase )
self.assertListEqual(
list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
| 20 | from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(__UpperCamelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ):
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = {}
__snake_case : int = {}
if prompt is not None:
__snake_case : Dict = prompt
if generate_kwargs is not None:
__snake_case : List[Any] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__snake_case : Optional[int] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
__snake_case : Any = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ):
return super().__call__(_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = load_image(_lowerCAmelCase )
if prompt is not None:
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
raise ValueError(
f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
__snake_case : Tuple = self.model.config.model_type
if model_type == "git":
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids
__snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids
__snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
__snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework )
model_inputs.update(_lowerCAmelCase )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
__snake_case : int = None
return model_inputs
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ):
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase )
and all(x is None for x in model_inputs["""input_ids"""] )
):
__snake_case : List[Any] = None
if generate_kwargs is None:
__snake_case : Dict = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__snake_case : Dict = model_inputs.pop(self.model.main_input_name )
__snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase )
return model_outputs
def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ):
__snake_case : Union[str, Any] = []
for output_ids in model_outputs:
__snake_case : Union[str, Any] = {
"""generated_text""": self.tokenizer.decode(
_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , )
}
records.append(_lowerCAmelCase )
return records
| 20 | 1 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class SCREAMING_SNAKE_CASE__ :
A : List[Any] = PegasusConfig
A : Dict = {}
A : List[str] = "gelu"
def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=13 , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : int=99 , _lowerCAmelCase : Dict=32 , _lowerCAmelCase : str=2 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : str=37 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Any=40 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Optional[int]=0 , ):
__snake_case : Optional[Any] = parent
__snake_case : str = batch_size
__snake_case : str = seq_length
__snake_case : List[Any] = is_training
__snake_case : Union[str, Any] = use_labels
__snake_case : Optional[int] = vocab_size
__snake_case : Any = hidden_size
__snake_case : str = num_hidden_layers
__snake_case : Optional[Any] = num_attention_heads
__snake_case : str = intermediate_size
__snake_case : int = hidden_dropout_prob
__snake_case : str = attention_probs_dropout_prob
__snake_case : int = max_position_embeddings
__snake_case : Union[str, Any] = eos_token_id
__snake_case : Tuple = pad_token_id
__snake_case : Any = bos_token_id
def snake_case__ ( self : Dict ):
__snake_case : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__snake_case : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__snake_case : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 )
__snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : str = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__snake_case : Tuple = prepare_pegasus_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return config, inputs_dict
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ):
__snake_case : Optional[Any] = TFPegasusModel(config=_lowerCAmelCase ).get_decoder()
__snake_case : Optional[int] = inputs_dict["""input_ids"""]
__snake_case : Optional[int] = input_ids[:1, :]
__snake_case : Optional[int] = inputs_dict["""attention_mask"""][:1, :]
__snake_case : str = inputs_dict["""head_mask"""]
__snake_case : Tuple = 1
# first forward pass
__snake_case : Optional[int] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase )
__snake_case , __snake_case : int = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__snake_case : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
__snake_case : int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
__snake_case : str = tf.concat([input_ids, next_tokens] , axis=-1 )
__snake_case : List[str] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
__snake_case : Optional[int] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0]
__snake_case : str = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
__snake_case : Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
__snake_case : List[str] = output_from_no_past[:, -3:, random_slice_idx]
__snake_case : str = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , rtol=1e-3 )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : str=None , ):
'''simple docstring'''
if attention_mask is None:
__snake_case : Optional[Any] = tf.cast(tf.math.not_equal(__SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
__snake_case : Any = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
__snake_case : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__snake_case : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__snake_case : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ):
A : Dict = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
A : Optional[int] = (TFPegasusForConditionalGeneration,) if is_tf_available() else ()
A : Union[str, Any] = (
{
"conversational": TFPegasusForConditionalGeneration,
"feature-extraction": TFPegasusModel,
"summarization": TFPegasusForConditionalGeneration,
"text2text-generation": TFPegasusForConditionalGeneration,
"translation": TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
A : Union[str, Any] = True
A : Any = False
A : Dict = False
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Optional[Any] = TFPegasusModelTester(self )
__snake_case : int = ConfigTester(self , config_class=_lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def snake_case__ ( self : str ):
__snake_case : str = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
A : Tuple = [
" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.",
" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ",
]
A : Dict = [
"California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to"
" reduce the risk of wildfires.",
"N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.",
] # differs slightly from pytorch, likely due to numerical differences in linear layers
A : Union[str, Any] = "google/pegasus-xsum"
@cached_property
def snake_case__ ( self : Optional[int] ):
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def snake_case__ ( self : List[str] ):
__snake_case : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def snake_case__ ( self : Tuple , **_lowerCAmelCase : Optional[Any] ):
__snake_case : Dict = self.translate_src_text(**_lowerCAmelCase )
assert self.expected_text == generated_words
def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Optional[int] ):
__snake_case : Tuple = self.tokenizer(self.src_text , **_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""tf""" )
__snake_case : Dict = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCAmelCase , )
__snake_case : Any = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCAmelCase )
return generated_words
@slow
def snake_case__ ( self : int ):
self._assert_generated_batch_equal_expected()
| 20 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowercase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["YolosFeatureExtractor"]
lowercase_ = ["YolosImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST",
"YolosForObjectDetection",
"YolosModel",
"YolosPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
import gc
import unittest
from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline
from diffusers.utils import is_flax_available, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def snake_case__ ( self : int ):
__snake_case , __snake_case : str = FlaxStableDiffusionPipeline.from_pretrained(
"""stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , )
__snake_case : Union[str, Any] = """A painting of a squirrel eating a burger"""
__snake_case : Dict = jax.device_count()
__snake_case : int = num_samples * [prompt]
__snake_case : List[str] = sd_pipe.prepare_inputs(_lowerCAmelCase )
__snake_case : Union[str, Any] = replicate(_lowerCAmelCase )
__snake_case : Optional[Any] = shard(_lowerCAmelCase )
__snake_case : List[str] = jax.random.PRNGKey(0 )
__snake_case : int = jax.random.split(_lowerCAmelCase , jax.device_count() )
__snake_case : Optional[Any] = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0]
assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3)
__snake_case : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__snake_case : Optional[int] = images[0, 2_53:2_56, 2_53:2_56, -1]
__snake_case : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__snake_case : Optional[Any] = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
def snake_case__ ( self : List[str] ):
__snake_case : Tuple = """stabilityai/stable-diffusion-2"""
__snake_case , __snake_case : Optional[int] = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" )
__snake_case , __snake_case : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained(
_lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , )
__snake_case : Optional[Any] = scheduler_params
__snake_case : List[str] = """A painting of a squirrel eating a burger"""
__snake_case : Dict = jax.device_count()
__snake_case : Union[str, Any] = num_samples * [prompt]
__snake_case : Any = sd_pipe.prepare_inputs(_lowerCAmelCase )
__snake_case : List[str] = replicate(_lowerCAmelCase )
__snake_case : Dict = shard(_lowerCAmelCase )
__snake_case : Optional[int] = jax.random.PRNGKey(0 )
__snake_case : List[str] = jax.random.split(_lowerCAmelCase , jax.device_count() )
__snake_case : Tuple = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0]
assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3)
__snake_case : List[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__snake_case : Optional[Any] = images[0, 2_53:2_56, 2_53:2_56, -1]
__snake_case : Any = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__snake_case : Dict = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 20 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = "microsoft/speecht5_tts"
A : List[Any] = (
"This is a tool that reads an English text out loud. It takes an input named `text` which should contain the "
"text to read (in English) and returns a waveform object containing the sound."
)
A : str = "text_reader"
A : Optional[Any] = SpeechTaProcessor
A : Any = SpeechTaForTextToSpeech
A : Optional[Any] = SpeechTaHifiGan
A : str = ["text"]
A : Union[str, Any] = ["audio"]
def snake_case__ ( self : List[Any] ):
if self.post_processor is None:
__snake_case : Tuple = """microsoft/speecht5_hifigan"""
super().setup()
def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ):
__snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" )
__snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" )
__snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ):
with torch.no_grad():
return self.model.generate_speech(**_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
with torch.no_grad():
return self.post_processor(_lowerCAmelCase ).cpu().detach()
| 20 | 1 |
lowercase_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : List[str] = input("""Enter message: """ )
__snake_case : str = input("""Enter key [alphanumeric]: """ )
__snake_case : Optional[int] = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
__snake_case : Optional[Any] = """encrypt"""
__snake_case : Optional[int] = encrypt_message(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif mode.lower().startswith("""d""" ):
__snake_case : Dict = """decrypt"""
__snake_case : Any = decrypt_message(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
print(F'''\n{mode.title()}ed message:''' )
print(__SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
return translate_message(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , """encrypt""" )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
return translate_message(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , """decrypt""" )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
__snake_case : Optional[Any] = []
__snake_case : Tuple = 0
__snake_case : Optional[Any] = key.upper()
for symbol in message:
__snake_case : int = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(__SCREAMING_SNAKE_CASE )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(__SCREAMING_SNAKE_CASE ):
__snake_case : Optional[int] = 0
else:
translated.append(__SCREAMING_SNAKE_CASE )
return "".join(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 20 | import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * power_factor
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = "microsoft/speecht5_tts"
A : List[Any] = (
"This is a tool that reads an English text out loud. It takes an input named `text` which should contain the "
"text to read (in English) and returns a waveform object containing the sound."
)
A : str = "text_reader"
A : Optional[Any] = SpeechTaProcessor
A : Any = SpeechTaForTextToSpeech
A : Optional[Any] = SpeechTaHifiGan
A : str = ["text"]
A : Union[str, Any] = ["audio"]
def snake_case__ ( self : List[Any] ):
if self.post_processor is None:
__snake_case : Tuple = """microsoft/speecht5_hifigan"""
super().setup()
def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ):
__snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" )
__snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" )
__snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ):
with torch.no_grad():
return self.model.generate_speech(**_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
with torch.no_grad():
return self.post_processor(_lowerCAmelCase ).cpu().detach()
| 20 | from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 20 | 1 |
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int = 1_0_0_0 ):
'''simple docstring'''
__snake_case , __snake_case : Optional[int] = 1, 1
__snake_case : str = []
for i in range(1 , n + 1 ):
__snake_case : Dict = prev_numerator + 2 * prev_denominator
__snake_case : Dict = prev_numerator + prev_denominator
if len(str(__SCREAMING_SNAKE_CASE ) ) > len(str(__SCREAMING_SNAKE_CASE ) ):
result.append(__SCREAMING_SNAKE_CASE )
__snake_case : Union[str, Any] = numerator
__snake_case : List[str] = denominator
return len(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 20 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {
"configuration_blenderbot_small": [
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotSmallConfig",
"BlenderbotSmallOnnxConfig",
],
"tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["BlenderbotSmallTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
"BlenderbotSmallPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFBlenderbotSmallForConditionalGeneration",
"TFBlenderbotSmallModel",
"TFBlenderbotSmallPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxBlenderbotSmallForConditionalGeneration",
"FlaxBlenderbotSmallModel",
"FlaxBlenderbotSmallPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(
__UpperCamelCase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def snake_case__ ( self : str , _lowerCAmelCase : GenericTensor ):
if self.framework == "tf":
__snake_case : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()
elif self.framework == "pt":
__snake_case : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowerCAmelCase )
else:
raise ValueError("""Unsupported framework""" )
return masked_index
def snake_case__ ( self : int , _lowerCAmelCase : GenericTensor ):
__snake_case : List[str] = self.get_masked_index(_lowerCAmelCase )
__snake_case : Any = np.prod(masked_index.shape )
if numel < 1:
raise PipelineException(
"""fill-mask""" , self.model.base_model_prefix , f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : GenericTensor ):
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] )
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(_lowerCAmelCase )
def snake_case__ ( self : int , _lowerCAmelCase : Dict , _lowerCAmelCase : str=None , **_lowerCAmelCase : Union[str, Any] ):
if return_tensors is None:
__snake_case : Union[str, Any] = self.framework
__snake_case : Any = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase )
self.ensure_exactly_one_mask_token(_lowerCAmelCase )
return model_inputs
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str] ):
__snake_case : List[str] = self.model(**_lowerCAmelCase )
__snake_case : Optional[int] = model_inputs["""input_ids"""]
return model_outputs
def snake_case__ ( self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=None ):
# Cap top_k if there are targets
if target_ids is not None and target_ids.shape[0] < top_k:
__snake_case : Optional[int] = target_ids.shape[0]
__snake_case : Dict = model_outputs["""input_ids"""][0]
__snake_case : List[str] = model_outputs["""logits"""]
if self.framework == "tf":
__snake_case : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0]
__snake_case : Optional[Any] = outputs.numpy()
__snake_case : Optional[int] = outputs[0, masked_index, :]
__snake_case : int = stable_softmax(_lowerCAmelCase , axis=-1 )
if target_ids is not None:
__snake_case : Any = tf.gather_nd(tf.squeeze(_lowerCAmelCase , 0 ) , target_ids.reshape(-1 , 1 ) )
__snake_case : Any = tf.expand_dims(_lowerCAmelCase , 0 )
__snake_case : Tuple = tf.math.top_k(_lowerCAmelCase , k=_lowerCAmelCase )
__snake_case , __snake_case : List[Any] = topk.values.numpy(), topk.indices.numpy()
else:
__snake_case : Union[str, Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowerCAmelCase ).squeeze(-1 )
# Fill mask pipeline supports only one ${mask_token} per sample
__snake_case : Dict = outputs[0, masked_index, :]
__snake_case : str = logits.softmax(dim=-1 )
if target_ids is not None:
__snake_case : Optional[Any] = probs[..., target_ids]
__snake_case , __snake_case : Tuple = probs.topk(_lowerCAmelCase )
__snake_case : Tuple = []
__snake_case : str = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ):
__snake_case : List[str] = []
for v, p in zip(_values , _predictions ):
# Copy is important since we're going to modify this array in place
__snake_case : Tuple = input_ids.numpy().copy()
if target_ids is not None:
__snake_case : List[str] = target_ids[p].tolist()
__snake_case : Any = p
# Filter padding out:
__snake_case : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
__snake_case : int = self.tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
__snake_case : str = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence}
row.append(_lowerCAmelCase )
result.append(_lowerCAmelCase )
if single_mask:
return result[0]
return result
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : str=None ):
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
__snake_case : Any = [targets]
try:
__snake_case : List[Any] = self.tokenizer.get_vocab()
except Exception:
__snake_case : Optional[Any] = {}
__snake_case : Optional[int] = []
for target in targets:
__snake_case : int = vocab.get(_lowerCAmelCase , _lowerCAmelCase )
if id_ is None:
__snake_case : Tuple = self.tokenizer(
_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , max_length=1 , truncation=_lowerCAmelCase , )["""input_ids"""]
if len(_lowerCAmelCase ) == 0:
logger.warning(
f'''The specified target token `{target}` does not exist in the model vocabulary. '''
"""We cannot replace it with anything meaningful, ignoring it""" )
continue
__snake_case : Optional[int] = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
f'''The specified target token `{target}` does not exist in the model vocabulary. '''
f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' )
target_ids.append(id_ )
__snake_case : Optional[Any] = list(set(_lowerCAmelCase ) )
if len(_lowerCAmelCase ) == 0:
raise ValueError("""At least one target must be provided when passed.""" )
__snake_case : Dict = np.array(_lowerCAmelCase )
return target_ids
def snake_case__ ( self : Any , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None ):
__snake_case : Tuple = {}
if targets is not None:
__snake_case : int = self.get_target_ids(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : Optional[int] = target_ids
if top_k is not None:
__snake_case : Tuple = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
"""fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" )
return {}, {}, postprocess_params
def __call__( self : List[Any] , _lowerCAmelCase : Optional[int] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Union[str, Any] ):
__snake_case : List[str] = super().__call__(_lowerCAmelCase , **_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) == 1:
return outputs[0]
return outputs
| 20 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase_ = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["ViTFeatureExtractor"]
lowercase_ = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
lowercase_ = logging.get_logger(__name__)
if is_vision_available():
import PIL
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[Any] = ["pixel_values"]
def __init__( self : Tuple , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[int, float] = 1 / 2_55 , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : bool = True , **_lowerCAmelCase : Dict , ):
super().__init__(**_lowerCAmelCase )
__snake_case : int = size if size is not None else {"""shortest_edge""": 2_24}
__snake_case : Any = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
__snake_case : int = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24}
__snake_case : Tuple = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase , param_name="""crop_size""" )
__snake_case : int = do_resize
__snake_case : Any = size
__snake_case : Optional[int] = resample
__snake_case : List[Any] = do_center_crop
__snake_case : Optional[Any] = crop_size
__snake_case : str = do_rescale
__snake_case : Optional[int] = rescale_factor
__snake_case : List[str] = do_normalize
__snake_case : List[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__snake_case : int = image_std if image_std is not None else OPENAI_CLIP_STD
__snake_case : str = do_convert_rgb
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Union[str, Any] , ):
__snake_case : Optional[Any] = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
if "shortest_edge" not in size:
raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
__snake_case : str = get_resize_output_image_size(_lowerCAmelCase , size=size["""shortest_edge"""] , default_to_square=_lowerCAmelCase )
return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Any , ):
__snake_case : Tuple = get_size_dict(_lowerCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(_lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Tuple , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[int, float] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Dict , ):
return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Any , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Any , ):
return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Any , _lowerCAmelCase : ImageInput , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : int = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : float = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowerCAmelCase : List[str] , ):
__snake_case : str = do_resize if do_resize is not None else self.do_resize
__snake_case : Union[str, Any] = size if size is not None else self.size
__snake_case : Optional[Any] = get_size_dict(_lowerCAmelCase , param_name="""size""" , default_to_square=_lowerCAmelCase )
__snake_case : Any = resample if resample is not None else self.resample
__snake_case : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop
__snake_case : int = crop_size if crop_size is not None else self.crop_size
__snake_case : List[Any] = get_size_dict(_lowerCAmelCase , param_name="""crop_size""" , default_to_square=_lowerCAmelCase )
__snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
__snake_case : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
__snake_case : str = do_normalize if do_normalize is not None else self.do_normalize
__snake_case : List[Any] = image_mean if image_mean is not None else self.image_mean
__snake_case : Optional[int] = image_std if image_std is not None else self.image_std
__snake_case : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__snake_case : Union[str, Any] = make_list_of_images(_lowerCAmelCase )
if not valid_images(_lowerCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__snake_case : Union[str, Any] = [convert_to_rgb(_lowerCAmelCase ) for image in images]
# All transformations expect numpy arrays.
__snake_case : int = [to_numpy_array(_lowerCAmelCase ) for image in images]
if do_resize:
__snake_case : int = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images]
if do_center_crop:
__snake_case : Optional[Any] = [self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images]
if do_rescale:
__snake_case : List[Any] = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images]
if do_normalize:
__snake_case : int = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images]
__snake_case : List[str] = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
__snake_case : str = {"""pixel_values""": images}
return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
| 20 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if (direction == 1 and array[indexa] > array[indexa]) or (
direction == 0 and array[indexa] < array[indexa]
):
__snake_case , __snake_case : str = array[indexa], array[indexa]
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Tuple = int(length / 2 )
for i in range(__SCREAMING_SNAKE_CASE , low + middle ):
comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Optional[Any] = int(length / 2 )
bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 )
bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
bitonic_sort(unsorted, 0, len(unsorted), 1)
print("\nSorted array in ascending order is: ", end="")
print(*unsorted, sep=", ")
bitonic_merge(unsorted, 0, len(unsorted), 0)
print("Sorted array in descending order is: ", end="")
print(*unsorted, sep=", ")
| 20 | 1 |
def __lowerCAmelCase ( ):
'''simple docstring'''
for n in range(1 , 1_0_0_0_0_0_0 ):
yield n * (n + 1) // 2
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : int = 1
__snake_case : Any = 2
while i * i <= n:
__snake_case : Union[str, Any] = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def __lowerCAmelCase ( ):
'''simple docstring'''
return next(i for i in triangle_number_generator() if count_divisors(__SCREAMING_SNAKE_CASE ) > 5_0_0 )
if __name__ == "__main__":
print(solution())
| 20 | import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ):
'''simple docstring'''
__snake_case : Optional[int] = {
"""7z""": (seven_zip_file, SevenZipExtractor),
"""bz2""": (bza_file, BzipaExtractor),
"""gzip""": (gz_file, GzipExtractor),
"""lz4""": (lza_file, LzaExtractor),
"""tar""": (tar_file, TarExtractor),
"""xz""": (xz_file, XzExtractor),
"""zip""": (zip_file, ZipExtractor),
"""zstd""": (zstd_file, ZstdExtractor),
}
__snake_case , __snake_case : Tuple = input_paths_and_base_extractors[compression_format]
if input_path is None:
__snake_case : Tuple = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE )
__snake_case : List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : List[str] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Optional[Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : int = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ):
'''simple docstring'''
__snake_case : Union[str, Any] = {
"""7z""": seven_zip_file,
"""bz2""": bza_file,
"""gzip""": gz_file,
"""lz4""": lza_file,
"""tar""": tar_file,
"""xz""": xz_file,
"""zip""": zip_file,
"""zstd""": zstd_file,
}
__snake_case : int = input_paths[compression_format]
if input_path is None:
__snake_case : int = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
__snake_case : Any = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE )
assert extractor_format is not None
__snake_case : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : Union[str, Any] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Union[str, Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : Optional[Any] = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
import tarfile
__snake_case : List[str] = tmp_path / """data_dot_dot"""
directory.mkdir()
__snake_case : Optional[Any] = directory / """tar_file_with_dot_dot.tar"""
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) )
return path
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
import tarfile
__snake_case : Dict = tmp_path / """data_sym_link"""
directory.mkdir()
__snake_case : Tuple = directory / """tar_file_with_sym_link.tar"""
os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE )
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
"""insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
__snake_case : Any = {
"""tar_file_with_dot_dot""": tar_file_with_dot_dot,
"""tar_file_with_sym_link""": tar_file_with_sym_link,
}
__snake_case : int = insecure_tar_files[insecure_tar_file]
__snake_case : Optional[int] = tmp_path / """extracted"""
TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
# We should have less false positives than zipfile.is_zipfile
# We do that by checking only the magic number
__snake_case : Optional[Any] = tmpdir / """not_a_zip_file"""
# From: https://github.com/python/cpython/pull/5053
__snake_case : List[str] = (
b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"""
b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"""
b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"""
b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"""
)
with not_a_zip_file.open("""wb""" ) as f:
f.write(__SCREAMING_SNAKE_CASE )
assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
| 20 | 1 |
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[Any] = (PNDMScheduler,)
A : Union[str, Any] = (("num_inference_steps", 50),)
def snake_case__ ( self : Any , **_lowerCAmelCase : Optional[Any] ):
__snake_case : int = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**_lowerCAmelCase )
return config
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Optional[int]=0 , **_lowerCAmelCase : Dict ):
__snake_case : Tuple = dict(self.forward_default_kwargs )
__snake_case : int = kwargs.pop("""num_inference_steps""" , _lowerCAmelCase )
__snake_case : Any = self.dummy_sample
__snake_case : int = 0.1 * sample
__snake_case : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__snake_case : str = self.get_scheduler_config(**_lowerCAmelCase )
__snake_case : Optional[Any] = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residuals
__snake_case : int = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_lowerCAmelCase )
__snake_case : str = scheduler_class.from_pretrained(_lowerCAmelCase )
new_scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residuals
__snake_case : Union[str, Any] = dummy_past_residuals[:]
__snake_case : Union[str, Any] = scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
__snake_case : int = new_scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
__snake_case : List[Any] = scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
__snake_case : Optional[int] = new_scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def snake_case__ ( self : int ):
pass
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str=0 , **_lowerCAmelCase : Tuple ):
__snake_case : str = dict(self.forward_default_kwargs )
__snake_case : Any = kwargs.pop("""num_inference_steps""" , _lowerCAmelCase )
__snake_case : Optional[Any] = self.dummy_sample
__snake_case : str = 0.1 * sample
__snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__snake_case : Optional[int] = self.get_scheduler_config()
__snake_case : int = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
__snake_case : Optional[int] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_lowerCAmelCase )
__snake_case : Union[str, Any] = scheduler_class.from_pretrained(_lowerCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
__snake_case : Any = dummy_past_residuals[:]
__snake_case : List[Any] = scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
__snake_case : Union[str, Any] = new_scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
__snake_case : str = scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
__snake_case : str = new_scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def snake_case__ ( self : Dict , **_lowerCAmelCase : str ):
__snake_case : Dict = self.scheduler_classes[0]
__snake_case : Union[str, Any] = self.get_scheduler_config(**_lowerCAmelCase )
__snake_case : str = scheduler_class(**_lowerCAmelCase )
__snake_case : int = 10
__snake_case : int = self.dummy_model()
__snake_case : int = self.dummy_sample_deter
scheduler.set_timesteps(_lowerCAmelCase )
for i, t in enumerate(scheduler.prk_timesteps ):
__snake_case : int = model(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : Tuple = scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
__snake_case : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : Optional[Any] = scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
return sample
def snake_case__ ( self : Any ):
__snake_case : List[Any] = dict(self.forward_default_kwargs )
__snake_case : Union[str, Any] = kwargs.pop("""num_inference_steps""" , _lowerCAmelCase )
for scheduler_class in self.scheduler_classes:
__snake_case : Optional[Any] = self.get_scheduler_config()
__snake_case : Tuple = scheduler_class(**_lowerCAmelCase )
__snake_case : Any = self.dummy_sample
__snake_case : int = 0.1 * sample
if num_inference_steps is not None and hasattr(_lowerCAmelCase , """set_timesteps""" ):
scheduler.set_timesteps(_lowerCAmelCase )
elif num_inference_steps is not None and not hasattr(_lowerCAmelCase , """set_timesteps""" ):
__snake_case : List[str] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
__snake_case : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
__snake_case : Optional[int] = dummy_past_residuals[:]
__snake_case : List[Any] = scheduler.step_prk(_lowerCAmelCase , 0 , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
__snake_case : int = scheduler.step_prk(_lowerCAmelCase , 1 , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
__snake_case : Optional[Any] = scheduler.step_plms(_lowerCAmelCase , 0 , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
__snake_case : Tuple = scheduler.step_plms(_lowerCAmelCase , 1 , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def snake_case__ ( self : Dict ):
for timesteps in [1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_lowerCAmelCase )
def snake_case__ ( self : Dict ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_lowerCAmelCase )
__snake_case : Optional[Any] = self.scheduler_classes[0]
__snake_case : str = self.get_scheduler_config(steps_offset=1 )
__snake_case : Dict = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , )
def snake_case__ ( self : int ):
for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase )
def snake_case__ ( self : Dict ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_lowerCAmelCase )
def snake_case__ ( self : List[str] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_lowerCAmelCase )
def snake_case__ ( self : Dict ):
for t in [1, 5, 10]:
self.check_over_forward(time_step=_lowerCAmelCase )
def snake_case__ ( self : List[str] ):
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ):
self.check_over_forward(num_inference_steps=_lowerCAmelCase )
def snake_case__ ( self : Optional[int] ):
# earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
__snake_case : str = 27
for scheduler_class in self.scheduler_classes:
__snake_case : List[str] = self.dummy_sample
__snake_case : int = 0.1 * sample
__snake_case : str = self.get_scheduler_config()
__snake_case : Dict = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(_lowerCAmelCase )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
__snake_case : Optional[int] = scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
def snake_case__ ( self : Optional[int] ):
with self.assertRaises(_lowerCAmelCase ):
__snake_case : Any = self.scheduler_classes[0]
__snake_case : Tuple = self.get_scheduler_config()
__snake_case : List[str] = scheduler_class(**_lowerCAmelCase )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def snake_case__ ( self : Dict ):
__snake_case : Union[str, Any] = self.full_loop()
__snake_case : Tuple = torch.sum(torch.abs(_lowerCAmelCase ) )
__snake_case : Optional[int] = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 198.1318 ) < 1e-2
assert abs(result_mean.item() - 0.2580 ) < 1e-3
def snake_case__ ( self : Tuple ):
__snake_case : Dict = self.full_loop(prediction_type="""v_prediction""" )
__snake_case : List[str] = torch.sum(torch.abs(_lowerCAmelCase ) )
__snake_case : Union[str, Any] = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 67.3986 ) < 1e-2
assert abs(result_mean.item() - 0.0878 ) < 1e-3
def snake_case__ ( self : int ):
# We specify different beta, so that the first alpha is 0.99
__snake_case : List[str] = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 )
__snake_case : Tuple = torch.sum(torch.abs(_lowerCAmelCase ) )
__snake_case : Optional[int] = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 230.0399 ) < 1e-2
assert abs(result_mean.item() - 0.2995 ) < 1e-3
def snake_case__ ( self : List[str] ):
# We specify different beta, so that the first alpha is 0.99
__snake_case : int = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 )
__snake_case : Dict = torch.sum(torch.abs(_lowerCAmelCase ) )
__snake_case : List[str] = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 186.9482 ) < 1e-2
assert abs(result_mean.item() - 0.2434 ) < 1e-3
| 20 | import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def snake_case__ ( self : Any ):
__snake_case : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split()
__snake_case : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
__snake_case : List[str] = {
"""unk_token""": """<unk>""",
"""bos_token""": """<s>""",
"""eos_token""": """</s>""",
}
__snake_case : str = {
"""feature_size""": 1,
"""padding_value""": 0.0,
"""sampling_rate""": 1_60_00,
"""return_attention_mask""": False,
"""do_normalize""": True,
}
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__snake_case : Any = os.path.join(self.tmpdirname , _lowerCAmelCase )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
# load decoder from hub
__snake_case : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder"""
def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Tuple ):
__snake_case : int = self.add_kwargs_tokens_map.copy()
kwargs.update(_lowerCAmelCase )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , **_lowerCAmelCase : Optional[int] ):
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Dict , **_lowerCAmelCase : Tuple ):
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase )
def snake_case__ ( self : List[str] ):
shutil.rmtree(self.tmpdirname )
def snake_case__ ( self : Union[str, Any] ):
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : Tuple = self.get_feature_extractor()
__snake_case : Dict = self.get_decoder()
__snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
__snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowerCAmelCase )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , _lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : Tuple = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
__snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def snake_case__ ( self : int ):
__snake_case : Tuple = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(["""xx"""] )
with self.assertRaisesRegex(_lowerCAmelCase , """include""" ):
WavaVecaProcessorWithLM(
tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def snake_case__ ( self : Dict ):
__snake_case : int = self.get_feature_extractor()
__snake_case : str = self.get_tokenizer()
__snake_case : Dict = self.get_decoder()
__snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : List[Any] = floats_list((3, 10_00) )
__snake_case : Optional[Any] = feature_extractor(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Tuple = processor(_lowerCAmelCase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def snake_case__ ( self : Optional[int] ):
__snake_case : Any = self.get_feature_extractor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : int = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Optional[int] = """This is a test string"""
__snake_case : Union[str, Any] = processor(text=_lowerCAmelCase )
__snake_case : Dict = tokenizer(_lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[Any]=(2, 10, 16) , _lowerCAmelCase : str=77 ):
np.random.seed(_lowerCAmelCase )
return np.random.rand(*_lowerCAmelCase )
def snake_case__ ( self : Tuple ):
__snake_case : List[str] = self.get_feature_extractor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : List[str] = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 )
__snake_case : int = processor.decode(_lowerCAmelCase )
__snake_case : Optional[int] = decoder.decode_beams(_lowerCAmelCase )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual("""</s> <s> </s>""" , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ["""fork"""], ["""spawn"""]] )
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] ):
__snake_case : int = self.get_feature_extractor()
__snake_case : Union[str, Any] = self.get_tokenizer()
__snake_case : int = self.get_decoder()
__snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : int = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
__snake_case : Tuple = processor.batch_decode(_lowerCAmelCase )
else:
with get_context(_lowerCAmelCase ).Pool() as pool:
__snake_case : int = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : int = list(_lowerCAmelCase )
with get_context("""fork""" ).Pool() as p:
__snake_case : Tuple = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase )
__snake_case , __snake_case , __snake_case : List[Any] = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(_lowerCAmelCase , decoded_processor.text )
self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text )
self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score )
self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score )
def snake_case__ ( self : Optional[int] ):
__snake_case : Optional[Any] = self.get_feature_extractor()
__snake_case : int = self.get_tokenizer()
__snake_case : str = self.get_decoder()
__snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : int = self._get_dummy_logits()
__snake_case : List[str] = 15
__snake_case : Optional[Any] = -20.0
__snake_case : Tuple = -4.0
__snake_case : List[Any] = processor.batch_decode(
_lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , )
__snake_case : List[str] = decoded_processor_out.text
__snake_case : str = list(_lowerCAmelCase )
with get_context("""fork""" ).Pool() as pool:
__snake_case : Dict = decoder.decode_beams_batch(
_lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , )
__snake_case : int = [d[0][0] for d in decoded_decoder_out]
__snake_case : List[Any] = [d[0][2] for d in decoded_decoder_out]
__snake_case : List[Any] = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase )
self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1e-3 ) )
self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1e-3 ) )
def snake_case__ ( self : Any ):
__snake_case : List[Any] = self.get_feature_extractor()
__snake_case : Any = self.get_tokenizer()
__snake_case : Union[str, Any] = self.get_decoder()
__snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
__snake_case : Any = self._get_dummy_logits()
__snake_case : Any = 2.0
__snake_case : int = 5.0
__snake_case : Optional[int] = -20.0
__snake_case : Optional[int] = True
__snake_case : Any = processor.batch_decode(
_lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , )
__snake_case : str = decoded_processor_out.text
__snake_case : int = list(_lowerCAmelCase )
decoder.reset_params(
alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , )
with get_context("""fork""" ).Pool() as pool:
__snake_case : Tuple = decoder.decode_beams_batch(
_lowerCAmelCase , _lowerCAmelCase , )
__snake_case : int = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase )
__snake_case : List[str] = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , _lowerCAmelCase )
def snake_case__ ( self : Dict ):
__snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key]
__snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute()
__snake_case : Union[str, Any] = os.listdir(_lowerCAmelCase )
__snake_case : List[str] = ["""alphabet.json""", """language_model"""]
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" )
__snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase )
__snake_case : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key]
__snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute()
__snake_case : List[str] = os.listdir(_lowerCAmelCase )
__snake_case : List[Any] = os.listdir(_lowerCAmelCase )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Optional[int] = floats_list((3, 10_00) )
__snake_case : Union[str, Any] = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" )
__snake_case : Union[str, Any] = processor_auto(_lowerCAmelCase , return_tensors="""np""" )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 )
__snake_case : Dict = self._get_dummy_logits()
__snake_case : List[Any] = processor_wavaveca.batch_decode(_lowerCAmelCase )
__snake_case : List[Any] = processor_auto.batch_decode(_lowerCAmelCase )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def snake_case__ ( self : str ):
__snake_case : int = self.get_feature_extractor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : Optional[Any] = self.get_decoder()
__snake_case : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
@staticmethod
def snake_case__ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ):
__snake_case : Union[str, Any] = [d[key] for d in offsets]
return retrieved_list
def snake_case__ ( self : Dict ):
__snake_case : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : List[str] = self._get_dummy_logits()[0]
__snake_case : str = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""word_offsets""" in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] )
def snake_case__ ( self : List[str] ):
__snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" )
__snake_case : Optional[int] = self._get_dummy_logits()
__snake_case : int = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""word_offsets""" in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertListEqual(
[""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def snake_case__ ( self : Optional[Any] ):
import torch
__snake_case : Optional[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase )
__snake_case : Any = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) )
__snake_case : List[Any] = iter(_lowerCAmelCase )
__snake_case : Optional[int] = next(_lowerCAmelCase )
__snake_case : str = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" )
__snake_case : str = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
__snake_case : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values
with torch.no_grad():
__snake_case : Dict = model(_lowerCAmelCase ).logits.cpu().numpy()
__snake_case : Any = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase )
__snake_case : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
__snake_case : Dict = [
{
"""start_time""": d["""start_offset"""] * time_offset,
"""end_time""": d["""end_offset"""] * time_offset,
"""word""": d["""word"""],
}
for d in output["""word_offsets"""]
]
__snake_case : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL"""
# output words
self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase )
self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text )
# output times
__snake_case : Dict = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) )
__snake_case : Optional[Any] = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) )
# fmt: off
__snake_case : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] )
__snake_case : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
| 20 | 1 |
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(__UpperCamelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : List[str] , **_lowerCAmelCase : str ):
super().__init__(**_lowerCAmelCase )
if self.framework != "pt":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
# No specific FOR_XXX available yet
def __call__( self : Dict , _lowerCAmelCase : Union[np.ndarray, bytes, str] , **_lowerCAmelCase : List[Any] ):
return super().__call__(_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Tuple , **_lowerCAmelCase : Optional[int] ):
__snake_case : Union[str, Any] = {}
if "candidate_labels" in kwargs:
__snake_case : List[str] = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
__snake_case : str = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[Any]="This is a sound of {}." ):
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
if audio.startswith("""http://""" ) or audio.startswith("""https://""" ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
__snake_case : int = requests.get(_lowerCAmelCase ).content
else:
with open(_lowerCAmelCase , """rb""" ) as f:
__snake_case : Dict = f.read()
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
__snake_case : Union[str, Any] = ffmpeg_read(_lowerCAmelCase , self.feature_extractor.sampling_rate )
if not isinstance(_lowerCAmelCase , np.ndarray ):
raise ValueError("""We expect a numpy ndarray as input""" )
if len(audio.shape ) != 1:
raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" )
__snake_case : Dict = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" )
__snake_case : Any = candidate_labels
__snake_case : int = [hypothesis_template.format(_lowerCAmelCase ) for x in candidate_labels]
__snake_case : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework , padding=_lowerCAmelCase )
__snake_case : str = [text_inputs]
return inputs
def snake_case__ ( self : Any , _lowerCAmelCase : List[str] ):
__snake_case : List[str] = model_inputs.pop("""candidate_labels""" )
__snake_case : Tuple = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , _lowerCAmelCase ):
__snake_case : Optional[Any] = text_inputs[0]
else:
# Batching case.
__snake_case : int = text_inputs[0][0]
__snake_case : int = self.model(**_lowerCAmelCase , **_lowerCAmelCase )
__snake_case : str = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_audio,
}
return model_outputs
def snake_case__ ( self : Dict , _lowerCAmelCase : Union[str, Any] ):
__snake_case : List[str] = model_outputs.pop("""candidate_labels""" )
__snake_case : Optional[Any] = model_outputs["""logits"""][0]
if self.framework == "pt":
__snake_case : Optional[int] = logits.softmax(dim=0 )
__snake_case : Any = probs.tolist()
else:
raise ValueError("""`tf` framework not supported.""" )
__snake_case : int = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(_lowerCAmelCase , _lowerCAmelCase ) , key=lambda _lowerCAmelCase : -x[0] )
]
return result
| 20 | import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowercase_ = {
"text_branch": "text_model",
"audio_branch": "audio_model.audio_encoder",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc")
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ):
'''simple docstring'''
__snake_case , __snake_case : str = create_model(
"""HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , )
return model, model_cfg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : Union[str, Any] = {}
__snake_case : List[Any] = R""".*sequential.(\d+).*"""
__snake_case : Union[str, Any] = R""".*_projection.(\d+).*"""
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
__snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# replace sequential layers with list
__snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 )
__snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' )
elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
__snake_case : List[Any] = 1 if projecton_layer == 0 else 2
__snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' )
if "audio" and "qkv" in key:
# split qkv into query key and value
__snake_case : Optional[int] = value
__snake_case : Any = mixed_qkv.size(0 ) // 3
__snake_case : List[Any] = mixed_qkv[:qkv_dim]
__snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2]
__snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :]
__snake_case : Any = query_layer
__snake_case : Dict = key_layer
__snake_case : Optional[Any] = value_layer
else:
__snake_case : List[str] = value
return model_state_dict
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ):
'''simple docstring'''
__snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE )
clap_model.eval()
__snake_case : Tuple = clap_model.state_dict()
__snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = ClapConfig()
__snake_case : Tuple = enable_fusion
__snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE )
# ignore the spectrogram embedding layer
model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not")
lowercase_ = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 20 | 1 |
lowercase_ = 2_56
# Modulus to hash a string
lowercase_ = 1_00_00_03
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
__snake_case : str = len(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = len(__SCREAMING_SNAKE_CASE )
if p_len > t_len:
return False
__snake_case : Any = 0
__snake_case : str = 0
__snake_case : Dict = 1
# Calculating the hash of pattern and substring of text
for i in range(__SCREAMING_SNAKE_CASE ):
__snake_case : Optional[Any] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
__snake_case : Union[str, Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
__snake_case : str = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
__snake_case : Optional[Any] = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Optional[Any] = """abc1abc12"""
__snake_case : Tuple = """alskfjaldsabc1abc1abc12k23adsfabcabc"""
__snake_case : Optional[int] = """alskfjaldsk23adsfabcabc"""
assert rabin_karp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not rabin_karp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Test 2)
__snake_case : Optional[int] = """ABABX"""
__snake_case : List[Any] = """ABABZABABYABABX"""
assert rabin_karp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Test 3)
__snake_case : List[str] = """AAAB"""
__snake_case : Dict = """ABAAAAAB"""
assert rabin_karp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Test 4)
__snake_case : Optional[Any] = """abcdabcy"""
__snake_case : str = """abcxabcdabxabcdabcdabcy"""
assert rabin_karp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Test 5)
__snake_case : Any = """Lü"""
__snake_case : Optional[Any] = """Lüsai"""
assert rabin_karp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = """Lue"""
assert not rabin_karp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
print("""Success.""" )
if __name__ == "__main__":
test_rabin_karp()
| 20 | import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = "▁"
lowercase_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
lowercase_ = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
lowercase_ = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
lowercase_ = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
lowercase_ = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = ["input_ids"]
A : Tuple = VOCAB_FILES_NAMES
A : List[Any] = PRETRAINED_INIT_CONFIGURATION
A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
A : Optional[Any] = RESOURCE_FILES_NAMES
def __init__( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]="utf8" , _lowerCAmelCase : Optional[Any]="[UNK]" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : List[Any]="[MASK]" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Any , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , vocab_file=_lowerCAmelCase , encoding=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , )
__snake_case : List[Any] = do_lower_case
__snake_case : Any = sentencepiece_model_ckpt
__snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCAmelCase )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
__snake_case : int = self.load_vocab(filepath=_lowerCAmelCase )
else:
__snake_case : Tuple = {self.sp_model.id_to_piece(_lowerCAmelCase ): id for id in range(self.sp_model.get_piece_size() )}
__snake_case : str = {v: k for k, v in self.vocab.items()}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[Any] ):
if text is None:
return None
__snake_case : List[Any] = self.tokenize(_lowerCAmelCase )
__snake_case , __snake_case : Optional[Any] = """""", []
for i, ch in enumerate(_lowerCAmelCase ):
if ch in self.SP_CHAR_MAPPING:
__snake_case : Any = self.SP_CHAR_MAPPING.get(_lowerCAmelCase )
else:
__snake_case : Dict = unicodedata.normalize("""NFKC""" , _lowerCAmelCase )
if self.is_whitespace(_lowerCAmelCase ):
continue
normalized_text += ch
char_mapping.extend([i] * len(_lowerCAmelCase ) )
__snake_case , __snake_case , __snake_case : str = normalized_text, [], 0
if self.do_lower_case:
__snake_case : int = text.lower()
for token in split_tokens:
if token[:1] == "▁":
__snake_case : int = token[1:]
__snake_case : Optional[int] = text[offset:].index(_lowerCAmelCase ) + offset
__snake_case : int = start + len(_lowerCAmelCase )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
__snake_case : str = end
return token_mapping
@property
def snake_case__ ( self : Tuple ):
return len(self.vocab )
def snake_case__ ( self : Dict ):
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : int ):
__snake_case : str = self.__dict__.copy()
__snake_case : Union[str, Any] = None
return state
def __setstate__( self : Optional[Any] , _lowerCAmelCase : List[str] ):
__snake_case : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__snake_case : Optional[Any] = {}
__snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] ):
return "".join((self.SP_CHAR_MAPPING.get(_lowerCAmelCase , _lowerCAmelCase ) for c in text) )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[int]=0.1 ):
if self.sp_model_kwargs.get("""enable_sampling""" ) is True:
__snake_case : List[str] = True
if self.sp_model_kwargs.get("""alpha""" ) is not None:
__snake_case : Dict = self.sp_model_kwargs.get("""alpha""" )
if self.sp_model_kwargs.get("""nbest_size""" ) is not None:
__snake_case : List[Any] = self.sp_model_kwargs.get("""nbest_size""" )
if not enable_sampling:
__snake_case : str = self.sp_model.EncodeAsPieces(_lowerCAmelCase )
else:
__snake_case : Tuple = self.sp_model.SampleEncodeAsPieces(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : Union[str, Any] = []
for pi, piece in enumerate(_lowerCAmelCase ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(_lowerCAmelCase ) and pi != 0:
new_pieces.append(_lowerCAmelCase )
continue
else:
continue
__snake_case : Optional[int] = 0
for i, chunk in enumerate(_lowerCAmelCase ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(_lowerCAmelCase ) or self.is_punct(_lowerCAmelCase ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(_lowerCAmelCase )
__snake_case : Tuple = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : Tuple = i
if len(_lowerCAmelCase ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
__snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
__snake_case : int = self.convert_ids_to_tokens(_lowerCAmelCase )
__snake_case : Any = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict ):
return self.reverse_vocab.get(_lowerCAmelCase , self.unk_token )
def snake_case__ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
__snake_case : Optional[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ):
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1]
return [1] + ([0] * len(_lowerCAmelCase )) + [1]
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(_lowerCAmelCase ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(_lowerCAmelCase ) + 1) + [1] * (len(_lowerCAmelCase ) + 3)
def snake_case__ ( self : Tuple , _lowerCAmelCase : List[str] ):
if "\u4e00" <= char <= "\u9fff":
return True
return False
def snake_case__ ( self : List[str] , _lowerCAmelCase : Any ):
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def snake_case__ ( self : int , _lowerCAmelCase : List[Any] ):
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def snake_case__ ( self : str , _lowerCAmelCase : Optional[Any] ):
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(_lowerCAmelCase ) == 1:
__snake_case : Dict = unicodedata.category(_lowerCAmelCase )
if cat == "Zs":
return True
return False
def snake_case__ ( self : str , _lowerCAmelCase : List[Any] ):
__snake_case : Dict = {}
with io.open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for index, line in enumerate(_lowerCAmelCase ):
__snake_case : Tuple = line.rstrip("""\n""" )
__snake_case : List[str] = int(_lowerCAmelCase )
return token_to_idx
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : Optional[int] = 0
if os.path.isdir(_lowerCAmelCase ):
__snake_case : int = os.path.join(
_lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
else:
__snake_case : Optional[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory
with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
""" Please check that the vocabulary is not corrupted!""" )
__snake_case : Union[str, Any] = token_index
writer.write(token + """\n""" )
index += 1
__snake_case : List[Any] = os.path.join(_lowerCAmelCase , """sentencepiece.bpe.model""" )
with open(_lowerCAmelCase , """wb""" ) as fi:
__snake_case : List[Any] = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (vocab_file,)
| 20 | 1 |
import argparse
import math
import os
from copy import deepcopy
import torch
from audio_diffusion.models import DiffusionAttnUnetaD
from diffusion import sampling
from torch import nn
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
lowercase_ = {
"gwf-440k": {
"url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt",
"sample_rate": 4_80_00,
"sample_size": 6_55_36,
},
"jmann-small-190k": {
"url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt",
"sample_rate": 4_80_00,
"sample_size": 6_55_36,
},
"jmann-large-580k": {
"url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt",
"sample_rate": 4_80_00,
"sample_size": 13_10_72,
},
"maestro-uncond-150k": {
"url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt",
"sample_rate": 1_60_00,
"sample_size": 6_55_36,
},
"unlocked-uncond-250k": {
"url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt",
"sample_rate": 1_60_00,
"sample_size": 6_55_36,
},
"honk-140k": {
"url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt",
"sample_rate": 1_60_00,
"sample_size": 6_55_36,
},
}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
return torch.atana(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) / math.pi * 2
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
__snake_case : Union[str, Any] = torch.sin(t * math.pi / 2 ) ** 2
__snake_case : Optional[int] = (1 - sigma**2) ** 0.5
return alpha_sigma_to_t(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
pass
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self : int , _lowerCAmelCase : Optional[int] ):
super().__init__()
__snake_case : Optional[int] = DiffusionAttnUnetaD(_lowerCAmelCase , n_attn_layers=4 )
__snake_case : int = deepcopy(self.diffusion )
__snake_case : List[Any] = torch.quasirandom.SobolEngine(1 , scramble=_lowerCAmelCase )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
__snake_case : List[str] = MODELS_MAP[model_name]["""url"""]
os.system(F'''wget {url} ./''' )
return F'''./{model_name}.ckpt'''
lowercase_ = {
"1": "resnets.0",
"2": "attentions.0",
"3": "resnets.1",
"4": "attentions.1",
"5": "resnets.2",
"6": "attentions.2",
}
lowercase_ = {
"8": "resnets.0",
"9": "attentions.0",
"10": "resnets.1",
"11": "attentions.1",
"12": "resnets.2",
"13": "attentions.2",
}
lowercase_ = {
"1": "resnets.0",
"2": "attentions.0",
"3": "resnets.1",
"4": "attentions.1",
"5": "resnets.2",
"6": "attentions.2",
"8": "resnets.3",
"9": "attentions.3",
"10": "resnets.4",
"11": "attentions.4",
"12": "resnets.5",
"13": "attentions.5",
}
lowercase_ = {
"0": "resnets.0",
"1": "resnets.1",
"2": "resnets.2",
"4": "resnets.0",
"5": "resnets.1",
"6": "resnets.2",
}
lowercase_ = {
"skip": "conv_skip",
"main.0": "conv_1",
"main.1": "group_norm_1",
"main.3": "conv_2",
"main.4": "group_norm_2",
}
lowercase_ = {
"norm": "group_norm",
"qkv_proj": ["query", "key", "value"],
"out_proj": ["proj_attn"],
}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
if name.startswith("""skip""" ):
return name.replace("""skip""" , RES_CONV_MAP["""skip"""] )
# name has to be of format main.{digit}
if not name.startswith("""main.""" ):
raise ValueError(F'''ResConvBlock error with {name}''' )
return name.replace(name[:6] , RES_CONV_MAP[name[:6]] )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
for key, value in ATTN_MAP.items():
if name.startswith(__SCREAMING_SNAKE_CASE ) and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return name.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif name.startswith(__SCREAMING_SNAKE_CASE ):
return [name.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for v in value]
raise ValueError(F'''Attn error with {name}''' )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict=1_3 ):
'''simple docstring'''
__snake_case : Union[str, Any] = input_string
if string.split(""".""" )[0] == "timestep_embed":
return string.replace("""timestep_embed""" , """time_proj""" )
__snake_case : Optional[Any] = 0
if string.startswith("""net.3.""" ):
depth += 1
__snake_case : Union[str, Any] = string[6:]
elif string.startswith("""net.""" ):
__snake_case : Optional[Any] = string[4:]
while string.startswith("""main.7.""" ):
depth += 1
__snake_case : str = string[7:]
if string.startswith("""main.""" ):
__snake_case : str = string[5:]
# mid block
if string[:2].isdigit():
__snake_case : str = string[:2]
__snake_case : Any = string[2:]
else:
__snake_case : Optional[int] = string[0]
__snake_case : Union[str, Any] = string[1:]
if depth == max_depth:
__snake_case : Union[str, Any] = MID_NUM_TO_LAYER[layer_num]
__snake_case : Optional[Any] = """mid_block"""
elif depth > 0 and int(__SCREAMING_SNAKE_CASE ) < 7:
__snake_case : int = DOWN_NUM_TO_LAYER[layer_num]
__snake_case : int = F'''down_blocks.{depth}'''
elif depth > 0 and int(__SCREAMING_SNAKE_CASE ) > 7:
__snake_case : List[str] = UP_NUM_TO_LAYER[layer_num]
__snake_case : List[str] = F'''up_blocks.{max_depth - depth - 1}'''
elif depth == 0:
__snake_case : Any = DEPTH_0_TO_LAYER[layer_num]
__snake_case : Optional[int] = F'''up_blocks.{max_depth - 1}''' if int(__SCREAMING_SNAKE_CASE ) > 3 else """down_blocks.0"""
if not string_left.startswith(""".""" ):
raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' )
__snake_case : Union[str, Any] = string_left[1:]
if "resnets" in new_layer:
__snake_case : Optional[int] = convert_resconv_naming(__SCREAMING_SNAKE_CASE )
elif "attentions" in new_layer:
__snake_case : Tuple = convert_attn_naming(__SCREAMING_SNAKE_CASE )
__snake_case : Union[str, Any] = new_string_left
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__snake_case : Tuple = prefix + """.""" + new_layer + """.""" + string_left
else:
__snake_case : int = [prefix + """.""" + new_layer + """.""" + s for s in string_left]
return new_string
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
__snake_case : Union[str, Any] = {}
for k, v in state_dict.items():
if k.endswith("""kernel""" ):
# up- and downsample layers, don't have trainable weights
continue
__snake_case : Tuple = rename(__SCREAMING_SNAKE_CASE )
# check if we need to transform from Conv => Linear for attention
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__snake_case : Union[str, Any] = transform_conv_attns(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
else:
__snake_case : List[str] = v
return new_state_dict
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
if len(__SCREAMING_SNAKE_CASE ) == 1:
if len(v.shape ) == 3:
# weight
__snake_case : Union[str, Any] = v[:, :, 0]
else:
# bias
__snake_case : Optional[Any] = v
else:
# qkv matrices
__snake_case : Any = v.shape[0]
__snake_case : Union[str, Any] = trippled_shape // 3
for i in range(3 ):
if len(v.shape ) == 3:
__snake_case : List[str] = v[i * single_shape : (i + 1) * single_shape, :, 0]
else:
__snake_case : Optional[Any] = v[i * single_shape : (i + 1) * single_shape]
return new_state_dict
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
__snake_case : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
__snake_case : Optional[int] = args.model_path.split("""/""" )[-1].split(""".""" )[0]
if not os.path.isfile(args.model_path ):
assert (
model_name == args.model_path
), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}'''
__snake_case : Tuple = download(__SCREAMING_SNAKE_CASE )
__snake_case : Optional[int] = MODELS_MAP[model_name]["""sample_rate"""]
__snake_case : int = MODELS_MAP[model_name]["""sample_size"""]
__snake_case : List[str] = Object()
__snake_case : Tuple = sample_size
__snake_case : Dict = sample_rate
__snake_case : int = 0
__snake_case : Union[str, Any] = UNetaDModel(sample_size=__SCREAMING_SNAKE_CASE , sample_rate=__SCREAMING_SNAKE_CASE )
__snake_case : str = diffusers_model.state_dict()
__snake_case : Dict = DiffusionUncond(__SCREAMING_SNAKE_CASE )
orig_model.load_state_dict(torch.load(args.model_path , map_location=__SCREAMING_SNAKE_CASE )["""state_dict"""] )
__snake_case : Dict = orig_model.diffusion_ema.eval()
__snake_case : Any = orig_model.state_dict()
__snake_case : Optional[Any] = rename_orig_weights(__SCREAMING_SNAKE_CASE )
__snake_case : Union[str, Any] = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() )
__snake_case : Any = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() )
assert len(__SCREAMING_SNAKE_CASE ) == 0, F'''Problem with {renamed_minus_diffusers}'''
assert all(k.endswith("""kernel""" ) for k in list(__SCREAMING_SNAKE_CASE ) ), F'''Problem with {diffusers_minus_renamed}'''
for key, value in renamed_state_dict.items():
assert (
diffusers_state_dict[key].squeeze().shape == value.squeeze().shape
), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}'''
if key == "time_proj.weight":
__snake_case : List[str] = value.squeeze()
__snake_case : Union[str, Any] = value
diffusers_model.load_state_dict(__SCREAMING_SNAKE_CASE )
__snake_case : List[str] = 1_0_0
__snake_case : Any = 3_3
__snake_case : Any = IPNDMScheduler(num_train_timesteps=__SCREAMING_SNAKE_CASE )
__snake_case : List[str] = torch.manual_seed(__SCREAMING_SNAKE_CASE )
__snake_case : List[str] = torch.randn([1, 2, config.sample_size] , generator=__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE )
__snake_case : List[str] = torch.linspace(1 , 0 , steps + 1 , device=__SCREAMING_SNAKE_CASE )[:-1]
__snake_case : Dict = get_crash_schedule(__SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = DanceDiffusionPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
__snake_case : Optional[int] = torch.manual_seed(3_3 )
__snake_case : Union[str, Any] = pipe(num_inference_steps=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).audios
__snake_case : List[Any] = sampling.iplms_sample(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {} )
__snake_case : List[str] = generated.clamp(-1 , 1 )
__snake_case : Any = (generated - audio).abs().sum()
__snake_case : List[str] = (generated - audio).abs().max()
if args.save:
pipe.save_pretrained(args.checkpoint_path )
print("""Diff sum""" , __SCREAMING_SNAKE_CASE )
print("""Diff max""" , __SCREAMING_SNAKE_CASE )
assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/'''
print(F'''Conversion for {model_name} successful!''' )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.")
parser.add_argument(
"--save", default=True, type=bool, required=False, help="Whether to save the converted model or not."
)
parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.")
lowercase_ = parser.parse_args()
main(args)
| 20 | from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json",
"xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json",
"xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json",
"xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json",
"xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json",
"xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json",
"xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json",
"xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json",
"xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json",
"xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = "xlm"
A : List[str] = {
"hidden_size": "emb_dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
"n_words": "vocab_size", # For backward compatibility
}
def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any]=3_01_45 , _lowerCAmelCase : Optional[Any]=20_48 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : int=16 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=5_12 , _lowerCAmelCase : List[Any]=20_48**-0.5 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple="first" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Tuple , ):
__snake_case : Optional[Any] = vocab_size
__snake_case : Tuple = emb_dim
__snake_case : int = n_layers
__snake_case : List[str] = n_heads
__snake_case : Union[str, Any] = dropout
__snake_case : Optional[int] = attention_dropout
__snake_case : Optional[Any] = gelu_activation
__snake_case : Tuple = sinusoidal_embeddings
__snake_case : List[Any] = causal
__snake_case : Dict = asm
__snake_case : int = n_langs
__snake_case : str = use_lang_emb
__snake_case : Dict = layer_norm_eps
__snake_case : List[Any] = bos_index
__snake_case : Union[str, Any] = eos_index
__snake_case : Dict = pad_index
__snake_case : Any = unk_index
__snake_case : Dict = mask_index
__snake_case : Any = is_encoder
__snake_case : Dict = max_position_embeddings
__snake_case : Optional[Any] = embed_init_std
__snake_case : List[Any] = init_std
__snake_case : str = summary_type
__snake_case : Optional[Any] = summary_use_proj
__snake_case : str = summary_activation
__snake_case : Optional[int] = summary_proj_to_labels
__snake_case : Dict = summary_first_dropout
__snake_case : Dict = start_n_top
__snake_case : int = end_n_top
__snake_case : str = mask_token_id
__snake_case : int = lang_id
if "n_words" in kwargs:
__snake_case : Dict = kwargs["""n_words"""]
super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
@property
def snake_case__ ( self : Dict ):
if self.task == "multiple-choice":
__snake_case : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__snake_case : Tuple = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 20 | 1 |
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
lowercase_ = logging.getLogger(__name__)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
return (preds == labels).mean()
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
A : Optional[str] = field(
default=__UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
A : Optional[str] = field(
default=__UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
A : Optional[str] = field(
default=__UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} )
A : str = field(metadata={"help": "Should contain the data files for the task."} )
A : int = field(
default=128 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
A : bool = field(
default=__UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} )
def __lowerCAmelCase ( ):
'''simple docstring'''
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__snake_case : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
__snake_case , __snake_case , __snake_case : int = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" , __SCREAMING_SNAKE_CASE )
# Set seed
set_seed(training_args.seed )
try:
__snake_case : int = processors[data_args.task_name]()
__snake_case : Optional[Any] = processor.get_labels()
__snake_case : Union[str, Any] = len(__SCREAMING_SNAKE_CASE )
except KeyError:
raise ValueError("""Task not found: %s""" % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__snake_case : Union[str, Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__SCREAMING_SNAKE_CASE , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
__snake_case : List[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , )
# Get datasets
__snake_case : str = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=__SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__snake_case : str = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=__SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(__SCREAMING_SNAKE_CASE : EvalPrediction ) -> Dict:
__snake_case : int = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(__SCREAMING_SNAKE_CASE , p.label_ids )}
# Data collator
__snake_case : int = DataCollatorWithPadding(__SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__snake_case : List[str] = Trainer(
model=__SCREAMING_SNAKE_CASE , args=__SCREAMING_SNAKE_CASE , train_dataset=__SCREAMING_SNAKE_CASE , eval_dataset=__SCREAMING_SNAKE_CASE , compute_metrics=__SCREAMING_SNAKE_CASE , data_collator=__SCREAMING_SNAKE_CASE , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__snake_case : List[str] = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__snake_case : Dict = trainer.evaluate()
__snake_case : int = os.path.join(training_args.output_dir , """eval_results.txt""" )
if trainer.is_world_master():
with open(__SCREAMING_SNAKE_CASE , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in result.items():
logger.info(""" %s = %s""" , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
writer.write("""%s = %s\n""" % (key, value) )
results.update(__SCREAMING_SNAKE_CASE )
return results
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 20 | import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json",
"facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[Any] = "encodec"
def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase : Tuple=2_40_00 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : int=1_28 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Union[str, Any]=[8, 5, 4, 2] , _lowerCAmelCase : str="weight_norm" , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict="reflect" , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : Optional[int]=10_24 , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , **_lowerCAmelCase : List[Any] , ):
__snake_case : Optional[int] = target_bandwidths
__snake_case : int = sampling_rate
__snake_case : List[Any] = audio_channels
__snake_case : str = normalize
__snake_case : Union[str, Any] = chunk_length_s
__snake_case : Union[str, Any] = overlap
__snake_case : Union[str, Any] = hidden_size
__snake_case : Union[str, Any] = num_filters
__snake_case : Optional[Any] = num_residual_layers
__snake_case : List[Any] = upsampling_ratios
__snake_case : List[str] = norm_type
__snake_case : Union[str, Any] = kernel_size
__snake_case : Optional[int] = last_kernel_size
__snake_case : Optional[Any] = residual_kernel_size
__snake_case : Dict = dilation_growth_rate
__snake_case : int = use_causal_conv
__snake_case : Tuple = pad_mode
__snake_case : str = compress
__snake_case : Optional[Any] = num_lstm_layers
__snake_case : List[Any] = trim_right_ratio
__snake_case : Any = codebook_size
__snake_case : int = codebook_dim if codebook_dim is not None else hidden_size
__snake_case : int = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' )
super().__init__(**_lowerCAmelCase )
@property
def snake_case__ ( self : int ):
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def snake_case__ ( self : int ):
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def snake_case__ ( self : Union[str, Any] ):
__snake_case : List[str] = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def snake_case__ ( self : Tuple ):
return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 20 | 1 |
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : Optional[str] = field(
default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} )
A : Optional[str] = field(
default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} )
A : Optional[str] = field(
default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} )
A : Optional[str] = field(
default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} )
A : Optional[int] = field(default=2 , metadata={"help": "Batch size for training."} )
A : Optional[int] = field(default=2 , metadata={"help": "Batch size for evaluation."} )
A : Optional[float] = field(default=0.1 , metadata={"help": "Value of weight decay."} )
A : Optional[int] = field(
default=10000 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} )
A : Optional[float] = field(default=2e-4 , metadata={"help": "Learning rate fo training."} )
A : Optional[str] = field(default="cosine" , metadata={"help": "Learning rate."} )
A : Optional[int] = field(
default=750 , metadata={"help": "Number of warmup steps in the learning rate schedule."} )
A : Optional[int] = field(
default=16 , metadata={"help": "Number of gradient accumulation steps."} )
A : Optional[bool] = field(
default=__UpperCamelCase , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} )
A : Optional[int] = field(default=50000 , metadata={"help": "Maximum number of training steps."} )
A : Optional[int] = field(
default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} )
A : Optional[int] = field(default=1024 , metadata={"help": "Sequence lengths used for training."} )
A : Optional[int] = field(default=1 , metadata={"help": "Training seed."} )
A : Optional[int] = field(
default=1024 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , )
A : Optional[str] = field(
default=__UpperCamelCase , metadata={"help": "States path if the training should continue from a checkpoint folder."} )
A : Optional[bool] = field(default=__UpperCamelCase , metadata={"help": "If True the data is pretokenized."} )
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : Optional[str] = field(
default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} )
A : Optional[str] = field(
default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} )
A : Optional[int] = field(default=2 , metadata={"help": "Batch size used for evaluation."} )
A : Optional[int] = field(
default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} )
A : Optional[int] = field(default=1024 , metadata={"help": "Length of sequences to be evaluated."} )
A : Optional[int] = field(default=1 , metadata={"help": "Random seed used for evaluation."} )
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : Optional[str] = field(
default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} )
A : Optional[int] = field(default=__UpperCamelCase , metadata={"help": "Number of workers used for code evaluation."} )
A : Optional[int] = field(
default=__UpperCamelCase , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , )
A : Optional[bool] = field(
default=__UpperCamelCase , metadata={"help": "Sample from the language model's output distribution."} )
A : Optional[float] = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} )
A : Optional[int] = field(default=256 , metadata={"help": "Maximum number of newly generated tokens."} )
A : Optional[int] = field(default=0 , metadata={"help": "Top-k parameter used for generation."} )
A : Optional[float] = field(default=0.95 , metadata={"help": "Top-p parameter used for nucleus sampling."} )
A : Optional[int] = field(default=10 , metadata={"help": "Number of generations to run in parallel."} )
A : Optional[int] = field(
default=200 , metadata={"help": "Number of completions to generate for each sample."} )
A : Optional[int] = field(default=1 , metadata={"help": "Random seed used for evaluation."} )
A : Optional[str] = field(
default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} )
A : Optional[str] = field(
default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} )
A : Optional[int] = field(
default=-1 , metadata={
"help": (
"Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive"
" number corresponds to which GPU device id to run on."
)
} , )
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : Optional[int] = field(
default=__UpperCamelCase , metadata={
"help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available."
} , )
A : Optional[str] = field(
default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} )
A : Optional[str] = field(
default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} )
A : Optional[int] = field(
default=100000 , metadata={"help": "Number of files to save per JSON output file."} )
A : Optional[str] = field(default="content" , metadata={"help": "Column containing text data to process."} )
A : Optional[float] = field(
default=1000 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} )
A : Optional[float] = field(
default=100 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} )
A : Optional[float] = field(
default=0.25 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} )
A : Optional[float] = field(
default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} )
A : Optional[float] = field(
default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} )
A : Optional[str] = field(
default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , )
A : Optional[bool] = field(
default=__UpperCamelCase , metadata={"help": "If True, near-duplicate samples are removed."} )
A : Optional[float] = field(
default=0.85 , metadata={"help": "Jaccard threshold for near-duplicate samples."} )
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : Optional[str] = field(
default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} )
A : Optional[str] = field(
default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} )
A : Optional[str] = field(default="content" , metadata={"help": "Column containing text data to process."} )
A : Optional[int] = field(default=200000 , metadata={"help": "Number of examples to train tokenizer on."} )
A : Optional[int] = field(
default=32768 , metadata={"help": "Number of examples to train the tokenizer on."} )
A : Optional[str] = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} )
A : Optional[bool] = field(default=__UpperCamelCase , metadata={"help": "Push saved tokenizer to the hub."} )
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : Optional[str] = field(
default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} )
A : Optional[str] = field(
default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} )
A : Optional[str] = field(
default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} )
A : Optional[int] = field(default=__UpperCamelCase , metadata={"help": "Number of workers used for code evaluation."} )
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : Optional[str] = field(
default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} )
A : Optional[str] = field(
default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} )
A : Optional[str] = field(default="codeparrot" , metadata={"help": "Name of the created model."} )
A : Optional[bool] = field(default=__UpperCamelCase , metadata={"help": "Push saved tokenizer to the hub."} )
| 20 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : str = []
__snake_case , __snake_case : List[str] = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
__snake_case : List[Any] = result + left + right
return input_list
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
if len(__SCREAMING_SNAKE_CASE ) <= 1:
return input_list
__snake_case : Union[str, Any] = list(__SCREAMING_SNAKE_CASE )
# iteration for two-way merging
__snake_case : Tuple = 2
while p <= len(__SCREAMING_SNAKE_CASE ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = i
__snake_case : str = i + p - 1
__snake_case : Optional[Any] = (low + high + 1) // 2
__snake_case : str = merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# final merge of last two parts
if p * 2 >= len(__SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = i
__snake_case : str = merge(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
if user_input == "":
lowercase_ = []
else:
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
print(iter_merge_sort(unsorted))
| 20 | 1 |
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ):
A : Optional[int] = None
A : str = BloomTokenizerFast
A : Optional[Any] = BloomTokenizerFast
A : str = True
A : Optional[int] = False
A : List[str] = "tokenizer_file"
A : int = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
def snake_case__ ( self : str ):
super().setUp()
__snake_case : List[Any] = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : int , **_lowerCAmelCase : List[Any] ):
kwargs.update(self.special_tokens_map )
return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
__snake_case : List[str] = self.get_rust_tokenizer()
__snake_case : int = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""]
__snake_case : Optional[int] = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]]
__snake_case : Optional[int] = tokenizer.batch_encode_plus(_lowerCAmelCase )["""input_ids"""]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : Optional[Any] = tokenizer.batch_decode(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Dict , _lowerCAmelCase : Dict=6 ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__snake_case : List[str] = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase )
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
__snake_case : int = """This is a simple input"""
__snake_case : List[str] = ["""This is a simple input 1""", """This is a simple input 2"""]
__snake_case : Optional[int] = ("""This is a simple input""", """This is a pair""")
__snake_case : Optional[Any] = [
("""This is a simple input 1""", """This is a simple input 2"""),
("""This is a simple pair 1""", """This is a simple pair 2"""),
]
# Simple input tests
try:
tokenizer_r.encode(_lowerCAmelCase , max_length=_lowerCAmelCase )
tokenizer_r.encode_plus(_lowerCAmelCase , max_length=_lowerCAmelCase )
tokenizer_r.batch_encode_plus(_lowerCAmelCase , max_length=_lowerCAmelCase )
tokenizer_r.encode(_lowerCAmelCase , max_length=_lowerCAmelCase )
tokenizer_r.batch_encode_plus(_lowerCAmelCase , max_length=_lowerCAmelCase )
except ValueError:
self.fail("""Bloom Tokenizer should be able to deal with padding""" )
__snake_case : List[Any] = None # Hotfixing padding = None
self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" )
# Simple input
self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" )
# Simple input
self.assertRaises(
_lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" , )
# Pair input
self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" )
# Pair input
self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" )
# Pair input
self.assertRaises(
_lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" , )
def snake_case__ ( self : List[str] ):
__snake_case : str = self.get_rust_tokenizer()
__snake_case : str = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=_lowerCAmelCase )
__snake_case : List[str] = next(iter(_lowerCAmelCase ) )["""premise"""] # pick up one data
__snake_case : Tuple = list(sample_data.values() )
__snake_case : Any = list(map(tokenizer.encode , _lowerCAmelCase ) )
__snake_case : Optional[int] = [tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for x in output_tokens]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Dict ):
# The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have
# any sequence length constraints. This test of the parent class will fail since it relies on the
# maximum sequence length of the positoonal embeddings.
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 )
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
| 20 | import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
lowercase_ = "Usage of script: script_name <size_of_canvas:int>"
lowercase_ = [0] * 1_00 + [1] * 10
random.shuffle(choice)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
__snake_case : List[str] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )]
return canvas
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
for i, row in enumerate(__SCREAMING_SNAKE_CASE ):
for j, _ in enumerate(__SCREAMING_SNAKE_CASE ):
__snake_case : int = bool(random.getrandbits(1 ) )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
__snake_case : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) )
for r, row in enumerate(__SCREAMING_SNAKE_CASE ):
for c, pt in enumerate(__SCREAMING_SNAKE_CASE ):
__snake_case : Optional[Any] = __judge_point(
__SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] )
__snake_case : List[str] = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
__snake_case : list[list[bool]] = current_canvas.tolist()
return return_canvas
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[list[bool]] ):
'''simple docstring'''
__snake_case : Any = 0
__snake_case : Dict = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status:
alive += 1
else:
dead += 1
# handling duplicate entry for focus pt.
if pt:
alive -= 1
else:
dead -= 1
# running the rules of game here.
__snake_case : str = pt
if pt:
if alive < 2:
__snake_case : Optional[Any] = False
elif alive == 2 or alive == 3:
__snake_case : Union[str, Any] = True
elif alive > 3:
__snake_case : Optional[int] = False
else:
if alive == 3:
__snake_case : List[Any] = True
return state
if __name__ == "__main__":
if len(sys.argv) != 2:
raise Exception(usage_doc)
lowercase_ = int(sys.argv[1])
# main working structure of this module.
lowercase_ = create_canvas(canvas_size)
seed(c)
lowercase_ , lowercase_ = plt.subplots()
fig.show()
lowercase_ = ListedColormap(["w", "k"])
try:
while True:
lowercase_ = run(c)
ax.matshow(c, cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass
| 20 | 1 |
import webbrowser
from sys import argv
from urllib.parse import parse_qs, quote
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
lowercase_ = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: ")))
print("Googling.....")
lowercase_ = F'''https://www.google.com/search?q={query}&num=100'''
lowercase_ = requests.get(
url,
headers={"User-Agent": str(UserAgent().random)},
)
try:
lowercase_ = (
BeautifulSoup(res.text, "html.parser")
.find("div", attrs={"class": "yuRUbf"})
.find("a")
.get("href")
)
except AttributeError:
lowercase_ = parse_qs(
BeautifulSoup(res.text, "html.parser")
.find("div", attrs={"class": "kCrYT"})
.find("a")
.get("href")
)["url"][0]
webbrowser.open(link)
| 20 | import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Union[Dict, Any]] = None , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : int=2 ):
'''simple docstring'''
from .. import __version__
__snake_case : List[Any] = take_from
__snake_case : List[Any] = ()
if not isinstance(args[0] , __SCREAMING_SNAKE_CASE ):
__snake_case : str = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(__SCREAMING_SNAKE_CASE ):
raise ValueError(
F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''''
F''' version {__version__} is >= {version_name}''' )
__snake_case : Optional[Any] = None
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__SCREAMING_SNAKE_CASE ),)
__snake_case : Optional[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''
elif hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
values += (getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),)
__snake_case : Any = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''
elif deprecated_kwargs is None:
__snake_case : Tuple = F'''`{attribute}` is deprecated and will be removed in version {version_name}.'''
if warning is not None:
__snake_case : Optional[Any] = warning + """ """ if standard_warn else """"""
warnings.warn(warning + message , __SCREAMING_SNAKE_CASE , stacklevel=__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) > 0:
__snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1]
__snake_case : int = call_frame.filename
__snake_case : int = call_frame.lineno
__snake_case : List[str] = call_frame.function
__snake_case , __snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' )
if len(__SCREAMING_SNAKE_CASE ) == 0:
return
elif len(__SCREAMING_SNAKE_CASE ) == 1:
return values[0]
return values
| 20 | 1 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowercase_ = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
lowercase_ = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''',
F'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''',
F'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias'''))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
("input_proj.weight", "input_projection.weight"),
("input_proj.bias", "input_projection.bias"),
("query_embed.weight", "query_position_embeddings.weight"),
("transformer.decoder.norm.weight", "decoder.layernorm.weight"),
("transformer.decoder.norm.bias", "decoder.layernorm.bias"),
("class_embed.weight", "class_labels_classifier.weight"),
("class_embed.bias", "class_labels_classifier.bias"),
("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"),
("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"),
("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"),
("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"),
("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"),
("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"),
("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"),
("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"),
("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"),
("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"),
("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"),
("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"),
("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"),
("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"),
("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"),
("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"),
]
)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
__snake_case : Optional[Any] = state_dict.pop(__SCREAMING_SNAKE_CASE )
__snake_case : Optional[int] = val
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
__snake_case : Optional[Any] = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
__snake_case : List[Any] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" )
__snake_case : List[Any] = value
else:
__snake_case : Tuple = value
return new_state_dict
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str]=False ):
'''simple docstring'''
__snake_case : List[Any] = """"""
if is_panoptic:
__snake_case : Any = """conditional_detr."""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
__snake_case : str = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
__snake_case : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
__snake_case : Optional[Any] = in_proj_weight[:2_5_6, :]
__snake_case : List[Any] = in_proj_bias[:2_5_6]
__snake_case : List[Any] = in_proj_weight[2_5_6:5_1_2, :]
__snake_case : Union[str, Any] = in_proj_bias[2_5_6:5_1_2]
__snake_case : Union[str, Any] = in_proj_weight[-2_5_6:, :]
__snake_case : Tuple = in_proj_bias[-2_5_6:]
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__snake_case : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
__snake_case : List[Any] = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
__snake_case : List[str] = """resnet101"""
if "dc5" in model_name:
__snake_case : List[Any] = True
__snake_case : List[Any] = """panoptic""" in model_name
if is_panoptic:
__snake_case : List[Any] = 2_5_0
else:
__snake_case : Tuple = 9_1
__snake_case : int = """huggingface/label-files"""
__snake_case : Tuple = """coco-detection-id2label.json"""
__snake_case : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) )
__snake_case : Union[str, Any] = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__snake_case : List[str] = idalabel
__snake_case : Dict = {v: k for k, v in idalabel.items()}
# load image processor
__snake_case : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection"""
__snake_case : int = ConditionalDetrImageProcessor(format=__SCREAMING_SNAKE_CASE )
# prepare image
__snake_case : str = prepare_img()
__snake_case : List[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
__snake_case : List[Any] = encoding["""pixel_values"""]
logger.info(F'''Converting model {model_name}...''' )
# load original model from torch hub
__snake_case : Optional[Any] = torch.hub.load("""DeppMeng/ConditionalDETR""" , __SCREAMING_SNAKE_CASE , pretrained=__SCREAMING_SNAKE_CASE ).eval()
__snake_case : Dict = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
__snake_case : List[str] = """conditional_detr.""" + src
rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : List[str] = rename_backbone_keys(__SCREAMING_SNAKE_CASE )
# query, key and value matrices need special treatment
read_in_q_k_v(__SCREAMING_SNAKE_CASE , is_panoptic=__SCREAMING_SNAKE_CASE )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
__snake_case : Dict = """conditional_detr.model.""" if is_panoptic else """model."""
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("""conditional_detr""" )
and not key.startswith("""class_labels_classifier""" )
and not key.startswith("""bbox_predictor""" )
):
__snake_case : Optional[Any] = state_dict.pop(__SCREAMING_SNAKE_CASE )
__snake_case : Optional[int] = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
__snake_case : Union[str, Any] = state_dict.pop(__SCREAMING_SNAKE_CASE )
__snake_case : int = val
elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ):
continue
else:
__snake_case : Any = state_dict.pop(__SCREAMING_SNAKE_CASE )
__snake_case : str = val
else:
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
__snake_case : Tuple = state_dict.pop(__SCREAMING_SNAKE_CASE )
__snake_case : Dict = val
# finally, create HuggingFace model and load state dict
__snake_case : Optional[Any] = ConditionalDetrForSegmentation(__SCREAMING_SNAKE_CASE ) if is_panoptic else ConditionalDetrForObjectDetection(__SCREAMING_SNAKE_CASE )
model.load_state_dict(__SCREAMING_SNAKE_CASE )
model.eval()
model.push_to_hub(repo_id=__SCREAMING_SNAKE_CASE , organization="""DepuMeng""" , commit_message="""Add model""" )
# verify our conversion
__snake_case : Union[str, Any] = conditional_detr(__SCREAMING_SNAKE_CASE )
__snake_case : Tuple = model(__SCREAMING_SNAKE_CASE )
assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 )
assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 )
# Save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="conditional_detr_resnet50",
type=str,
help="Name of the CONDITIONAL_DETR model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
lowercase_ = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 20 | import argparse
import os
from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPTaConfig,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
TaConfig,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPTaLMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFTaForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWavaVecaModel,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
WavaVecaConfig,
WavaVecaModel,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tfa_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPTaLMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
TaForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
logging.set_verbosity_info()
lowercase_ = {
"bart": (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"bert": (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-base-cased-finetuned-mrpc": (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"dpr": (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"gpt2": (
GPTaConfig,
TFGPTaLMHeadModel,
GPTaLMHeadModel,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlnet": (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm": (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm-roberta": (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"transfo-xl": (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"openai-gpt": (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"roberta": (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"layoutlm": (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"roberta-large-mnli": (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"camembert": (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"flaubert": (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert": (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert-base-distilled-squad": (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert": (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert-visual-feature-encoder": (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"ctrl": (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"albert": (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"t5": (
TaConfig,
TFTaForConditionalGeneration,
TaForConditionalGeneration,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"electra": (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"wav2vec2": (
WavaVecaConfig,
TFWavaVecaModel,
WavaVecaModel,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=True ):
'''simple docstring'''
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' )
__snake_case , __snake_case , __snake_case , __snake_case : Any = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
__snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
__snake_case : Dict = config_class.from_json_file(__SCREAMING_SNAKE_CASE )
__snake_case : Tuple = True
__snake_case : Union[str, Any] = True
print(F'''Building TensorFlow model from configuration: {config}''' )
__snake_case : List[Any] = model_class(__SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
__snake_case : Optional[Any] = cached_file(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
# Load PyTorch checkpoint in tf2 model:
__snake_case : List[Any] = load_pytorch_checkpoint_in_tfa_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if compare_with_pt_model:
__snake_case : Tuple = tf_model(tf_model.dummy_inputs , training=__SCREAMING_SNAKE_CASE ) # build the network
__snake_case : List[str] = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" )
__snake_case : Any = pt_model_class.from_pretrained(
pretrained_model_name_or_path=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE , state_dict=__SCREAMING_SNAKE_CASE )
with torch.no_grad():
__snake_case : Union[str, Any] = pt_model(**pt_model.dummy_inputs )
__snake_case : Any = pto[0].numpy()
__snake_case : Optional[int] = tfo[0].numpy()
__snake_case : Optional[int] = np.amax(np.abs(np_pt - np_tf ) )
print(F'''Max absolute difference between models outputs {diff}''' )
assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}'''
# Save pytorch-model
print(F'''Save TensorFlow model to {tf_dump_path}''' )
tf_model.save_weights(__SCREAMING_SNAKE_CASE , save_format="""h5""" )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Any=False , ):
'''simple docstring'''
if args_model_type is None:
__snake_case : Tuple = list(MODEL_CLASSES.keys() )
else:
__snake_case : Union[str, Any] = [args_model_type]
for j, model_type in enumerate(__SCREAMING_SNAKE_CASE , start=1 ):
print("""=""" * 1_0_0 )
print(F''' Converting model type {j}/{len(__SCREAMING_SNAKE_CASE )}: {model_type}''' )
print("""=""" * 1_0_0 )
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' )
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
__snake_case : int = list(aws_model_maps.keys() )
if config_shortcut_names_or_path is None:
__snake_case : Union[str, Any] = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , start=1 ):
print("""-""" * 1_0_0 )
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' )
continue
__snake_case : List[Any] = model_shortcut_name
elif only_convert_finetuned_models:
print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' )
continue
print(
F''' Converting checkpoint {i}/{len(__SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}''' )
print("""-""" * 1_0_0 )
if config_shortcut_name in aws_config_map:
__snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
else:
__snake_case : Dict = config_shortcut_name
if model_shortcut_name in aws_model_maps:
__snake_case : Union[str, Any] = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models )
else:
__snake_case : List[Any] = model_shortcut_name
if os.path.isfile(__SCREAMING_SNAKE_CASE ):
__snake_case : List[str] = """converted_model"""
convert_pt_checkpoint_to_tf(
model_type=__SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=__SCREAMING_SNAKE_CASE , config_file=__SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(__SCREAMING_SNAKE_CASE , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__SCREAMING_SNAKE_CASE , )
if remove_cached_files:
os.remove(__SCREAMING_SNAKE_CASE )
os.remove(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file."
)
parser.add_argument(
"--model_type",
default=None,
type=str,
help=(
F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and '''
"convert all the models from AWS."
),
)
parser.add_argument(
"--pytorch_checkpoint_path",
default=None,
type=str,
help=(
"Path to the PyTorch checkpoint path or shortcut name to download from AWS. "
"If not given, will download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--config_file",
default=None,
type=str,
help=(
"The config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture. If not given and "
"--pytorch_checkpoint_path is not given or is a shortcut name "
"use the configuration associated to the shortcut name on the AWS"
),
)
parser.add_argument(
"--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions."
)
parser.add_argument(
"--use_cached_models",
action="store_true",
help="Use cached models if possible instead of updating to latest checkpoint versions.",
)
parser.add_argument(
"--remove_cached_files",
action="store_true",
help="Remove pytorch models after conversion (save memory when converting in batches).",
)
parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.")
lowercase_ = parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
| 20 | 1 |
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "spiece.model"}
lowercase_ = {
"vocab_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model",
}
}
lowercase_ = {
"xlnet-base-cased": None,
"xlnet-large-cased": None,
}
# Segments (not really needed)
lowercase_ = 0
lowercase_ = 1
lowercase_ = 2
lowercase_ = 3
lowercase_ = 4
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = VOCAB_FILES_NAMES
A : List[str] = PRETRAINED_VOCAB_FILES_MAP
A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : List[Any] = "left"
def __init__( self : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : int=True , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Any="<s>" , _lowerCAmelCase : Any="</s>" , _lowerCAmelCase : Optional[Any]="<unk>" , _lowerCAmelCase : Union[str, Any]="<sep>" , _lowerCAmelCase : Tuple="<pad>" , _lowerCAmelCase : Optional[Any]="<cls>" , _lowerCAmelCase : Optional[Any]="<mask>" , _lowerCAmelCase : Union[str, Any]=["<eop>", "<eod>"] , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : List[Any] , ):
# Mask token behave like a normal word, i.e. include the space before it
__snake_case : Tuple = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token
__snake_case : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , )
__snake_case : Union[str, Any] = 3
__snake_case : Optional[Any] = do_lower_case
__snake_case : Optional[int] = remove_space
__snake_case : Any = keep_accents
__snake_case : List[Any] = vocab_file
__snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCAmelCase )
@property
def snake_case__ ( self : Optional[int] ):
return len(self.sp_model )
def snake_case__ ( self : Optional[Any] ):
__snake_case : str = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[Any] ):
__snake_case : Optional[Any] = self.__dict__.copy()
__snake_case : Tuple = None
return state
def __setstate__( self : int , _lowerCAmelCase : List[Any] ):
__snake_case : Dict = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__snake_case : List[Any] = {}
__snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def snake_case__ ( self : Any , _lowerCAmelCase : int ):
if self.remove_space:
__snake_case : str = """ """.join(inputs.strip().split() )
else:
__snake_case : int = inputs
__snake_case : str = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
__snake_case : str = unicodedata.normalize("""NFKD""" , _lowerCAmelCase )
__snake_case : int = """""".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] )
if self.do_lower_case:
__snake_case : List[str] = outputs.lower()
return outputs
def snake_case__ ( self : List[str] , _lowerCAmelCase : str ):
__snake_case : Optional[Any] = self.preprocess_text(_lowerCAmelCase )
__snake_case : Tuple = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase )
__snake_case : List[str] = []
for piece in pieces:
if len(_lowerCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
__snake_case : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
__snake_case : List[Any] = cur_pieces[1:]
else:
__snake_case : Optional[Any] = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_lowerCAmelCase )
else:
new_pieces.append(_lowerCAmelCase )
return new_pieces
def snake_case__ ( self : Dict , _lowerCAmelCase : Dict ):
return self.sp_model.PieceToId(_lowerCAmelCase )
def snake_case__ ( self : int , _lowerCAmelCase : Any ):
return self.sp_model.IdToPiece(_lowerCAmelCase )
def snake_case__ ( self : Tuple , _lowerCAmelCase : Any ):
__snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Tuple , _lowerCAmelCase : List[int] , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = None , _lowerCAmelCase : bool = True , **_lowerCAmelCase : Any , ):
__snake_case : Optional[int] = kwargs.pop("""use_source_tokenizer""" , _lowerCAmelCase )
__snake_case : str = self.convert_ids_to_tokens(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
__snake_case : Optional[int] = []
__snake_case : Optional[int] = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(_lowerCAmelCase ) )
__snake_case : Dict = []
sub_texts.append(_lowerCAmelCase )
else:
current_sub_text.append(_lowerCAmelCase )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(_lowerCAmelCase ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
__snake_case : Union[str, Any] = """""".join(_lowerCAmelCase )
__snake_case : Tuple = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
__snake_case : Union[str, Any] = self.clean_up_tokenization(_lowerCAmelCase )
return clean_text
else:
return text
def snake_case__ ( self : List[str] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
__snake_case : int = [self.sep_token_id]
__snake_case : Dict = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def snake_case__ ( self : int , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None , _lowerCAmelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase )
if token_ids_a is not None:
return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1]
return ([0] * len(_lowerCAmelCase )) + [1, 1]
def snake_case__ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
__snake_case : List[Any] = [self.sep_token_id]
__snake_case : int = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def snake_case__ ( self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
if not os.path.isdir(_lowerCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__snake_case : Dict = os.path.join(
_lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCAmelCase , """wb""" ) as fi:
__snake_case : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (out_vocab_file,)
| 20 | import random
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
__snake_case , __snake_case , __snake_case : Tuple = [], [], []
for element in data:
if element < pivot:
less.append(__SCREAMING_SNAKE_CASE )
elif element > pivot:
greater.append(__SCREAMING_SNAKE_CASE )
else:
equal.append(__SCREAMING_SNAKE_CASE )
return less, equal, greater
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
# index = len(items) // 2 when trying to find the median
# (value of index when items is sorted)
# invalid input
if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0:
return None
__snake_case : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )]
__snake_case : Tuple = 0
__snake_case , __snake_case , __snake_case : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE )
__snake_case : int = len(__SCREAMING_SNAKE_CASE )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# must be in larger
else:
return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
| 20 | 1 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Union[Dict, Any]] = None , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : int=2 ):
'''simple docstring'''
from .. import __version__
__snake_case : List[Any] = take_from
__snake_case : List[Any] = ()
if not isinstance(args[0] , __SCREAMING_SNAKE_CASE ):
__snake_case : str = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(__SCREAMING_SNAKE_CASE ):
raise ValueError(
F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''''
F''' version {__version__} is >= {version_name}''' )
__snake_case : Optional[Any] = None
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__SCREAMING_SNAKE_CASE ),)
__snake_case : Optional[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''
elif hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
values += (getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),)
__snake_case : Any = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''
elif deprecated_kwargs is None:
__snake_case : Tuple = F'''`{attribute}` is deprecated and will be removed in version {version_name}.'''
if warning is not None:
__snake_case : Optional[Any] = warning + """ """ if standard_warn else """"""
warnings.warn(warning + message , __SCREAMING_SNAKE_CASE , stacklevel=__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) > 0:
__snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1]
__snake_case : int = call_frame.filename
__snake_case : int = call_frame.lineno
__snake_case : List[str] = call_frame.function
__snake_case , __snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' )
if len(__SCREAMING_SNAKE_CASE ) == 0:
return
elif len(__SCREAMING_SNAKE_CASE ) == 1:
return values[0]
return values
| 20 | import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"
),
}
}
lowercase_ = {
"junnyu/roformer_chinese_small": 15_36,
"junnyu/roformer_chinese_base": 15_36,
"junnyu/roformer_chinese_char_small": 5_12,
"junnyu/roformer_chinese_char_base": 5_12,
"junnyu/roformer_small_discriminator": 1_28,
"junnyu/roformer_small_generator": 1_28,
}
lowercase_ = {
"junnyu/roformer_chinese_small": {"do_lower_case": True},
"junnyu/roformer_chinese_base": {"do_lower_case": True},
"junnyu/roformer_chinese_char_small": {"do_lower_case": True},
"junnyu/roformer_chinese_char_base": {"do_lower_case": True},
"junnyu/roformer_small_discriminator": {"do_lower_case": True},
"junnyu/roformer_small_generator": {"do_lower_case": True},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = VOCAB_FILES_NAMES
A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : int = PRETRAINED_INIT_CONFIGURATION
A : List[str] = RoFormerTokenizer
def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any="[UNK]" , _lowerCAmelCase : int="[SEP]" , _lowerCAmelCase : Optional[int]="[PAD]" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Dict , ):
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
__snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case
or pre_tok_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents
):
__snake_case : Tuple = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) )
__snake_case : List[Any] = do_lower_case
__snake_case : Optional[Any] = strip_accents
__snake_case : List[str] = pre_tok_class(**_lowerCAmelCase )
__snake_case : Optional[Any] = do_lower_case
def __getstate__( self : Optional[Any] ):
__snake_case : Optional[int] = self.__dict__.copy()
__snake_case : Optional[Any] = BertPreTokenizer()
return state
def __setstate__( self : str , _lowerCAmelCase : Dict ):
__snake_case : str = d
__snake_case : int = self.__dict__["""_tokenizer"""].get_vocab()
__snake_case : List[str] = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=None ):
__snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
def snake_case__ ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Tuple , ):
__snake_case : Tuple = BertPreTokenizer()
return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
| 20 | 1 |
import os
import unittest
from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer
from transformers.testing_utils import require_jieba, tooslow
from ...test_tokenization_common import TokenizerTesterMixin
@require_jieba
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ):
A : Optional[int] = CpmAntTokenizer
A : List[Any] = False
def snake_case__ ( self : Union[str, Any] ):
super().setUp()
__snake_case : Optional[Any] = [
"""<d>""",
"""</d>""",
"""<s>""",
"""</s>""",
"""</_>""",
"""<unk>""",
"""<pad>""",
"""</n>""",
"""我""",
"""是""",
"""C""",
"""P""",
"""M""",
"""A""",
"""n""",
"""t""",
]
__snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
@tooslow
def snake_case__ ( self : Tuple ):
__snake_case : Dict = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" )
__snake_case : Any = """今天天气真好!"""
__snake_case : Dict = ["""今天""", """天气""", """真""", """好""", """!"""]
__snake_case : int = tokenizer.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
__snake_case : Dict = """今天天气真好!"""
__snake_case : List[Any] = [tokenizer.bos_token] + tokens
__snake_case : List[str] = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase )
__snake_case : Any = tokenizer.decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
| 20 | from __future__ import annotations
import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if depth < 0:
raise ValueError("""Depth cannot be less than 0""" )
if len(__SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("""Scores cannot be empty""" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
return min(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3]
__snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 )
print("""Optimal value : """ , end="""""" )
print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 20 | 1 |
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
lowercase_ = logging.get_logger(__name__)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : List[str]=None ):
'''simple docstring'''
return field(default_factory=lambda: default , metadata=__SCREAMING_SNAKE_CASE )
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : List[str] = list_field(
default=[] , metadata={
"help": (
"Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"
" of all available models"
)
} , )
A : List[int] = list_field(
default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} )
A : List[int] = list_field(
default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , )
A : bool = field(
default=__UpperCamelCase , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , )
A : bool = field(
default=__UpperCamelCase , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , )
A : bool = field(
default=__UpperCamelCase , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} )
A : bool = field(default=__UpperCamelCase , metadata={"help": "Use FP16 to accelerate inference."} )
A : bool = field(default=__UpperCamelCase , metadata={"help": "Benchmark training of model"} )
A : bool = field(default=__UpperCamelCase , metadata={"help": "Verbose memory tracing"} )
A : bool = field(
default=__UpperCamelCase , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , )
A : bool = field(
default=__UpperCamelCase , metadata={
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
} , )
A : bool = field(default=__UpperCamelCase , metadata={"help": "Trace memory line by line"} )
A : bool = field(default=__UpperCamelCase , metadata={"help": "Save result to a CSV file"} )
A : bool = field(default=__UpperCamelCase , metadata={"help": "Save all print statements in a log file"} )
A : bool = field(default=__UpperCamelCase , metadata={"help": "Whether to print environment information"} )
A : bool = field(
default=__UpperCamelCase , metadata={
"help": (
"Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"
" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"
" for debugging / testing and on TPU."
)
} , )
A : str = field(
default=f'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , )
A : str = field(
default=f'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , )
A : str = field(
default=f'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , )
A : str = field(
default=f'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , )
A : str = field(
default=f'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , )
A : str = field(
default=f'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , )
A : int = field(default=3 , metadata={"help": "Times an experiment will be run."} )
A : bool = field(
default=__UpperCamelCase , metadata={
"help": (
"Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"
" model weights."
)
} , )
def snake_case__ ( self : Dict ):
warnings.warn(
f'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils'''
""" are deprecated in general and it is advised to use external Benchmarking libraries """
""" to benchmark Transformer models.""" , _lowerCAmelCase , )
def snake_case__ ( self : int ):
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def snake_case__ ( self : List[Any] ):
if len(self.models ) <= 0:
raise ValueError(
"""Please make sure you provide at least one model name / model identifier, *e.g.* `--models"""
""" bert-base-cased` or `args.models = ['bert-base-cased'].""" )
return self.models
@property
def snake_case__ ( self : Tuple ):
if not self.multi_process:
return False
elif self.is_tpu:
logger.info("""Multiprocessing is currently not possible on TPU.""" )
return False
else:
return True
| 20 | import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
lowercase_ = None
lowercase_ = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
lowercase_ = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class SCREAMING_SNAKE_CASE__ :
A : bool = True
A : Optional[str] = None
# Automatically constructed
A : ClassVar[str] = "PIL.Image.Image"
A : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} )
A : str = field(default="Image" , init=__UpperCamelCase , repr=__UpperCamelCase )
def __call__( self : Any ):
return self.pa_type
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
__snake_case : str = np.array(_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": value, "bytes": None}
elif isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return {"path": None, "bytes": value}
elif isinstance(_lowerCAmelCase , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(_lowerCAmelCase )
elif isinstance(_lowerCAmelCase , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(_lowerCAmelCase )
elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("""path""" )}
elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )}
else:
raise ValueError(
f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def snake_case__ ( self : List[str] , _lowerCAmelCase : dict , _lowerCAmelCase : Dict=None ):
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support decoding images, please install 'Pillow'.""" )
if token_per_repo_id is None:
__snake_case : Tuple = {}
__snake_case , __snake_case : str = value["""path"""], value["""bytes"""]
if bytes_ is None:
if path is None:
raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
else:
if is_local_path(_lowerCAmelCase ):
__snake_case : str = PIL.Image.open(_lowerCAmelCase )
else:
__snake_case : List[str] = path.split("""::""" )[-1]
try:
__snake_case : Dict = string_to_dict(_lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""]
__snake_case : int = token_per_repo_id.get(_lowerCAmelCase )
except ValueError:
__snake_case : List[Any] = None
with xopen(_lowerCAmelCase , """rb""" , use_auth_token=_lowerCAmelCase ) as f:
__snake_case : Union[str, Any] = BytesIO(f.read() )
__snake_case : Dict = PIL.Image.open(bytes_ )
else:
__snake_case : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def snake_case__ ( self : Union[str, Any] ):
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("""binary""" ),
"path": Value("""string""" ),
}
)
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ):
if pa.types.is_string(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
__snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("""bytes""" ) >= 0:
__snake_case : List[str] = storage.field("""bytes""" )
else:
__snake_case : List[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() )
if storage.type.get_field_index("""path""" ) >= 0:
__snake_case : Optional[int] = storage.field("""path""" )
else:
__snake_case : int = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
__snake_case : Optional[Any] = pa.array(
[encode_np_array(np.array(_lowerCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
__snake_case : Optional[int] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() )
__snake_case : List[str] = pa.StructArray.from_arrays(
[bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : pa.StructArray ):
@no_op_if_value_is_null
def path_to_bytes(_lowerCAmelCase : Tuple ):
with xopen(_lowerCAmelCase , """rb""" ) as f:
__snake_case : Optional[int] = f.read()
return bytes_
__snake_case : Tuple = pa.array(
[
(path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
__snake_case : Optional[Any] = pa.array(
[os.path.basename(_lowerCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , )
__snake_case : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(_lowerCAmelCase , self.pa_type )
def __lowerCAmelCase ( ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
__snake_case : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
__snake_case : List[Any] = BytesIO()
if image.format in list_image_compression_formats():
__snake_case : Union[str, Any] = image.format
else:
__snake_case : List[Any] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF"""
image.save(__SCREAMING_SNAKE_CASE , format=__SCREAMING_SNAKE_CASE )
return buffer.getvalue()
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ):
'''simple docstring'''
if hasattr(__SCREAMING_SNAKE_CASE , """filename""" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
__snake_case : List[Any] = array.dtype
__snake_case : List[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER
__snake_case : Dict = dtype.kind
__snake_case : Union[str, Any] = dtype.itemsize
__snake_case : Tuple = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
__snake_case : int = np.dtype("""|u1""" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' )
if dtype is not dest_dtype:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
__snake_case : List[str] = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
__snake_case : int = dtype_byteorder + dtype_kind + str(__SCREAMING_SNAKE_CASE )
__snake_case : Any = np.dtype(__SCREAMING_SNAKE_CASE )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' )
__snake_case : Optional[int] = PIL.Image.fromarray(array.astype(__SCREAMING_SNAKE_CASE ) )
return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )}
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if objs:
__snake_case , __snake_case : Any = first_non_null_value(__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
__snake_case : int = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ):
__snake_case : List[str] = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE )
return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs]
else:
return objs
else:
return objs
| 20 | 1 |
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ):
# TODO: is there an appropriate internal test set?
A : List[str] = "ssube/stable-diffusion-x4-upscaler-onnx"
def snake_case__ ( self : int , _lowerCAmelCase : List[Any]=0 ):
__snake_case : int = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(_lowerCAmelCase ) )
__snake_case : Any = torch.manual_seed(_lowerCAmelCase )
__snake_case : str = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def snake_case__ ( self : Any ):
__snake_case : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
__snake_case : Dict = self.get_dummy_inputs()
__snake_case : int = pipe(**_lowerCAmelCase ).images
__snake_case : List[Any] = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_12, 5_12, 3)
__snake_case : List[str] = np.array(
[0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] )
assert np.abs(image_slice - expected_slice ).max() < 1e-1
def snake_case__ ( self : Optional[int] ):
__snake_case : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
__snake_case : Any = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
__snake_case : Any = self.get_dummy_inputs()
__snake_case : Optional[Any] = pipe(**_lowerCAmelCase ).images
__snake_case : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__snake_case : Optional[int] = np.array(
[0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def snake_case__ ( self : List[Any] ):
__snake_case : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
__snake_case : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
__snake_case : int = self.get_dummy_inputs()
__snake_case : List[str] = pipe(**_lowerCAmelCase ).images
__snake_case : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__snake_case : Optional[int] = np.array(
[0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def snake_case__ ( self : List[str] ):
__snake_case : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
__snake_case : Tuple = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
__snake_case : int = self.get_dummy_inputs()
__snake_case : List[str] = pipe(**_lowerCAmelCase ).images
__snake_case : Tuple = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__snake_case : Union[str, Any] = np.array(
[0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def snake_case__ ( self : List[str] ):
__snake_case : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
__snake_case : Dict = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
__snake_case : List[str] = self.get_dummy_inputs()
__snake_case : List[str] = pipe(**_lowerCAmelCase ).images
__snake_case : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__snake_case : Union[str, Any] = np.array(
[0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@property
def snake_case__ ( self : Tuple ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def snake_case__ ( self : Any ):
__snake_case : List[Any] = ort.SessionOptions()
__snake_case : Dict = False
return options
def snake_case__ ( self : List[Any] ):
__snake_case : Union[str, Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
__snake_case : List[str] = init_image.resize((1_28, 1_28) )
# using the PNDM scheduler by default
__snake_case : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"""ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
__snake_case : Union[str, Any] = """A fantasy landscape, trending on artstation"""
__snake_case : Union[str, Any] = torch.manual_seed(0 )
__snake_case : Dict = pipe(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" , )
__snake_case : Union[str, Any] = output.images
__snake_case : Union[str, Any] = images[0, 2_55:2_58, 3_83:3_86, -1]
assert images.shape == (1, 5_12, 5_12, 3)
__snake_case : int = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def snake_case__ ( self : Tuple ):
__snake_case : str = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
__snake_case : Union[str, Any] = init_image.resize((1_28, 1_28) )
__snake_case : Union[str, Any] = LMSDiscreteScheduler.from_pretrained(
"""ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" )
__snake_case : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"""ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
__snake_case : List[Any] = """A fantasy landscape, trending on artstation"""
__snake_case : int = torch.manual_seed(0 )
__snake_case : List[Any] = pipe(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowerCAmelCase , output_type="""np""" , )
__snake_case : Any = output.images
__snake_case : List[Any] = images[0, 2_55:2_58, 3_83:3_86, -1]
assert images.shape == (1, 5_12, 5_12, 3)
__snake_case : Optional[Any] = np.array(
[0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
| 20 | from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowercase_ = logging.get_logger(__name__)
@add_end_docstrings(__UpperCamelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ):
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = {}
__snake_case : int = {}
if prompt is not None:
__snake_case : Dict = prompt
if generate_kwargs is not None:
__snake_case : List[Any] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__snake_case : Optional[int] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
__snake_case : Any = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ):
return super().__call__(_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ):
__snake_case : Optional[Any] = load_image(_lowerCAmelCase )
if prompt is not None:
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
raise ValueError(
f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
__snake_case : Tuple = self.model.config.model_type
if model_type == "git":
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids
__snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids
__snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
__snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework )
model_inputs.update(_lowerCAmelCase )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
__snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
__snake_case : int = None
return model_inputs
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ):
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase )
and all(x is None for x in model_inputs["""input_ids"""] )
):
__snake_case : List[Any] = None
if generate_kwargs is None:
__snake_case : Dict = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__snake_case : Dict = model_inputs.pop(self.model.main_input_name )
__snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase )
return model_outputs
def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ):
__snake_case : Union[str, Any] = []
for output_ids in model_outputs:
__snake_case : Union[str, Any] = {
"""generated_text""": self.tokenizer.decode(
_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , )
}
records.append(_lowerCAmelCase )
return records
| 20 | 1 |
from math import factorial, pi
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : int = 3_0 ):
'''simple docstring'''
if not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ):
raise ValueError("""maclaurin_sin() requires either an int or float for theta""" )
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or accuracy <= 0:
raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" )
__snake_case : Optional[Any] = float(__SCREAMING_SNAKE_CASE )
__snake_case : Optional[Any] = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__SCREAMING_SNAKE_CASE ) )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : int = 3_0 ):
'''simple docstring'''
if not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ):
raise ValueError("""maclaurin_cos() requires either an int or float for theta""" )
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or accuracy <= 0:
raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" )
__snake_case : Tuple = float(__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 20 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowercase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["YolosFeatureExtractor"]
lowercase_ = ["YolosImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST",
"YolosForObjectDetection",
"YolosModel",
"YolosPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
import argparse
import requests
import torch
from PIL import Image
from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
if "cls_token" in name:
__snake_case : Dict = name.replace("""cls_token""" , """vit.embeddings.cls_token""" )
if "mask_token" in name:
__snake_case : Tuple = name.replace("""mask_token""" , """decoder.mask_token""" )
if "decoder_pos_embed" in name:
__snake_case : int = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" )
if "pos_embed" in name and "decoder" not in name:
__snake_case : Optional[int] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
__snake_case : int = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
__snake_case : Tuple = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" )
if "decoder_blocks" in name:
__snake_case : Dict = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" )
if "blocks" in name:
__snake_case : List[str] = name.replace("""blocks""" , """vit.encoder.layer""" )
if "attn.proj" in name:
__snake_case : int = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
__snake_case : Tuple = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
__snake_case : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
__snake_case : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
__snake_case : str = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
__snake_case : List[Any] = name.replace("""mlp.fc2""" , """output.dense""" )
if "decoder_embed" in name:
__snake_case : Optional[Any] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" )
if "decoder_norm" in name:
__snake_case : Optional[int] = name.replace("""decoder_norm""" , """decoder.decoder_norm""" )
if "decoder_pred" in name:
__snake_case : Optional[Any] = name.replace("""decoder_pred""" , """decoder.decoder_pred""" )
if "norm.weight" in name and "decoder" not in name:
__snake_case : Union[str, Any] = name.replace("""norm.weight""" , """vit.layernorm.weight""" )
if "norm.bias" in name and "decoder" not in name:
__snake_case : Any = name.replace("""norm.bias""" , """vit.layernorm.bias""" )
return name
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
__snake_case : Union[str, Any] = orig_state_dict.pop(__SCREAMING_SNAKE_CASE )
if "qkv" in key:
__snake_case : Tuple = key.split(""".""" )
__snake_case : Dict = int(key_split[1] )
if "decoder_blocks" in key:
__snake_case : Optional[Any] = config.decoder_hidden_size
__snake_case : Union[str, Any] = """decoder.decoder_layers."""
if "weight" in key:
__snake_case : Optional[Any] = val[:dim, :]
__snake_case : Any = val[dim : dim * 2, :]
__snake_case : Tuple = val[-dim:, :]
elif "bias" in key:
__snake_case : Dict = val[:dim]
__snake_case : List[Any] = val[dim : dim * 2]
__snake_case : Any = val[-dim:]
else:
__snake_case : Any = config.hidden_size
__snake_case : Tuple = """vit.encoder.layer."""
if "weight" in key:
__snake_case : Tuple = val[:dim, :]
__snake_case : int = val[dim : dim * 2, :]
__snake_case : List[str] = val[-dim:, :]
elif "bias" in key:
__snake_case : Union[str, Any] = val[:dim]
__snake_case : Tuple = val[dim : dim * 2]
__snake_case : Optional[Any] = val[-dim:]
else:
__snake_case : List[str] = val
return orig_state_dict
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
__snake_case : Any = ViTMAEConfig()
if "large" in checkpoint_url:
__snake_case : Union[str, Any] = 1_0_2_4
__snake_case : List[str] = 4_0_9_6
__snake_case : Optional[int] = 2_4
__snake_case : Optional[int] = 1_6
elif "huge" in checkpoint_url:
__snake_case : Dict = 1_4
__snake_case : str = 1_2_8_0
__snake_case : List[str] = 5_1_2_0
__snake_case : Any = 3_2
__snake_case : Tuple = 1_6
__snake_case : str = ViTMAEForPreTraining(__SCREAMING_SNAKE_CASE )
__snake_case : Optional[int] = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location="""cpu""" )["""model"""]
__snake_case : List[Any] = ViTMAEImageProcessor(size=config.image_size )
__snake_case : Optional[int] = convert_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
model.load_state_dict(__SCREAMING_SNAKE_CASE )
model.eval()
__snake_case : Tuple = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg"""
__snake_case : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw )
__snake_case : Union[str, Any] = ViTMAEImageProcessor(size=config.image_size )
__snake_case : int = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
# forward pass
torch.manual_seed(2 )
__snake_case : str = model(**__SCREAMING_SNAKE_CASE )
__snake_case : Union[str, Any] = outputs.logits
if "large" in checkpoint_url:
__snake_case : Any = torch.tensor(
[[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] )
elif "huge" in checkpoint_url:
__snake_case : int = torch.tensor(
[[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] )
else:
__snake_case : Tuple = torch.tensor(
[[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] )
# verify logits
assert torch.allclose(logits[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth",
type=str,
help="URL of the checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
lowercase_ = parser.parse_args()
convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 20 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = "microsoft/speecht5_tts"
A : List[Any] = (
"This is a tool that reads an English text out loud. It takes an input named `text` which should contain the "
"text to read (in English) and returns a waveform object containing the sound."
)
A : str = "text_reader"
A : Optional[Any] = SpeechTaProcessor
A : Any = SpeechTaForTextToSpeech
A : Optional[Any] = SpeechTaHifiGan
A : str = ["text"]
A : Union[str, Any] = ["audio"]
def snake_case__ ( self : List[Any] ):
if self.post_processor is None:
__snake_case : Tuple = """microsoft/speecht5_hifigan"""
super().setup()
def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ):
__snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" )
__snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" )
__snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ):
with torch.no_grad():
return self.model.generate_speech(**_lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
with torch.no_grad():
return self.post_processor(_lowerCAmelCase ).cpu().detach()
| 20 | 1 |
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"tensor(bool)": np.bool_,
"tensor(int8)": np.inta,
"tensor(uint8)": np.uinta,
"tensor(int16)": np.intaa,
"tensor(uint16)": np.uintaa,
"tensor(int32)": np.intaa,
"tensor(uint32)": np.uintaa,
"tensor(int64)": np.intaa,
"tensor(uint64)": np.uintaa,
"tensor(float16)": np.floataa,
"tensor(float)": np.floataa,
"tensor(double)": np.floataa,
}
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Union[str, Any] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Optional[int] ):
logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" )
__snake_case : List[Any] = model
__snake_case : Tuple = kwargs.get("""model_save_dir""" , _lowerCAmelCase )
__snake_case : Optional[Any] = kwargs.get("""latest_model_name""" , _lowerCAmelCase )
def __call__( self : List[Any] , **_lowerCAmelCase : Optional[int] ):
__snake_case : Any = {k: np.array(_lowerCAmelCase ) for k, v in kwargs.items()}
return self.model.run(_lowerCAmelCase , _lowerCAmelCase )
@staticmethod
def snake_case__ ( _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Any=None ):
if provider is None:
logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" )
__snake_case : Union[str, Any] = """CPUExecutionProvider"""
return ort.InferenceSession(_lowerCAmelCase , providers=[provider] , sess_options=_lowerCAmelCase )
def snake_case__ ( self : Dict , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : Union[str, Any] ):
__snake_case : Dict = file_name if file_name is not None else ONNX_WEIGHTS_NAME
__snake_case : List[Any] = self.model_save_dir.joinpath(self.latest_model_name )
__snake_case : Any = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase )
try:
shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
__snake_case : List[str] = self.model_save_dir.joinpath(_lowerCAmelCase )
if src_path.exists():
__snake_case : List[str] = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase )
try:
shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase )
except shutil.SameFileError:
pass
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[str, os.PathLike] , **_lowerCAmelCase : Union[str, Any] , ):
if os.path.isfile(_lowerCAmelCase ):
logger.error(f'''Provided path ({save_directory}) should be a directory, not a file''' )
return
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
# saving model weights/files
self._save_pretrained(_lowerCAmelCase , **_lowerCAmelCase )
@classmethod
def snake_case__ ( cls : Optional[Any] , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Optional[Union[bool, str, None]] = None , _lowerCAmelCase : Optional[Union[str, None]] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional["ort.SessionOptions"] = None , **_lowerCAmelCase : int , ):
__snake_case : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(_lowerCAmelCase ):
__snake_case : str = OnnxRuntimeModel.load_model(
os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase )
__snake_case : Dict = Path(_lowerCAmelCase )
# load model from hub
else:
# download model
__snake_case : List[Any] = hf_hub_download(
repo_id=_lowerCAmelCase , filename=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , )
__snake_case : int = Path(_lowerCAmelCase ).parent
__snake_case : Union[str, Any] = Path(_lowerCAmelCase ).name
__snake_case : str = OnnxRuntimeModel.load_model(_lowerCAmelCase , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase )
return cls(model=_lowerCAmelCase , **_lowerCAmelCase )
@classmethod
def snake_case__ ( cls : Optional[int] , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : int , ):
__snake_case : List[Any] = None
if len(str(_lowerCAmelCase ).split("""@""" ) ) == 2:
__snake_case , __snake_case : List[Any] = model_id.split("""@""" )
return cls._from_pretrained(
model_id=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , **_lowerCAmelCase , )
| 20 | import math
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * power_factor
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
'''simple docstring'''
if (
not isinstance(__SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | 1 |
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
lowercase_ = get_logger(__name__)
lowercase_ = Path(__file__).parent / "model_card_template.md"
lowercase_ = uuida().hex
lowercase_ = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES
lowercase_ = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES
lowercase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/"
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[Dict, str, None] = None ):
'''simple docstring'''
__snake_case : Dict = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}'''
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += F'''; torch/{_torch_version}'''
if is_flax_available():
ua += F'''; jax/{_jax_version}'''
ua += F'''; flax/{_flax_version}'''
if is_onnx_available():
ua += F'''; onnxruntime/{_onnxruntime_version}'''
# CI will set this value to True
if os.environ.get("""DIFFUSERS_IS_CI""" , """""" ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() )
elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
ua += "; " + user_agent
return ua
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[str] = None ):
'''simple docstring'''
if token is None:
__snake_case : Dict = HfFolder.get_token()
if organization is None:
__snake_case : str = whoami(__SCREAMING_SNAKE_CASE )["""name"""]
return F'''{username}/{model_id}'''
else:
return F'''{organization}/{model_id}'''
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
if not is_jinja_available():
raise ValueError(
"""Modelcard rendering is based on Jinja templates."""
""" Please make sure to have `jinja` installed before using `create_model_card`."""
""" To install it, please run `pip install Jinja2`.""" )
if hasattr(__SCREAMING_SNAKE_CASE , """local_rank""" ) and args.local_rank not in [-1, 0]:
return
__snake_case : Tuple = args.hub_token if hasattr(__SCREAMING_SNAKE_CASE , """hub_token""" ) else None
__snake_case : Tuple = get_full_repo_name(__SCREAMING_SNAKE_CASE , token=__SCREAMING_SNAKE_CASE )
__snake_case : List[Any] = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language="""en""" , license="""apache-2.0""" , library_name="""diffusers""" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__SCREAMING_SNAKE_CASE , model_name=__SCREAMING_SNAKE_CASE , repo_name=__SCREAMING_SNAKE_CASE , dataset_name=args.dataset_name if hasattr(__SCREAMING_SNAKE_CASE , """dataset_name""" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(__SCREAMING_SNAKE_CASE , """gradient_accumulation_steps""" ) else None
) , adam_betaa=args.adam_betaa if hasattr(__SCREAMING_SNAKE_CASE , """adam_beta1""" ) else None , adam_betaa=args.adam_betaa if hasattr(__SCREAMING_SNAKE_CASE , """adam_beta2""" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__SCREAMING_SNAKE_CASE , """adam_weight_decay""" ) else None , adam_epsilon=args.adam_epsilon if hasattr(__SCREAMING_SNAKE_CASE , """adam_epsilon""" ) else None , lr_scheduler=args.lr_scheduler if hasattr(__SCREAMING_SNAKE_CASE , """lr_scheduler""" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__SCREAMING_SNAKE_CASE , """lr_warmup_steps""" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__SCREAMING_SNAKE_CASE , """ema_inv_gamma""" ) else None , ema_power=args.ema_power if hasattr(__SCREAMING_SNAKE_CASE , """ema_power""" ) else None , ema_max_decay=args.ema_max_decay if hasattr(__SCREAMING_SNAKE_CASE , """ema_max_decay""" ) else None , mixed_precision=args.mixed_precision , )
__snake_case : Tuple = os.path.join(args.output_dir , """README.md""" )
model_card.save(__SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[str] , __SCREAMING_SNAKE_CASE : Optional[str] = None ):
'''simple docstring'''
if resolved_file is None or commit_hash is not None:
return commit_hash
__snake_case : Optional[int] = str(Path(__SCREAMING_SNAKE_CASE ).as_posix() )
__snake_case : Any = re.search(R"""snapshots/([^/]+)/""" , __SCREAMING_SNAKE_CASE )
if search is None:
return None
__snake_case : List[Any] = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(__SCREAMING_SNAKE_CASE ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
lowercase_ = os.path.expanduser(
os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface"))
)
lowercase_ = os.path.join(hf_cache_home, "diffusers")
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[str] = None ):
'''simple docstring'''
if new_cache_dir is None:
__snake_case : Any = DIFFUSERS_CACHE
if old_cache_dir is None:
__snake_case : Any = old_diffusers_cache
__snake_case : str = Path(__SCREAMING_SNAKE_CASE ).expanduser()
__snake_case : str = Path(__SCREAMING_SNAKE_CASE ).expanduser()
for old_blob_path in old_cache_dir.glob("""**/blobs/*""" ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
__snake_case : str = new_cache_dir / old_blob_path.relative_to(__SCREAMING_SNAKE_CASE )
new_blob_path.parent.mkdir(parents=__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE )
os.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
try:
os.symlink(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
except OSError:
logger.warning(
"""Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""" )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
lowercase_ = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt")
if not os.path.isfile(cache_version_file):
lowercase_ = 0
else:
with open(cache_version_file) as f:
try:
lowercase_ = int(f.read())
except ValueError:
lowercase_ = 0
if cache_version < 1:
lowercase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
"The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your "
"existing cached models. This is a one-time operation, you can interrupt it or run it "
"later by calling `diffusers.utils.hub_utils.move_cache()`."
)
try:
move_cache()
except Exception as e:
lowercase_ = "\n".join(traceback.format_tb(e.__traceback__))
logger.error(
F'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease '''
"file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole "
"message and we will do our best to help."
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, "w") as f:
f.write("1")
except Exception:
logger.warning(
F'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure '''
"the directory exists and can be written to."
)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ):
'''simple docstring'''
if variant is not None:
__snake_case : Optional[int] = weights_name.split(""".""" )
__snake_case : str = splits[:-1] + [variant] + splits[-1:]
__snake_case : str = """.""".join(__SCREAMING_SNAKE_CASE )
return weights_name
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , *,
__SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int]=None , ):
'''simple docstring'''
__snake_case : Dict = str(__SCREAMING_SNAKE_CASE )
if os.path.isfile(__SCREAMING_SNAKE_CASE ):
return pretrained_model_name_or_path
elif os.path.isdir(__SCREAMING_SNAKE_CASE ):
if os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ):
# Load from a PyTorch checkpoint
__snake_case : Optional[Any] = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ):
__snake_case : Dict = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return model_file
else:
raise EnvironmentError(
F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse("""0.20.0""" )
):
try:
__snake_case : List[Any] = hf_hub_download(
__SCREAMING_SNAKE_CASE , filename=_add_variant(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , cache_dir=__SCREAMING_SNAKE_CASE , force_download=__SCREAMING_SNAKE_CASE , proxies=__SCREAMING_SNAKE_CASE , resume_download=__SCREAMING_SNAKE_CASE , local_files_only=__SCREAMING_SNAKE_CASE , use_auth_token=__SCREAMING_SNAKE_CASE , user_agent=__SCREAMING_SNAKE_CASE , subfolder=__SCREAMING_SNAKE_CASE , revision=revision or commit_hash , )
warnings.warn(
F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , __SCREAMING_SNAKE_CASE , )
return model_file
except: # noqa: E722
warnings.warn(
F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}\' so that the correct variant file can be added.''' , __SCREAMING_SNAKE_CASE , )
try:
# 2. Load model file as usual
__snake_case : Optional[Any] = hf_hub_download(
__SCREAMING_SNAKE_CASE , filename=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , force_download=__SCREAMING_SNAKE_CASE , proxies=__SCREAMING_SNAKE_CASE , resume_download=__SCREAMING_SNAKE_CASE , local_files_only=__SCREAMING_SNAKE_CASE , use_auth_token=__SCREAMING_SNAKE_CASE , user_agent=__SCREAMING_SNAKE_CASE , subfolder=__SCREAMING_SNAKE_CASE , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier '''
"""listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a """
"""token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """
"""login`.""" )
except RevisionNotFoundError:
raise EnvironmentError(
F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for '''
"""this model name. Check the model page at """
F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' )
except EntryNotFoundError:
raise EnvironmentError(
F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' )
except HTTPError as err:
raise EnvironmentError(
F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' )
except ValueError:
raise EnvironmentError(
F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it'''
F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a'''
F''' directory containing a file named {weights_name} or'''
""" \nCheckout your internet connection or see how to run the library in"""
""" offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'.""" )
except EnvironmentError:
raise EnvironmentError(
F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from '''
"""'https://huggingface.co/models', make sure you don't have a local directory with the same name. """
F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory '''
F'''containing a file named {weights_name}''' )
| 20 | from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 20 | 1 |
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
"""kwargs, expected""" , [
({"""num_shards""": 0, """max_num_jobs""": 1}, []),
({"""num_shards""": 1_0, """max_num_jobs""": 1}, [range(1_0 )]),
({"""num_shards""": 1_0, """max_num_jobs""": 1_0}, [range(__SCREAMING_SNAKE_CASE , i + 1 ) for i in range(1_0 )]),
({"""num_shards""": 1, """max_num_jobs""": 1_0}, [range(1 )]),
({"""num_shards""": 1_0, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 1_0 )]),
({"""num_shards""": 3, """max_num_jobs""": 1_0}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
__snake_case : Dict = _distribute_shards(**__SCREAMING_SNAKE_CASE )
assert out == expected
@pytest.mark.parametrize(
"""gen_kwargs, max_num_jobs, expected""" , [
({"""foo""": 0}, 1_0, [{"""foo""": 0}]),
({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]),
({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]),
({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]),
({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
__snake_case : str = _split_gen_kwargs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert out == expected
@pytest.mark.parametrize(
"""gen_kwargs, expected""" , [
({"""foo""": 0}, 1),
({"""shards""": [0]}, 1),
({"""shards""": [0, 1, 2, 3]}, 4),
({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4),
({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4),
({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
if expected is RuntimeError:
with pytest.raises(__SCREAMING_SNAKE_CASE ):
_number_of_shards_in_gen_kwargs(__SCREAMING_SNAKE_CASE )
else:
__snake_case : Tuple = _number_of_shards_in_gen_kwargs(__SCREAMING_SNAKE_CASE )
assert out == expected
| 20 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {
"configuration_blenderbot_small": [
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotSmallConfig",
"BlenderbotSmallOnnxConfig",
],
"tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["BlenderbotSmallTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
"BlenderbotSmallPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFBlenderbotSmallForConditionalGeneration",
"TFBlenderbotSmallModel",
"TFBlenderbotSmallPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxBlenderbotSmallForConditionalGeneration",
"FlaxBlenderbotSmallModel",
"FlaxBlenderbotSmallPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
lowercase_ = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( enum.Enum ):
A : str = 0
A : Dict = 1
@add_end_docstrings(__UpperCamelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = "generated"
def __init__( self : Optional[int] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Dict ):
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == """tf"""
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def snake_case__ ( self : int , _lowerCAmelCase : Any=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Tuple=None , **_lowerCAmelCase : Dict , ):
__snake_case : Tuple = {}
if truncation is not None:
__snake_case : List[Any] = truncation
__snake_case : Any = generate_kwargs
__snake_case : Union[str, Any] = {}
if return_tensors is not None and return_type is None:
__snake_case : List[str] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
__snake_case : int = return_type
if clean_up_tokenization_spaces is not None:
__snake_case : List[Any] = clean_up_tokenization_spaces
if stop_sequence is not None:
__snake_case : Optional[Any] = self.tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
if len(_lowerCAmelCase ) > 1:
warnings.warn(
"""Stopping on a multiple token sequence is not yet supported on transformers. The first token of"""
""" the stop sequence will be used as the stop sequence string in the interim.""" )
__snake_case : Tuple = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ):
return True
def snake_case__ ( self : List[str] , *_lowerCAmelCase : str , _lowerCAmelCase : Optional[int] ):
__snake_case : Any = self.model.config.prefix if self.model.config.prefix is not None else """"""
if isinstance(args[0] , _lowerCAmelCase ):
if self.tokenizer.pad_token_id is None:
raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" )
__snake_case : Optional[int] = ([prefix + arg for arg in args[0]],)
__snake_case : List[Any] = True
elif isinstance(args[0] , _lowerCAmelCase ):
__snake_case : Tuple = (prefix + args[0],)
__snake_case : Tuple = False
else:
raise ValueError(
f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' )
__snake_case : Dict = self.tokenizer(*_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self : Union[str, Any] , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ):
__snake_case : Optional[Any] = super().__call__(*_lowerCAmelCase , **_lowerCAmelCase )
if (
isinstance(args[0] , _lowerCAmelCase )
and all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for el in args[0] )
and all(len(_lowerCAmelCase ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def snake_case__ ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any=TruncationStrategy.DO_NOT_TRUNCATE , **_lowerCAmelCase : Dict ):
__snake_case : str = self._parse_and_tokenize(_lowerCAmelCase , truncation=_lowerCAmelCase , **_lowerCAmelCase )
return inputs
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Optional[Any] ):
if self.framework == "pt":
__snake_case , __snake_case : Dict = model_inputs["""input_ids"""].shape
elif self.framework == "tf":
__snake_case , __snake_case : Union[str, Any] = tf.shape(model_inputs["""input_ids"""] ).numpy()
__snake_case : Optional[Any] = generate_kwargs.get("""min_length""" , self.model.config.min_length )
__snake_case : Optional[Any] = generate_kwargs.get("""max_length""" , self.model.config.max_length )
self.check_inputs(_lowerCAmelCase , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] )
__snake_case : Tuple = self.model.generate(**_lowerCAmelCase , **_lowerCAmelCase )
__snake_case : Dict = output_ids.shape[0]
if self.framework == "pt":
__snake_case : Union[str, Any] = output_ids.reshape(_lowerCAmelCase , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
__snake_case : Any = tf.reshape(_lowerCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : str=ReturnType.TEXT , _lowerCAmelCase : Dict=False ):
__snake_case : Union[str, Any] = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
__snake_case : Any = {f'''{self.return_name}_token_ids''': output_ids}
elif return_type == ReturnType.TEXT:
__snake_case : List[str] = {
f'''{self.return_name}_text''': self.tokenizer.decode(
_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , )
}
records.append(_lowerCAmelCase )
return records
@add_end_docstrings(__UpperCamelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : int = "summary"
def __call__( self : Optional[int] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Dict ):
return super().__call__(*_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ):
if max_length < min_length:
logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' )
if input_length < max_length:
logger.warning(
f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is '''
"""a summarization task, where outputs shorter than the input are typically wanted, you might """
f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' )
@add_end_docstrings(__UpperCamelCase )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Tuple = "translation"
def snake_case__ ( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ):
if input_length > 0.9 * max_length:
logger.warning(
f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider '''
"""increasing your max_length manually, e.g. translator('...', max_length=400)""" )
return True
def snake_case__ ( self : Union[str, Any] , *_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[Any]=None ):
if getattr(self.tokenizer , """_build_translation_inputs""" , _lowerCAmelCase ):
return self.tokenizer._build_translation_inputs(
*_lowerCAmelCase , return_tensors=self.framework , truncation=_lowerCAmelCase , src_lang=_lowerCAmelCase , tgt_lang=_lowerCAmelCase )
else:
return super()._parse_and_tokenize(*_lowerCAmelCase , truncation=_lowerCAmelCase )
def snake_case__ ( self : Dict , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Union[str, Any] ):
__snake_case , __snake_case , __snake_case : Optional[int] = super()._sanitize_parameters(**_lowerCAmelCase )
if src_lang is not None:
__snake_case : List[str] = src_lang
if tgt_lang is not None:
__snake_case : str = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
__snake_case : Optional[Any] = kwargs.get("""task""" , self.task )
__snake_case : List[Any] = task.split("""_""" )
if task and len(_lowerCAmelCase ) == 4:
# translation, XX, to YY
__snake_case : str = items[1]
__snake_case : str = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self : Dict , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Dict ):
return super().__call__(*_lowerCAmelCase , **_lowerCAmelCase )
| 20 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase_ = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["ViTFeatureExtractor"]
lowercase_ = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 20 | 1 |
import unittest
from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ):
A : List[Any] = XLNetTokenizer
A : Tuple = XLNetTokenizerFast
A : Any = True
A : Union[str, Any] = True
def snake_case__ ( self : Any ):
super().setUp()
# We have a SentencePiece fixture for testing
__snake_case : Optional[int] = XLNetTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase )
tokenizer.sanitize_special_tokens()
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : Tuple ):
__snake_case : Optional[Any] = """<s>"""
__snake_case : Tuple = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase )
def snake_case__ ( self : Dict ):
__snake_case : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<unk>""" )
self.assertEqual(vocab_keys[1] , """<s>""" )
self.assertEqual(vocab_keys[-1] , """<eod>""" )
self.assertEqual(len(_lowerCAmelCase ) , 10_06 )
def snake_case__ ( self : List[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_00 )
def snake_case__ ( self : int ):
__snake_case : Union[str, Any] = XLNetTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase )
__snake_case : Dict = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(_lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [2_85, 46, 10, 1_70, 3_82] )
__snake_case : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
_lowerCAmelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
__snake_case : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] )
__snake_case : Dict = tokenizer.convert_ids_to_tokens(_lowerCAmelCase )
self.assertListEqual(
_lowerCAmelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
def snake_case__ ( self : Dict ):
__snake_case : str = XLNetTokenizer(_lowerCAmelCase , do_lower_case=_lowerCAmelCase )
__snake_case : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
_lowerCAmelCase , [
SPIECE_UNDERLINE + """""",
"""i""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""se""",
""".""",
] , )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""▁he""", """ll""", """o"""] )
def snake_case__ ( self : List[str] ):
__snake_case : List[Any] = XLNetTokenizer(_lowerCAmelCase , do_lower_case=_lowerCAmelCase )
__snake_case : str = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
_lowerCAmelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""se""",
""".""",
] , )
@slow
def snake_case__ ( self : Optional[Any] ):
__snake_case : Tuple = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" )
__snake_case : Tuple = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase )
__snake_case : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase )
__snake_case : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase )
__snake_case : Optional[int] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase )
assert encoded_sentence == text + [4, 3]
assert encoded_pair == text + [4] + text_a + [4, 3]
@slow
def snake_case__ ( self : Optional[Any] ):
# fmt: off
__snake_case : Optional[int] = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowerCAmelCase , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
| 20 | from __future__ import annotations
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if (direction == 1 and array[indexa] > array[indexa]) or (
direction == 0 and array[indexa] < array[indexa]
):
__snake_case , __snake_case : str = array[indexa], array[indexa]
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Tuple = int(length / 2 )
for i in range(__SCREAMING_SNAKE_CASE , low + middle ):
comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if length > 1:
__snake_case : Optional[Any] = int(length / 2 )
bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 )
bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
lowercase_ = [int(item.strip()) for item in user_input.split(",")]
bitonic_sort(unsorted, 0, len(unsorted), 1)
print("\nSorted array in ascending order is: ", end="")
print(*unsorted, sep=", ")
bitonic_merge(unsorted, 0, len(unsorted), 0)
print("Sorted array in descending order is: ", end="")
print(*unsorted, sep=", ")
| 20 | 1 |
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
__snake_case : Any = 1
__snake_case : List[Any] = 1
while repunit:
__snake_case : List[str] = (1_0 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int = 1_0_0_0_0_0_0 ):
'''simple docstring'''
__snake_case : Dict = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(__SCREAMING_SNAKE_CASE ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(F'''{solution() = }''')
| 20 | import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ):
'''simple docstring'''
__snake_case : Optional[int] = {
"""7z""": (seven_zip_file, SevenZipExtractor),
"""bz2""": (bza_file, BzipaExtractor),
"""gzip""": (gz_file, GzipExtractor),
"""lz4""": (lza_file, LzaExtractor),
"""tar""": (tar_file, TarExtractor),
"""xz""": (xz_file, XzExtractor),
"""zip""": (zip_file, ZipExtractor),
"""zstd""": (zstd_file, ZstdExtractor),
}
__snake_case , __snake_case : Tuple = input_paths_and_base_extractors[compression_format]
if input_path is None:
__snake_case : Tuple = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE )
__snake_case : List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : List[str] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Optional[Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : int = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ):
'''simple docstring'''
__snake_case : Union[str, Any] = {
"""7z""": seven_zip_file,
"""bz2""": bza_file,
"""gzip""": gz_file,
"""lz4""": lza_file,
"""tar""": tar_file,
"""xz""": xz_file,
"""zip""": zip_file,
"""zstd""": zstd_file,
}
__snake_case : int = input_paths[compression_format]
if input_path is None:
__snake_case : int = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__SCREAMING_SNAKE_CASE )
__snake_case : Any = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE )
assert extractor_format is not None
__snake_case : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__snake_case : Union[str, Any] = file_path.read_text(encoding="""utf-8""" )
else:
__snake_case : Union[str, Any] = output_path.read_text(encoding="""utf-8""" )
__snake_case : Optional[Any] = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
import tarfile
__snake_case : List[str] = tmp_path / """data_dot_dot"""
directory.mkdir()
__snake_case : Optional[Any] = directory / """tar_file_with_dot_dot.tar"""
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) )
return path
@pytest.fixture
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
import tarfile
__snake_case : Dict = tmp_path / """data_sym_link"""
directory.mkdir()
__snake_case : Tuple = directory / """tar_file_with_sym_link.tar"""
os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE )
with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f:
f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
"""insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , )
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
__snake_case : Any = {
"""tar_file_with_dot_dot""": tar_file_with_dot_dot,
"""tar_file_with_sym_link""": tar_file_with_sym_link,
}
__snake_case : int = insecure_tar_files[insecure_tar_file]
__snake_case : Optional[int] = tmp_path / """extracted"""
TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
# We should have less false positives than zipfile.is_zipfile
# We do that by checking only the magic number
__snake_case : Optional[Any] = tmpdir / """not_a_zip_file"""
# From: https://github.com/python/cpython/pull/5053
__snake_case : List[str] = (
b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"""
b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"""
b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"""
b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"""
)
with not_a_zip_file.open("""wb""" ) as f:
f.write(__SCREAMING_SNAKE_CASE )
assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
| 20 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.