code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
lowercase_ = [ (10_00, "M"), (9_00, "CM"), (5_00, "D"), (4_00, "CD"), (1_00, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str ): '''simple docstring''' __snake_case : int = {"""I""": 1, """V""": 5, """X""": 1_0, """L""": 5_0, """C""": 1_0_0, """D""": 5_0_0, """M""": 1_0_0_0} __snake_case : Tuple = 0 __snake_case : List[Any] = 0 while place < len(__SCREAMING_SNAKE_CASE ): if (place + 1 < len(__SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : Optional[Any] = [] for arabic, roman in ROMAN: ((__snake_case) , (__snake_case)) : List[str] = divmod(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) result.append(roman * factor ) if number == 0: break return "".join(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
20
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } lowercase_ = { "junnyu/roformer_chinese_small": 15_36, "junnyu/roformer_chinese_base": 15_36, "junnyu/roformer_chinese_char_small": 5_12, "junnyu/roformer_chinese_char_base": 5_12, "junnyu/roformer_small_discriminator": 1_28, "junnyu/roformer_small_generator": 1_28, } lowercase_ = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = VOCAB_FILES_NAMES A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = PRETRAINED_INIT_CONFIGURATION A : List[str] = RoFormerTokenizer def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any="[UNK]" , _lowerCAmelCase : int="[SEP]" , _lowerCAmelCase : Optional[int]="[PAD]" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Dict , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) __snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case or pre_tok_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents ): __snake_case : Tuple = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) __snake_case : List[Any] = do_lower_case __snake_case : Optional[Any] = strip_accents __snake_case : List[str] = pre_tok_class(**_lowerCAmelCase ) __snake_case : Optional[Any] = do_lower_case def __getstate__( self : Optional[Any] ): __snake_case : Optional[int] = self.__dict__.copy() __snake_case : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : str , _lowerCAmelCase : Dict ): __snake_case : str = d __snake_case : int = self.__dict__["""_tokenizer"""].get_vocab() __snake_case : List[str] = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=None ): __snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def snake_case__ ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Tuple , ): __snake_case : Tuple = BertPreTokenizer() return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
20
1
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge lowercase_ = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] lowercase_ = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : Any = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , bootstrap_aggregation=__SCREAMING_SNAKE_CASE , rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , bootstrap_aggregation=__SCREAMING_SNAKE_CASE , rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : Any = """rougeLsum""" __snake_case : int = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE , rouge_keys=[k] )[k] __snake_case : List[Any] = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE , rouge_keys=[k] )[k] assert score > score_no_sep def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : Dict = ["""rouge1""", """rouge2""", """rougeL"""] __snake_case : Optional[Any] = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE , rouge_keys=__SCREAMING_SNAKE_CASE ) __snake_case : Tuple = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE , rouge_keys=__SCREAMING_SNAKE_CASE ) assert score_sep == score_no_sep def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : Union[str, Any] = [ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] __snake_case : int = [ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE ) == calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : List[Any] = [ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] __snake_case : str = [ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] __snake_case : Optional[Any] = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rouge_keys=["""rougeLsum"""] , newline_sep=__SCREAMING_SNAKE_CASE )["""rougeLsum"""] __snake_case : Union[str, Any] = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rouge_keys=["""rougeLsum"""] )["""rougeLsum"""] assert new_score > prev_score def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : int = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) __snake_case : Any = calculate_rouge_path(data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) ) assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : int = calculate_rouge_path( data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) , bootstrap_aggregation=__SCREAMING_SNAKE_CASE ) assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
20
from __future__ import annotations import math def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] __snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
1
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowercase_ = None lowercase_ = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowercase_ = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class SCREAMING_SNAKE_CASE__ : A : bool = True A : Optional[str] = None # Automatically constructed A : ClassVar[str] = "PIL.Image.Image" A : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) A : str = field(default="Image" , init=__UpperCamelCase , repr=__UpperCamelCase ) def __call__( self : Any ): return self.pa_type def snake_case__ ( self : List[Any] , _lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : str = np.array(_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {"path": value, "bytes": None} elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {"path": None, "bytes": value} elif isinstance(_lowerCAmelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_lowerCAmelCase ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def snake_case__ ( self : List[str] , _lowerCAmelCase : dict , _lowerCAmelCase : Dict=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: __snake_case : Tuple = {} __snake_case , __snake_case : str = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(_lowerCAmelCase ): __snake_case : str = PIL.Image.open(_lowerCAmelCase ) else: __snake_case : List[str] = path.split("""::""" )[-1] try: __snake_case : Dict = string_to_dict(_lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""] __snake_case : int = token_per_repo_id.get(_lowerCAmelCase ) except ValueError: __snake_case : List[Any] = None with xopen(_lowerCAmelCase , """rb""" , use_auth_token=_lowerCAmelCase ) as f: __snake_case : Union[str, Any] = BytesIO(f.read() ) __snake_case : Dict = PIL.Image.open(bytes_ ) else: __snake_case : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def snake_case__ ( self : Union[str, Any] ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): __snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() ) __snake_case : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) __snake_case : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: __snake_case : List[str] = storage.field("""bytes""" ) else: __snake_case : List[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: __snake_case : Optional[int] = storage.field("""path""" ) else: __snake_case : int = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) __snake_case : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __snake_case : Optional[Any] = pa.array( [encode_np_array(np.array(_lowerCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) __snake_case : Optional[int] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) __snake_case : List[str] = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_lowerCAmelCase , self.pa_type ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(_lowerCAmelCase : Tuple ): with xopen(_lowerCAmelCase , """rb""" ) as f: __snake_case : Optional[int] = f.read() return bytes_ __snake_case : Tuple = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __snake_case : Optional[Any] = pa.array( [os.path.basename(_lowerCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) __snake_case : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_lowerCAmelCase , self.pa_type ) def __lowerCAmelCase ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __snake_case : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ): '''simple docstring''' __snake_case : List[Any] = BytesIO() if image.format in list_image_compression_formats(): __snake_case : Union[str, Any] = image.format else: __snake_case : List[Any] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(__SCREAMING_SNAKE_CASE , format=__SCREAMING_SNAKE_CASE ) return buffer.getvalue() def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ): '''simple docstring''' if hasattr(__SCREAMING_SNAKE_CASE , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )} def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) __snake_case : List[Any] = array.dtype __snake_case : List[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER __snake_case : Dict = dtype.kind __snake_case : Union[str, Any] = dtype.itemsize __snake_case : Tuple = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __snake_case : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __snake_case : List[str] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __snake_case : int = dtype_byteorder + dtype_kind + str(__SCREAMING_SNAKE_CASE ) __snake_case : Any = np.dtype(__SCREAMING_SNAKE_CASE ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) __snake_case : Optional[int] = PIL.Image.fromarray(array.astype(__SCREAMING_SNAKE_CASE ) ) return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )} def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: __snake_case , __snake_case : Any = first_non_null_value(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): __snake_case : int = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs] elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ): __snake_case : List[str] = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs] else: return objs else: return objs
20
1
from __future__ import annotations import numpy as np def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' __snake_case , __snake_case : List[Any] = np.shape(__SCREAMING_SNAKE_CASE ) if rows != columns: __snake_case : Dict = ( """'table' has to be of square shaped array but got a """ F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = np.zeros((rows, columns) ) __snake_case : int = np.zeros((rows, columns) ) for i in range(__SCREAMING_SNAKE_CASE ): for j in range(__SCREAMING_SNAKE_CASE ): __snake_case : Dict = sum(lower[i][k] * upper[k][j] for k in range(__SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) __snake_case : Tuple = (table[i][j] - total) / upper[j][j] __snake_case : Optional[int] = 1 for j in range(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case : Any = sum(lower[i][k] * upper[k][j] for k in range(__SCREAMING_SNAKE_CASE ) ) __snake_case : Tuple = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
20
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ): __snake_case : Optional[Any] = {} __snake_case : int = {} if prompt is not None: __snake_case : Dict = prompt if generate_kwargs is not None: __snake_case : List[Any] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __snake_case : Optional[int] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) __snake_case : Any = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ): return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ): __snake_case : Optional[Any] = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) __snake_case : Tuple = self.model.config.model_type if model_type == "git": __snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids __snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids __snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": __snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: __snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __snake_case : int = None return model_inputs def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): __snake_case : List[Any] = None if generate_kwargs is None: __snake_case : Dict = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __snake_case : Dict = model_inputs.pop(self.model.main_input_name ) __snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ): __snake_case : Union[str, Any] = [] for output_ids in model_outputs: __snake_case : Union[str, Any] = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
20
1
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str ): '''simple docstring''' # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __snake_case : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = max(__SCREAMING_SNAKE_CASE ) __snake_case : Dict = min(__SCREAMING_SNAKE_CASE ) # create the counting array __snake_case : str = coll_max + 1 - coll_min __snake_case : Any = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , __SCREAMING_SNAKE_CASE ): __snake_case : Any = counting_arr[i] + counting_arr[i - 1] # create the output collection __snake_case : Union[str, Any] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , __SCREAMING_SNAKE_CASE ) ): __snake_case : Optional[Any] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return "".join([chr(__SCREAMING_SNAKE_CASE ) for i in counting_sort([ord(__SCREAMING_SNAKE_CASE ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" lowercase_ = input("Enter numbers separated by a comma:\n").strip() lowercase_ = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
20
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["YolosFeatureExtractor"] lowercase_ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int = 4_0_0_0_0_0_0 ): '''simple docstring''' __snake_case : int = [0, 1] __snake_case : List[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __snake_case : Tuple = 0 for j in range(len(__SCREAMING_SNAKE_CASE ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'''{solution() = }''')
20
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = "microsoft/speecht5_tts" A : List[Any] = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) A : str = "text_reader" A : Optional[Any] = SpeechTaProcessor A : Any = SpeechTaForTextToSpeech A : Optional[Any] = SpeechTaHifiGan A : str = ["text"] A : Union[str, Any] = ["audio"] def snake_case__ ( self : List[Any] ): if self.post_processor is None: __snake_case : Tuple = """microsoft/speecht5_hifigan""" super().setup() def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ): __snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) __snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) __snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ): with torch.no_grad(): return self.model.generate_speech(**_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): with torch.no_grad(): return self.post_processor(_lowerCAmelCase ).cpu().detach()
20
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = { "configuration_maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig"], "configuration_maskformer_swin": ["MaskFormerSwinConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["MaskFormerFeatureExtractor"] lowercase_ = ["MaskFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "MaskFormerForInstanceSegmentation", "MaskFormerModel", "MaskFormerPreTrainedModel", ] lowercase_ = [ "MaskFormerSwinBackbone", "MaskFormerSwinModel", "MaskFormerSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
20
import math def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if ( not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if ( not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
20
1
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : list[str] ): '''simple docstring''' __snake_case : Union[str, Any] = """""" for word_or_phrase in separated: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise Exception("""join() accepts only strings to be joined""" ) joined += word_or_phrase + separator return joined.strip(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": from doctest import testmod testmod()
20
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
1
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : Union[str, Any] , _lowerCAmelCase : Optional[Any]=-1 ): # in NER datasets, the last column is usually reserved for NER label __snake_case : Tuple = label_idx def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[Split, str] ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : Optional[int] = mode.value __snake_case : Optional[Any] = os.path.join(_lowerCAmelCase , f'''{mode}.txt''' ) __snake_case : int = 1 __snake_case : Optional[int] = [] with open(_lowerCAmelCase , encoding="""utf-8""" ) as f: __snake_case : Union[str, Any] = [] __snake_case : int = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=_lowerCAmelCase , labels=_lowerCAmelCase ) ) guid_index += 1 __snake_case : Optional[int] = [] __snake_case : Dict = [] else: __snake_case : Any = line.split(""" """ ) words.append(splits[0] ) if len(_lowerCAmelCase ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=_lowerCAmelCase , labels=_lowerCAmelCase ) ) return examples def snake_case__ ( self : int , _lowerCAmelCase : TextIO , _lowerCAmelCase : TextIO , _lowerCAmelCase : List ): __snake_case : List[str] = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(_lowerCAmelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: __snake_case : List[Any] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(_lowerCAmelCase ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def snake_case__ ( self : int , _lowerCAmelCase : str ): if path: with open(_lowerCAmelCase , """r""" ) as f: __snake_case : Dict = f.read().splitlines() if "O" not in labels: __snake_case : str = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : List[Any] ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def snake_case__ ( self : List[str] , _lowerCAmelCase : str ): if path: with open(_lowerCAmelCase , """r""" ) as f: __snake_case : Tuple = f.read().splitlines() if "O" not in labels: __snake_case : int = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def snake_case__ ( self : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[Split, str] ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : Optional[int] = mode.value __snake_case : Any = os.path.join(_lowerCAmelCase , f'''{mode}.txt''' ) __snake_case : List[Any] = 1 __snake_case : Any = [] with open(_lowerCAmelCase , encoding="""utf-8""" ) as f: for sentence in parse_incr(_lowerCAmelCase ): __snake_case : int = [] __snake_case : str = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=_lowerCAmelCase , labels=_lowerCAmelCase ) ) guid_index += 1 return examples def snake_case__ ( self : Any , _lowerCAmelCase : TextIO , _lowerCAmelCase : TextIO , _lowerCAmelCase : List ): __snake_case : List[Any] = 0 for sentence in parse_incr(_lowerCAmelCase ): __snake_case : str = preds_list[example_id] __snake_case : List[Any] = """""" for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(_lowerCAmelCase ) example_id += 1 def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str ): if path: with open(_lowerCAmelCase , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase_ = logging.getLogger(__name__) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Dict=3 , __SCREAMING_SNAKE_CASE : List[str]=1_6 , __SCREAMING_SNAKE_CASE : int = 1_0 , __SCREAMING_SNAKE_CASE : int = 2 ): '''simple docstring''' def get_dataset(__SCREAMING_SNAKE_CASE : Tuple ): __snake_case : Optional[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__SCREAMING_SNAKE_CASE , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __snake_case : Optional[int] = get_dataset(__SCREAMING_SNAKE_CASE ) __snake_case : int = get_dataset(__SCREAMING_SNAKE_CASE ) __snake_case : str = DataLoader(__SCREAMING_SNAKE_CASE , shuffle=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , num_workers=4 ) __snake_case : Optional[int] = DataLoader(__SCREAMING_SNAKE_CASE , shuffle=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , num_workers=4 ) return (train_dataloader, valid_dataloader) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' __snake_case : Union[str, Any] = [] for epoch in range(__SCREAMING_SNAKE_CASE ): # Train quickly model.train() for batch in dataloader: __snake_case , __snake_case : Optional[Any] = batch __snake_case : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) __snake_case : str = torch.nn.functional.mse_loss(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) accelerator.backward(__SCREAMING_SNAKE_CASE ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Optional[int] ): super().__init__() __snake_case : int = nn.Parameter(torch.randn(1 ) ) __snake_case : str = nn.Parameter(torch.randn(1 ) ) def snake_case__ ( self : List[Any] , _lowerCAmelCase : Optional[Any] ): return x * self.a + self.b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __snake_case : Tuple = DummyModel() __snake_case : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __snake_case , __snake_case : Optional[int] = dummy_dataloaders() __snake_case : Optional[int] = ProjectConfiguration(total_limit=1 , project_dir=_lowerCAmelCase , automatic_checkpoint_naming=_lowerCAmelCase ) # Train baseline __snake_case : Any = Accelerator(project_config=_lowerCAmelCase ) __snake_case , __snake_case , __snake_case , __snake_case : Dict = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def snake_case__ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __snake_case : Dict = DummyModel() __snake_case : Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __snake_case , __snake_case : List[Any] = dummy_dataloaders() # Train baseline __snake_case : List[str] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save initial __snake_case : List[str] = os.path.join(_lowerCAmelCase , """initial""" ) accelerator.save_state(_lowerCAmelCase ) ((__snake_case) , (__snake_case)) : Optional[Any] = model.a.item(), model.b.item() __snake_case : Optional[int] = optimizer.state_dict() __snake_case : List[Any] = train(3 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((__snake_case) , (__snake_case)) : int = model.a.item(), model.b.item() __snake_case : int = optimizer.state_dict() # Train partially set_seed(42 ) __snake_case : List[str] = DummyModel() __snake_case : Tuple = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __snake_case , __snake_case : Union[str, Any] = dummy_dataloaders() __snake_case : Dict = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) accelerator.load_state(_lowerCAmelCase ) ((__snake_case) , (__snake_case)) : int = model.a.item(), model.b.item() __snake_case : Optional[Any] = optimizer.state_dict() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Optional[int] = train(2 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save everything __snake_case : Optional[int] = os.path.join(_lowerCAmelCase , """checkpoint""" ) accelerator.save_state(_lowerCAmelCase ) # Load everything back in and make sure all states work accelerator.load_state(_lowerCAmelCase ) test_rands += train(1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((__snake_case) , (__snake_case)) : Optional[Any] = model.a.item(), model.b.item() __snake_case : Dict = optimizer.state_dict() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : int ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __snake_case : Optional[Any] = DummyModel() __snake_case : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __snake_case , __snake_case : str = dummy_dataloaders() __snake_case : Dict = ProjectConfiguration(automatic_checkpoint_naming=_lowerCAmelCase ) # Train baseline __snake_case : Dict = Accelerator(project_dir=_lowerCAmelCase , project_config=_lowerCAmelCase ) __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save initial accelerator.save_state() ((__snake_case) , (__snake_case)) : Any = model.a.item(), model.b.item() __snake_case : Optional[Any] = optimizer.state_dict() __snake_case : Optional[Any] = train(3 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((__snake_case) , (__snake_case)) : List[str] = model.a.item(), model.b.item() __snake_case : List[Any] = optimizer.state_dict() # Train partially set_seed(42 ) __snake_case : Any = DummyModel() __snake_case : List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __snake_case , __snake_case : List[str] = dummy_dataloaders() __snake_case : Optional[Any] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_lowerCAmelCase ) __snake_case : Tuple = Accelerator(project_dir=_lowerCAmelCase , project_config=_lowerCAmelCase ) __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) accelerator.load_state(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) ((__snake_case) , (__snake_case)) : Dict = model.a.item(), model.b.item() __snake_case : Tuple = optimizer.state_dict() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : int = train(2 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((__snake_case) , (__snake_case)) : Union[str, Any] = model.a.item(), model.b.item() __snake_case : Tuple = optimizer.state_dict() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : str ): __snake_case : Tuple = torch.tensor([1, 2, 3] ) __snake_case : Optional[Any] = torch.tensor([2, 3, 4] ) __snake_case : Optional[int] = DummyModel() __snake_case : Optional[int] = torch.optim.Adam(net.parameters() ) __snake_case : int = Accelerator() with self.assertRaises(_lowerCAmelCase ) as ve: accelerator.register_for_checkpointing(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case : int = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def snake_case__ ( self : str ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __snake_case : Tuple = DummyModel() __snake_case : List[str] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __snake_case : str = torch.optim.lr_scheduler.StepLR(_lowerCAmelCase , step_size=1 , gamma=0.99 ) __snake_case , __snake_case : str = dummy_dataloaders() __snake_case : List[str] = ProjectConfiguration(automatic_checkpoint_naming=_lowerCAmelCase ) # Train baseline __snake_case : Optional[Any] = Accelerator(project_dir=_lowerCAmelCase , project_config=_lowerCAmelCase ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : int = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save initial accelerator.save_state() __snake_case : List[Any] = scheduler.state_dict() train(3 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.assertNotEqual(_lowerCAmelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(_lowerCAmelCase , scheduler.state_dict() ) def snake_case__ ( self : str ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __snake_case : str = DummyModel() __snake_case : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=_lowerCAmelCase , total_limit=2 ) # Train baseline __snake_case : Any = Accelerator(project_dir=_lowerCAmelCase , project_config=_lowerCAmelCase ) __snake_case : str = accelerator.prepare(_lowerCAmelCase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def snake_case__ ( self : Optional[Any] ): __snake_case : Optional[Any] = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_lowerCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = "/tmp/accelerate/state_checkpointing" lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters(), lr=1E-3) lowercase_ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase_ , lowercase_ = dummy_dataloaders() lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase_ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase_ , lowercase_ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase_ = group["params"][0].device break assert param_device.type == accelerator.device.type lowercase_ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowercase_ = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowercase_ = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["ViTFeatureExtractor"] lowercase_ = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : int ): __snake_case : int = tempfile.mkdtemp() # fmt: off __snake_case : Any = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __snake_case : Any = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __snake_case : List[str] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __snake_case : str = {"""unk_token""": """<unk>"""} __snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) __snake_case : Union[str, Any] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } __snake_case : Union[str, Any] = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Tuple , **_lowerCAmelCase : Optional[int] ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **_lowerCAmelCase ) def snake_case__ ( self : Optional[int] , **_lowerCAmelCase : Optional[Any] ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **_lowerCAmelCase ) def snake_case__ ( self : Any , **_lowerCAmelCase : int ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Any ): shutil.rmtree(self.tmpdirname ) def snake_case__ ( self : List[Any] ): __snake_case : Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __snake_case : int = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case__ ( self : str ): __snake_case : Any = self.get_tokenizer() __snake_case : Any = self.get_rust_tokenizer() __snake_case : Union[str, Any] = self.get_image_processor() __snake_case : List[Any] = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) __snake_case : Any = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCAmelCase ) __snake_case : str = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) __snake_case : int = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCAmelCase ) def snake_case__ ( self : List[str] ): __snake_case : Dict = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __snake_case : List[str] = self.get_image_processor(do_normalize=_lowerCAmelCase ) __snake_case : List[str] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowerCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] ): __snake_case : Tuple = self.get_image_processor() __snake_case : List[Any] = self.get_tokenizer() __snake_case : Tuple = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __snake_case : Union[str, Any] = self.prepare_image_inputs() __snake_case : List[str] = image_processor(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Dict = processor(images=_lowerCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self : Optional[Any] ): __snake_case : Any = self.get_image_processor() __snake_case : List[str] = self.get_tokenizer() __snake_case : List[Any] = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __snake_case : Optional[Any] = """lower newer""" __snake_case : Dict = processor(text=_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def snake_case__ ( self : Any ): __snake_case : Optional[Any] = self.get_image_processor() __snake_case : Tuple = self.get_tokenizer() __snake_case : Tuple = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __snake_case : List[str] = """lower newer""" __snake_case : int = self.prepare_image_inputs() __snake_case : List[str] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def snake_case__ ( self : Any ): __snake_case : str = """google/owlvit-base-patch32""" __snake_case : List[str] = OwlViTProcessor.from_pretrained(_lowerCAmelCase ) __snake_case : Any = ["""cat""", """nasa badge"""] __snake_case : Optional[int] = processor(text=_lowerCAmelCase ) __snake_case : int = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def snake_case__ ( self : Dict ): __snake_case : List[str] = """google/owlvit-base-patch32""" __snake_case : List[Any] = OwlViTProcessor.from_pretrained(_lowerCAmelCase ) __snake_case : Any = [["""cat""", """nasa badge"""], ["""person"""]] __snake_case : Optional[Any] = processor(text=_lowerCAmelCase ) __snake_case : Union[str, Any] = 16 __snake_case : Dict = len(_lowerCAmelCase ) __snake_case : Optional[Any] = max([len(_lowerCAmelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def snake_case__ ( self : Optional[int] ): __snake_case : int = """google/owlvit-base-patch32""" __snake_case : Union[str, Any] = OwlViTProcessor.from_pretrained(_lowerCAmelCase ) __snake_case : int = ["""cat""", """nasa badge"""] __snake_case : Any = processor(text=_lowerCAmelCase ) __snake_case : Optional[Any] = 16 __snake_case : Any = inputs["""input_ids"""] __snake_case : str = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def snake_case__ ( self : List[Any] ): __snake_case : str = self.get_image_processor() __snake_case : Dict = self.get_tokenizer() __snake_case : str = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __snake_case : List[Any] = self.prepare_image_inputs() __snake_case : int = self.prepare_image_inputs() __snake_case : List[str] = processor(images=_lowerCAmelCase , query_images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def snake_case__ ( self : Any ): __snake_case : Optional[Any] = self.get_image_processor() __snake_case : Any = self.get_tokenizer() __snake_case : Dict = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __snake_case : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case : Any = processor.batch_decode(_lowerCAmelCase ) __snake_case : str = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
20
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __snake_case , __snake_case : str = array[indexa], array[indexa] def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Tuple = int(length / 2 ) for i in range(__SCREAMING_SNAKE_CASE , low + middle ): comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Optional[Any] = int(length / 2 ) bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 ) bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
20
1
from math import sqrt def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" __snake_case : Dict = True # 0 and 1 are none primes. if number <= 1: __snake_case : Optional[int] = False for divisor in range(2 , int(round(sqrt(__SCREAMING_SNAKE_CASE ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __snake_case : Dict = False break # precondition assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'status' must been from type bool" return status def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __snake_case : Union[str, Any] = list(range(2 , n + 1 ) ) __snake_case : Union[str, Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(__SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(__SCREAMING_SNAKE_CASE ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __snake_case : List[str] = 0 # filters actual prime numbers. __snake_case : Dict = [x for x in begin_list if x != 0] # precondition assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" __snake_case : List[str] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(__SCREAMING_SNAKE_CASE ): ans.append(__SCREAMING_SNAKE_CASE ) # precondition assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and number >= 0, "'number' must been an int and >= 0" __snake_case : Dict = [] # this list will be returns of the function. # potential prime number factors. __snake_case : Any = 2 __snake_case : Any = number if number == 0 or number == 1: ans.append(__SCREAMING_SNAKE_CASE ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__SCREAMING_SNAKE_CASE ): while quotient != 1: if is_prime(__SCREAMING_SNAKE_CASE ) and (quotient % factor == 0): ans.append(__SCREAMING_SNAKE_CASE ) quotient /= factor else: factor += 1 else: ans.append(__SCREAMING_SNAKE_CASE ) # precondition assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" __snake_case : Optional[int] = 0 # prime factorization of 'number' __snake_case : List[Any] = prime_factorization(__SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = max(__SCREAMING_SNAKE_CASE ) # precondition assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" __snake_case : Optional[Any] = 0 # prime factorization of 'number' __snake_case : Optional[int] = prime_factorization(__SCREAMING_SNAKE_CASE ) __snake_case : List[str] = min(__SCREAMING_SNAKE_CASE ) # precondition assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 == 0 , __SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 == 0 def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 != 0 , __SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 != 0 def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' assert ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (number > 2) and is_even(__SCREAMING_SNAKE_CASE ) ), "'number' must been an int, even and > 2" __snake_case : Any = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __snake_case : List[Any] = get_prime_numbers(__SCREAMING_SNAKE_CASE ) __snake_case : Dict = len(__SCREAMING_SNAKE_CASE ) # run variable for while-loops. __snake_case : Tuple = 0 __snake_case : Optional[int] = None # exit variable. for break up the loops __snake_case : Dict = True while i < len_pn and loop: __snake_case : int = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __snake_case : Dict = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (len(__SCREAMING_SNAKE_CASE ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' assert ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __snake_case : str = 0 while numbera != 0: __snake_case : Optional[int] = numbera % numbera __snake_case : int = numbera __snake_case : List[str] = rest # precondition assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' assert ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __snake_case : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __snake_case : List[Any] = prime_factorization(__SCREAMING_SNAKE_CASE ) __snake_case : Union[str, Any] = prime_factorization(__SCREAMING_SNAKE_CASE ) elif numbera == 1 or numbera == 1: __snake_case : Union[str, Any] = [] __snake_case : Union[str, Any] = [] __snake_case : Union[str, Any] = max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : Any = 0 __snake_case : str = 0 __snake_case : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __snake_case : str = prime_fac_a.count(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = prime_fac_a.count(__SCREAMING_SNAKE_CASE ) for _ in range(max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ): ans *= n else: __snake_case : Optional[int] = prime_fac_a.count(__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ): ans *= n done.append(__SCREAMING_SNAKE_CASE ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __snake_case : str = prime_fac_a.count(__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ): ans *= n done.append(__SCREAMING_SNAKE_CASE ) # precondition assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n >= 0), "'number' must been a positive int" __snake_case : Optional[Any] = 0 __snake_case : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__SCREAMING_SNAKE_CASE ): ans += 1 # precondition assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and is_prime( __SCREAMING_SNAKE_CASE ), "'ans' must been a prime number and from type int" return ans def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' assert ( is_prime(__SCREAMING_SNAKE_CASE ) and is_prime(__SCREAMING_SNAKE_CASE ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __snake_case : str = p_number_a + 1 # jump to the next number __snake_case : int = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__SCREAMING_SNAKE_CASE ): number += 1 while number < p_number_a: ans.append(__SCREAMING_SNAKE_CASE ) number += 1 # fetch the next prime number. while not is_prime(__SCREAMING_SNAKE_CASE ): number += 1 # precondition assert ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and ans[0] != p_number_a and ans[len(__SCREAMING_SNAKE_CASE ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n >= 1), "'n' must been int and >= 1" __snake_case : List[str] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(__SCREAMING_SNAKE_CASE ) # precondition assert ans[0] == 1 and ans[len(__SCREAMING_SNAKE_CASE ) - 1] == n, "Error in function getDivisiors(...)" return ans def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and ( number > 1 ), "'number' must been an int and >= 1" __snake_case : List[Any] = get_divisors(__SCREAMING_SNAKE_CASE ) # precondition assert ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (divisors[0] == 1) and (divisors[len(__SCREAMING_SNAKE_CASE ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' assert ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __snake_case : int = gcd(abs(__SCREAMING_SNAKE_CASE ) , abs(__SCREAMING_SNAKE_CASE ) ) # precondition assert ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str ): '''simple docstring''' assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been a int and >= 0" __snake_case : Tuple = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been an int and >= 0" __snake_case : Tuple = 0 __snake_case : int = 1 __snake_case : Tuple = 1 # this will be return for _ in range(n - 1 ): __snake_case : Any = ans ans += fiba __snake_case : Dict = tmp return ans
20
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' __snake_case : Optional[int] = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } __snake_case , __snake_case : Tuple = input_paths_and_base_extractors[compression_format] if input_path is None: __snake_case : Tuple = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__SCREAMING_SNAKE_CASE ) assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE ) __snake_case : List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case : List[str] = file_path.read_text(encoding="""utf-8""" ) else: __snake_case : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) __snake_case : int = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' __snake_case : Union[str, Any] = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } __snake_case : int = input_paths[compression_format] if input_path is None: __snake_case : int = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__SCREAMING_SNAKE_CASE ) __snake_case : Any = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE ) assert extractor_format is not None __snake_case : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case : Union[str, Any] = file_path.read_text(encoding="""utf-8""" ) else: __snake_case : Union[str, Any] = output_path.read_text(encoding="""utf-8""" ) __snake_case : Optional[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' import tarfile __snake_case : List[str] = tmp_path / """data_dot_dot""" directory.mkdir() __snake_case : Optional[Any] = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' import tarfile __snake_case : Dict = tmp_path / """data_sym_link""" directory.mkdir() __snake_case : Tuple = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE ) with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' __snake_case : Any = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } __snake_case : int = insecure_tar_files[insecure_tar_file] __snake_case : Optional[int] = tmp_path / """extracted""" TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __snake_case : Optional[Any] = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 __snake_case : List[str] = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(__SCREAMING_SNAKE_CASE ) assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
20
1
from collections.abc import Sequence def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Sequence[float] , __SCREAMING_SNAKE_CASE : bool = False ): '''simple docstring''' if not arr: return 0 __snake_case : Dict = 0 if allow_empty_subarrays else float("""-inf""" ) __snake_case : Any = 0.0 for num in arr: __snake_case : Tuple = max(0 if allow_empty_subarrays else num , curr_sum + num ) __snake_case : Union[str, Any] = max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() lowercase_ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'''{max_subarray_sum(nums) = }''')
20
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : Any ): __snake_case : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __snake_case : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __snake_case : List[str] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __snake_case : str = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case : Any = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) # load decoder from hub __snake_case : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Tuple ): __snake_case : int = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , **_lowerCAmelCase : Optional[int] ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Dict , **_lowerCAmelCase : Tuple ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase ) def snake_case__ ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def snake_case__ ( self : Union[str, Any] ): __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : Tuple = self.get_feature_extractor() __snake_case : Dict = self.get_decoder() __snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) __snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : Tuple = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def snake_case__ ( self : int ): __snake_case : Tuple = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(_lowerCAmelCase , """include""" ): WavaVecaProcessorWithLM( tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def snake_case__ ( self : Dict ): __snake_case : int = self.get_feature_extractor() __snake_case : str = self.get_tokenizer() __snake_case : Dict = self.get_decoder() __snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : List[Any] = floats_list((3, 10_00) ) __snake_case : Optional[Any] = feature_extractor(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Tuple = processor(_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self : Optional[int] ): __snake_case : Any = self.get_feature_extractor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Optional[int] = """This is a test string""" __snake_case : Union[str, Any] = processor(text=_lowerCAmelCase ) __snake_case : Dict = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case__ ( self : List[str] , _lowerCAmelCase : List[Any]=(2, 10, 16) , _lowerCAmelCase : str=77 ): np.random.seed(_lowerCAmelCase ) return np.random.rand(*_lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : List[str] = self.get_feature_extractor() __snake_case : List[str] = self.get_tokenizer() __snake_case : List[str] = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case : int = processor.decode(_lowerCAmelCase ) __snake_case : Optional[int] = decoder.decode_beams(_lowerCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] ): __snake_case : int = self.get_feature_extractor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : int = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case : Tuple = processor.batch_decode(_lowerCAmelCase ) else: with get_context(_lowerCAmelCase ).Pool() as pool: __snake_case : int = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : int = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as p: __snake_case : Tuple = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase ) __snake_case , __snake_case , __snake_case : List[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCAmelCase , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score ) self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score ) def snake_case__ ( self : Optional[int] ): __snake_case : Optional[Any] = self.get_feature_extractor() __snake_case : int = self.get_tokenizer() __snake_case : str = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : int = self._get_dummy_logits() __snake_case : List[str] = 15 __snake_case : Optional[Any] = -20.0 __snake_case : Tuple = -4.0 __snake_case : List[Any] = processor.batch_decode( _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) __snake_case : List[str] = decoded_processor_out.text __snake_case : str = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as pool: __snake_case : Dict = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) __snake_case : int = [d[0][0] for d in decoded_decoder_out] __snake_case : List[Any] = [d[0][2] for d in decoded_decoder_out] __snake_case : List[Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1e-3 ) ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1e-3 ) ) def snake_case__ ( self : Any ): __snake_case : List[Any] = self.get_feature_extractor() __snake_case : Any = self.get_tokenizer() __snake_case : Union[str, Any] = self.get_decoder() __snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Any = self._get_dummy_logits() __snake_case : Any = 2.0 __snake_case : int = 5.0 __snake_case : Optional[int] = -20.0 __snake_case : Optional[int] = True __snake_case : Any = processor.batch_decode( _lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) __snake_case : str = decoded_processor_out.text __snake_case : int = list(_lowerCAmelCase ) decoder.reset_params( alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) with get_context("""fork""" ).Pool() as pool: __snake_case : Tuple = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , ) __snake_case : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase ) __snake_case : List[str] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] __snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __snake_case : Union[str, Any] = os.listdir(_lowerCAmelCase ) __snake_case : List[str] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase ) __snake_case : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __snake_case : List[str] = os.listdir(_lowerCAmelCase ) __snake_case : List[Any] = os.listdir(_lowerCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Optional[int] = floats_list((3, 10_00) ) __snake_case : Union[str, Any] = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Union[str, Any] = processor_auto(_lowerCAmelCase , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case : Dict = self._get_dummy_logits() __snake_case : List[Any] = processor_wavaveca.batch_decode(_lowerCAmelCase ) __snake_case : List[Any] = processor_auto.batch_decode(_lowerCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def snake_case__ ( self : str ): __snake_case : int = self.get_feature_extractor() __snake_case : List[str] = self.get_tokenizer() __snake_case : Optional[Any] = self.get_decoder() __snake_case : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def snake_case__ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): __snake_case : Union[str, Any] = [d[key] for d in offsets] return retrieved_list def snake_case__ ( self : Dict ): __snake_case : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : List[str] = self._get_dummy_logits()[0] __snake_case : str = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def snake_case__ ( self : List[str] ): __snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Optional[int] = self._get_dummy_logits() __snake_case : int = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def snake_case__ ( self : Optional[Any] ): import torch __snake_case : Optional[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase ) __snake_case : Any = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) __snake_case : List[Any] = iter(_lowerCAmelCase ) __snake_case : Optional[int] = next(_lowerCAmelCase ) __snake_case : str = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __snake_case : str = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __snake_case : Dict = model(_lowerCAmelCase ).logits.cpu().numpy() __snake_case : Any = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase ) __snake_case : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case : Dict = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __snake_case : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase ) self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text ) # output times __snake_case : Dict = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) ) __snake_case : Optional[Any] = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) ) # fmt: off __snake_case : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __snake_case : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
20
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowercase_ = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ): '''simple docstring''' __snake_case , __snake_case : str = create_model( """HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : Union[str, Any] = {} __snake_case : List[Any] = R""".*sequential.(\d+).*""" __snake_case : Union[str, Any] = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # replace sequential layers with list __snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) __snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' ) elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __snake_case : List[Any] = 1 if projecton_layer == 0 else 2 __snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value __snake_case : Optional[int] = value __snake_case : Any = mixed_qkv.size(0 ) // 3 __snake_case : List[Any] = mixed_qkv[:qkv_dim] __snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :] __snake_case : Any = query_layer __snake_case : Dict = key_layer __snake_case : Optional[Any] = value_layer else: __snake_case : List[str] = value return model_state_dict def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ): '''simple docstring''' __snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE ) clap_model.eval() __snake_case : Tuple = clap_model.state_dict() __snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = ClapConfig() __snake_case : Tuple = enable_fusion __snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE ) # ignore the spectrogram embedding layer model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") lowercase_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
20
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = "▁" lowercase_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} lowercase_ = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } lowercase_ = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } lowercase_ = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } lowercase_ = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[str] = ["input_ids"] A : Tuple = VOCAB_FILES_NAMES A : List[Any] = PRETRAINED_INIT_CONFIGURATION A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A : Optional[Any] = RESOURCE_FILES_NAMES def __init__( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]="utf8" , _lowerCAmelCase : Optional[Any]="[UNK]" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : List[Any]="[MASK]" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , vocab_file=_lowerCAmelCase , encoding=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __snake_case : List[Any] = do_lower_case __snake_case : Any = sentencepiece_model_ckpt __snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __snake_case : int = self.load_vocab(filepath=_lowerCAmelCase ) else: __snake_case : Tuple = {self.sp_model.id_to_piece(_lowerCAmelCase ): id for id in range(self.sp_model.get_piece_size() )} __snake_case : str = {v: k for k, v in self.vocab.items()} def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[Any] ): if text is None: return None __snake_case : List[Any] = self.tokenize(_lowerCAmelCase ) __snake_case , __snake_case : Optional[Any] = """""", [] for i, ch in enumerate(_lowerCAmelCase ): if ch in self.SP_CHAR_MAPPING: __snake_case : Any = self.SP_CHAR_MAPPING.get(_lowerCAmelCase ) else: __snake_case : Dict = unicodedata.normalize("""NFKC""" , _lowerCAmelCase ) if self.is_whitespace(_lowerCAmelCase ): continue normalized_text += ch char_mapping.extend([i] * len(_lowerCAmelCase ) ) __snake_case , __snake_case , __snake_case : str = normalized_text, [], 0 if self.do_lower_case: __snake_case : int = text.lower() for token in split_tokens: if token[:1] == "▁": __snake_case : int = token[1:] __snake_case : Optional[int] = text[offset:].index(_lowerCAmelCase ) + offset __snake_case : int = start + len(_lowerCAmelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __snake_case : str = end return token_mapping @property def snake_case__ ( self : Tuple ): return len(self.vocab ) def snake_case__ ( self : Dict ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : int ): __snake_case : str = self.__dict__.copy() __snake_case : Union[str, Any] = None return state def __setstate__( self : Optional[Any] , _lowerCAmelCase : List[str] ): __snake_case : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __snake_case : Optional[Any] = {} __snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] ): return "".join((self.SP_CHAR_MAPPING.get(_lowerCAmelCase , _lowerCAmelCase ) for c in text) ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[int]=0.1 ): if self.sp_model_kwargs.get("""enable_sampling""" ) is True: __snake_case : List[str] = True if self.sp_model_kwargs.get("""alpha""" ) is not None: __snake_case : Dict = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: __snake_case : List[Any] = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: __snake_case : str = self.sp_model.EncodeAsPieces(_lowerCAmelCase ) else: __snake_case : Tuple = self.sp_model.SampleEncodeAsPieces(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case : Union[str, Any] = [] for pi, piece in enumerate(_lowerCAmelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_lowerCAmelCase ) and pi != 0: new_pieces.append(_lowerCAmelCase ) continue else: continue __snake_case : Optional[int] = 0 for i, chunk in enumerate(_lowerCAmelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_lowerCAmelCase ) or self.is_punct(_lowerCAmelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_lowerCAmelCase ) __snake_case : Tuple = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __snake_case : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __snake_case : Tuple = i if len(_lowerCAmelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): __snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ): __snake_case : int = self.convert_ids_to_tokens(_lowerCAmelCase ) __snake_case : Any = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ): return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict ): return self.reverse_vocab.get(_lowerCAmelCase , self.unk_token ) def snake_case__ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] __snake_case : Optional[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1] def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(_lowerCAmelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_lowerCAmelCase ) + 1) + [1] * (len(_lowerCAmelCase ) + 3) def snake_case__ ( self : Tuple , _lowerCAmelCase : List[str] ): if "\u4e00" <= char <= "\u9fff": return True return False def snake_case__ ( self : List[str] , _lowerCAmelCase : Any ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def snake_case__ ( self : int , _lowerCAmelCase : List[Any] ): if char in ",;:.?!~,;:。?!《》【】": return True return False def snake_case__ ( self : str , _lowerCAmelCase : Optional[Any] ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_lowerCAmelCase ) == 1: __snake_case : Dict = unicodedata.category(_lowerCAmelCase ) if cat == "Zs": return True return False def snake_case__ ( self : str , _lowerCAmelCase : List[Any] ): __snake_case : Dict = {} with io.open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(_lowerCAmelCase ): __snake_case : Tuple = line.rstrip("""\n""" ) __snake_case : List[str] = int(_lowerCAmelCase ) return token_to_idx def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : Optional[int] = 0 if os.path.isdir(_lowerCAmelCase ): __snake_case : int = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: __snake_case : Optional[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) __snake_case : Union[str, Any] = token_index writer.write(token + """\n""" ) index += 1 __snake_case : List[Any] = os.path.join(_lowerCAmelCase , """sentencepiece.bpe.model""" ) with open(_lowerCAmelCase , """wb""" ) as fi: __snake_case : List[Any] = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (vocab_file,)
20
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE__ : A : int A : TreeNode | None = None A : TreeNode | None = None lowercase_ = namedtuple("CoinsDistribResult", "moves excess") def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(__SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__SCREAMING_SNAKE_CASE ) != count_coins(__SCREAMING_SNAKE_CASE ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(__SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __snake_case , __snake_case : Tuple = get_distrib(node.left ) __snake_case , __snake_case : str = get_distrib(node.right ) __snake_case : List[str] = 1 - left_distrib_excess __snake_case : str = 1 - right_distrib_excess __snake_case : List[Any] = ( left_distrib_moves + right_distrib_moves + abs(__SCREAMING_SNAKE_CASE ) + abs(__SCREAMING_SNAKE_CASE ) ) __snake_case : Any = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return get_distrib(__SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
20
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[str] = "xlm" A : List[str] = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any]=3_01_45 , _lowerCAmelCase : Optional[Any]=20_48 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : int=16 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=5_12 , _lowerCAmelCase : List[Any]=20_48**-0.5 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple="first" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Tuple , ): __snake_case : Optional[Any] = vocab_size __snake_case : Tuple = emb_dim __snake_case : int = n_layers __snake_case : List[str] = n_heads __snake_case : Union[str, Any] = dropout __snake_case : Optional[int] = attention_dropout __snake_case : Optional[Any] = gelu_activation __snake_case : Tuple = sinusoidal_embeddings __snake_case : List[Any] = causal __snake_case : Dict = asm __snake_case : int = n_langs __snake_case : str = use_lang_emb __snake_case : Dict = layer_norm_eps __snake_case : List[Any] = bos_index __snake_case : Union[str, Any] = eos_index __snake_case : Dict = pad_index __snake_case : Any = unk_index __snake_case : Dict = mask_index __snake_case : Any = is_encoder __snake_case : Dict = max_position_embeddings __snake_case : Optional[Any] = embed_init_std __snake_case : List[Any] = init_std __snake_case : str = summary_type __snake_case : Optional[Any] = summary_use_proj __snake_case : str = summary_activation __snake_case : Optional[int] = summary_proj_to_labels __snake_case : Dict = summary_first_dropout __snake_case : Dict = start_n_top __snake_case : int = end_n_top __snake_case : str = mask_token_id __snake_case : int = lang_id if "n_words" in kwargs: __snake_case : Dict = kwargs["""n_words"""] super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): @property def snake_case__ ( self : Dict ): if self.task == "multiple-choice": __snake_case : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
20
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase_ = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : A : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) A : Optional[str] = field( default=__UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) A : Optional[str] = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) A : Optional[str] = field( default=__UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) A : bool = field(default=__UpperCamelCase , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. A : Optional[str] = field( default=__UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class SCREAMING_SNAKE_CASE__ : A : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) A : Optional[str] = field( default=__UpperCamelCase , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) A : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A : bool = field( default=__UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __lowerCAmelCase ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case : Union[str, Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) __snake_case : Optional[Any] = import_module("""tasks""" ) try: __snake_case : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , model_args.task_type ) __snake_case : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , __SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __snake_case : Any = token_classification_task.get_labels(data_args.labels ) __snake_case : Dict[int, str] = dict(enumerate(__SCREAMING_SNAKE_CASE ) ) __snake_case : Any = len(__SCREAMING_SNAKE_CASE ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__SCREAMING_SNAKE_CASE , idalabel=__SCREAMING_SNAKE_CASE , labelaid={label: i for i, label in enumerate(__SCREAMING_SNAKE_CASE )} , cache_dir=model_args.cache_dir , ) __snake_case : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __snake_case : List[Any] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # Get datasets __snake_case : Union[str, Any] = ( TokenClassificationDataset( token_classification_task=__SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __snake_case : Dict = ( TokenClassificationDataset( token_classification_task=__SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : np.ndarray ) -> Tuple[List[int], List[int]]: __snake_case : Union[str, Any] = np.argmax(__SCREAMING_SNAKE_CASE , axis=2 ) __snake_case , __snake_case : Tuple = preds.shape __snake_case : List[Any] = [[] for _ in range(__SCREAMING_SNAKE_CASE )] __snake_case : Any = [[] for _ in range(__SCREAMING_SNAKE_CASE )] for i in range(__SCREAMING_SNAKE_CASE ): for j in range(__SCREAMING_SNAKE_CASE ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__SCREAMING_SNAKE_CASE : EvalPrediction ) -> Dict: __snake_case , __snake_case : List[str] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "precision": precision_score(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "recall": recall_score(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "f1": fa_score(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), } # Data collator __snake_case : List[Any] = DataCollatorWithPadding(__SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __snake_case : int = Trainer( model=__SCREAMING_SNAKE_CASE , args=__SCREAMING_SNAKE_CASE , train_dataset=__SCREAMING_SNAKE_CASE , eval_dataset=__SCREAMING_SNAKE_CASE , compute_metrics=__SCREAMING_SNAKE_CASE , data_collator=__SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __snake_case : Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __snake_case : Dict = trainer.evaluate() __snake_case : str = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_process_zero(): with open(__SCREAMING_SNAKE_CASE , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) writer.write("""%s = %s\n""" % (key, value) ) results.update(__SCREAMING_SNAKE_CASE ) # Predict if training_args.do_predict: __snake_case : Tuple = TokenClassificationDataset( token_classification_task=__SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __snake_case , __snake_case , __snake_case : List[str] = trainer.predict(__SCREAMING_SNAKE_CASE ) __snake_case , __snake_case : List[Any] = align_predictions(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : str = os.path.join(training_args.output_dir , """test_results.txt""" ) if trainer.is_world_process_zero(): with open(__SCREAMING_SNAKE_CASE , """w""" ) as writer: for key, value in metrics.items(): logger.info(""" %s = %s""" , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) writer.write("""%s = %s\n""" % (key, value) ) # Save predictions __snake_case : List[str] = os.path.join(training_args.output_dir , """test_predictions.txt""" ) if trainer.is_world_process_zero(): with open(__SCREAMING_SNAKE_CASE , """w""" ) as writer: with open(os.path.join(data_args.data_dir , """test.txt""" ) , """r""" ) as f: token_classification_task.write_predictions_to_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return results def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
20
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[Any] = "encodec" def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase : Tuple=2_40_00 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : int=1_28 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Union[str, Any]=[8, 5, 4, 2] , _lowerCAmelCase : str="weight_norm" , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict="reflect" , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : Optional[int]=10_24 , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , **_lowerCAmelCase : List[Any] , ): __snake_case : Optional[int] = target_bandwidths __snake_case : int = sampling_rate __snake_case : List[Any] = audio_channels __snake_case : str = normalize __snake_case : Union[str, Any] = chunk_length_s __snake_case : Union[str, Any] = overlap __snake_case : Union[str, Any] = hidden_size __snake_case : Union[str, Any] = num_filters __snake_case : Optional[Any] = num_residual_layers __snake_case : List[Any] = upsampling_ratios __snake_case : List[str] = norm_type __snake_case : Union[str, Any] = kernel_size __snake_case : Optional[int] = last_kernel_size __snake_case : Optional[Any] = residual_kernel_size __snake_case : Dict = dilation_growth_rate __snake_case : int = use_causal_conv __snake_case : Tuple = pad_mode __snake_case : str = compress __snake_case : Optional[Any] = num_lstm_layers __snake_case : List[Any] = trim_right_ratio __snake_case : Any = codebook_size __snake_case : int = codebook_dim if codebook_dim is not None else hidden_size __snake_case : int = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**_lowerCAmelCase ) @property def snake_case__ ( self : int ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def snake_case__ ( self : int ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def snake_case__ ( self : Union[str, Any] ): __snake_case : List[str] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def snake_case__ ( self : Tuple ): return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
20
1
import random def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Tuple = [], [], [] for element in data: if element < pivot: less.append(__SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(__SCREAMING_SNAKE_CASE ) else: equal.append(__SCREAMING_SNAKE_CASE ) return less, equal, greater def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0: return None __snake_case : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )] __snake_case : Tuple = 0 __snake_case , __snake_case , __snake_case : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) __snake_case : int = len(__SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
20
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : str = [] __snake_case , __snake_case : List[str] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __snake_case : List[Any] = result + left + right return input_list def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(__SCREAMING_SNAKE_CASE ) <= 1: return input_list __snake_case : Union[str, Any] = list(__SCREAMING_SNAKE_CASE ) # iteration for two-way merging __snake_case : Tuple = 2 while p <= len(__SCREAMING_SNAKE_CASE ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ): __snake_case : List[str] = i __snake_case : str = i + p - 1 __snake_case : Optional[Any] = (low + high + 1) // 2 __snake_case : str = merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # final merge of last two parts if p * 2 >= len(__SCREAMING_SNAKE_CASE ): __snake_case : List[str] = i __snake_case : str = merge(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() if user_input == "": lowercase_ = [] else: lowercase_ = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
20
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any]=False ): '''simple docstring''' __snake_case : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __snake_case : str = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __snake_case : int = """""" else: __snake_case : Dict = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __snake_case : Union[str, Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) __snake_case : str = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case : Any = in_proj_weight[ : config.hidden_size, : ] __snake_case : int = in_proj_bias[: config.hidden_size] __snake_case : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __snake_case : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __snake_case : Any = in_proj_weight[ -config.hidden_size :, : ] __snake_case : List[Any] = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str ): '''simple docstring''' __snake_case : Tuple = dct.pop(__SCREAMING_SNAKE_CASE ) __snake_case : Dict = val def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str ): '''simple docstring''' __snake_case : Optional[int] = DeiTConfig() # all deit models have fine-tuned heads __snake_case : List[Any] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __snake_case : Optional[Any] = 1_0_0_0 __snake_case : Union[str, Any] = """huggingface/label-files""" __snake_case : Union[str, Any] = """imagenet-1k-id2label.json""" __snake_case : Tuple = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) __snake_case : Union[str, Any] = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __snake_case : Dict = idalabel __snake_case : Any = {v: k for k, v in idalabel.items()} __snake_case : int = int(deit_name[-6:-4] ) __snake_case : Tuple = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): __snake_case : List[str] = 1_9_2 __snake_case : Optional[int] = 7_6_8 __snake_case : Optional[Any] = 1_2 __snake_case : int = 3 elif deit_name[9:].startswith("""small""" ): __snake_case : Union[str, Any] = 3_8_4 __snake_case : Optional[Any] = 1_5_3_6 __snake_case : List[Any] = 1_2 __snake_case : Dict = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): __snake_case : int = 1_0_2_4 __snake_case : Tuple = 4_0_9_6 __snake_case : Union[str, Any] = 2_4 __snake_case : List[Any] = 1_6 # load original model from timm __snake_case : Optional[int] = timm.create_model(__SCREAMING_SNAKE_CASE , pretrained=__SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys __snake_case : Union[str, Any] = timm_model.state_dict() __snake_case : Union[str, Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load HuggingFace model __snake_case : Any = DeiTForImageClassificationWithTeacher(__SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by DeiTImageProcessor __snake_case : Optional[Any] = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __snake_case : Optional[int] = DeiTImageProcessor(size=__SCREAMING_SNAKE_CASE , crop_size=config.image_size ) __snake_case : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) __snake_case : List[Any] = encoding["""pixel_values"""] __snake_case : str = model(__SCREAMING_SNAKE_CASE ) __snake_case : Any = timm_model(__SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__SCREAMING_SNAKE_CASE , outputs.logits , atol=1E-3 ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowercase_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
20
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowercase_ = "Usage of script: script_name <size_of_canvas:int>" lowercase_ = [0] * 1_00 + [1] * 10 random.shuffle(choice) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : List[str] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )] return canvas def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' for i, row in enumerate(__SCREAMING_SNAKE_CASE ): for j, _ in enumerate(__SCREAMING_SNAKE_CASE ): __snake_case : int = bool(random.getrandbits(1 ) ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' __snake_case : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__SCREAMING_SNAKE_CASE ): for c, pt in enumerate(__SCREAMING_SNAKE_CASE ): __snake_case : Optional[Any] = __judge_point( __SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __snake_case : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __snake_case : list[list[bool]] = current_canvas.tolist() return return_canvas def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' __snake_case : Any = 0 __snake_case : Dict = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __snake_case : str = pt if pt: if alive < 2: __snake_case : Optional[Any] = False elif alive == 2 or alive == 3: __snake_case : Union[str, Any] = True elif alive > 3: __snake_case : Optional[int] = False else: if alive == 3: __snake_case : List[Any] = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowercase_ = int(sys.argv[1]) # main working structure of this module. lowercase_ = create_canvas(canvas_size) seed(c) lowercase_ , lowercase_ = plt.subplots() fig.show() lowercase_ = ListedColormap(["w", "k"]) try: while True: lowercase_ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
20
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
20
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Union[Dict, Any]] = None , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : int=2 ): '''simple docstring''' from .. import __version__ __snake_case : List[Any] = take_from __snake_case : List[Any] = () if not isinstance(args[0] , __SCREAMING_SNAKE_CASE ): __snake_case : str = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(__SCREAMING_SNAKE_CASE ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) __snake_case : Optional[Any] = None if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__SCREAMING_SNAKE_CASE ),) __snake_case : Optional[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): values += (getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),) __snake_case : Any = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: __snake_case : Tuple = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: __snake_case : Optional[Any] = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , __SCREAMING_SNAKE_CASE , stacklevel=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) > 0: __snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1] __snake_case : int = call_frame.filename __snake_case : int = call_frame.lineno __snake_case : List[str] = call_frame.function __snake_case , __snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(__SCREAMING_SNAKE_CASE ) == 0: return elif len(__SCREAMING_SNAKE_CASE ) == 1: return values[0] return values
20
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowercase_ = "pt" elif is_tf_available(): lowercase_ = "tf" else: lowercase_ = "jax" class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): A : int = ByTaTokenizer A : Tuple = False def snake_case__ ( self : List[Any] ): super().setUp() __snake_case : int = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self : Tuple ): return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def snake_case__ ( self : List[Any] , **_lowerCAmelCase : int ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Union[str, Any]=20 , _lowerCAmelCase : int=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __snake_case : Union[str, Any] = [] for i in range(len(_lowerCAmelCase ) ): try: __snake_case : Dict = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __snake_case : Optional[int] = list(filter(lambda _lowerCAmelCase : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , _lowerCAmelCase ) ) __snake_case : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) ) if max_length is not None and len(_lowerCAmelCase ) > max_length: __snake_case : Any = toks[:max_length] if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0: while len(_lowerCAmelCase ) < min_length: __snake_case : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __snake_case : int = [t[0] for t in toks] # Ensure consistency __snake_case : Dict = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) if " " not in output_txt and len(_lowerCAmelCase ) > 1: __snake_case : Optional[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase ) ) if with_prefix_space: __snake_case : List[str] = """ """ + output_txt __snake_case : str = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) return output_txt, output_ids def snake_case__ ( self : List[Any] ): __snake_case : Optional[Any] = self.ta_base_tokenizer __snake_case : Optional[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) __snake_case : Tuple = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def snake_case__ ( self : Dict ): __snake_case : Dict = self.ta_base_tokenizer __snake_case : Any = """Unicode €.""" __snake_case : Dict = tokenizer(_lowerCAmelCase ) __snake_case : Optional[Any] = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded["""input_ids"""] , _lowerCAmelCase ) # decoding __snake_case : List[Any] = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , """Unicode €.</s>""" ) __snake_case : List[Any] = tokenizer("""e è é ê ë""" ) __snake_case : Any = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded["""input_ids"""] , _lowerCAmelCase ) # decoding __snake_case : Dict = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def snake_case__ ( self : Tuple ): __snake_case : List[str] = self.ta_base_tokenizer __snake_case : Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off __snake_case : Optional[int] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on __snake_case : int = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) if FRAMEWORK != "jax": __snake_case : Optional[int] = list(batch.input_ids.numpy()[0] ) else: __snake_case : Union[str, Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def snake_case__ ( self : Union[str, Any] ): __snake_case : Optional[int] = self.ta_base_tokenizer __snake_case : Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __snake_case : Union[str, Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , _lowerCAmelCase ) self.assertIn("""attention_mask""" , _lowerCAmelCase ) self.assertNotIn("""decoder_input_ids""" , _lowerCAmelCase ) self.assertNotIn("""decoder_attention_mask""" , _lowerCAmelCase ) def snake_case__ ( self : Any ): __snake_case : Optional[int] = self.ta_base_tokenizer __snake_case : int = [ """Summary of the text.""", """Another summary.""", ] __snake_case : Optional[Any] = tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="""max_length""" , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def snake_case__ ( self : Optional[int] ): __snake_case : List[str] = self.ta_base_tokenizer __snake_case : Optional[Any] = ["""A long paragraph for summarization. </s>"""] __snake_case : Dict = ["""Summary of the text. </s>"""] # fmt: off __snake_case : List[str] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] __snake_case : str = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on __snake_case : List[Any] = tokenizer(_lowerCAmelCase , text_target=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , batch["""input_ids"""][0] ) self.assertEqual(_lowerCAmelCase , batch["""labels"""][0] ) def snake_case__ ( self : Optional[int] ): # safety check on max_len default value so we are sure the test works __snake_case : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : int = """ He is very happy, UNwant\u00E9d,running""" __snake_case : List[str] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) __snake_case : Optional[int] = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) __snake_case : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) __snake_case : Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Dict = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) __snake_case : Any = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __snake_case : str = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) __snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) __snake_case : Optional[int] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : Any = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def snake_case__ ( self : str ): __snake_case : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Optional[int] = json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : str = json.load(_lowerCAmelCase ) __snake_case : Union[str, Any] = [f'''<extra_id_{i}>''' for i in range(1_25 )] __snake_case : str = added_tokens_extra_ids + [ """an_additional_special_token""" ] __snake_case : Dict = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(_lowerCAmelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Any = tokenizer_class.from_pretrained( _lowerCAmelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Optional[Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=_lowerCAmelCase )] __snake_case : Optional[int] = tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def snake_case__ ( self : Optional[Any] ): __snake_case : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) __snake_case : Optional[Any] = tokenizer_class.from_pretrained(_lowerCAmelCase ) self.assertTrue(tokenizer.decode([2_55] ) == """""" ) def snake_case__ ( self : List[Any] ): pass def snake_case__ ( self : Optional[int] ): pass def snake_case__ ( self : Dict ): pass def snake_case__ ( self : Union[str, Any] ): pass def snake_case__ ( self : Tuple ): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __snake_case : int = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Optional[int] = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] __snake_case : str = tokenizer.convert_tokens_to_string(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : int ): __snake_case : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : int = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __snake_case : Optional[int] = 0 __snake_case : str = tokenizer.convert_ids_to_tokens( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + """_id""" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + """_id""" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + """_id""" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + """_id""" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , """additional_special_tokens_ids""" ) , [] ) setattr(_lowerCAmelCase , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(_lowerCAmelCase , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(_lowerCAmelCase , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
20
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowercase_ = { "bart": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), "bert": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-cased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-base-cased-finetuned-mrpc": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "dpr": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), "gpt2": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlnet": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm-roberta": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "transfo-xl": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "openai-gpt": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "roberta": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "layoutlm": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), "roberta-large-mnli": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "camembert": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "flaubert": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert-base-distilled-squad": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert-visual-feature-encoder": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "ctrl": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "albert": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "t5": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "electra": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "wav2vec2": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=True ): '''simple docstring''' if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __snake_case , __snake_case , __snake_case , __snake_case : Any = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) __snake_case : Dict = config_class.from_json_file(__SCREAMING_SNAKE_CASE ) __snake_case : Tuple = True __snake_case : Union[str, Any] = True print(F'''Building TensorFlow model from configuration: {config}''' ) __snake_case : List[Any] = model_class(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __snake_case : Optional[Any] = cached_file( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __snake_case : List[Any] = load_pytorch_checkpoint_in_tfa_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if compare_with_pt_model: __snake_case : Tuple = tf_model(tf_model.dummy_inputs , training=__SCREAMING_SNAKE_CASE ) # build the network __snake_case : List[str] = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" ) __snake_case : Any = pt_model_class.from_pretrained( pretrained_model_name_or_path=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE , state_dict=__SCREAMING_SNAKE_CASE ) with torch.no_grad(): __snake_case : Union[str, Any] = pt_model(**pt_model.dummy_inputs ) __snake_case : Any = pto[0].numpy() __snake_case : Optional[int] = tfo[0].numpy() __snake_case : Optional[int] = np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(__SCREAMING_SNAKE_CASE , save_format="""h5""" ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Any=False , ): '''simple docstring''' if args_model_type is None: __snake_case : Tuple = list(MODEL_CLASSES.keys() ) else: __snake_case : Union[str, Any] = [args_model_type] for j, model_type in enumerate(__SCREAMING_SNAKE_CASE , start=1 ): print("""=""" * 1_0_0 ) print(F''' Converting model type {j}/{len(__SCREAMING_SNAKE_CASE )}: {model_type}''' ) print("""=""" * 1_0_0 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __snake_case : int = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __snake_case : Union[str, Any] = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , start=1 ): print("""-""" * 1_0_0 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue __snake_case : List[Any] = model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(__SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}''' ) print("""-""" * 1_0_0 ) if config_shortcut_name in aws_config_map: __snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: __snake_case : Dict = config_shortcut_name if model_shortcut_name in aws_model_maps: __snake_case : Union[str, Any] = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: __snake_case : List[Any] = model_shortcut_name if os.path.isfile(__SCREAMING_SNAKE_CASE ): __snake_case : List[str] = """converted_model""" convert_pt_checkpoint_to_tf( model_type=__SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=__SCREAMING_SNAKE_CASE , config_file=__SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(__SCREAMING_SNAKE_CASE , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__SCREAMING_SNAKE_CASE , ) if remove_cached_files: os.remove(__SCREAMING_SNAKE_CASE ) os.remove(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file." ) parser.add_argument( "--model_type", default=None, type=str, help=( F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' "convert all the models from AWS." ), ) parser.add_argument( "--pytorch_checkpoint_path", default=None, type=str, help=( "Path to the PyTorch checkpoint path or shortcut name to download from AWS. " "If not given, will download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--config_file", default=None, type=str, help=( "The config json file corresponding to the pre-trained model. \n" "This specifies the model architecture. If not given and " "--pytorch_checkpoint_path is not given or is a shortcut name " "use the configuration associated to the shortcut name on the AWS" ), ) parser.add_argument( "--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions." ) parser.add_argument( "--use_cached_models", action="store_true", help="Use cached models if possible instead of updating to latest checkpoint versions.", ) parser.add_argument( "--remove_cached_files", action="store_true", help="Remove pytorch models after conversion (save memory when converting in batches).", ) parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.") lowercase_ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
20
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
import random def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Tuple = [], [], [] for element in data: if element < pivot: less.append(__SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(__SCREAMING_SNAKE_CASE ) else: equal.append(__SCREAMING_SNAKE_CASE ) return less, equal, greater def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0: return None __snake_case : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )] __snake_case : Tuple = 0 __snake_case , __snake_case , __snake_case : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) __snake_case : int = len(__SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
20
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } lowercase_ = { "google/realm-cc-news-pretrained-embedder": 5_12, "google/realm-cc-news-pretrained-encoder": 5_12, "google/realm-cc-news-pretrained-scorer": 5_12, "google/realm-cc-news-pretrained-openqa": 5_12, "google/realm-orqa-nq-openqa": 5_12, "google/realm-orqa-nq-reader": 5_12, "google/realm-orqa-wq-openqa": 5_12, "google/realm-orqa-wq-reader": 5_12, } lowercase_ = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[Any] = VOCAB_FILES_NAMES A : Tuple = PRETRAINED_VOCAB_FILES_MAP A : Tuple = PRETRAINED_INIT_CONFIGURATION A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Union[str, Any] = RealmTokenizer def __init__( self : Optional[Any] , _lowerCAmelCase : int=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Any=True , _lowerCAmelCase : str="[UNK]" , _lowerCAmelCase : Any="[SEP]" , _lowerCAmelCase : Optional[Any]="[PAD]" , _lowerCAmelCase : Optional[Any]="[CLS]" , _lowerCAmelCase : Tuple="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : List[Any] , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) __snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _lowerCAmelCase ) != tokenize_chinese_chars ): __snake_case : Union[str, Any] = getattr(_lowerCAmelCase , normalizer_state.pop("""type""" ) ) __snake_case : Optional[int] = do_lower_case __snake_case : Any = strip_accents __snake_case : str = tokenize_chinese_chars __snake_case : Union[str, Any] = normalizer_class(**_lowerCAmelCase ) __snake_case : Union[str, Any] = do_lower_case def snake_case__ ( self : Tuple , _lowerCAmelCase : List[Any] , **_lowerCAmelCase : Optional[int] ): __snake_case : str = PaddingStrategy.MAX_LENGTH __snake_case : int = text __snake_case : List[Any] = kwargs.pop("""text_pair""" , _lowerCAmelCase ) __snake_case : List[Any] = kwargs.pop("""return_tensors""" , _lowerCAmelCase ) __snake_case : str = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(_lowerCAmelCase ): if batch_text_pair is not None: __snake_case : str = batch_text_pair[idx] else: __snake_case : Optional[Any] = None __snake_case : Optional[int] = super().__call__(_lowerCAmelCase , _lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) __snake_case : Dict = encoded_candidates.get("""input_ids""" ) __snake_case : int = encoded_candidates.get("""attention_mask""" ) __snake_case : Dict = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(_lowerCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_lowerCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_lowerCAmelCase ) __snake_case : Any = {key: item for key, item in output_data.items() if len(_lowerCAmelCase ) != 0} return BatchEncoding(_lowerCAmelCase , tensor_type=_lowerCAmelCase ) def snake_case__ ( self : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None ): __snake_case : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): __snake_case : Optional[Any] = [self.sep_token_id] __snake_case : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
20
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } lowercase_ = { "junnyu/roformer_chinese_small": 15_36, "junnyu/roformer_chinese_base": 15_36, "junnyu/roformer_chinese_char_small": 5_12, "junnyu/roformer_chinese_char_base": 5_12, "junnyu/roformer_small_discriminator": 1_28, "junnyu/roformer_small_generator": 1_28, } lowercase_ = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = VOCAB_FILES_NAMES A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = PRETRAINED_INIT_CONFIGURATION A : List[str] = RoFormerTokenizer def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any="[UNK]" , _lowerCAmelCase : int="[SEP]" , _lowerCAmelCase : Optional[int]="[PAD]" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Dict , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) __snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case or pre_tok_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents ): __snake_case : Tuple = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) __snake_case : List[Any] = do_lower_case __snake_case : Optional[Any] = strip_accents __snake_case : List[str] = pre_tok_class(**_lowerCAmelCase ) __snake_case : Optional[Any] = do_lower_case def __getstate__( self : Optional[Any] ): __snake_case : Optional[int] = self.__dict__.copy() __snake_case : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : str , _lowerCAmelCase : Dict ): __snake_case : str = d __snake_case : int = self.__dict__["""_tokenizer"""].get_vocab() __snake_case : List[str] = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=None ): __snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def snake_case__ ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Tuple , ): __snake_case : Tuple = BertPreTokenizer() return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
20
1
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __snake_case : Tuple = str(bin(__SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" __snake_case : Any = str(bin(__SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" __snake_case : str = max(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(__SCREAMING_SNAKE_CASE ) , b_binary.zfill(__SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
20
from __future__ import annotations import math def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] __snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } lowercase_ = { "facebook/nllb-large-en-ro": 10_24, "facebook/nllb-200-distilled-600M": 10_24, } # fmt: off lowercase_ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : str = VOCAB_FILES_NAMES A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Tuple = PRETRAINED_VOCAB_FILES_MAP A : List[Any] = ["input_ids", "attention_mask"] A : Dict = NllbTokenizer A : List[int] = [] A : List[int] = [] def __init__( self : Union[str, Any] , _lowerCAmelCase : str=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Dict="<s>" , _lowerCAmelCase : Tuple="</s>" , _lowerCAmelCase : Any="</s>" , _lowerCAmelCase : str="<s>" , _lowerCAmelCase : Tuple="<unk>" , _lowerCAmelCase : List[str]="<pad>" , _lowerCAmelCase : Optional[Any]="<mask>" , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : str=False , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it __snake_case : List[str] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token __snake_case : Any = legacy_behaviour super().__init__( vocab_file=_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , src_lang=_lowerCAmelCase , tgt_lang=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , legacy_behaviour=_lowerCAmelCase , **_lowerCAmelCase , ) __snake_case : Dict = vocab_file __snake_case : Optional[int] = False if not self.vocab_file else True __snake_case : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) __snake_case : str = { lang_code: self.convert_tokens_to_ids(_lowerCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : Tuple = src_lang if src_lang is not None else """eng_Latn""" __snake_case : Optional[Any] = self.convert_tokens_to_ids(self._src_lang ) __snake_case : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def snake_case__ ( self : Dict ): return self._src_lang @src_lang.setter def snake_case__ ( self : int , _lowerCAmelCase : str ): __snake_case : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case__ ( self : int , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case__ ( self : List[str] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): __snake_case : List[Any] = [self.sep_token_id] __snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case__ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] , _lowerCAmelCase : Optional[str] , **_lowerCAmelCase : List[Any] ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __snake_case : Tuple = src_lang __snake_case : int = self(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) __snake_case : str = self.convert_tokens_to_ids(_lowerCAmelCase ) __snake_case : Dict = tgt_lang_id return inputs def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : str = "eng_Latn" , _lowerCAmelCase : Optional[List[str]] = None , _lowerCAmelCase : str = "fra_Latn" , **_lowerCAmelCase : Optional[int] , ): __snake_case : List[Any] = src_lang __snake_case : Dict = tgt_lang return super().prepare_seqaseq_batch(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def snake_case__ ( self : int ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str ): __snake_case : Optional[int] = self.convert_tokens_to_ids(_lowerCAmelCase ) if self.legacy_behaviour: __snake_case : int = [] __snake_case : Optional[Any] = [self.eos_token_id, self.cur_lang_code] else: __snake_case : List[str] = [self.cur_lang_code] __snake_case : Dict = [self.eos_token_id] __snake_case : Any = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Any = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def snake_case__ ( self : List[str] , _lowerCAmelCase : str ): __snake_case : Union[str, Any] = self.convert_tokens_to_ids(_lowerCAmelCase ) if self.legacy_behaviour: __snake_case : Dict = [] __snake_case : Tuple = [self.eos_token_id, self.cur_lang_code] else: __snake_case : int = [self.cur_lang_code] __snake_case : List[str] = [self.eos_token_id] __snake_case : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def snake_case__ ( self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return __snake_case : Union[str, Any] = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
20
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowercase_ = None lowercase_ = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowercase_ = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class SCREAMING_SNAKE_CASE__ : A : bool = True A : Optional[str] = None # Automatically constructed A : ClassVar[str] = "PIL.Image.Image" A : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) A : str = field(default="Image" , init=__UpperCamelCase , repr=__UpperCamelCase ) def __call__( self : Any ): return self.pa_type def snake_case__ ( self : List[Any] , _lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : str = np.array(_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {"path": value, "bytes": None} elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {"path": None, "bytes": value} elif isinstance(_lowerCAmelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_lowerCAmelCase ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def snake_case__ ( self : List[str] , _lowerCAmelCase : dict , _lowerCAmelCase : Dict=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: __snake_case : Tuple = {} __snake_case , __snake_case : str = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(_lowerCAmelCase ): __snake_case : str = PIL.Image.open(_lowerCAmelCase ) else: __snake_case : List[str] = path.split("""::""" )[-1] try: __snake_case : Dict = string_to_dict(_lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""] __snake_case : int = token_per_repo_id.get(_lowerCAmelCase ) except ValueError: __snake_case : List[Any] = None with xopen(_lowerCAmelCase , """rb""" , use_auth_token=_lowerCAmelCase ) as f: __snake_case : Union[str, Any] = BytesIO(f.read() ) __snake_case : Dict = PIL.Image.open(bytes_ ) else: __snake_case : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def snake_case__ ( self : Union[str, Any] ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): __snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() ) __snake_case : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) __snake_case : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: __snake_case : List[str] = storage.field("""bytes""" ) else: __snake_case : List[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: __snake_case : Optional[int] = storage.field("""path""" ) else: __snake_case : int = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) __snake_case : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __snake_case : Optional[Any] = pa.array( [encode_np_array(np.array(_lowerCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) __snake_case : Optional[int] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) __snake_case : List[str] = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_lowerCAmelCase , self.pa_type ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(_lowerCAmelCase : Tuple ): with xopen(_lowerCAmelCase , """rb""" ) as f: __snake_case : Optional[int] = f.read() return bytes_ __snake_case : Tuple = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __snake_case : Optional[Any] = pa.array( [os.path.basename(_lowerCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) __snake_case : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_lowerCAmelCase , self.pa_type ) def __lowerCAmelCase ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __snake_case : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ): '''simple docstring''' __snake_case : List[Any] = BytesIO() if image.format in list_image_compression_formats(): __snake_case : Union[str, Any] = image.format else: __snake_case : List[Any] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(__SCREAMING_SNAKE_CASE , format=__SCREAMING_SNAKE_CASE ) return buffer.getvalue() def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ): '''simple docstring''' if hasattr(__SCREAMING_SNAKE_CASE , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )} def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) __snake_case : List[Any] = array.dtype __snake_case : List[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER __snake_case : Dict = dtype.kind __snake_case : Union[str, Any] = dtype.itemsize __snake_case : Tuple = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __snake_case : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __snake_case : List[str] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __snake_case : int = dtype_byteorder + dtype_kind + str(__SCREAMING_SNAKE_CASE ) __snake_case : Any = np.dtype(__SCREAMING_SNAKE_CASE ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) __snake_case : Optional[int] = PIL.Image.fromarray(array.astype(__SCREAMING_SNAKE_CASE ) ) return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )} def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: __snake_case , __snake_case : Any = first_non_null_value(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): __snake_case : int = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs] elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ): __snake_case : List[str] = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs] else: return objs else: return objs
20
1
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowercase_ = sys.version_info >= (3, 10) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Optional[int]=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=__SCREAMING_SNAKE_CASE ) @dataclass class SCREAMING_SNAKE_CASE__ : A : int A : float A : str A : bool @dataclass class SCREAMING_SNAKE_CASE__ : A : int = 42 A : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class SCREAMING_SNAKE_CASE__ : A : bool = False A : bool = True A : Optional[bool] = None class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Tuple = "titi" A : List[str] = "toto" class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[Any] = "titi" A : Tuple = "toto" A : Optional[int] = 42 @dataclass class SCREAMING_SNAKE_CASE__ : A : BasicEnum = "toto" def snake_case__ ( self : Any ): __snake_case : Tuple = BasicEnum(self.foo ) @dataclass class SCREAMING_SNAKE_CASE__ : A : MixedTypeEnum = "toto" def snake_case__ ( self : Optional[Any] ): __snake_case : Optional[int] = MixedTypeEnum(self.foo ) @dataclass class SCREAMING_SNAKE_CASE__ : A : Optional[int] = None A : Optional[float] = field(default=__UpperCamelCase , metadata={"help": "help message"} ) A : Optional[str] = None A : Optional[List[str]] = list_field(default=[] ) A : Optional[List[int]] = list_field(default=[] ) @dataclass class SCREAMING_SNAKE_CASE__ : A : List[int] = list_field(default=[] ) A : List[int] = list_field(default=[1, 2, 3] ) A : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) A : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class SCREAMING_SNAKE_CASE__ : A : List[int] = field() A : str = field() A : BasicEnum = field() def snake_case__ ( self : Optional[Any] ): __snake_case : Union[str, Any] = BasicEnum(self.required_enum ) @dataclass class SCREAMING_SNAKE_CASE__ : A : int A : "BasicEnum" = field() A : "Optional[bool]" = None A : "str" = field(default="toto" , metadata={"help": "help message"} ) A : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class SCREAMING_SNAKE_CASE__ : A : bool = False A : bool = True A : bool | None = None @dataclass class SCREAMING_SNAKE_CASE__ : A : int | None = None A : float | None = field(default=__UpperCamelCase , metadata={"help": "help message"} ) A : str | None = None A : list[str] | None = list_field(default=[] ) A : list[int] | None = list_field(default=[] ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : Dict , _lowerCAmelCase : argparse.ArgumentParser , _lowerCAmelCase : argparse.ArgumentParser ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __snake_case : Optional[Any] = {k: v for k, v in vars(_lowerCAmelCase ).items() if k != """container"""} __snake_case : Tuple = {k: v for k, v in vars(_lowerCAmelCase ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , _lowerCAmelCase ) and yy.get("""choices""" , _lowerCAmelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](_lowerCAmelCase ) , yy["""type"""](_lowerCAmelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case : int = HfArgumentParser(_lowerCAmelCase ) __snake_case : Tuple = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_lowerCAmelCase , required=_lowerCAmelCase ) expected.add_argument("""--bar""" , type=_lowerCAmelCase , required=_lowerCAmelCase ) expected.add_argument("""--baz""" , type=_lowerCAmelCase , required=_lowerCAmelCase ) expected.add_argument("""--flag""" , type=_lowerCAmelCase , default=_lowerCAmelCase , const=_lowerCAmelCase , nargs="""?""" ) self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Dict = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((__snake_case) , ) : str = parser.parse_args_into_dataclasses(_lowerCAmelCase , look_for_args_file=_lowerCAmelCase ) self.assertFalse(example.flag ) def snake_case__ ( self : List[str] ): __snake_case : str = HfArgumentParser(_lowerCAmelCase ) __snake_case : Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=_lowerCAmelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=_lowerCAmelCase , help="""help message""" ) self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_lowerCAmelCase , default=_lowerCAmelCase , const=_lowerCAmelCase , nargs="""?""" ) expected.add_argument("""--baz""" , type=_lowerCAmelCase , default=_lowerCAmelCase , const=_lowerCAmelCase , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=_lowerCAmelCase , dest="""baz""" ) expected.add_argument("""--opt""" , type=_lowerCAmelCase , default=_lowerCAmelCase ) __snake_case : List[str] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCAmelCase ) for dataclass_type in dataclass_types: __snake_case : str = HfArgumentParser(_lowerCAmelCase ) self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Any = parser.parse_args([] ) self.assertEqual(_lowerCAmelCase , Namespace(foo=_lowerCAmelCase , baz=_lowerCAmelCase , opt=_lowerCAmelCase ) ) __snake_case : List[Any] = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(_lowerCAmelCase , Namespace(foo=_lowerCAmelCase , baz=_lowerCAmelCase , opt=_lowerCAmelCase ) ) __snake_case : Optional[int] = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(_lowerCAmelCase , Namespace(foo=_lowerCAmelCase , baz=_lowerCAmelCase , opt=_lowerCAmelCase ) ) __snake_case : int = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(_lowerCAmelCase , Namespace(foo=_lowerCAmelCase , baz=_lowerCAmelCase , opt=_lowerCAmelCase ) ) __snake_case : Tuple = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(_lowerCAmelCase , Namespace(foo=_lowerCAmelCase , baz=_lowerCAmelCase , opt=_lowerCAmelCase ) ) def snake_case__ ( self : List[str] ): __snake_case : Optional[Any] = HfArgumentParser(_lowerCAmelCase ) __snake_case : Optional[int] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : str = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) __snake_case : Optional[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __snake_case : Tuple = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) __snake_case : str = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __snake_case : List[str] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) __snake_case : List[Any] = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__ ( self : Dict ): @dataclass class SCREAMING_SNAKE_CASE__ : A : Literal["titi", "toto", 42] = "toto" __snake_case : Any = HfArgumentParser(_lowerCAmelCase ) __snake_case : int = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) __snake_case : List[Any] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) __snake_case : Tuple = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def snake_case__ ( self : Dict ): __snake_case : Optional[int] = HfArgumentParser(_lowerCAmelCase ) __snake_case : List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=_lowerCAmelCase ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=_lowerCAmelCase ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_lowerCAmelCase ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=_lowerCAmelCase ) self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : int = parser.parse_args([] ) self.assertEqual( _lowerCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) __snake_case : Tuple = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(_lowerCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def snake_case__ ( self : str ): __snake_case : List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=_lowerCAmelCase , type=_lowerCAmelCase ) expected.add_argument("""--bar""" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="""help message""" ) expected.add_argument("""--baz""" , default=_lowerCAmelCase , type=_lowerCAmelCase ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=_lowerCAmelCase ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=_lowerCAmelCase ) __snake_case : Optional[Any] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCAmelCase ) for dataclass_type in dataclass_types: __snake_case : Optional[Any] = HfArgumentParser(_lowerCAmelCase ) self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCAmelCase , Namespace(foo=_lowerCAmelCase , bar=_lowerCAmelCase , baz=_lowerCAmelCase , ces=[] , des=[] ) ) __snake_case : List[Any] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(_lowerCAmelCase , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def snake_case__ ( self : Union[str, Any] ): __snake_case : List[str] = HfArgumentParser(_lowerCAmelCase ) __snake_case : Any = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=_lowerCAmelCase , required=_lowerCAmelCase ) expected.add_argument("""--required_str""" , type=_lowerCAmelCase , required=_lowerCAmelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=_lowerCAmelCase , ) self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : str ): __snake_case : Optional[Any] = HfArgumentParser(_lowerCAmelCase ) __snake_case : Dict = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_lowerCAmelCase , required=_lowerCAmelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=_lowerCAmelCase , ) expected.add_argument("""--opt""" , type=_lowerCAmelCase , default=_lowerCAmelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=_lowerCAmelCase , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_lowerCAmelCase ) self.argparsersEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[int] ): __snake_case : str = HfArgumentParser(_lowerCAmelCase ) __snake_case : int = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } __snake_case : Tuple = parser.parse_dict(_lowerCAmelCase )[0] __snake_case : int = BasicExample(**_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[int] ): __snake_case : Optional[Any] = HfArgumentParser(_lowerCAmelCase ) __snake_case : str = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(_lowerCAmelCase , parser.parse_dict , _lowerCAmelCase , allow_extra_keys=_lowerCAmelCase ) def snake_case__ ( self : Any ): __snake_case : Optional[int] = HfArgumentParser(_lowerCAmelCase ) __snake_case : int = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Tuple = os.path.join(_lowerCAmelCase , """temp_json""" ) os.mkdir(_lowerCAmelCase ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : List[str] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] __snake_case : int = BasicExample(**_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : List[Any] = HfArgumentParser(_lowerCAmelCase ) __snake_case : Any = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : int = os.path.join(_lowerCAmelCase , """temp_yaml""" ) os.mkdir(_lowerCAmelCase ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : str = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] __snake_case : Tuple = BasicExample(**_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : List[str] = HfArgumentParser(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase )
20
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ): __snake_case : Optional[Any] = {} __snake_case : int = {} if prompt is not None: __snake_case : Dict = prompt if generate_kwargs is not None: __snake_case : List[Any] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __snake_case : Optional[int] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) __snake_case : Any = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ): return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ): __snake_case : Optional[Any] = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) __snake_case : Tuple = self.model.config.model_type if model_type == "git": __snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids __snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids __snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": __snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: __snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __snake_case : int = None return model_inputs def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): __snake_case : List[Any] = None if generate_kwargs is None: __snake_case : Dict = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __snake_case : Dict = model_inputs.pop(self.model.main_input_name ) __snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ): __snake_case : Union[str, Any] = [] for output_ids in model_outputs: __snake_case : Union[str, Any] = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
20
1
import os import sys import unittest lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowercase_ = os.path.join(git_repo_path, "src", "transformers") lowercase_ = "\n{0} = None\n" lowercase_ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" lowercase_ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : List[str] ): __snake_case : List[str] = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(_lowerCAmelCase ) __snake_case : Dict = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(_lowerCAmelCase , """tokenizers""" ) __snake_case : List[Any] = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(_lowerCAmelCase , """tensorflow_text""" ) __snake_case : List[str] = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(_lowerCAmelCase , """sentencepiece_and_tokenizers""" ) __snake_case : Union[str, Any] = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(_lowerCAmelCase , """sentencepiece_and_tensorflow_text""" ) __snake_case : Tuple = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(_lowerCAmelCase , """sentencepiece_and_tokenizers_and_vision""" ) def snake_case__ ( self : int ): __snake_case : Optional[Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , _lowerCAmelCase ) self.assertIn("""tensorflow_text""" , _lowerCAmelCase ) self.assertIn("""sentencepiece_and_tokenizers""" , _lowerCAmelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertModel""" , objects["""tf"""] ) self.assertIn("""FlaxBertModel""" , objects["""flax"""] ) self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""] ) def snake_case__ ( self : Union[str, Any] ): __snake_case : int = create_dummy_object("""CONSTANT""" , """'torch'""" ) self.assertEqual(_lowerCAmelCase , """\nCONSTANT = None\n""" ) __snake_case : Dict = create_dummy_object("""function""" , """'torch'""" ) self.assertEqual( _lowerCAmelCase , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __snake_case : List[Any] = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') """ __snake_case : Any = create_dummy_object("""FakeClass""" , """'torch'""" ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : str ): __snake_case : str = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) """ __snake_case : Any = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , _lowerCAmelCase )
20
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["YolosFeatureExtractor"] lowercase_ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' __snake_case : Union[str, Any] = os.path.abspath(__SCREAMING_SNAKE_CASE ) logger.info(F'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model __snake_case : Optional[Any] = tf.train.list_variables(__SCREAMING_SNAKE_CASE ) __snake_case : Any = [] __snake_case : Union[str, Any] = [] __snake_case : Optional[Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __snake_case : str = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(F'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' __snake_case : Optional[Any] = name[1:] # figure out how many levels deep the name is __snake_case : List[Any] = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(__SCREAMING_SNAKE_CASE ) # read data __snake_case : Union[str, Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) names.append("""/""".join(__SCREAMING_SNAKE_CASE ) ) arrays.append(__SCREAMING_SNAKE_CASE ) logger.info(F'''Read a total of {len(__SCREAMING_SNAKE_CASE ):,} layers''' ) # Sanity check if len(set(__SCREAMING_SNAKE_CASE ) ) != 1: raise ValueError(F'''Found layer names with different depths (layer depth {list(set(__SCREAMING_SNAKE_CASE ) )})''' ) __snake_case : Optional[int] = list(set(__SCREAMING_SNAKE_CASE ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case : str = full_name.split("""/""" ) __snake_case : str = model __snake_case : Optional[Any] = [] for i, m_name in enumerate(__SCREAMING_SNAKE_CASE ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): __snake_case : Optional[int] = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) __snake_case : str = getattr(__SCREAMING_SNAKE_CASE , """embeddings""" ) __snake_case : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) __snake_case : Any = getattr(__SCREAMING_SNAKE_CASE , """encoder""" ) __snake_case : Dict = getattr(__SCREAMING_SNAKE_CASE , """layer""" ) __snake_case : int = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) __snake_case : List[Any] = getattr(__SCREAMING_SNAKE_CASE , """pooler""" ) __snake_case : int = getattr(__SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) __snake_case : Tuple = getattr(__SCREAMING_SNAKE_CASE , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) __snake_case : List[str] = getattr(__SCREAMING_SNAKE_CASE , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) __snake_case : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) __snake_case : Tuple = getattr(__SCREAMING_SNAKE_CASE , """token_type_embeddings""" ) else: raise ValueError(F'''Unknown embedding layer with name {full_name}''' ) trace.append("""weight""" ) __snake_case : List[Any] = getattr(__SCREAMING_SNAKE_CASE , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) __snake_case : str = getattr(__SCREAMING_SNAKE_CASE , """attention""" ) __snake_case : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) __snake_case : Any = getattr(__SCREAMING_SNAKE_CASE , """attention""" ) __snake_case : Any = getattr(__SCREAMING_SNAKE_CASE , """output""" ) __snake_case : Dict = getattr(__SCREAMING_SNAKE_CASE , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) __snake_case : int = getattr(__SCREAMING_SNAKE_CASE , """attention""" ) __snake_case : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , """output""" ) __snake_case : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) __snake_case : List[str] = getattr(__SCREAMING_SNAKE_CASE , """output""" ) __snake_case : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) __snake_case : List[str] = getattr(__SCREAMING_SNAKE_CASE , """output""" ) __snake_case : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) __snake_case : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) __snake_case : Tuple = getattr(__SCREAMING_SNAKE_CASE , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) __snake_case : List[Any] = getattr(__SCREAMING_SNAKE_CASE , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) __snake_case : int = getattr(__SCREAMING_SNAKE_CASE , """intermediate""" ) __snake_case : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) __snake_case : Any = getattr(__SCREAMING_SNAKE_CASE , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) __snake_case : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) __snake_case : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , """weight""" ) else: logger.warning(F'''Ignored {m_name}''' ) # for certain layers reshape is necessary __snake_case : Any = """.""".join(__SCREAMING_SNAKE_CASE ) if re.match(R"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , __SCREAMING_SNAKE_CASE ) or re.match( R"""(\S+)\.attention\.output\.dense\.weight""" , __SCREAMING_SNAKE_CASE ): __snake_case : int = array.reshape(pointer.data.shape ) if "kernel" in full_name: __snake_case : Union[str, Any] = array.transpose() if pointer.shape == array.shape: __snake_case : Union[str, Any] = torch.from_numpy(__SCREAMING_SNAKE_CASE ) else: raise ValueError( F'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' F''' {array.shape}''' ) logger.info(F'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' # Instantiate model logger.info(F'''Loading model based on config from {config_path}...''' ) __snake_case : List[Any] = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = BertModel(__SCREAMING_SNAKE_CASE ) # Load weights from checkpoint logger.info(F'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model logger.info(F'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) lowercase_ = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
20
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = "microsoft/speecht5_tts" A : List[Any] = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) A : str = "text_reader" A : Optional[Any] = SpeechTaProcessor A : Any = SpeechTaForTextToSpeech A : Optional[Any] = SpeechTaHifiGan A : str = ["text"] A : Union[str, Any] = ["audio"] def snake_case__ ( self : List[Any] ): if self.post_processor is None: __snake_case : Tuple = """microsoft/speecht5_hifigan""" super().setup() def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ): __snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) __snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) __snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ): with torch.no_grad(): return self.model.generate_speech(**_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): with torch.no_grad(): return self.post_processor(_lowerCAmelCase ).cpu().detach()
20
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
import math def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if ( not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if ( not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
20
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } lowercase_ = { "unc-nlp/lxmert-base-uncased": 5_12, } lowercase_ = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[Any] = VOCAB_FILES_NAMES A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_INIT_CONFIGURATION A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[str] = LxmertTokenizer def __init__( self : int , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]="[UNK]" , _lowerCAmelCase : str="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Optional[Any]="[CLS]" , _lowerCAmelCase : List[str]="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=None , **_lowerCAmelCase : Optional[int] , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) __snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _lowerCAmelCase ) != tokenize_chinese_chars ): __snake_case : Union[str, Any] = getattr(_lowerCAmelCase , normalizer_state.pop("""type""" ) ) __snake_case : List[Any] = do_lower_case __snake_case : Optional[int] = strip_accents __snake_case : List[str] = tokenize_chinese_chars __snake_case : Optional[int] = normalizer_class(**_lowerCAmelCase ) __snake_case : Optional[Any] = do_lower_case def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any=None ): __snake_case : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): __snake_case : Union[str, Any] = [self.sep_token_id] __snake_case : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : List[Any] = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
20
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Union[str, Any] = "gptj" A : Optional[Any] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , _lowerCAmelCase : str=5_04_00 , _lowerCAmelCase : List[str]=20_48 , _lowerCAmelCase : str=40_96 , _lowerCAmelCase : Optional[Any]=28 , _lowerCAmelCase : Any=16 , _lowerCAmelCase : Dict=64 , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[Any]="gelu_new" , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : Optional[int]=1e-5 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=5_02_56 , _lowerCAmelCase : Optional[Any]=5_02_56 , _lowerCAmelCase : Dict=False , **_lowerCAmelCase : Tuple , ): __snake_case : List[Any] = vocab_size __snake_case : List[Any] = n_positions __snake_case : str = n_embd __snake_case : List[Any] = n_layer __snake_case : Optional[int] = n_head __snake_case : List[Any] = n_inner __snake_case : Optional[Any] = rotary_dim __snake_case : Any = activation_function __snake_case : Optional[int] = resid_pdrop __snake_case : List[Any] = embd_pdrop __snake_case : Optional[Any] = attn_pdrop __snake_case : Dict = layer_norm_epsilon __snake_case : Any = initializer_range __snake_case : Union[str, Any] = use_cache __snake_case : Optional[int] = bos_token_id __snake_case : Tuple = eos_token_id super().__init__( bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , **_lowerCAmelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : int , _lowerCAmelCase : PretrainedConfig , _lowerCAmelCase : str = "default" , _lowerCAmelCase : List[PatchingSpec] = None , _lowerCAmelCase : bool = False , ): super().__init__(_lowerCAmelCase , task=_lowerCAmelCase , patching_specs=_lowerCAmelCase , use_past=_lowerCAmelCase ) if not getattr(self._config , """pad_token_id""" , _lowerCAmelCase ): # TODO: how to do that better? __snake_case : List[str] = 0 @property def snake_case__ ( self : Union[str, Any] ): __snake_case : Tuple = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="""inputs""" ) __snake_case : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: __snake_case : Tuple = {0: """batch""", 1: """sequence"""} return common_inputs @property def snake_case__ ( self : Tuple ): return self._config.n_layer @property def snake_case__ ( self : List[str] ): return self._config.n_head def snake_case__ ( self : str , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): __snake_case : Tuple = super(_lowerCAmelCase , self ).generate_dummy_inputs( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) # We need to order the input in the way they appears in the forward() __snake_case : Optional[int] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __snake_case , __snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __snake_case : List[str] = seqlen + 2 __snake_case : List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case : List[str] = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers ) ] __snake_case : Dict = common_inputs["""attention_mask"""] if self.use_past: __snake_case : Tuple = ordered_inputs["""attention_mask"""].dtype __snake_case : Union[str, Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 ) return ordered_inputs @property def snake_case__ ( self : List[str] ): return 13
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
from ...configuration_utils import PretrainedConfig lowercase_ = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[Any] = "tapas" def __init__( self : Optional[int] , _lowerCAmelCase : List[str]=3_05_22 , _lowerCAmelCase : Tuple=7_68 , _lowerCAmelCase : int=12 , _lowerCAmelCase : List[str]=12 , _lowerCAmelCase : Optional[Any]=30_72 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=10_24 , _lowerCAmelCase : Dict=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] , _lowerCAmelCase : int=0.02 , _lowerCAmelCase : List[Any]=1e-12 , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : Dict=10.0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : int=None , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=1.0 , _lowerCAmelCase : List[str]=1.0 , _lowerCAmelCase : Any=False , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Union[str, Any]="ratio" , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=None , _lowerCAmelCase : Dict=64 , _lowerCAmelCase : str=32 , _lowerCAmelCase : str=False , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=False , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Tuple=None , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __snake_case : List[str] = vocab_size __snake_case : Dict = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : List[str] = hidden_act __snake_case : Any = intermediate_size __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : str = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : List[str] = type_vocab_sizes __snake_case : Dict = initializer_range __snake_case : Dict = layer_norm_eps # Fine-tuning task hyperparameters __snake_case : int = positive_label_weight __snake_case : str = num_aggregation_labels __snake_case : Dict = aggregation_loss_weight __snake_case : Dict = use_answer_as_supervision __snake_case : Dict = answer_loss_importance __snake_case : Union[str, Any] = use_normalized_answer_loss __snake_case : Optional[Any] = huber_loss_delta __snake_case : List[Any] = temperature __snake_case : int = aggregation_temperature __snake_case : Any = use_gumbel_for_cells __snake_case : str = use_gumbel_for_aggregation __snake_case : Any = average_approximation_function __snake_case : int = cell_selection_preference __snake_case : Dict = answer_loss_cutoff __snake_case : Any = max_num_rows __snake_case : List[Any] = max_num_columns __snake_case : Tuple = average_logits_per_cell __snake_case : int = select_one_column __snake_case : Dict = allow_empty_column_selection __snake_case : Tuple = init_cell_selection_weights_to_zero __snake_case : Dict = reset_position_index_per_cell __snake_case : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __snake_case : Any = aggregation_labels __snake_case : Dict = no_aggregation_label_index if isinstance(self.aggregation_labels , _lowerCAmelCase ): __snake_case : List[Any] = {int(_lowerCAmelCase ): v for k, v in aggregation_labels.items()}
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["ViTFeatureExtractor"] lowercase_ = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def snake_case__ ( self : Any ): __snake_case : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) __snake_case : List[str] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __snake_case : Union[str, Any] = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim __snake_case : List[str] = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __snake_case : Dict = model(_lowerCAmelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape , _lowerCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCAmelCase , atol=1e-3 ) ) @slow def snake_case__ ( self : Tuple ): __snake_case : Union[str, Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) __snake_case : Union[str, Any] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __snake_case : Union[str, Any] = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim __snake_case : Optional[Any] = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __snake_case : str = model(_lowerCAmelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape , _lowerCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCAmelCase , atol=1e-3 ) )
20
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __snake_case , __snake_case : str = array[indexa], array[indexa] def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Tuple = int(length / 2 ) for i in range(__SCREAMING_SNAKE_CASE , low + middle ): comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Optional[Any] = int(length / 2 ) bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 ) bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
20
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' __snake_case : Optional[int] = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } __snake_case , __snake_case : Tuple = input_paths_and_base_extractors[compression_format] if input_path is None: __snake_case : Tuple = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__SCREAMING_SNAKE_CASE ) assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE ) __snake_case : List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case : List[str] = file_path.read_text(encoding="""utf-8""" ) else: __snake_case : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) __snake_case : int = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' __snake_case : Union[str, Any] = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } __snake_case : int = input_paths[compression_format] if input_path is None: __snake_case : int = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__SCREAMING_SNAKE_CASE ) __snake_case : Any = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE ) assert extractor_format is not None __snake_case : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case : Union[str, Any] = file_path.read_text(encoding="""utf-8""" ) else: __snake_case : Union[str, Any] = output_path.read_text(encoding="""utf-8""" ) __snake_case : Optional[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' import tarfile __snake_case : List[str] = tmp_path / """data_dot_dot""" directory.mkdir() __snake_case : Optional[Any] = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' import tarfile __snake_case : Dict = tmp_path / """data_sym_link""" directory.mkdir() __snake_case : Tuple = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE ) with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' __snake_case : Any = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } __snake_case : int = insecure_tar_files[insecure_tar_file] __snake_case : Optional[int] = tmp_path / """extracted""" TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __snake_case : Optional[Any] = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 __snake_case : List[str] = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(__SCREAMING_SNAKE_CASE ) assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
20
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' __snake_case : Optional[int] = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } __snake_case , __snake_case : Tuple = input_paths_and_base_extractors[compression_format] if input_path is None: __snake_case : Tuple = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__SCREAMING_SNAKE_CASE ) assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE ) __snake_case : List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case : List[str] = file_path.read_text(encoding="""utf-8""" ) else: __snake_case : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) __snake_case : int = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' __snake_case : Union[str, Any] = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } __snake_case : int = input_paths[compression_format] if input_path is None: __snake_case : int = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__SCREAMING_SNAKE_CASE ) __snake_case : Any = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE ) assert extractor_format is not None __snake_case : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case : Union[str, Any] = file_path.read_text(encoding="""utf-8""" ) else: __snake_case : Union[str, Any] = output_path.read_text(encoding="""utf-8""" ) __snake_case : Optional[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' import tarfile __snake_case : List[str] = tmp_path / """data_dot_dot""" directory.mkdir() __snake_case : Optional[Any] = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' import tarfile __snake_case : Dict = tmp_path / """data_sym_link""" directory.mkdir() __snake_case : Tuple = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE ) with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' __snake_case : Any = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } __snake_case : int = insecure_tar_files[insecure_tar_file] __snake_case : Optional[int] = tmp_path / """extracted""" TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __snake_case : Optional[Any] = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 __snake_case : List[str] = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(__SCREAMING_SNAKE_CASE ) assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
20
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : Any ): __snake_case : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __snake_case : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __snake_case : List[str] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __snake_case : str = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case : Any = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) # load decoder from hub __snake_case : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Tuple ): __snake_case : int = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , **_lowerCAmelCase : Optional[int] ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Dict , **_lowerCAmelCase : Tuple ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase ) def snake_case__ ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def snake_case__ ( self : Union[str, Any] ): __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : Tuple = self.get_feature_extractor() __snake_case : Dict = self.get_decoder() __snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) __snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : Tuple = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def snake_case__ ( self : int ): __snake_case : Tuple = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(_lowerCAmelCase , """include""" ): WavaVecaProcessorWithLM( tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def snake_case__ ( self : Dict ): __snake_case : int = self.get_feature_extractor() __snake_case : str = self.get_tokenizer() __snake_case : Dict = self.get_decoder() __snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : List[Any] = floats_list((3, 10_00) ) __snake_case : Optional[Any] = feature_extractor(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Tuple = processor(_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self : Optional[int] ): __snake_case : Any = self.get_feature_extractor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Optional[int] = """This is a test string""" __snake_case : Union[str, Any] = processor(text=_lowerCAmelCase ) __snake_case : Dict = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case__ ( self : List[str] , _lowerCAmelCase : List[Any]=(2, 10, 16) , _lowerCAmelCase : str=77 ): np.random.seed(_lowerCAmelCase ) return np.random.rand(*_lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : List[str] = self.get_feature_extractor() __snake_case : List[str] = self.get_tokenizer() __snake_case : List[str] = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case : int = processor.decode(_lowerCAmelCase ) __snake_case : Optional[int] = decoder.decode_beams(_lowerCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] ): __snake_case : int = self.get_feature_extractor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : int = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case : Tuple = processor.batch_decode(_lowerCAmelCase ) else: with get_context(_lowerCAmelCase ).Pool() as pool: __snake_case : int = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : int = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as p: __snake_case : Tuple = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase ) __snake_case , __snake_case , __snake_case : List[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCAmelCase , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score ) self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score ) def snake_case__ ( self : Optional[int] ): __snake_case : Optional[Any] = self.get_feature_extractor() __snake_case : int = self.get_tokenizer() __snake_case : str = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : int = self._get_dummy_logits() __snake_case : List[str] = 15 __snake_case : Optional[Any] = -20.0 __snake_case : Tuple = -4.0 __snake_case : List[Any] = processor.batch_decode( _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) __snake_case : List[str] = decoded_processor_out.text __snake_case : str = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as pool: __snake_case : Dict = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) __snake_case : int = [d[0][0] for d in decoded_decoder_out] __snake_case : List[Any] = [d[0][2] for d in decoded_decoder_out] __snake_case : List[Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1e-3 ) ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1e-3 ) ) def snake_case__ ( self : Any ): __snake_case : List[Any] = self.get_feature_extractor() __snake_case : Any = self.get_tokenizer() __snake_case : Union[str, Any] = self.get_decoder() __snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Any = self._get_dummy_logits() __snake_case : Any = 2.0 __snake_case : int = 5.0 __snake_case : Optional[int] = -20.0 __snake_case : Optional[int] = True __snake_case : Any = processor.batch_decode( _lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) __snake_case : str = decoded_processor_out.text __snake_case : int = list(_lowerCAmelCase ) decoder.reset_params( alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) with get_context("""fork""" ).Pool() as pool: __snake_case : Tuple = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , ) __snake_case : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase ) __snake_case : List[str] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] __snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __snake_case : Union[str, Any] = os.listdir(_lowerCAmelCase ) __snake_case : List[str] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase ) __snake_case : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __snake_case : List[str] = os.listdir(_lowerCAmelCase ) __snake_case : List[Any] = os.listdir(_lowerCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Optional[int] = floats_list((3, 10_00) ) __snake_case : Union[str, Any] = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Union[str, Any] = processor_auto(_lowerCAmelCase , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case : Dict = self._get_dummy_logits() __snake_case : List[Any] = processor_wavaveca.batch_decode(_lowerCAmelCase ) __snake_case : List[Any] = processor_auto.batch_decode(_lowerCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def snake_case__ ( self : str ): __snake_case : int = self.get_feature_extractor() __snake_case : List[str] = self.get_tokenizer() __snake_case : Optional[Any] = self.get_decoder() __snake_case : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def snake_case__ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): __snake_case : Union[str, Any] = [d[key] for d in offsets] return retrieved_list def snake_case__ ( self : Dict ): __snake_case : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : List[str] = self._get_dummy_logits()[0] __snake_case : str = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def snake_case__ ( self : List[str] ): __snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Optional[int] = self._get_dummy_logits() __snake_case : int = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def snake_case__ ( self : Optional[Any] ): import torch __snake_case : Optional[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase ) __snake_case : Any = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) __snake_case : List[Any] = iter(_lowerCAmelCase ) __snake_case : Optional[int] = next(_lowerCAmelCase ) __snake_case : str = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __snake_case : str = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __snake_case : Dict = model(_lowerCAmelCase ).logits.cpu().numpy() __snake_case : Any = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase ) __snake_case : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case : Dict = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __snake_case : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase ) self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text ) # output times __snake_case : Dict = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) ) __snake_case : Optional[Any] = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) ) # fmt: off __snake_case : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __snake_case : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
20
1
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowercase_ = "Usage of script: script_name <size_of_canvas:int>" lowercase_ = [0] * 1_00 + [1] * 10 random.shuffle(choice) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : List[str] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )] return canvas def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' for i, row in enumerate(__SCREAMING_SNAKE_CASE ): for j, _ in enumerate(__SCREAMING_SNAKE_CASE ): __snake_case : int = bool(random.getrandbits(1 ) ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' __snake_case : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__SCREAMING_SNAKE_CASE ): for c, pt in enumerate(__SCREAMING_SNAKE_CASE ): __snake_case : Optional[Any] = __judge_point( __SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __snake_case : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __snake_case : list[list[bool]] = current_canvas.tolist() return return_canvas def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' __snake_case : Any = 0 __snake_case : Dict = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __snake_case : str = pt if pt: if alive < 2: __snake_case : Optional[Any] = False elif alive == 2 or alive == 3: __snake_case : Union[str, Any] = True elif alive > 3: __snake_case : Optional[int] = False else: if alive == 3: __snake_case : List[Any] = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowercase_ = int(sys.argv[1]) # main working structure of this module. lowercase_ = create_canvas(canvas_size) seed(c) lowercase_ , lowercase_ = plt.subplots() fig.show() lowercase_ = ListedColormap(["w", "k"]) try: while True: lowercase_ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
20
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowercase_ = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ): '''simple docstring''' __snake_case , __snake_case : str = create_model( """HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : Union[str, Any] = {} __snake_case : List[Any] = R""".*sequential.(\d+).*""" __snake_case : Union[str, Any] = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # replace sequential layers with list __snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) __snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' ) elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __snake_case : List[Any] = 1 if projecton_layer == 0 else 2 __snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value __snake_case : Optional[int] = value __snake_case : Any = mixed_qkv.size(0 ) // 3 __snake_case : List[Any] = mixed_qkv[:qkv_dim] __snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :] __snake_case : Any = query_layer __snake_case : Dict = key_layer __snake_case : Optional[Any] = value_layer else: __snake_case : List[str] = value return model_state_dict def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ): '''simple docstring''' __snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE ) clap_model.eval() __snake_case : Tuple = clap_model.state_dict() __snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = ClapConfig() __snake_case : Tuple = enable_fusion __snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE ) # ignore the spectrogram embedding layer model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") lowercase_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
20
1
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=1E-12 ): '''simple docstring''' __snake_case : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__SCREAMING_SNAKE_CASE , axis=1 ) , a_min=__SCREAMING_SNAKE_CASE ) ).T __snake_case : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__SCREAMING_SNAKE_CASE , axis=1 ) , a_min=__SCREAMING_SNAKE_CASE ) ).T return jnp.matmul(__SCREAMING_SNAKE_CASE , norm_emb_a.T ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): A : CLIPConfig A : jnp.dtype = jnp.floataa def snake_case__ ( self : str ): __snake_case : List[Any] = FlaxCLIPVisionModule(self.config.vision_config ) __snake_case : Union[str, Any] = nn.Dense(self.config.projection_dim , use_bias=_lowerCAmelCase , dtype=self.dtype ) __snake_case : Optional[Any] = self.param("""concept_embeds""" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __snake_case : Optional[int] = self.param( """special_care_embeds""" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __snake_case : Union[str, Any] = self.param("""concept_embeds_weights""" , jax.nn.initializers.ones , (17,) ) __snake_case : List[str] = self.param("""special_care_embeds_weights""" , jax.nn.initializers.ones , (3,) ) def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] ): __snake_case : Tuple = self.vision_model(_lowerCAmelCase )[1] __snake_case : int = self.visual_projection(_lowerCAmelCase ) __snake_case : List[Any] = jax_cosine_distance(_lowerCAmelCase , self.special_care_embeds ) __snake_case : Optional[int] = jax_cosine_distance(_lowerCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __snake_case : List[str] = 0.0 __snake_case : List[str] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __snake_case : Tuple = jnp.round(_lowerCAmelCase , 3 ) __snake_case : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=_lowerCAmelCase ) # Use a lower threshold if an image has any special care concept __snake_case : str = is_special_care * 0.01 __snake_case : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __snake_case : Any = jnp.round(_lowerCAmelCase , 3 ) __snake_case : Optional[int] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Union[str, Any] = CLIPConfig A : List[str] = "clip_input" A : str = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Tuple , _lowerCAmelCase : CLIPConfig , _lowerCAmelCase : Optional[Tuple] = None , _lowerCAmelCase : int = 0 , _lowerCAmelCase : jnp.dtype = jnp.floataa , _lowerCAmelCase : bool = True , **_lowerCAmelCase : List[Any] , ): if input_shape is None: __snake_case : List[str] = (1, 2_24, 2_24, 3) __snake_case : Dict = self.module_class(config=_lowerCAmelCase , dtype=_lowerCAmelCase , **_lowerCAmelCase ) super().__init__(_lowerCAmelCase , _lowerCAmelCase , input_shape=_lowerCAmelCase , seed=_lowerCAmelCase , dtype=_lowerCAmelCase , _do_init=_do_init ) def snake_case__ ( self : List[Any] , _lowerCAmelCase : jax.random.KeyArray , _lowerCAmelCase : Tuple , _lowerCAmelCase : FrozenDict = None ): # init input tensor __snake_case : int = jax.random.normal(_lowerCAmelCase , _lowerCAmelCase ) __snake_case , __snake_case : Dict = jax.random.split(_lowerCAmelCase ) __snake_case : Dict = {"""params""": params_rng, """dropout""": dropout_rng} __snake_case : Union[str, Any] = self.module.init(_lowerCAmelCase , _lowerCAmelCase )["""params"""] return random_params def __call__( self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : dict = None , ): __snake_case : Optional[int] = jnp.transpose(_lowerCAmelCase , (0, 2, 3, 1) ) return self.module.apply( {"""params""": params or self.params} , jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) , rngs={} , )
20
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = "▁" lowercase_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} lowercase_ = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } lowercase_ = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } lowercase_ = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } lowercase_ = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[str] = ["input_ids"] A : Tuple = VOCAB_FILES_NAMES A : List[Any] = PRETRAINED_INIT_CONFIGURATION A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A : Optional[Any] = RESOURCE_FILES_NAMES def __init__( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]="utf8" , _lowerCAmelCase : Optional[Any]="[UNK]" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : List[Any]="[MASK]" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , vocab_file=_lowerCAmelCase , encoding=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __snake_case : List[Any] = do_lower_case __snake_case : Any = sentencepiece_model_ckpt __snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __snake_case : int = self.load_vocab(filepath=_lowerCAmelCase ) else: __snake_case : Tuple = {self.sp_model.id_to_piece(_lowerCAmelCase ): id for id in range(self.sp_model.get_piece_size() )} __snake_case : str = {v: k for k, v in self.vocab.items()} def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[Any] ): if text is None: return None __snake_case : List[Any] = self.tokenize(_lowerCAmelCase ) __snake_case , __snake_case : Optional[Any] = """""", [] for i, ch in enumerate(_lowerCAmelCase ): if ch in self.SP_CHAR_MAPPING: __snake_case : Any = self.SP_CHAR_MAPPING.get(_lowerCAmelCase ) else: __snake_case : Dict = unicodedata.normalize("""NFKC""" , _lowerCAmelCase ) if self.is_whitespace(_lowerCAmelCase ): continue normalized_text += ch char_mapping.extend([i] * len(_lowerCAmelCase ) ) __snake_case , __snake_case , __snake_case : str = normalized_text, [], 0 if self.do_lower_case: __snake_case : int = text.lower() for token in split_tokens: if token[:1] == "▁": __snake_case : int = token[1:] __snake_case : Optional[int] = text[offset:].index(_lowerCAmelCase ) + offset __snake_case : int = start + len(_lowerCAmelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __snake_case : str = end return token_mapping @property def snake_case__ ( self : Tuple ): return len(self.vocab ) def snake_case__ ( self : Dict ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : int ): __snake_case : str = self.__dict__.copy() __snake_case : Union[str, Any] = None return state def __setstate__( self : Optional[Any] , _lowerCAmelCase : List[str] ): __snake_case : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __snake_case : Optional[Any] = {} __snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] ): return "".join((self.SP_CHAR_MAPPING.get(_lowerCAmelCase , _lowerCAmelCase ) for c in text) ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[int]=0.1 ): if self.sp_model_kwargs.get("""enable_sampling""" ) is True: __snake_case : List[str] = True if self.sp_model_kwargs.get("""alpha""" ) is not None: __snake_case : Dict = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: __snake_case : List[Any] = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: __snake_case : str = self.sp_model.EncodeAsPieces(_lowerCAmelCase ) else: __snake_case : Tuple = self.sp_model.SampleEncodeAsPieces(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case : Union[str, Any] = [] for pi, piece in enumerate(_lowerCAmelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_lowerCAmelCase ) and pi != 0: new_pieces.append(_lowerCAmelCase ) continue else: continue __snake_case : Optional[int] = 0 for i, chunk in enumerate(_lowerCAmelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_lowerCAmelCase ) or self.is_punct(_lowerCAmelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_lowerCAmelCase ) __snake_case : Tuple = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __snake_case : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __snake_case : Tuple = i if len(_lowerCAmelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): __snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ): __snake_case : int = self.convert_ids_to_tokens(_lowerCAmelCase ) __snake_case : Any = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ): return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict ): return self.reverse_vocab.get(_lowerCAmelCase , self.unk_token ) def snake_case__ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] __snake_case : Optional[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1] def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(_lowerCAmelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_lowerCAmelCase ) + 1) + [1] * (len(_lowerCAmelCase ) + 3) def snake_case__ ( self : Tuple , _lowerCAmelCase : List[str] ): if "\u4e00" <= char <= "\u9fff": return True return False def snake_case__ ( self : List[str] , _lowerCAmelCase : Any ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def snake_case__ ( self : int , _lowerCAmelCase : List[Any] ): if char in ",;:.?!~,;:。?!《》【】": return True return False def snake_case__ ( self : str , _lowerCAmelCase : Optional[Any] ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_lowerCAmelCase ) == 1: __snake_case : Dict = unicodedata.category(_lowerCAmelCase ) if cat == "Zs": return True return False def snake_case__ ( self : str , _lowerCAmelCase : List[Any] ): __snake_case : Dict = {} with io.open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(_lowerCAmelCase ): __snake_case : Tuple = line.rstrip("""\n""" ) __snake_case : List[str] = int(_lowerCAmelCase ) return token_to_idx def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : Optional[int] = 0 if os.path.isdir(_lowerCAmelCase ): __snake_case : int = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: __snake_case : Optional[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) __snake_case : Union[str, Any] = token_index writer.write(token + """\n""" ) index += 1 __snake_case : List[Any] = os.path.join(_lowerCAmelCase , """sentencepiece.bpe.model""" ) with open(_lowerCAmelCase , """wb""" ) as fi: __snake_case : List[Any] = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (vocab_file,)
20
1
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ : def __init__( self : Any ): __snake_case : Dict = False def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ): if not self.initialized: __snake_case : str = RagRetriever( _lowerCAmelCase , question_encoder_tokenizer=_lowerCAmelCase , generator_tokenizer=_lowerCAmelCase , index=_lowerCAmelCase , init_retrieval=_lowerCAmelCase , ) __snake_case : Any = True def snake_case__ ( self : Optional[int] ): self.retriever.index.init_index() def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] ): __snake_case , __snake_case : List[Any] = self.retriever._main_retrieve(_lowerCAmelCase , _lowerCAmelCase ) return doc_ids, retrieved_doc_embeds class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : str=None ): if index is not None and index.is_initialized() and len(_lowerCAmelCase ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( _lowerCAmelCase , question_encoder_tokenizer=_lowerCAmelCase , generator_tokenizer=_lowerCAmelCase , index=_lowerCAmelCase , init_retrieval=_lowerCAmelCase , ) __snake_case : str = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for worker in self.retrieval_workers ] ) def snake_case__ ( self : Any ): logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def snake_case__ ( self : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple ): if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __snake_case : List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __snake_case , __snake_case : Optional[Any] = ray.get(random_worker.retrieve.remote(_lowerCAmelCase , _lowerCAmelCase ) ) else: __snake_case , __snake_case : List[Any] = self._main_retrieve(_lowerCAmelCase , _lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_lowerCAmelCase ) @classmethod def snake_case__ ( cls : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None , **_lowerCAmelCase : Optional[int] ): return super(_lowerCAmelCase , cls ).get_tokenizers(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) @classmethod def snake_case__ ( cls : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str]=None , **_lowerCAmelCase : Optional[Any] ): __snake_case : List[str] = kwargs.pop("""config""" , _lowerCAmelCase ) or RagConfig.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) __snake_case : Dict = RagTokenizer.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) __snake_case : Any = rag_tokenizer.question_encoder __snake_case : Any = rag_tokenizer.generator if indexed_dataset is not None: __snake_case : Dict = """custom""" __snake_case : List[Any] = CustomHFIndex(config.retrieval_vector_size , _lowerCAmelCase ) else: __snake_case : Optional[int] = cls._build_index(_lowerCAmelCase ) return cls( _lowerCAmelCase , question_encoder_tokenizer=_lowerCAmelCase , generator_tokenizer=_lowerCAmelCase , retrieval_workers=_lowerCAmelCase , index=_lowerCAmelCase , )
20
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[str] = "xlm" A : List[str] = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any]=3_01_45 , _lowerCAmelCase : Optional[Any]=20_48 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : int=16 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=5_12 , _lowerCAmelCase : List[Any]=20_48**-0.5 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple="first" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Tuple , ): __snake_case : Optional[Any] = vocab_size __snake_case : Tuple = emb_dim __snake_case : int = n_layers __snake_case : List[str] = n_heads __snake_case : Union[str, Any] = dropout __snake_case : Optional[int] = attention_dropout __snake_case : Optional[Any] = gelu_activation __snake_case : Tuple = sinusoidal_embeddings __snake_case : List[Any] = causal __snake_case : Dict = asm __snake_case : int = n_langs __snake_case : str = use_lang_emb __snake_case : Dict = layer_norm_eps __snake_case : List[Any] = bos_index __snake_case : Union[str, Any] = eos_index __snake_case : Dict = pad_index __snake_case : Any = unk_index __snake_case : Dict = mask_index __snake_case : Any = is_encoder __snake_case : Dict = max_position_embeddings __snake_case : Optional[Any] = embed_init_std __snake_case : List[Any] = init_std __snake_case : str = summary_type __snake_case : Optional[Any] = summary_use_proj __snake_case : str = summary_activation __snake_case : Optional[int] = summary_proj_to_labels __snake_case : Dict = summary_first_dropout __snake_case : Dict = start_n_top __snake_case : int = end_n_top __snake_case : str = mask_token_id __snake_case : int = lang_id if "n_words" in kwargs: __snake_case : Dict = kwargs["""n_words"""] super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): @property def snake_case__ ( self : Dict ): if self.task == "multiple-choice": __snake_case : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
20
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : str , _lowerCAmelCase : Any , _lowerCAmelCase : int=13 , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : int=True , _lowerCAmelCase : List[str]=99 , _lowerCAmelCase : Any=32 , _lowerCAmelCase : str=5 , _lowerCAmelCase : str=4 , _lowerCAmelCase : Dict=37 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[str]=5_12 , _lowerCAmelCase : Optional[Any]=16 , _lowerCAmelCase : str=2 , _lowerCAmelCase : Union[str, Any]=0.02 , _lowerCAmelCase : int=3 , _lowerCAmelCase : int=4 , _lowerCAmelCase : Optional[int]=None , ): __snake_case : int = parent __snake_case : str = batch_size __snake_case : str = seq_length __snake_case : Any = is_training __snake_case : Tuple = use_token_type_ids __snake_case : Optional[Any] = use_labels __snake_case : Optional[int] = vocab_size __snake_case : Any = hidden_size __snake_case : Any = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : List[Any] = intermediate_size __snake_case : Optional[Any] = hidden_act __snake_case : List[Any] = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : int = initializer_range __snake_case : int = num_labels __snake_case : Tuple = num_choices __snake_case : Tuple = scope __snake_case : List[str] = self.vocab_size - 1 def snake_case__ ( self : Tuple ): __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Optional[int] = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : str = None __snake_case : Dict = None __snake_case : Any = None if self.use_labels: __snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[str] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __snake_case : Dict = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , *_lowerCAmelCase : List[str] ): __snake_case : int = OpenAIGPTModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Any = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase ) __snake_case : Dict = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) __snake_case : List[Any] = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , *_lowerCAmelCase : Any ): __snake_case : Optional[int] = OpenAIGPTLMHeadModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Optional[int] = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , *_lowerCAmelCase : Optional[Any] ): __snake_case : Any = OpenAIGPTDoubleHeadsModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : int = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : List[str] ): __snake_case : int = self.num_labels __snake_case : str = OpenAIGPTForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Tuple = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Tuple ): __snake_case : Optional[int] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Optional[Any] = config_and_inputs __snake_case : Dict = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): A : Union[str, Any] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) A : Union[str, Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly A : Optional[Any] = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def snake_case__ ( self : str , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=False ): __snake_case : List[Any] = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __snake_case : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase , ) __snake_case : List[Any] = inputs_dict["""labels"""] __snake_case : str = inputs_dict["""labels"""] __snake_case : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_lowerCAmelCase , ) __snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def snake_case__ ( self : Any ): __snake_case : Tuple = OpenAIGPTModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=_lowerCAmelCase , n_embd=37 ) def snake_case__ ( self : str ): self.config_tester.run_common_tests() def snake_case__ ( self : str ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_lowerCAmelCase ) def snake_case__ ( self : str ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] ): __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_lowerCAmelCase ) @slow def snake_case__ ( self : int ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Optional[Any] = OpenAIGPTModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def snake_case__ ( self : List[str] ): __snake_case : List[str] = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_lowerCAmelCase ) __snake_case : List[str] = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_lowerCAmelCase ) # the president is __snake_case : int = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the __snake_case : Optional[Any] = model.generate(_lowerCAmelCase , do_sample=_lowerCAmelCase ) self.assertListEqual(output_ids[0].tolist() , _lowerCAmelCase )
20
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[Any] = "encodec" def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase : Tuple=2_40_00 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : int=1_28 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Union[str, Any]=[8, 5, 4, 2] , _lowerCAmelCase : str="weight_norm" , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict="reflect" , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : Optional[int]=10_24 , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , **_lowerCAmelCase : List[Any] , ): __snake_case : Optional[int] = target_bandwidths __snake_case : int = sampling_rate __snake_case : List[Any] = audio_channels __snake_case : str = normalize __snake_case : Union[str, Any] = chunk_length_s __snake_case : Union[str, Any] = overlap __snake_case : Union[str, Any] = hidden_size __snake_case : Union[str, Any] = num_filters __snake_case : Optional[Any] = num_residual_layers __snake_case : List[Any] = upsampling_ratios __snake_case : List[str] = norm_type __snake_case : Union[str, Any] = kernel_size __snake_case : Optional[int] = last_kernel_size __snake_case : Optional[Any] = residual_kernel_size __snake_case : Dict = dilation_growth_rate __snake_case : int = use_causal_conv __snake_case : Tuple = pad_mode __snake_case : str = compress __snake_case : Optional[Any] = num_lstm_layers __snake_case : List[Any] = trim_right_ratio __snake_case : Any = codebook_size __snake_case : int = codebook_dim if codebook_dim is not None else hidden_size __snake_case : int = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**_lowerCAmelCase ) @property def snake_case__ ( self : int ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def snake_case__ ( self : int ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def snake_case__ ( self : Union[str, Any] ): __snake_case : List[str] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def snake_case__ ( self : Tuple ): return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
20
1
from math import ceil def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int = 1_0_0_1 ): '''simple docstring''' __snake_case : Optional[Any] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __snake_case : Tuple = 2 * i + 1 __snake_case : Optional[Any] = 2 * i __snake_case : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: lowercase_ = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
20
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : str = [] __snake_case , __snake_case : List[str] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __snake_case : List[Any] = result + left + right return input_list def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(__SCREAMING_SNAKE_CASE ) <= 1: return input_list __snake_case : Union[str, Any] = list(__SCREAMING_SNAKE_CASE ) # iteration for two-way merging __snake_case : Tuple = 2 while p <= len(__SCREAMING_SNAKE_CASE ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ): __snake_case : List[str] = i __snake_case : str = i + p - 1 __snake_case : Optional[Any] = (low + high + 1) // 2 __snake_case : str = merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # final merge of last two parts if p * 2 >= len(__SCREAMING_SNAKE_CASE ): __snake_case : List[str] = i __snake_case : str = merge(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() if user_input == "": lowercase_ = [] else: lowercase_ = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
20
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowercase_ = logging.get_logger(__name__) # General docstring lowercase_ = "RegNetConfig" # Base docstring lowercase_ = "facebook/regnet-y-040" lowercase_ = [1, 10_88, 7, 7] # Image classification docstring lowercase_ = "facebook/regnet-y-040" lowercase_ = "tabby, tabby cat" lowercase_ = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : Optional[str] = "relu" , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __snake_case : Dict = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __snake_case : Optional[Any] = tf.keras.layers.ConvaD( filters=_lowerCAmelCase , kernel_size=_lowerCAmelCase , strides=_lowerCAmelCase , padding="""VALID""" , groups=_lowerCAmelCase , use_bias=_lowerCAmelCase , name="""convolution""" , ) __snake_case : str = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) __snake_case : int = ACTaFN[activation] if activation is not None else tf.identity def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Dict ): __snake_case : List[Any] = self.convolution(self.padding(_lowerCAmelCase ) ) __snake_case : List[str] = self.normalization(_lowerCAmelCase ) __snake_case : Optional[int] = self.activation(_lowerCAmelCase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self : str , _lowerCAmelCase : RegNetConfig , **_lowerCAmelCase : List[str] ): super().__init__(**_lowerCAmelCase ) __snake_case : Tuple = config.num_channels __snake_case : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def snake_case__ ( self : List[Any] , _lowerCAmelCase : Optional[int] ): __snake_case : List[str] = shape_list(_lowerCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __snake_case : Tuple = tf.transpose(_lowerCAmelCase , perm=(0, 2, 3, 1) ) __snake_case : Union[str, Any] = self.embedder(_lowerCAmelCase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int = 2 , **_lowerCAmelCase : Dict ): super().__init__(**_lowerCAmelCase ) __snake_case : int = tf.keras.layers.ConvaD( filters=_lowerCAmelCase , kernel_size=1 , strides=_lowerCAmelCase , use_bias=_lowerCAmelCase , name="""convolution""" ) __snake_case : Any = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) def snake_case__ ( self : List[str] , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : bool = False ): return self.normalization(self.convolution(_lowerCAmelCase ) , training=_lowerCAmelCase ) class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int , **_lowerCAmelCase : Optional[int] ): super().__init__(**_lowerCAmelCase ) __snake_case : str = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowerCAmelCase , name="""pooler""" ) __snake_case : int = [ tf.keras.layers.ConvaD(filters=_lowerCAmelCase , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=_lowerCAmelCase , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Optional[int] ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __snake_case : Optional[int] = self.pooler(_lowerCAmelCase ) for layer_module in self.attention: __snake_case : int = layer_module(_lowerCAmelCase ) __snake_case : List[Any] = hidden_state * pooled return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self : str , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 1 , **_lowerCAmelCase : Dict ): super().__init__(**_lowerCAmelCase ) __snake_case : str = in_channels != out_channels or stride != 1 __snake_case : int = max(1 , out_channels // config.groups_width ) __snake_case : Dict = ( TFRegNetShortCut(_lowerCAmelCase , stride=_lowerCAmelCase , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __snake_case : Any = [ TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( _lowerCAmelCase , stride=_lowerCAmelCase , groups=_lowerCAmelCase , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=_lowerCAmelCase , name="""layer.2""" ), ] __snake_case : Optional[int] = ACTaFN[config.hidden_act] def snake_case__ ( self : Tuple , _lowerCAmelCase : Union[str, Any] ): __snake_case : Optional[Any] = hidden_state for layer_module in self.layers: __snake_case : List[str] = layer_module(_lowerCAmelCase ) __snake_case : Union[str, Any] = self.shortcut(_lowerCAmelCase ) hidden_state += residual __snake_case : Any = self.activation(_lowerCAmelCase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self : Optional[int] , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 1 , **_lowerCAmelCase : Optional[int] ): super().__init__(**_lowerCAmelCase ) __snake_case : Optional[Any] = in_channels != out_channels or stride != 1 __snake_case : Dict = max(1 , out_channels // config.groups_width ) __snake_case : Optional[Any] = ( TFRegNetShortCut(_lowerCAmelCase , stride=_lowerCAmelCase , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) __snake_case : int = [ TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( _lowerCAmelCase , stride=_lowerCAmelCase , groups=_lowerCAmelCase , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(_lowerCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=_lowerCAmelCase , name="""layer.3""" ), ] __snake_case : Tuple = ACTaFN[config.hidden_act] def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[Any] ): __snake_case : int = hidden_state for layer_module in self.layers: __snake_case : List[str] = layer_module(_lowerCAmelCase ) __snake_case : Union[str, Any] = self.shortcut(_lowerCAmelCase ) hidden_state += residual __snake_case : int = self.activation(_lowerCAmelCase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self : str , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , **_lowerCAmelCase : List[Any] ): super().__init__(**_lowerCAmelCase ) __snake_case : Tuple = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer __snake_case : Optional[Any] = [ # downsampling is done in the first layer with stride of 2 layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , stride=_lowerCAmelCase , name="""layers.0""" ), *[layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ): for layer_module in self.layers: __snake_case : int = layer_module(_lowerCAmelCase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self : Tuple , _lowerCAmelCase : RegNetConfig , **_lowerCAmelCase : int ): super().__init__(**_lowerCAmelCase ) __snake_case : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) __snake_case : Optional[int] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_lowerCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , depth=_lowerCAmelCase , name=f'''stages.{i+1}''' ) ) def snake_case__ ( self : Any , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True ): __snake_case : Union[str, Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __snake_case : Optional[Any] = hidden_states + (hidden_state,) __snake_case : Optional[Any] = stage_module(_lowerCAmelCase ) if output_hidden_states: __snake_case : int = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_lowerCAmelCase , hidden_states=_lowerCAmelCase ) @keras_serializable class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): A : List[Any] = RegNetConfig def __init__( self : Tuple , _lowerCAmelCase : List[Any] , **_lowerCAmelCase : str ): super().__init__(**_lowerCAmelCase ) __snake_case : List[str] = config __snake_case : List[str] = TFRegNetEmbeddings(_lowerCAmelCase , name="""embedder""" ) __snake_case : Any = TFRegNetEncoder(_lowerCAmelCase , name="""encoder""" ) __snake_case : Optional[int] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowerCAmelCase , name="""pooler""" ) @unpack_inputs def snake_case__ ( self : Dict , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , ): __snake_case : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : List[str] = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : Tuple = self.embedder(_lowerCAmelCase , training=_lowerCAmelCase ) __snake_case : str = self.encoder( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase ) __snake_case : str = encoder_outputs[0] __snake_case : List[Any] = self.pooler(_lowerCAmelCase ) # Change to NCHW output format have uniformity in the modules __snake_case : Dict = tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) __snake_case : int = tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __snake_case : Tuple = tuple([tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCAmelCase , pooler_output=_lowerCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Union[str, Any] = RegNetConfig A : str = "regnet" A : Any = "pixel_values" @property def snake_case__ ( self : Optional[int] ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowercase_ = r"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" lowercase_ = r"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , __UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : List[Any] , _lowerCAmelCase : RegNetConfig , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : List[str] ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) __snake_case : Optional[int] = TFRegNetMainLayer(_lowerCAmelCase , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case__ ( self : str , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : List[Any]=False , ): __snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : List[Any] = self.regnet( pixel_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase ): def __init__( self : str , _lowerCAmelCase : RegNetConfig , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Optional[Any] ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) __snake_case : Union[str, Any] = config.num_labels __snake_case : Optional[Any] = TFRegNetMainLayer(_lowerCAmelCase , name="""regnet""" ) # classification head __snake_case : List[Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case__ ( self : List[Any] , _lowerCAmelCase : tf.Tensor = None , _lowerCAmelCase : tf.Tensor = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict=False , ): __snake_case : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : List[str] = self.regnet( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase ) __snake_case : Dict = outputs.pooler_output if return_dict else outputs[1] __snake_case : Dict = self.classifier[0](_lowerCAmelCase ) __snake_case : Any = self.classifier[1](_lowerCAmelCase ) __snake_case : Optional[int] = None if labels is None else self.hf_compute_loss(labels=_lowerCAmelCase , logits=_lowerCAmelCase ) if not return_dict: __snake_case : Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_lowerCAmelCase , logits=_lowerCAmelCase , hidden_states=outputs.hidden_states )
20
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowercase_ = "Usage of script: script_name <size_of_canvas:int>" lowercase_ = [0] * 1_00 + [1] * 10 random.shuffle(choice) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : List[str] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )] return canvas def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' for i, row in enumerate(__SCREAMING_SNAKE_CASE ): for j, _ in enumerate(__SCREAMING_SNAKE_CASE ): __snake_case : int = bool(random.getrandbits(1 ) ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' __snake_case : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__SCREAMING_SNAKE_CASE ): for c, pt in enumerate(__SCREAMING_SNAKE_CASE ): __snake_case : Optional[Any] = __judge_point( __SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __snake_case : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __snake_case : list[list[bool]] = current_canvas.tolist() return return_canvas def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' __snake_case : Any = 0 __snake_case : Dict = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __snake_case : str = pt if pt: if alive < 2: __snake_case : Optional[Any] = False elif alive == 2 or alive == 3: __snake_case : Union[str, Any] = True elif alive > 3: __snake_case : Optional[int] = False else: if alive == 3: __snake_case : List[Any] = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowercase_ = int(sys.argv[1]) # main working structure of this module. lowercase_ = create_canvas(canvas_size) seed(c) lowercase_ , lowercase_ = plt.subplots() fig.show() lowercase_ = ListedColormap(["w", "k"]) try: while True: lowercase_ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
20
1
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return round(float(moles / volume ) * nfactor ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
20
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Union[Dict, Any]] = None , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : int=2 ): '''simple docstring''' from .. import __version__ __snake_case : List[Any] = take_from __snake_case : List[Any] = () if not isinstance(args[0] , __SCREAMING_SNAKE_CASE ): __snake_case : str = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(__SCREAMING_SNAKE_CASE ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) __snake_case : Optional[Any] = None if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__SCREAMING_SNAKE_CASE ),) __snake_case : Optional[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): values += (getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),) __snake_case : Any = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: __snake_case : Tuple = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: __snake_case : Optional[Any] = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , __SCREAMING_SNAKE_CASE , stacklevel=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) > 0: __snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1] __snake_case : int = call_frame.filename __snake_case : int = call_frame.lineno __snake_case : List[str] = call_frame.function __snake_case , __snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(__SCREAMING_SNAKE_CASE ) == 0: return elif len(__SCREAMING_SNAKE_CASE ) == 1: return values[0] return values
20
1
from __future__ import annotations import math def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] __snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowercase_ = { "bart": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), "bert": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-cased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-base-cased-finetuned-mrpc": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "dpr": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), "gpt2": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlnet": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm-roberta": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "transfo-xl": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "openai-gpt": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "roberta": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "layoutlm": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), "roberta-large-mnli": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "camembert": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "flaubert": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert-base-distilled-squad": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert-visual-feature-encoder": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "ctrl": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "albert": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "t5": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "electra": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "wav2vec2": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=True ): '''simple docstring''' if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __snake_case , __snake_case , __snake_case , __snake_case : Any = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) __snake_case : Dict = config_class.from_json_file(__SCREAMING_SNAKE_CASE ) __snake_case : Tuple = True __snake_case : Union[str, Any] = True print(F'''Building TensorFlow model from configuration: {config}''' ) __snake_case : List[Any] = model_class(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __snake_case : Optional[Any] = cached_file( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __snake_case : List[Any] = load_pytorch_checkpoint_in_tfa_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if compare_with_pt_model: __snake_case : Tuple = tf_model(tf_model.dummy_inputs , training=__SCREAMING_SNAKE_CASE ) # build the network __snake_case : List[str] = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" ) __snake_case : Any = pt_model_class.from_pretrained( pretrained_model_name_or_path=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE , state_dict=__SCREAMING_SNAKE_CASE ) with torch.no_grad(): __snake_case : Union[str, Any] = pt_model(**pt_model.dummy_inputs ) __snake_case : Any = pto[0].numpy() __snake_case : Optional[int] = tfo[0].numpy() __snake_case : Optional[int] = np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(__SCREAMING_SNAKE_CASE , save_format="""h5""" ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Any=False , ): '''simple docstring''' if args_model_type is None: __snake_case : Tuple = list(MODEL_CLASSES.keys() ) else: __snake_case : Union[str, Any] = [args_model_type] for j, model_type in enumerate(__SCREAMING_SNAKE_CASE , start=1 ): print("""=""" * 1_0_0 ) print(F''' Converting model type {j}/{len(__SCREAMING_SNAKE_CASE )}: {model_type}''' ) print("""=""" * 1_0_0 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __snake_case : int = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __snake_case : Union[str, Any] = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , start=1 ): print("""-""" * 1_0_0 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue __snake_case : List[Any] = model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(__SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}''' ) print("""-""" * 1_0_0 ) if config_shortcut_name in aws_config_map: __snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: __snake_case : Dict = config_shortcut_name if model_shortcut_name in aws_model_maps: __snake_case : Union[str, Any] = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: __snake_case : List[Any] = model_shortcut_name if os.path.isfile(__SCREAMING_SNAKE_CASE ): __snake_case : List[str] = """converted_model""" convert_pt_checkpoint_to_tf( model_type=__SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=__SCREAMING_SNAKE_CASE , config_file=__SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(__SCREAMING_SNAKE_CASE , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__SCREAMING_SNAKE_CASE , ) if remove_cached_files: os.remove(__SCREAMING_SNAKE_CASE ) os.remove(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file." ) parser.add_argument( "--model_type", default=None, type=str, help=( F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' "convert all the models from AWS." ), ) parser.add_argument( "--pytorch_checkpoint_path", default=None, type=str, help=( "Path to the PyTorch checkpoint path or shortcut name to download from AWS. " "If not given, will download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--config_file", default=None, type=str, help=( "The config json file corresponding to the pre-trained model. \n" "This specifies the model architecture. If not given and " "--pytorch_checkpoint_path is not given or is a shortcut name " "use the configuration associated to the shortcut name on the AWS" ), ) parser.add_argument( "--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions." ) parser.add_argument( "--use_cached_models", action="store_true", help="Use cached models if possible instead of updating to latest checkpoint versions.", ) parser.add_argument( "--remove_cached_files", action="store_true", help="Remove pytorch models after conversion (save memory when converting in batches).", ) parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.") lowercase_ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
20
1
from typing import List from .keymap import KEYMAP, get_character def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str ): '''simple docstring''' def decorator(__SCREAMING_SNAKE_CASE : List[str] ): __snake_case : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , """handle_key""" , [] ) handle += [key] setattr(__SCREAMING_SNAKE_CASE , """handle_key""" , __SCREAMING_SNAKE_CASE ) return func return decorator def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' def decorator(__SCREAMING_SNAKE_CASE : Dict ): __snake_case : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , """handle_key""" , [] ) handle += keys setattr(__SCREAMING_SNAKE_CASE , """handle_key""" , __SCREAMING_SNAKE_CASE ) return func return decorator class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __new__( cls : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ): __snake_case : Tuple = super().__new__(cls , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not hasattr(_lowerCAmelCase , """key_handler""" ): setattr(_lowerCAmelCase , """key_handler""" , {} ) setattr(_lowerCAmelCase , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __snake_case : Optional[Any] = getattr(_lowerCAmelCase , """handle_key""" , [] ) for key in handled_keys: __snake_case : int = value return new_cls @staticmethod def snake_case__ ( cls : Optional[Any] ): __snake_case : Optional[int] = get_character() if char != KEYMAP["undefined"]: __snake_case : Tuple = ord(_lowerCAmelCase ) __snake_case : List[Any] = cls.key_handler.get(_lowerCAmelCase ) if handler: __snake_case : Union[str, Any] = char return handler(cls ) else: return None def __lowerCAmelCase ( cls : Optional[int] ): '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
20
import random def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Tuple = [], [], [] for element in data: if element < pivot: less.append(__SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(__SCREAMING_SNAKE_CASE ) else: equal.append(__SCREAMING_SNAKE_CASE ) return less, equal, greater def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0: return None __snake_case : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )] __snake_case : Tuple = 0 __snake_case , __snake_case , __snake_case : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) __snake_case : int = len(__SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
20
1
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets lowercase_ = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" lowercase_ = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" lowercase_ = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def snake_case__ ( self : Union[str, Any] ): if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def snake_case__ ( self : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : int = CHRF.CHAR_ORDER , _lowerCAmelCase : int = CHRF.WORD_ORDER , _lowerCAmelCase : int = CHRF.BETA , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , ): __snake_case : List[str] = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) __snake_case : Tuple = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] __snake_case : Any = CHRF(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case : List[Any] = sb_chrf.corpus_score(_lowerCAmelCase , _lowerCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
20
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } lowercase_ = { "junnyu/roformer_chinese_small": 15_36, "junnyu/roformer_chinese_base": 15_36, "junnyu/roformer_chinese_char_small": 5_12, "junnyu/roformer_chinese_char_base": 5_12, "junnyu/roformer_small_discriminator": 1_28, "junnyu/roformer_small_generator": 1_28, } lowercase_ = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = VOCAB_FILES_NAMES A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = PRETRAINED_INIT_CONFIGURATION A : List[str] = RoFormerTokenizer def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any="[UNK]" , _lowerCAmelCase : int="[SEP]" , _lowerCAmelCase : Optional[int]="[PAD]" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Dict , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) __snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case or pre_tok_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents ): __snake_case : Tuple = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) __snake_case : List[Any] = do_lower_case __snake_case : Optional[Any] = strip_accents __snake_case : List[str] = pre_tok_class(**_lowerCAmelCase ) __snake_case : Optional[Any] = do_lower_case def __getstate__( self : Optional[Any] ): __snake_case : Optional[int] = self.__dict__.copy() __snake_case : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : str , _lowerCAmelCase : Dict ): __snake_case : str = d __snake_case : int = self.__dict__["""_tokenizer"""].get_vocab() __snake_case : List[str] = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=None ): __snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def snake_case__ ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Tuple , ): __snake_case : Tuple = BertPreTokenizer() return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
20
1
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def snake_case__ ( *_lowerCAmelCase : Tuple , **_lowerCAmelCase : str ): pass @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A : Optional[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int ): __snake_case : Dict = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) __snake_case : Any = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): __snake_case : Union[str, Any] = vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}], [{"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}], ] , ) @require_torch def snake_case__ ( self : List[str] ): __snake_case : Dict = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) __snake_case : int = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __snake_case : str = """How many cats are there?""" __snake_case : Tuple = vqa_pipeline(image=_lowerCAmelCase , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}, {"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}] ) __snake_case : Any = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}, {"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}] ) @slow @require_torch def snake_case__ ( self : str ): __snake_case : Dict = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) __snake_case : List[Any] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __snake_case : int = """How many cats are there?""" __snake_case : int = vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) __snake_case : Union[str, Any] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) __snake_case : List[str] = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def snake_case__ ( self : Any ): pass
20
from __future__ import annotations import math def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] __snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
1
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) set_seed(7_70) lowercase_ = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } lowercase_ = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } lowercase_ = os.path.dirname(os.path.abspath(__file__)) lowercase_ = os.path.join(os.path.expanduser("~"), ".cache") lowercase_ = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str]=False ): '''simple docstring''' __snake_case : Tuple = model_type if use_small: key += "_small" return os.path.join(__SCREAMING_SNAKE_CASE , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) hf_hub_download(repo_id=__SCREAMING_SNAKE_CASE , filename=__SCREAMING_SNAKE_CASE , local_dir=__SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : List[str]="text" ): '''simple docstring''' if model_type == "text": __snake_case : Optional[Any] = BarkSemanticModel __snake_case : str = BarkSemanticConfig __snake_case : Union[str, Any] = BarkSemanticGenerationConfig elif model_type == "coarse": __snake_case : Optional[Any] = BarkCoarseModel __snake_case : List[str] = BarkCoarseConfig __snake_case : Dict = BarkCoarseGenerationConfig elif model_type == "fine": __snake_case : Tuple = BarkFineModel __snake_case : Tuple = BarkFineConfig __snake_case : Tuple = BarkFineGenerationConfig else: raise NotImplementedError() __snake_case : Tuple = F'''{model_type}_small''' if use_small else model_type __snake_case : Optional[int] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(__SCREAMING_SNAKE_CASE ): logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) __snake_case : Dict = torch.load(__SCREAMING_SNAKE_CASE , map_location=__SCREAMING_SNAKE_CASE ) # this is a hack __snake_case : Optional[Any] = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: __snake_case : List[Any] = model_args["""vocab_size"""] __snake_case : str = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __snake_case : Tuple = model_args.pop("""n_head""" ) __snake_case : List[str] = model_args.pop("""n_embd""" ) __snake_case : str = model_args.pop("""n_layer""" ) __snake_case : int = ConfigClass(**checkpoint["""model_args"""] ) __snake_case : int = ModelClass(config=__SCREAMING_SNAKE_CASE ) __snake_case : List[str] = GenerationConfigClass() __snake_case : List[str] = model_generation_config __snake_case : Dict = checkpoint["""model"""] # fixup checkpoint __snake_case : Union[str, Any] = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(__SCREAMING_SNAKE_CASE ): # replace part of the key with corresponding layer name in HF implementation __snake_case : Optional[Any] = k[len(__SCREAMING_SNAKE_CASE ) :] for old_layer_name in new_layer_name_dict: __snake_case : str = new_k.replace(__SCREAMING_SNAKE_CASE , new_layer_name_dict[old_layer_name] ) __snake_case : Tuple = state_dict.pop(__SCREAMING_SNAKE_CASE ) __snake_case : Union[str, Any] = set(state_dict.keys() ) - set(model.state_dict().keys() ) __snake_case : Optional[int] = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} __snake_case : Optional[int] = set(model.state_dict().keys() ) - set(state_dict.keys() ) __snake_case : int = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError(F'''extra keys found: {extra_keys}''' ) if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError(F'''missing keys: {missing_keys}''' ) model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) __snake_case : Optional[int] = model.num_parameters(exclude_embeddings=__SCREAMING_SNAKE_CASE ) __snake_case : Union[str, Any] = checkpoint["""best_val_loss"""].item() logger.info(F'''model loaded: {round(n_params/1E6 , 1 )}M params, {round(__SCREAMING_SNAKE_CASE , 3 )} loss''' ) model.eval() model.to(__SCREAMING_SNAKE_CASE ) del checkpoint, state_dict return model def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : Optional[int]="text" ): '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __snake_case : Union[str, Any] = """cpu""" # do conversion on cpu __snake_case : Union[str, Any] = _get_ckpt_path(__SCREAMING_SNAKE_CASE , use_small=__SCREAMING_SNAKE_CASE ) __snake_case : Any = _load_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , model_type=__SCREAMING_SNAKE_CASE , use_small=__SCREAMING_SNAKE_CASE ) # load bark initial model __snake_case : Optional[int] = _bark_load_model(__SCREAMING_SNAKE_CASE , """cpu""" , model_type=__SCREAMING_SNAKE_CASE , use_small=__SCREAMING_SNAKE_CASE ) if model_type == "text": __snake_case : Tuple = bark_model["""model"""] if model.num_parameters(exclude_embeddings=__SCREAMING_SNAKE_CASE ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model __snake_case : Dict = 5 __snake_case : str = 1_0 if model_type in ["text", "coarse"]: __snake_case : Optional[int] = torch.randint(2_5_6 , (batch_size, sequence_length) , dtype=torch.int ) __snake_case : Tuple = bark_model(__SCREAMING_SNAKE_CASE )[0] __snake_case : Dict = model(__SCREAMING_SNAKE_CASE ) # take last logits __snake_case : List[Any] = output_new_model_total.logits[:, [-1], :] else: __snake_case : Any = 3 __snake_case : Dict = 8 __snake_case : Any = torch.randint(2_5_6 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __snake_case : List[str] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : Dict = bark_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : Union[str, Any] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("""initial and new outputs are not equal""" ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , ): '''simple docstring''' __snake_case : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = BarkSemanticConfig.from_pretrained(os.path.join(__SCREAMING_SNAKE_CASE , """config.json""" ) ) __snake_case : Optional[Any] = BarkCoarseConfig.from_pretrained(os.path.join(__SCREAMING_SNAKE_CASE , """config.json""" ) ) __snake_case : Dict = BarkFineConfig.from_pretrained(os.path.join(__SCREAMING_SNAKE_CASE , """config.json""" ) ) __snake_case : Dict = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) __snake_case : int = BarkSemanticModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __snake_case : Dict = BarkCoarseModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __snake_case : Dict = BarkFineModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __snake_case : str = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) __snake_case : List[Any] = BarkConfig.from_sub_model_configs( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : str = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __snake_case : int = BarkModel(__SCREAMING_SNAKE_CASE ) __snake_case : List[str] = semantic __snake_case : Any = coarseAcoustic __snake_case : Optional[Any] = fineAcoustic __snake_case : Optional[int] = codec __snake_case : str = bark_generation_config Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) bark.save_pretrained(__SCREAMING_SNAKE_CASE , repo_id=__SCREAMING_SNAKE_CASE , push_to_hub=__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") lowercase_ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
20
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowercase_ = None lowercase_ = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowercase_ = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class SCREAMING_SNAKE_CASE__ : A : bool = True A : Optional[str] = None # Automatically constructed A : ClassVar[str] = "PIL.Image.Image" A : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) A : str = field(default="Image" , init=__UpperCamelCase , repr=__UpperCamelCase ) def __call__( self : Any ): return self.pa_type def snake_case__ ( self : List[Any] , _lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : str = np.array(_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {"path": value, "bytes": None} elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {"path": None, "bytes": value} elif isinstance(_lowerCAmelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_lowerCAmelCase ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def snake_case__ ( self : List[str] , _lowerCAmelCase : dict , _lowerCAmelCase : Dict=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: __snake_case : Tuple = {} __snake_case , __snake_case : str = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(_lowerCAmelCase ): __snake_case : str = PIL.Image.open(_lowerCAmelCase ) else: __snake_case : List[str] = path.split("""::""" )[-1] try: __snake_case : Dict = string_to_dict(_lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""] __snake_case : int = token_per_repo_id.get(_lowerCAmelCase ) except ValueError: __snake_case : List[Any] = None with xopen(_lowerCAmelCase , """rb""" , use_auth_token=_lowerCAmelCase ) as f: __snake_case : Union[str, Any] = BytesIO(f.read() ) __snake_case : Dict = PIL.Image.open(bytes_ ) else: __snake_case : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def snake_case__ ( self : Union[str, Any] ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): __snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() ) __snake_case : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) __snake_case : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: __snake_case : List[str] = storage.field("""bytes""" ) else: __snake_case : List[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: __snake_case : Optional[int] = storage.field("""path""" ) else: __snake_case : int = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) __snake_case : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __snake_case : Optional[Any] = pa.array( [encode_np_array(np.array(_lowerCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) __snake_case : Optional[int] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) __snake_case : List[str] = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_lowerCAmelCase , self.pa_type ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(_lowerCAmelCase : Tuple ): with xopen(_lowerCAmelCase , """rb""" ) as f: __snake_case : Optional[int] = f.read() return bytes_ __snake_case : Tuple = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __snake_case : Optional[Any] = pa.array( [os.path.basename(_lowerCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) __snake_case : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_lowerCAmelCase , self.pa_type ) def __lowerCAmelCase ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __snake_case : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ): '''simple docstring''' __snake_case : List[Any] = BytesIO() if image.format in list_image_compression_formats(): __snake_case : Union[str, Any] = image.format else: __snake_case : List[Any] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(__SCREAMING_SNAKE_CASE , format=__SCREAMING_SNAKE_CASE ) return buffer.getvalue() def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ): '''simple docstring''' if hasattr(__SCREAMING_SNAKE_CASE , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )} def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) __snake_case : List[Any] = array.dtype __snake_case : List[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER __snake_case : Dict = dtype.kind __snake_case : Union[str, Any] = dtype.itemsize __snake_case : Tuple = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __snake_case : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __snake_case : List[str] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __snake_case : int = dtype_byteorder + dtype_kind + str(__SCREAMING_SNAKE_CASE ) __snake_case : Any = np.dtype(__SCREAMING_SNAKE_CASE ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) __snake_case : Optional[int] = PIL.Image.fromarray(array.astype(__SCREAMING_SNAKE_CASE ) ) return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )} def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: __snake_case , __snake_case : Any = first_non_null_value(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): __snake_case : int = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs] elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ): __snake_case : List[str] = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs] else: return objs else: return objs
20
1
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
20
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ): __snake_case : Optional[Any] = {} __snake_case : int = {} if prompt is not None: __snake_case : Dict = prompt if generate_kwargs is not None: __snake_case : List[Any] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __snake_case : Optional[int] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) __snake_case : Any = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ): return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ): __snake_case : Optional[Any] = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) __snake_case : Tuple = self.model.config.model_type if model_type == "git": __snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids __snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids __snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": __snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: __snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __snake_case : int = None return model_inputs def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): __snake_case : List[Any] = None if generate_kwargs is None: __snake_case : Dict = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __snake_case : Dict = model_inputs.pop(self.model.main_input_name ) __snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ): __snake_case : Union[str, Any] = [] for output_ids in model_outputs: __snake_case : Union[str, Any] = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
20
1
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase_ = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" lowercase_ = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" lowercase_ = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return float((preds == labels).mean() ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' __snake_case : Tuple = simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : int = float(fa_score(y_true=__SCREAMING_SNAKE_CASE , y_pred=__SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' __snake_case : List[str] = float(pearsonr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )[0] ) __snake_case : List[Any] = float(spearmanr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def snake_case__ ( self : Optional[int] ): if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def snake_case__ ( self : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCAmelCase , _lowerCAmelCase )} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCAmelCase , _lowerCAmelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
20
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["YolosFeatureExtractor"] lowercase_ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple=0.9_99 , __SCREAMING_SNAKE_CASE : Union[str, Any]="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__SCREAMING_SNAKE_CASE : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __snake_case : List[str] = [] for i in range(__SCREAMING_SNAKE_CASE ): __snake_case : Tuple = i / num_diffusion_timesteps __snake_case : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__SCREAMING_SNAKE_CASE ) / alpha_bar_fn(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) ) return torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase ): A : Any = [e.name for e in KarrasDiffusionSchedulers] A : Optional[Any] = 2 @register_to_config def __init__( self : Optional[int] , _lowerCAmelCase : int = 10_00 , _lowerCAmelCase : float = 0.00085 , _lowerCAmelCase : float = 0.012 , _lowerCAmelCase : str = "linear" , _lowerCAmelCase : Optional[Union[np.ndarray, List[float]]] = None , _lowerCAmelCase : str = "epsilon" , _lowerCAmelCase : Optional[bool] = False , _lowerCAmelCase : Optional[bool] = False , _lowerCAmelCase : float = 1.0 , _lowerCAmelCase : str = "linspace" , _lowerCAmelCase : int = 0 , ): if trained_betas is not None: __snake_case : Tuple = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": __snake_case : int = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case : Tuple = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case : Union[str, Any] = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="""cosine""" ) elif beta_schedule == "exp": __snake_case : Optional[Any] = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="""exp""" ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __snake_case : Union[str, Any] = 1.0 - self.betas __snake_case : Optional[Any] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case : Optional[Any] = use_karras_sigmas def snake_case__ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int=None ): if schedule_timesteps is None: __snake_case : List[str] = self.timesteps __snake_case : str = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __snake_case : Union[str, Any] = 1 if len(_lowerCAmelCase ) > 1 else 0 else: __snake_case : List[Any] = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep __snake_case : int = self._index_counter[timestep_int] return indices[pos].item() @property def snake_case__ ( self : Optional[Any] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : Union[float, torch.FloatTensor] , ): __snake_case : Dict = self.index_for_timestep(_lowerCAmelCase ) __snake_case : Optional[Any] = self.sigmas[step_index] __snake_case : str = sample / ((sigma**2 + 1) ** 0.5) return sample def snake_case__ ( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, torch.device] = None , _lowerCAmelCase : Optional[int] = None , ): __snake_case : int = num_inference_steps __snake_case : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __snake_case : Any = np.linspace(0 , num_train_timesteps - 1 , _lowerCAmelCase , dtype=_lowerCAmelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": __snake_case : Optional[int] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __snake_case : List[Any] = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(_lowerCAmelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __snake_case : Optional[int] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __snake_case : Tuple = (np.arange(_lowerCAmelCase , 0 , -step_ratio )).round().copy().astype(_lowerCAmelCase ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __snake_case : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __snake_case : Optional[int] = np.log(_lowerCAmelCase ) __snake_case : Tuple = np.interp(_lowerCAmelCase , np.arange(0 , len(_lowerCAmelCase ) ) , _lowerCAmelCase ) if self.config.use_karras_sigmas: __snake_case : List[str] = self._convert_to_karras(in_sigmas=_lowerCAmelCase , num_inference_steps=self.num_inference_steps ) __snake_case : Dict = np.array([self._sigma_to_t(_lowerCAmelCase , _lowerCAmelCase ) for sigma in sigmas] ) __snake_case : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __snake_case : str = torch.from_numpy(_lowerCAmelCase ).to(device=_lowerCAmelCase ) __snake_case : Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __snake_case : int = torch.from_numpy(_lowerCAmelCase ) __snake_case : int = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_lowerCAmelCase ).startswith("""mps""" ): # mps does not support float64 __snake_case : Union[str, Any] = timesteps.to(_lowerCAmelCase , dtype=torch.floataa ) else: __snake_case : List[Any] = timesteps.to(device=_lowerCAmelCase ) # empty dt and derivative __snake_case : Tuple = None __snake_case : List[str] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __snake_case : Optional[int] = defaultdict(_lowerCAmelCase ) def snake_case__ ( self : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ): # get log sigma __snake_case : Optional[Any] = np.log(_lowerCAmelCase ) # get distribution __snake_case : str = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __snake_case : Union[str, Any] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __snake_case : Optional[Any] = low_idx + 1 __snake_case : int = log_sigmas[low_idx] __snake_case : int = log_sigmas[high_idx] # interpolate sigmas __snake_case : Union[str, Any] = (low - log_sigma) / (low - high) __snake_case : Any = np.clip(_lowerCAmelCase , 0 , 1 ) # transform interpolation to time range __snake_case : List[str] = (1 - w) * low_idx + w * high_idx __snake_case : int = t.reshape(sigma.shape ) return t def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : List[Any] ): __snake_case : float = in_sigmas[-1].item() __snake_case : float = in_sigmas[0].item() __snake_case : Optional[int] = 7.0 # 7.0 is the value used in the paper __snake_case : int = np.linspace(0 , 1 , _lowerCAmelCase ) __snake_case : Dict = sigma_min ** (1 / rho) __snake_case : Any = sigma_max ** (1 / rho) __snake_case : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def snake_case__ ( self : Optional[int] ): return self.dt is None def snake_case__ ( self : Any , _lowerCAmelCase : Union[torch.FloatTensor, np.ndarray] , _lowerCAmelCase : Union[float, torch.FloatTensor] , _lowerCAmelCase : Union[torch.FloatTensor, np.ndarray] , _lowerCAmelCase : bool = True , ): __snake_case : List[str] = self.index_for_timestep(_lowerCAmelCase ) # advance index counter by 1 __snake_case : Optional[int] = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __snake_case : Any = self.sigmas[step_index] __snake_case : Tuple = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __snake_case : Any = self.sigmas[step_index - 1] __snake_case : int = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __snake_case : List[Any] = 0 __snake_case : Optional[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __snake_case : Optional[Any] = sigma_hat if self.state_in_first_order else sigma_next __snake_case : List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __snake_case : List[str] = sigma_hat if self.state_in_first_order else sigma_next __snake_case : int = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __snake_case : Dict = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: __snake_case : List[Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __snake_case : Any = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __snake_case : Dict = sigma_next - sigma_hat # store for 2nd order step __snake_case : int = derivative __snake_case : Optional[int] = dt __snake_case : List[Any] = sample else: # 2. 2nd order / Heun's method __snake_case : str = (sample - pred_original_sample) / sigma_next __snake_case : str = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __snake_case : int = self.dt __snake_case : List[Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __snake_case : int = None __snake_case : Union[str, Any] = None __snake_case : int = None __snake_case : List[str] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCAmelCase ) def snake_case__ ( self : Any , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __snake_case : List[str] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_lowerCAmelCase ): # mps does not support float64 __snake_case : Any = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __snake_case : int = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __snake_case : Any = self.timesteps.to(original_samples.device ) __snake_case : Tuple = timesteps.to(original_samples.device ) __snake_case : List[str] = [self.index_for_timestep(_lowerCAmelCase , _lowerCAmelCase ) for t in timesteps] __snake_case : Optional[int] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __snake_case : List[Any] = sigma.unsqueeze(-1 ) __snake_case : Dict = original_samples + noise * sigma return noisy_samples def __len__( self : Tuple ): return self.config.num_train_timesteps
20
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = "microsoft/speecht5_tts" A : List[Any] = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) A : str = "text_reader" A : Optional[Any] = SpeechTaProcessor A : Any = SpeechTaForTextToSpeech A : Optional[Any] = SpeechTaHifiGan A : str = ["text"] A : Union[str, Any] = ["audio"] def snake_case__ ( self : List[Any] ): if self.post_processor is None: __snake_case : Tuple = """microsoft/speecht5_hifigan""" super().setup() def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ): __snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) __snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) __snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ): with torch.no_grad(): return self.model.generate_speech(**_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): with torch.no_grad(): return self.post_processor(_lowerCAmelCase ).cpu().detach()
20
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Dict=13 , _lowerCAmelCase : int=7 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : str=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Optional[Any]=99 , _lowerCAmelCase : int=32 , _lowerCAmelCase : int=2 , _lowerCAmelCase : List[Any]=4 , _lowerCAmelCase : Any=37 , _lowerCAmelCase : str="gelu" , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : str=5_12 , _lowerCAmelCase : Optional[Any]=16 , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : str=3 , _lowerCAmelCase : str=4 , _lowerCAmelCase : Tuple=None , ): __snake_case : List[Any] = parent __snake_case : str = 13 __snake_case : Optional[int] = 7 __snake_case : Union[str, Any] = True __snake_case : Union[str, Any] = True __snake_case : List[str] = True __snake_case : Union[str, Any] = True __snake_case : str = 99 __snake_case : int = 32 __snake_case : Dict = 2 __snake_case : Union[str, Any] = 4 __snake_case : Dict = 37 __snake_case : List[str] = """gelu""" __snake_case : List[str] = 0.1 __snake_case : Union[str, Any] = 0.1 __snake_case : List[Any] = 5_12 __snake_case : Optional[int] = 16 __snake_case : Dict = 2 __snake_case : List[str] = 0.02 __snake_case : List[Any] = 3 __snake_case : Any = 4 __snake_case : Union[str, Any] = None def snake_case__ ( self : Any ): __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Union[str, Any] = None if self.use_input_mask: __snake_case : int = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Any = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Any = None __snake_case : List[Any] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Any = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : int = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowerCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): __snake_case : Optional[int] = TFRoFormerModel(config=_lowerCAmelCase ) __snake_case : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Union[str, Any] = [input_ids, input_mask] __snake_case : Optional[int] = model(_lowerCAmelCase ) __snake_case : str = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ): __snake_case : List[str] = True __snake_case : List[str] = TFRoFormerForCausalLM(config=_lowerCAmelCase ) __snake_case : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case : Union[str, Any] = model(_lowerCAmelCase )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def snake_case__ ( self : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] ): __snake_case : Any = TFRoFormerForMaskedLM(config=_lowerCAmelCase ) __snake_case : Union[str, Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case : str = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple ): __snake_case : List[Any] = self.num_labels __snake_case : List[str] = TFRoFormerForSequenceClassification(config=_lowerCAmelCase ) __snake_case : Union[str, Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case : Dict = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): __snake_case : Dict = self.num_choices __snake_case : Optional[Any] = TFRoFormerForMultipleChoice(config=_lowerCAmelCase ) __snake_case : str = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __snake_case : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __snake_case : List[str] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __snake_case : List[str] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __snake_case : Tuple = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ): __snake_case : str = self.num_labels __snake_case : List[Any] = TFRoFormerForTokenClassification(config=_lowerCAmelCase ) __snake_case : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case : Optional[Any] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): __snake_case : Optional[Any] = TFRoFormerForQuestionAnswering(config=_lowerCAmelCase ) __snake_case : Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Dict ): __snake_case : List[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Optional[int] = config_and_inputs __snake_case : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): A : Union[str, Any] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) A : str = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) A : Optional[int] = False A : Optional[int] = False def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def snake_case__ ( self : Union[str, Any] ): __snake_case : List[Any] = TFRoFormerModelTester(self ) __snake_case : Dict = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def snake_case__ ( self : str ): self.config_tester.run_common_tests() def snake_case__ ( self : Optional[Any] ): __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def snake_case__ ( self : Optional[int] ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def snake_case__ ( self : Any ): __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] ): __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def snake_case__ ( self : str ): __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def snake_case__ ( self : List[Any] ): __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def snake_case__ ( self : str ): __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def snake_case__ ( self : List[Any] ): __snake_case : Union[str, Any] = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def snake_case__ ( self : Tuple ): __snake_case : Any = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) __snake_case : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __snake_case : Dict = model(_lowerCAmelCase )[0] # TODO Replace vocab size __snake_case : Any = 5_00_00 __snake_case : Union[str, Any] = [1, 6, vocab_size] self.assertEqual(output.shape , _lowerCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __snake_case : str = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A : List[str] = 1e-4 def snake_case__ ( self : str ): __snake_case : List[str] = tf.constant([[4, 10]] ) __snake_case : int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __snake_case : Tuple = emba(input_ids.shape ) __snake_case : str = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , atol=self.tolerance ) def snake_case__ ( self : List[Any] ): __snake_case : Optional[int] = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __snake_case : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) __snake_case : str = emba.weight[:3, :5] tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , atol=self.tolerance ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A : Any = 1e-4 def snake_case__ ( self : List[str] ): # 2,12,16,64 __snake_case : Dict = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 __snake_case : Optional[Any] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 __snake_case : Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __snake_case : Any = embed_positions([2, 16, 7_68] )[None, None, :, :] __snake_case , __snake_case : Optional[int] = TFRoFormerSelfAttention.apply_rotary_position_embeddings( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case : List[str] = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __snake_case : Tuple = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , _lowerCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , _lowerCAmelCase , atol=self.tolerance )
20
import math def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if ( not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if ( not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
20
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : Dict ): __snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : int = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase ) __snake_case : Dict = -1 __snake_case : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) __snake_case : List[Any] = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) __snake_case : Dict = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __snake_case : Tuple = TextStreamer(_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __snake_case : List[Any] = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : str ): __snake_case : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Tuple = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase ) __snake_case : List[Any] = -1 __snake_case : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) __snake_case : str = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) __snake_case : Optional[int] = tokenizer.decode(greedy_ids[0] ) __snake_case : List[Any] = TextIteratorStreamer(_lowerCAmelCase ) __snake_case : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} __snake_case : str = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() __snake_case : Optional[Any] = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : int ): __snake_case : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase ) __snake_case : Any = -1 __snake_case : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) __snake_case : Dict = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) __snake_case : Optional[int] = greedy_ids[:, input_ids.shape[1] :] __snake_case : List[Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __snake_case : int = TextStreamer(_lowerCAmelCase , skip_prompt=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __snake_case : Dict = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __snake_case : Union[str, Any] = AutoTokenizer.from_pretrained("""distilgpt2""" ) __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(_lowerCAmelCase ) __snake_case : List[str] = -1 __snake_case : List[Any] = torch.ones((1, 5) , device=_lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: __snake_case : int = TextStreamer(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=1 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __snake_case : Dict = cs.out[:-1] # Remove the final "\n" __snake_case : List[Any] = tokenizer(_lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case__ ( self : Optional[int] ): __snake_case : int = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Tuple = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase ) __snake_case : Union[str, Any] = -1 __snake_case : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) __snake_case : List[str] = TextIteratorStreamer(_lowerCAmelCase , timeout=0.001 ) __snake_case : List[Any] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} __snake_case : List[str] = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCAmelCase ): __snake_case : Tuple = """""" for new_text in streamer: streamer_text += new_text
20
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
1
from pathlib import Path import fire from tqdm import tqdm def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int="ro" , __SCREAMING_SNAKE_CASE : Any="en" , __SCREAMING_SNAKE_CASE : Optional[Any]="wmt16" , __SCREAMING_SNAKE_CASE : Any=None ): '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __snake_case : str = F'''{src_lang}-{tgt_lang}''' print(F'''Converting {dataset}-{pair}''' ) __snake_case : str = datasets.load_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if save_dir is None: __snake_case : List[Any] = F'''{dataset}-{pair}''' __snake_case : Optional[Any] = Path(__SCREAMING_SNAKE_CASE ) save_dir.mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) for split in ds.keys(): print(F'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets __snake_case : str = """val""" if split == """validation""" else split __snake_case : str = save_dir.joinpath(F'''{fn}.source''' ) __snake_case : List[str] = save_dir.joinpath(F'''{fn}.target''' ) __snake_case : str = src_path.open("""w+""" ) __snake_case : Optional[Any] = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __snake_case : str = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __snake_case , __snake_case : str = array[indexa], array[indexa] def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Tuple = int(length / 2 ) for i in range(__SCREAMING_SNAKE_CASE , low + middle ): comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Optional[Any] = int(length / 2 ) bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 ) bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["ViTFeatureExtractor"] lowercase_ = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any]=13 , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Any=99 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Optional[Any]=36 , _lowerCAmelCase : Dict=6 , _lowerCAmelCase : Dict=6 , _lowerCAmelCase : Tuple=6 , _lowerCAmelCase : Optional[Any]=37 , _lowerCAmelCase : Optional[int]="gelu" , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Dict=5_12 , _lowerCAmelCase : Tuple=16 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : str=None , ): __snake_case : Any = parent __snake_case : str = batch_size __snake_case : List[str] = seq_length __snake_case : str = is_training __snake_case : Optional[int] = use_input_mask __snake_case : Optional[Any] = use_token_type_ids __snake_case : Optional[Any] = use_labels __snake_case : str = vocab_size __snake_case : int = embedding_size __snake_case : Any = hidden_size __snake_case : List[Any] = num_hidden_layers __snake_case : Tuple = num_hidden_groups __snake_case : List[str] = num_attention_heads __snake_case : List[str] = intermediate_size __snake_case : Dict = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : int = attention_probs_dropout_prob __snake_case : Any = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : List[Any] = initializer_range __snake_case : Tuple = num_labels __snake_case : Tuple = num_choices __snake_case : Dict = scope def snake_case__ ( self : int ): __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : List[str] = None if self.use_input_mask: __snake_case : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[Any] = None __snake_case : Optional[Any] = None __snake_case : Optional[Any] = None if self.use_labels: __snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : str = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Dict ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): __snake_case : List[Any] = AlbertModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) __snake_case : List[Any] = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) __snake_case : Tuple = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case__ ( self : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): __snake_case : Union[str, Any] = AlbertForPreTraining(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Optional[int] = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , sentence_order_label=_lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] ): __snake_case : Union[str, Any] = AlbertForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str ): __snake_case : Tuple = AlbertForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Dict = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : List[str] ): __snake_case : Dict = self.num_labels __snake_case : Optional[Any] = AlbertForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : str ): __snake_case : List[str] = self.num_labels __snake_case : Dict = AlbertForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): __snake_case : Optional[Any] = self.num_choices __snake_case : Union[str, Any] = AlbertForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[Any] = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : Optional[Any] ): __snake_case : int = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Any = config_and_inputs __snake_case : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): A : List[str] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A : Any = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) A : Tuple = True def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int]=False ): __snake_case : Union[str, Any] = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): __snake_case : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase ) __snake_case : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def snake_case__ ( self : Optional[Any] ): __snake_case : Dict = AlbertModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def snake_case__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def snake_case__ ( self : Any ): __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def snake_case__ ( self : Any ): __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def snake_case__ ( self : str ): __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] ): __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] ): __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : List[str] = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) @slow def snake_case__ ( self : Tuple ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Optional[Any] = AlbertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def snake_case__ ( self : int ): __snake_case : str = AlbertModel.from_pretrained("""albert-base-v2""" ) __snake_case : Optional[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __snake_case : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] __snake_case : Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _lowerCAmelCase ) __snake_case : List[str] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1e-4 ) )
20
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __snake_case , __snake_case : str = array[indexa], array[indexa] def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Tuple = int(length / 2 ) for i in range(__SCREAMING_SNAKE_CASE , low + middle ): comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Optional[Any] = int(length / 2 ) bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 ) bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
20
1
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence __snake_case : Dict = gray_code_sequence_string(__SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(__SCREAMING_SNAKE_CASE ) ): __snake_case : List[Any] = int(sequence[i] , 2 ) return sequence def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __snake_case : Optional[Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __snake_case : int = gray_code_sequence_string(bit_count - 1 ) __snake_case : Union[str, Any] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __snake_case : Any = """0""" + smaller_sequence[i] sequence.append(__SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __snake_case : str = """1""" + smaller_sequence[i] sequence.append(__SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
20
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' __snake_case : Optional[int] = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } __snake_case , __snake_case : Tuple = input_paths_and_base_extractors[compression_format] if input_path is None: __snake_case : Tuple = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__SCREAMING_SNAKE_CASE ) assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE ) __snake_case : List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case : List[str] = file_path.read_text(encoding="""utf-8""" ) else: __snake_case : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) __snake_case : int = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' __snake_case : Union[str, Any] = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } __snake_case : int = input_paths[compression_format] if input_path is None: __snake_case : int = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__SCREAMING_SNAKE_CASE ) __snake_case : Any = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE ) assert extractor_format is not None __snake_case : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case : Union[str, Any] = file_path.read_text(encoding="""utf-8""" ) else: __snake_case : Union[str, Any] = output_path.read_text(encoding="""utf-8""" ) __snake_case : Optional[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' import tarfile __snake_case : List[str] = tmp_path / """data_dot_dot""" directory.mkdir() __snake_case : Optional[Any] = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' import tarfile __snake_case : Dict = tmp_path / """data_sym_link""" directory.mkdir() __snake_case : Tuple = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE ) with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' __snake_case : Any = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } __snake_case : int = insecure_tar_files[insecure_tar_file] __snake_case : Optional[int] = tmp_path / """extracted""" TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __snake_case : Optional[Any] = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 __snake_case : List[str] = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(__SCREAMING_SNAKE_CASE ) assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
20
1
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' __snake_case : Optional[Any] = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue __snake_case : str = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) __snake_case : str = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) __snake_case : Dict = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) __snake_case : Union[str, Any] = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) __snake_case : Any = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) __snake_case : int = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) __snake_case : int = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) __snake_case : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) __snake_case : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) __snake_case : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" ) __snake_case : Dict = key.replace("""text_encoder.module""" , """flava.text_model""" ) __snake_case : int = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) __snake_case : Union[str, Any] = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) __snake_case : Optional[Any] = key.replace("""text_projection""" , """flava.text_projection""" ) __snake_case : List[str] = key.replace("""image_projection""" , """flava.image_projection""" ) __snake_case : Optional[Any] = value.float() for key, value in codebook_state_dict.items(): __snake_case : Optional[Any] = value return upgrade @torch.no_grad() def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any=None ): '''simple docstring''' if config_path is not None: __snake_case : Tuple = FlavaConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) else: __snake_case : Dict = FlavaConfig() __snake_case : List[Any] = FlavaForPreTraining(__SCREAMING_SNAKE_CASE ).eval() __snake_case : int = convert_dalle_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , save_checkpoint=__SCREAMING_SNAKE_CASE ) if os.path.exists(__SCREAMING_SNAKE_CASE ): __snake_case : List[Any] = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" ) else: __snake_case : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location="""cpu""" ) __snake_case : Dict = upgrade_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(__SCREAMING_SNAKE_CASE ) __snake_case : Tuple = hf_model.state_dict() __snake_case : Union[str, Any] = count_parameters(__SCREAMING_SNAKE_CASE ) __snake_case : Dict = count_parameters(__SCREAMING_SNAKE_CASE ) + count_parameters(__SCREAMING_SNAKE_CASE ) assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) hf_model.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowercase_ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
20
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : Any ): __snake_case : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __snake_case : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __snake_case : List[str] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __snake_case : str = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case : Any = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) # load decoder from hub __snake_case : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Tuple ): __snake_case : int = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , **_lowerCAmelCase : Optional[int] ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Dict , **_lowerCAmelCase : Tuple ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase ) def snake_case__ ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def snake_case__ ( self : Union[str, Any] ): __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : Tuple = self.get_feature_extractor() __snake_case : Dict = self.get_decoder() __snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) __snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : Tuple = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def snake_case__ ( self : int ): __snake_case : Tuple = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(_lowerCAmelCase , """include""" ): WavaVecaProcessorWithLM( tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def snake_case__ ( self : Dict ): __snake_case : int = self.get_feature_extractor() __snake_case : str = self.get_tokenizer() __snake_case : Dict = self.get_decoder() __snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : List[Any] = floats_list((3, 10_00) ) __snake_case : Optional[Any] = feature_extractor(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Tuple = processor(_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self : Optional[int] ): __snake_case : Any = self.get_feature_extractor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Optional[int] = """This is a test string""" __snake_case : Union[str, Any] = processor(text=_lowerCAmelCase ) __snake_case : Dict = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case__ ( self : List[str] , _lowerCAmelCase : List[Any]=(2, 10, 16) , _lowerCAmelCase : str=77 ): np.random.seed(_lowerCAmelCase ) return np.random.rand(*_lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : List[str] = self.get_feature_extractor() __snake_case : List[str] = self.get_tokenizer() __snake_case : List[str] = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case : int = processor.decode(_lowerCAmelCase ) __snake_case : Optional[int] = decoder.decode_beams(_lowerCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] ): __snake_case : int = self.get_feature_extractor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : int = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case : Tuple = processor.batch_decode(_lowerCAmelCase ) else: with get_context(_lowerCAmelCase ).Pool() as pool: __snake_case : int = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : int = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as p: __snake_case : Tuple = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase ) __snake_case , __snake_case , __snake_case : List[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCAmelCase , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score ) self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score ) def snake_case__ ( self : Optional[int] ): __snake_case : Optional[Any] = self.get_feature_extractor() __snake_case : int = self.get_tokenizer() __snake_case : str = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : int = self._get_dummy_logits() __snake_case : List[str] = 15 __snake_case : Optional[Any] = -20.0 __snake_case : Tuple = -4.0 __snake_case : List[Any] = processor.batch_decode( _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) __snake_case : List[str] = decoded_processor_out.text __snake_case : str = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as pool: __snake_case : Dict = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) __snake_case : int = [d[0][0] for d in decoded_decoder_out] __snake_case : List[Any] = [d[0][2] for d in decoded_decoder_out] __snake_case : List[Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1e-3 ) ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1e-3 ) ) def snake_case__ ( self : Any ): __snake_case : List[Any] = self.get_feature_extractor() __snake_case : Any = self.get_tokenizer() __snake_case : Union[str, Any] = self.get_decoder() __snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Any = self._get_dummy_logits() __snake_case : Any = 2.0 __snake_case : int = 5.0 __snake_case : Optional[int] = -20.0 __snake_case : Optional[int] = True __snake_case : Any = processor.batch_decode( _lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) __snake_case : str = decoded_processor_out.text __snake_case : int = list(_lowerCAmelCase ) decoder.reset_params( alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) with get_context("""fork""" ).Pool() as pool: __snake_case : Tuple = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , ) __snake_case : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase ) __snake_case : List[str] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] __snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __snake_case : Union[str, Any] = os.listdir(_lowerCAmelCase ) __snake_case : List[str] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase ) __snake_case : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __snake_case : List[str] = os.listdir(_lowerCAmelCase ) __snake_case : List[Any] = os.listdir(_lowerCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Optional[int] = floats_list((3, 10_00) ) __snake_case : Union[str, Any] = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Union[str, Any] = processor_auto(_lowerCAmelCase , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case : Dict = self._get_dummy_logits() __snake_case : List[Any] = processor_wavaveca.batch_decode(_lowerCAmelCase ) __snake_case : List[Any] = processor_auto.batch_decode(_lowerCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def snake_case__ ( self : str ): __snake_case : int = self.get_feature_extractor() __snake_case : List[str] = self.get_tokenizer() __snake_case : Optional[Any] = self.get_decoder() __snake_case : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def snake_case__ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): __snake_case : Union[str, Any] = [d[key] for d in offsets] return retrieved_list def snake_case__ ( self : Dict ): __snake_case : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : List[str] = self._get_dummy_logits()[0] __snake_case : str = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def snake_case__ ( self : List[str] ): __snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Optional[int] = self._get_dummy_logits() __snake_case : int = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def snake_case__ ( self : Optional[Any] ): import torch __snake_case : Optional[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase ) __snake_case : Any = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) __snake_case : List[Any] = iter(_lowerCAmelCase ) __snake_case : Optional[int] = next(_lowerCAmelCase ) __snake_case : str = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __snake_case : str = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __snake_case : Dict = model(_lowerCAmelCase ).logits.cpu().numpy() __snake_case : Any = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase ) __snake_case : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case : Dict = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __snake_case : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase ) self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text ) # output times __snake_case : Dict = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) ) __snake_case : Optional[Any] = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) ) # fmt: off __snake_case : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __snake_case : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
20
1
import math def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if ( not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if ( not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
20
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowercase_ = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ): '''simple docstring''' __snake_case , __snake_case : str = create_model( """HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : Union[str, Any] = {} __snake_case : List[Any] = R""".*sequential.(\d+).*""" __snake_case : Union[str, Any] = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # replace sequential layers with list __snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) __snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' ) elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __snake_case : List[Any] = 1 if projecton_layer == 0 else 2 __snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value __snake_case : Optional[int] = value __snake_case : Any = mixed_qkv.size(0 ) // 3 __snake_case : List[Any] = mixed_qkv[:qkv_dim] __snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :] __snake_case : Any = query_layer __snake_case : Dict = key_layer __snake_case : Optional[Any] = value_layer else: __snake_case : List[str] = value return model_state_dict def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ): '''simple docstring''' __snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE ) clap_model.eval() __snake_case : Tuple = clap_model.state_dict() __snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = ClapConfig() __snake_case : Tuple = enable_fusion __snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE ) # ignore the spectrogram embedding layer model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") lowercase_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
20
1
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): '''simple docstring''' def get_matched_characters(__SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> str: __snake_case : Dict = [] __snake_case : Optional[Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __snake_case : int = int(max(0 , i - limit ) ) __snake_case : Optional[int] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__SCREAMING_SNAKE_CASE ) __snake_case : Dict = F'''{_stra[0:_stra.index(__SCREAMING_SNAKE_CASE )]} {_stra[_stra.index(__SCREAMING_SNAKE_CASE ) + 1:]}''' return "".join(__SCREAMING_SNAKE_CASE ) # matching characters __snake_case : List[Any] = get_matched_characters(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : Dict = get_matched_characters(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) # transposition __snake_case : Optional[int] = ( len([(ca, ca) for ca, ca in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if ca != ca] ) // 2 ) if not match_count: __snake_case : List[str] = 0.0 else: __snake_case : List[str] = ( 1 / 3 * ( match_count / len(__SCREAMING_SNAKE_CASE ) + match_count / len(__SCREAMING_SNAKE_CASE ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __snake_case : List[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
20
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = "▁" lowercase_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} lowercase_ = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } lowercase_ = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } lowercase_ = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } lowercase_ = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[str] = ["input_ids"] A : Tuple = VOCAB_FILES_NAMES A : List[Any] = PRETRAINED_INIT_CONFIGURATION A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A : Optional[Any] = RESOURCE_FILES_NAMES def __init__( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]="utf8" , _lowerCAmelCase : Optional[Any]="[UNK]" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : List[Any]="[MASK]" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , vocab_file=_lowerCAmelCase , encoding=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __snake_case : List[Any] = do_lower_case __snake_case : Any = sentencepiece_model_ckpt __snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __snake_case : int = self.load_vocab(filepath=_lowerCAmelCase ) else: __snake_case : Tuple = {self.sp_model.id_to_piece(_lowerCAmelCase ): id for id in range(self.sp_model.get_piece_size() )} __snake_case : str = {v: k for k, v in self.vocab.items()} def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[Any] ): if text is None: return None __snake_case : List[Any] = self.tokenize(_lowerCAmelCase ) __snake_case , __snake_case : Optional[Any] = """""", [] for i, ch in enumerate(_lowerCAmelCase ): if ch in self.SP_CHAR_MAPPING: __snake_case : Any = self.SP_CHAR_MAPPING.get(_lowerCAmelCase ) else: __snake_case : Dict = unicodedata.normalize("""NFKC""" , _lowerCAmelCase ) if self.is_whitespace(_lowerCAmelCase ): continue normalized_text += ch char_mapping.extend([i] * len(_lowerCAmelCase ) ) __snake_case , __snake_case , __snake_case : str = normalized_text, [], 0 if self.do_lower_case: __snake_case : int = text.lower() for token in split_tokens: if token[:1] == "▁": __snake_case : int = token[1:] __snake_case : Optional[int] = text[offset:].index(_lowerCAmelCase ) + offset __snake_case : int = start + len(_lowerCAmelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __snake_case : str = end return token_mapping @property def snake_case__ ( self : Tuple ): return len(self.vocab ) def snake_case__ ( self : Dict ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : int ): __snake_case : str = self.__dict__.copy() __snake_case : Union[str, Any] = None return state def __setstate__( self : Optional[Any] , _lowerCAmelCase : List[str] ): __snake_case : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __snake_case : Optional[Any] = {} __snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] ): return "".join((self.SP_CHAR_MAPPING.get(_lowerCAmelCase , _lowerCAmelCase ) for c in text) ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[int]=0.1 ): if self.sp_model_kwargs.get("""enable_sampling""" ) is True: __snake_case : List[str] = True if self.sp_model_kwargs.get("""alpha""" ) is not None: __snake_case : Dict = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: __snake_case : List[Any] = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: __snake_case : str = self.sp_model.EncodeAsPieces(_lowerCAmelCase ) else: __snake_case : Tuple = self.sp_model.SampleEncodeAsPieces(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case : Union[str, Any] = [] for pi, piece in enumerate(_lowerCAmelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_lowerCAmelCase ) and pi != 0: new_pieces.append(_lowerCAmelCase ) continue else: continue __snake_case : Optional[int] = 0 for i, chunk in enumerate(_lowerCAmelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_lowerCAmelCase ) or self.is_punct(_lowerCAmelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_lowerCAmelCase ) __snake_case : Tuple = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __snake_case : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __snake_case : Tuple = i if len(_lowerCAmelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): __snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ): __snake_case : int = self.convert_ids_to_tokens(_lowerCAmelCase ) __snake_case : Any = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ): return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict ): return self.reverse_vocab.get(_lowerCAmelCase , self.unk_token ) def snake_case__ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] __snake_case : Optional[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1] def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(_lowerCAmelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_lowerCAmelCase ) + 1) + [1] * (len(_lowerCAmelCase ) + 3) def snake_case__ ( self : Tuple , _lowerCAmelCase : List[str] ): if "\u4e00" <= char <= "\u9fff": return True return False def snake_case__ ( self : List[str] , _lowerCAmelCase : Any ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def snake_case__ ( self : int , _lowerCAmelCase : List[Any] ): if char in ",;:.?!~,;:。?!《》【】": return True return False def snake_case__ ( self : str , _lowerCAmelCase : Optional[Any] ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_lowerCAmelCase ) == 1: __snake_case : Dict = unicodedata.category(_lowerCAmelCase ) if cat == "Zs": return True return False def snake_case__ ( self : str , _lowerCAmelCase : List[Any] ): __snake_case : Dict = {} with io.open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(_lowerCAmelCase ): __snake_case : Tuple = line.rstrip("""\n""" ) __snake_case : List[str] = int(_lowerCAmelCase ) return token_to_idx def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : Optional[int] = 0 if os.path.isdir(_lowerCAmelCase ): __snake_case : int = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: __snake_case : Optional[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) __snake_case : Union[str, Any] = token_index writer.write(token + """\n""" ) index += 1 __snake_case : List[Any] = os.path.join(_lowerCAmelCase , """sentencepiece.bpe.model""" ) with open(_lowerCAmelCase , """wb""" ) as fi: __snake_case : List[Any] = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (vocab_file,)
20
1
from functools import reduce lowercase_ = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str(int(__SCREAMING_SNAKE_CASE ) * int(__SCREAMING_SNAKE_CASE ) ) , n[i : i + 1_3] ) ) for i in range(len(__SCREAMING_SNAKE_CASE ) - 1_2 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
20
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[str] = "xlm" A : List[str] = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any]=3_01_45 , _lowerCAmelCase : Optional[Any]=20_48 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : int=16 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=5_12 , _lowerCAmelCase : List[Any]=20_48**-0.5 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple="first" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Tuple , ): __snake_case : Optional[Any] = vocab_size __snake_case : Tuple = emb_dim __snake_case : int = n_layers __snake_case : List[str] = n_heads __snake_case : Union[str, Any] = dropout __snake_case : Optional[int] = attention_dropout __snake_case : Optional[Any] = gelu_activation __snake_case : Tuple = sinusoidal_embeddings __snake_case : List[Any] = causal __snake_case : Dict = asm __snake_case : int = n_langs __snake_case : str = use_lang_emb __snake_case : Dict = layer_norm_eps __snake_case : List[Any] = bos_index __snake_case : Union[str, Any] = eos_index __snake_case : Dict = pad_index __snake_case : Any = unk_index __snake_case : Dict = mask_index __snake_case : Any = is_encoder __snake_case : Dict = max_position_embeddings __snake_case : Optional[Any] = embed_init_std __snake_case : List[Any] = init_std __snake_case : str = summary_type __snake_case : Optional[Any] = summary_use_proj __snake_case : str = summary_activation __snake_case : Optional[int] = summary_proj_to_labels __snake_case : Dict = summary_first_dropout __snake_case : Dict = start_n_top __snake_case : int = end_n_top __snake_case : str = mask_token_id __snake_case : int = lang_id if "n_words" in kwargs: __snake_case : Dict = kwargs["""n_words"""] super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): @property def snake_case__ ( self : Dict ): if self.task == "multiple-choice": __snake_case : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
20
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Dict = "instructblip_vision_model" def __init__( self : int , _lowerCAmelCase : Union[str, Any]=14_08 , _lowerCAmelCase : List[Any]=61_44 , _lowerCAmelCase : Union[str, Any]=39 , _lowerCAmelCase : Dict=16 , _lowerCAmelCase : Optional[int]=2_24 , _lowerCAmelCase : Dict=14 , _lowerCAmelCase : Optional[Any]="gelu" , _lowerCAmelCase : Optional[Any]=1e-6 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Any=1e-10 , _lowerCAmelCase : Dict=True , **_lowerCAmelCase : Optional[int] , ): super().__init__(**_lowerCAmelCase ) __snake_case : int = hidden_size __snake_case : Optional[Any] = intermediate_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : Tuple = patch_size __snake_case : Any = image_size __snake_case : List[Any] = initializer_range __snake_case : List[Any] = attention_dropout __snake_case : Dict = layer_norm_eps __snake_case : int = hidden_act __snake_case : Tuple = qkv_bias @classmethod def snake_case__ ( cls : int , _lowerCAmelCase : Union[str, os.PathLike] , **_lowerCAmelCase : Optional[Any] ): cls._set_token_in_kwargs(_lowerCAmelCase ) __snake_case , __snake_case : List[str] = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": __snake_case : Tuple = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : int = "instructblip_qformer" def __init__( self : str , _lowerCAmelCase : str=3_05_22 , _lowerCAmelCase : List[Any]=7_68 , _lowerCAmelCase : List[str]=12 , _lowerCAmelCase : Any=12 , _lowerCAmelCase : List[str]=30_72 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Any=5_12 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : List[str]="absolute" , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : Union[str, Any]=14_08 , **_lowerCAmelCase : List[Any] , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) __snake_case : Optional[Any] = vocab_size __snake_case : Tuple = hidden_size __snake_case : Dict = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : List[Any] = hidden_act __snake_case : Tuple = intermediate_size __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : List[str] = max_position_embeddings __snake_case : Tuple = initializer_range __snake_case : Dict = layer_norm_eps __snake_case : Dict = position_embedding_type __snake_case : Any = cross_attention_frequency __snake_case : Optional[Any] = encoder_hidden_size @classmethod def snake_case__ ( cls : Dict , _lowerCAmelCase : Union[str, os.PathLike] , **_lowerCAmelCase : Tuple ): cls._set_token_in_kwargs(_lowerCAmelCase ) __snake_case , __snake_case : str = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": __snake_case : List[Any] = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : int = "instructblip" A : str = True def __init__( self : Optional[int] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Dict=32 , **_lowerCAmelCase : str ): super().__init__(**_lowerCAmelCase ) if vision_config is None: __snake_case : List[str] = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: __snake_case : Optional[int] = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: __snake_case : Any = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) __snake_case : Union[str, Any] = InstructBlipVisionConfig(**_lowerCAmelCase ) __snake_case : Optional[int] = InstructBlipQFormerConfig(**_lowerCAmelCase ) __snake_case : Optional[int] = text_config["""model_type"""] if """model_type""" in text_config else """opt""" __snake_case : List[str] = CONFIG_MAPPING[text_model_type](**_lowerCAmelCase ) __snake_case : Tuple = self.text_config.tie_word_embeddings __snake_case : Dict = self.text_config.is_encoder_decoder __snake_case : Union[str, Any] = num_query_tokens __snake_case : int = self.vision_config.hidden_size __snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case : Tuple = 1.0 __snake_case : Tuple = 0.02 @classmethod def snake_case__ ( cls : Tuple , _lowerCAmelCase : InstructBlipVisionConfig , _lowerCAmelCase : InstructBlipQFormerConfig , _lowerCAmelCase : PretrainedConfig , **_lowerCAmelCase : Union[str, Any] , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_lowerCAmelCase , ) def snake_case__ ( self : str ): __snake_case : str = copy.deepcopy(self.__dict__ ) __snake_case : List[str] = self.vision_config.to_dict() __snake_case : Any = self.qformer_config.to_dict() __snake_case : List[Any] = self.text_config.to_dict() __snake_case : Optional[Any] = self.__class__.model_type return output
20
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[Any] = "encodec" def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase : Tuple=2_40_00 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : int=1_28 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Union[str, Any]=[8, 5, 4, 2] , _lowerCAmelCase : str="weight_norm" , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict="reflect" , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : Optional[int]=10_24 , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , **_lowerCAmelCase : List[Any] , ): __snake_case : Optional[int] = target_bandwidths __snake_case : int = sampling_rate __snake_case : List[Any] = audio_channels __snake_case : str = normalize __snake_case : Union[str, Any] = chunk_length_s __snake_case : Union[str, Any] = overlap __snake_case : Union[str, Any] = hidden_size __snake_case : Union[str, Any] = num_filters __snake_case : Optional[Any] = num_residual_layers __snake_case : List[Any] = upsampling_ratios __snake_case : List[str] = norm_type __snake_case : Union[str, Any] = kernel_size __snake_case : Optional[int] = last_kernel_size __snake_case : Optional[Any] = residual_kernel_size __snake_case : Dict = dilation_growth_rate __snake_case : int = use_causal_conv __snake_case : Tuple = pad_mode __snake_case : str = compress __snake_case : Optional[Any] = num_lstm_layers __snake_case : List[Any] = trim_right_ratio __snake_case : Any = codebook_size __snake_case : int = codebook_dim if codebook_dim is not None else hidden_size __snake_case : int = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**_lowerCAmelCase ) @property def snake_case__ ( self : int ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def snake_case__ ( self : int ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def snake_case__ ( self : Union[str, Any] ): __snake_case : List[str] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def snake_case__ ( self : Tuple ): return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
20
1
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowercase_ = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowercase_ = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowercase_ = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowercase_ = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowercase_ = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowercase_ = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' __snake_case : Union[str, Any] = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , __SCREAMING_SNAKE_CASE ) return [m.group(0 ) for m in matches] def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __snake_case : Tuple = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __snake_case : str = collections.defaultdict(__SCREAMING_SNAKE_CASE ) __snake_case : Tuple = collections.defaultdict(__SCREAMING_SNAKE_CASE ) __snake_case : Union[str, Any] = collections.defaultdict(__SCREAMING_SNAKE_CASE ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__SCREAMING_SNAKE_CASE ): __snake_case : str = None if _re_tf_models.match(__SCREAMING_SNAKE_CASE ) is not None: __snake_case : List[Any] = tf_models __snake_case : Dict = _re_tf_models.match(__SCREAMING_SNAKE_CASE ).groups()[0] elif _re_flax_models.match(__SCREAMING_SNAKE_CASE ) is not None: __snake_case : List[str] = flax_models __snake_case : Any = _re_flax_models.match(__SCREAMING_SNAKE_CASE ).groups()[0] elif _re_pt_models.match(__SCREAMING_SNAKE_CASE ) is not None: __snake_case : Union[str, Any] = pt_models __snake_case : Union[str, Any] = _re_pt_models.match(__SCREAMING_SNAKE_CASE ).groups()[0] if lookup_dict is not None: while len(__SCREAMING_SNAKE_CASE ) > 0: if attr_name in model_prefix_to_model_type: __snake_case : Any = True break # Try again after removing the last word in the name __snake_case : int = """""".join(camel_case_split(__SCREAMING_SNAKE_CASE )[:-1] ) __snake_case : Union[str, Any] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __snake_case : List[Any] = list(__SCREAMING_SNAKE_CASE ) all_models.sort() __snake_case : Dict = {"""model_type""": all_models} __snake_case : Optional[Any] = [pt_models[t] for t in all_models] __snake_case : List[Any] = [tf_models[t] for t in all_models] __snake_case : Tuple = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __snake_case : Any = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __snake_case : Union[str, Any] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __snake_case : Dict = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __snake_case : Tuple = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __snake_case : Tuple = """AutoTokenizer""" __snake_case : Optional[int] = [processors[t] for t in all_models] return pd.DataFrame(__SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' __snake_case : Union[str, Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __snake_case : str = [model_mapping, F'''TF_{model_mapping}''', F'''FLAX_{model_mapping}'''] __snake_case : int = [auto_class, F'''TF_{auto_class}''', F'''Flax_{auto_class}'''] # Loop through all three frameworks for module, cls, mapping in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # The type of pipeline may not exist in this framework if not hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): continue # First extract all model_names __snake_case : List[str] = [] for name in getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).values(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): model_names.append(__SCREAMING_SNAKE_CASE ) else: model_names.extend(list(__SCREAMING_SNAKE_CASE ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' __snake_case : Dict = get_frameworks_table() __snake_case : Tuple = Dataset.from_pandas(__SCREAMING_SNAKE_CASE ) __snake_case : int = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=__SCREAMING_SNAKE_CASE ) __snake_case : Dict = Dataset.from_json(__SCREAMING_SNAKE_CASE ) __snake_case : Any = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(__SCREAMING_SNAKE_CASE ) ) } __snake_case : Optional[int] = update_pipeline_and_auto_class_table(__SCREAMING_SNAKE_CASE ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __snake_case : Optional[int] = sorted(table.keys() ) __snake_case : Union[str, Any] = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) __snake_case : Any = Dataset.from_pandas(__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__SCREAMING_SNAKE_CASE , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(__SCREAMING_SNAKE_CASE , """pipeline_tags.json""" ) ) if commit_sha is not None: __snake_case : Dict = ( F'''Update with commit {commit_sha}\n\nSee: ''' F'''https://github.com/huggingface/transformers/commit/{commit_sha}''' ) else: __snake_case : List[Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=__SCREAMING_SNAKE_CASE , repo_type="""dataset""" , token=__SCREAMING_SNAKE_CASE , commit_message=__SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : List[Any] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __snake_case : Dict = transformers_module.pipelines.SUPPORTED_TASKS __snake_case : Tuple = [] for key in pipeline_tasks: if key not in in_table: __snake_case : Dict = pipeline_tasks[key]["""pt"""] if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): __snake_case : Tuple = model[0] __snake_case : Optional[Any] = model.__name__ if model not in in_table.values(): missing.append(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: __snake_case : Union[str, Any] = """, """.join(__SCREAMING_SNAKE_CASE ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F'''`utils/update_metadata.py`: {msg}. Please add them!''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") lowercase_ = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
20
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : str = [] __snake_case , __snake_case : List[str] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __snake_case : List[Any] = result + left + right return input_list def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(__SCREAMING_SNAKE_CASE ) <= 1: return input_list __snake_case : Union[str, Any] = list(__SCREAMING_SNAKE_CASE ) # iteration for two-way merging __snake_case : Tuple = 2 while p <= len(__SCREAMING_SNAKE_CASE ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ): __snake_case : List[str] = i __snake_case : str = i + p - 1 __snake_case : Optional[Any] = (low + high + 1) // 2 __snake_case : str = merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # final merge of last two parts if p * 2 >= len(__SCREAMING_SNAKE_CASE ): __snake_case : List[str] = i __snake_case : str = merge(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() if user_input == "": lowercase_ = [] else: lowercase_ = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
20
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : Optional[Any] , *_lowerCAmelCase : int , **_lowerCAmelCase : List[Any] ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Any=None ): __snake_case : Any = {} if top_k is not None: __snake_case : Optional[int] = top_k return {}, {}, postprocess_params def __call__( self : Any , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Tuple ): return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Tuple ): __snake_case : int = load_image(_lowerCAmelCase ) __snake_case : List[Any] = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) return model_inputs def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] ): __snake_case : int = self.model(**_lowerCAmelCase ) return model_outputs def snake_case__ ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=5 ): if top_k > self.model.config.num_labels: __snake_case : Optional[Any] = self.model.config.num_labels if self.framework == "pt": __snake_case : Any = model_outputs.logits.softmax(-1 )[0] __snake_case , __snake_case : List[Any] = probs.topk(_lowerCAmelCase ) elif self.framework == "tf": __snake_case : Optional[Any] = stable_softmax(model_outputs.logits , axis=-1 )[0] __snake_case : Union[str, Any] = tf.math.top_k(_lowerCAmelCase , k=_lowerCAmelCase ) __snake_case , __snake_case : Tuple = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) __snake_case : Any = scores.tolist() __snake_case : List[str] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_lowerCAmelCase , _lowerCAmelCase )]
20
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowercase_ = "Usage of script: script_name <size_of_canvas:int>" lowercase_ = [0] * 1_00 + [1] * 10 random.shuffle(choice) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : List[str] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )] return canvas def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' for i, row in enumerate(__SCREAMING_SNAKE_CASE ): for j, _ in enumerate(__SCREAMING_SNAKE_CASE ): __snake_case : int = bool(random.getrandbits(1 ) ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' __snake_case : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__SCREAMING_SNAKE_CASE ): for c, pt in enumerate(__SCREAMING_SNAKE_CASE ): __snake_case : Optional[Any] = __judge_point( __SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __snake_case : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __snake_case : list[list[bool]] = current_canvas.tolist() return return_canvas def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' __snake_case : Any = 0 __snake_case : Dict = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __snake_case : str = pt if pt: if alive < 2: __snake_case : Optional[Any] = False elif alive == 2 or alive == 3: __snake_case : Union[str, Any] = True elif alive > 3: __snake_case : Optional[int] = False else: if alive == 3: __snake_case : List[Any] = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowercase_ = int(sys.argv[1]) # main working structure of this module. lowercase_ = create_canvas(canvas_size) seed(c) lowercase_ , lowercase_ = plt.subplots() fig.show() lowercase_ = ListedColormap(["w", "k"]) try: while True: lowercase_ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
20
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[Any] = "trocr" A : List[Any] = ["past_key_values"] A : Dict = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=5_02_65 , _lowerCAmelCase : Union[str, Any]=10_24 , _lowerCAmelCase : List[str]=12 , _lowerCAmelCase : Dict=16 , _lowerCAmelCase : Optional[int]=40_96 , _lowerCAmelCase : Tuple="gelu" , _lowerCAmelCase : str=5_12 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : str=2 , _lowerCAmelCase : Optional[Any]=0.02 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : str=True , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : str=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=1 , _lowerCAmelCase : Optional[int]=0 , _lowerCAmelCase : Optional[Any]=2 , **_lowerCAmelCase : Optional[Any] , ): __snake_case : Dict = vocab_size __snake_case : Optional[Any] = d_model __snake_case : str = decoder_layers __snake_case : List[Any] = decoder_attention_heads __snake_case : Dict = decoder_ffn_dim __snake_case : Tuple = activation_function __snake_case : Dict = max_position_embeddings __snake_case : str = dropout __snake_case : str = attention_dropout __snake_case : Dict = activation_dropout __snake_case : Any = init_std __snake_case : Optional[Any] = decoder_layerdrop __snake_case : Optional[Any] = use_cache __snake_case : Optional[int] = scale_embedding __snake_case : Any = use_learned_position_embeddings __snake_case : Optional[int] = layernorm_embedding super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
20
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Union[Dict, Any]] = None , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : int=2 ): '''simple docstring''' from .. import __version__ __snake_case : List[Any] = take_from __snake_case : List[Any] = () if not isinstance(args[0] , __SCREAMING_SNAKE_CASE ): __snake_case : str = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(__SCREAMING_SNAKE_CASE ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) __snake_case : Optional[Any] = None if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__SCREAMING_SNAKE_CASE ),) __snake_case : Optional[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): values += (getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),) __snake_case : Any = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: __snake_case : Tuple = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: __snake_case : Optional[Any] = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , __SCREAMING_SNAKE_CASE , stacklevel=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) > 0: __snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1] __snake_case : int = call_frame.filename __snake_case : int = call_frame.lineno __snake_case : List[str] = call_frame.function __snake_case , __snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(__SCREAMING_SNAKE_CASE ) == 0: return elif len(__SCREAMING_SNAKE_CASE ) == 1: return values[0] return values
20
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str]=7 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Optional[int]=18 , _lowerCAmelCase : str=30 , _lowerCAmelCase : int=4_00 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[int]=None , ): __snake_case : Tuple = size if size is not None else {"""shortest_edge""": 20} __snake_case : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __snake_case : List[str] = parent __snake_case : Union[str, Any] = batch_size __snake_case : Dict = num_channels __snake_case : Dict = image_size __snake_case : Optional[Any] = min_resolution __snake_case : Tuple = max_resolution __snake_case : int = do_resize __snake_case : int = size __snake_case : List[str] = do_center_crop __snake_case : Any = crop_size def snake_case__ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): A : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def snake_case__ ( self : List[str] ): __snake_case : Optional[int] = MobileNetVaImageProcessingTester(self ) @property def snake_case__ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Any ): __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """crop_size""" ) ) def snake_case__ ( self : Any ): __snake_case : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __snake_case : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def snake_case__ ( self : Optional[int] ): pass def snake_case__ ( self : Optional[int] ): # Initialize image_processing __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input __snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __snake_case : Optional[Any] = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def snake_case__ ( self : int ): # Initialize image_processing __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input __snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __snake_case : int = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def snake_case__ ( self : Dict ): # Initialize image_processing __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input __snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __snake_case : Tuple = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
20
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowercase_ = { "bart": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), "bert": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-cased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-base-cased-finetuned-mrpc": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "dpr": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), "gpt2": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlnet": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm-roberta": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "transfo-xl": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "openai-gpt": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "roberta": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "layoutlm": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), "roberta-large-mnli": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "camembert": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "flaubert": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert-base-distilled-squad": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert-visual-feature-encoder": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "ctrl": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "albert": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "t5": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "electra": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "wav2vec2": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=True ): '''simple docstring''' if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __snake_case , __snake_case , __snake_case , __snake_case : Any = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) __snake_case : Dict = config_class.from_json_file(__SCREAMING_SNAKE_CASE ) __snake_case : Tuple = True __snake_case : Union[str, Any] = True print(F'''Building TensorFlow model from configuration: {config}''' ) __snake_case : List[Any] = model_class(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __snake_case : Optional[Any] = cached_file( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __snake_case : List[Any] = load_pytorch_checkpoint_in_tfa_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if compare_with_pt_model: __snake_case : Tuple = tf_model(tf_model.dummy_inputs , training=__SCREAMING_SNAKE_CASE ) # build the network __snake_case : List[str] = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" ) __snake_case : Any = pt_model_class.from_pretrained( pretrained_model_name_or_path=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE , state_dict=__SCREAMING_SNAKE_CASE ) with torch.no_grad(): __snake_case : Union[str, Any] = pt_model(**pt_model.dummy_inputs ) __snake_case : Any = pto[0].numpy() __snake_case : Optional[int] = tfo[0].numpy() __snake_case : Optional[int] = np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(__SCREAMING_SNAKE_CASE , save_format="""h5""" ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Any=False , ): '''simple docstring''' if args_model_type is None: __snake_case : Tuple = list(MODEL_CLASSES.keys() ) else: __snake_case : Union[str, Any] = [args_model_type] for j, model_type in enumerate(__SCREAMING_SNAKE_CASE , start=1 ): print("""=""" * 1_0_0 ) print(F''' Converting model type {j}/{len(__SCREAMING_SNAKE_CASE )}: {model_type}''' ) print("""=""" * 1_0_0 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __snake_case : int = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __snake_case : Union[str, Any] = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , start=1 ): print("""-""" * 1_0_0 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue __snake_case : List[Any] = model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(__SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}''' ) print("""-""" * 1_0_0 ) if config_shortcut_name in aws_config_map: __snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: __snake_case : Dict = config_shortcut_name if model_shortcut_name in aws_model_maps: __snake_case : Union[str, Any] = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: __snake_case : List[Any] = model_shortcut_name if os.path.isfile(__SCREAMING_SNAKE_CASE ): __snake_case : List[str] = """converted_model""" convert_pt_checkpoint_to_tf( model_type=__SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=__SCREAMING_SNAKE_CASE , config_file=__SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(__SCREAMING_SNAKE_CASE , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__SCREAMING_SNAKE_CASE , ) if remove_cached_files: os.remove(__SCREAMING_SNAKE_CASE ) os.remove(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file." ) parser.add_argument( "--model_type", default=None, type=str, help=( F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' "convert all the models from AWS." ), ) parser.add_argument( "--pytorch_checkpoint_path", default=None, type=str, help=( "Path to the PyTorch checkpoint path or shortcut name to download from AWS. " "If not given, will download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--config_file", default=None, type=str, help=( "The config json file corresponding to the pre-trained model. \n" "This specifies the model architecture. If not given and " "--pytorch_checkpoint_path is not given or is a shortcut name " "use the configuration associated to the shortcut name on the AWS" ), ) parser.add_argument( "--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions." ) parser.add_argument( "--use_cached_models", action="store_true", help="Use cached models if possible instead of updating to latest checkpoint versions.", ) parser.add_argument( "--remove_cached_files", action="store_true", help="Remove pytorch models after conversion (save memory when converting in batches).", ) parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.") lowercase_ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
20
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): A : Tuple = BioGptTokenizer A : List[Any] = False def snake_case__ ( self : Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case : Any = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] __snake_case : Optional[Any] = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __snake_case : Tuple = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] __snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) def snake_case__ ( self : List[Any] , _lowerCAmelCase : Tuple ): __snake_case : Optional[int] = """lower newer""" __snake_case : Any = """lower newer""" return input_text, output_text def snake_case__ ( self : Any ): __snake_case : Dict = BioGptTokenizer(self.vocab_file , self.merges_file ) __snake_case : int = """lower""" __snake_case : List[str] = ["""low""", """er</w>"""] __snake_case : Any = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Any = tokens + ["""<unk>"""] __snake_case : int = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) @slow def snake_case__ ( self : List[Any] ): __snake_case : Union[str, Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) __snake_case : Union[str, Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase ) __snake_case : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase ) __snake_case : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) __snake_case : Dict = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
20
import random def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Tuple = [], [], [] for element in data: if element < pivot: less.append(__SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(__SCREAMING_SNAKE_CASE ) else: equal.append(__SCREAMING_SNAKE_CASE ) return less, equal, greater def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0: return None __snake_case : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )] __snake_case : Tuple = 0 __snake_case , __snake_case , __snake_case : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) __snake_case : int = len(__SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
20
1
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __lowerCAmelCase ( ): '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case : Optional[int] = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , __SCREAMING_SNAKE_CASE ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __lowerCAmelCase ( ): '''simple docstring''' assert _test_patching.open is open __snake_case : Optional[int] = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , __SCREAMING_SNAKE_CASE ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __lowerCAmelCase ( ): '''simple docstring''' # pandas.read_csv is not present in _test_patching __snake_case : Dict = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , __SCREAMING_SNAKE_CASE ): pass def __lowerCAmelCase ( ): '''simple docstring''' # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __snake_case : Optional[Any] = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , __SCREAMING_SNAKE_CASE ) is None with patch_submodule(_test_patching , """len""" , __SCREAMING_SNAKE_CASE ): assert _test_patching.len is mock assert _test_patching.len is len def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : Dict = """__test_patch_submodule_start_and_stop_mock__""" __snake_case : Dict = patch_submodule(_test_patching , """open""" , __SCREAMING_SNAKE_CASE ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __lowerCAmelCase ( ): '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case : int = """__test_patch_submodule_successive_join__""" __snake_case : Tuple = """__test_patch_submodule_successive_dirname__""" __snake_case : Dict = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , __SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , """os.rename""" , __SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , """os.path.dirname""" , __SCREAMING_SNAKE_CASE ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , __SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , """os.path.join""" , __SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , """os.path.dirname""" , __SCREAMING_SNAKE_CASE ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : Optional[int] = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , __SCREAMING_SNAKE_CASE ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , __SCREAMING_SNAKE_CASE ): pass
20
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } lowercase_ = { "junnyu/roformer_chinese_small": 15_36, "junnyu/roformer_chinese_base": 15_36, "junnyu/roformer_chinese_char_small": 5_12, "junnyu/roformer_chinese_char_base": 5_12, "junnyu/roformer_small_discriminator": 1_28, "junnyu/roformer_small_generator": 1_28, } lowercase_ = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = VOCAB_FILES_NAMES A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = PRETRAINED_INIT_CONFIGURATION A : List[str] = RoFormerTokenizer def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any="[UNK]" , _lowerCAmelCase : int="[SEP]" , _lowerCAmelCase : Optional[int]="[PAD]" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Dict , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) __snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case or pre_tok_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents ): __snake_case : Tuple = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) __snake_case : List[Any] = do_lower_case __snake_case : Optional[Any] = strip_accents __snake_case : List[str] = pre_tok_class(**_lowerCAmelCase ) __snake_case : Optional[Any] = do_lower_case def __getstate__( self : Optional[Any] ): __snake_case : Optional[int] = self.__dict__.copy() __snake_case : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : str , _lowerCAmelCase : Dict ): __snake_case : str = d __snake_case : int = self.__dict__["""_tokenizer"""].get_vocab() __snake_case : List[str] = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=None ): __snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def snake_case__ ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Tuple , ): __snake_case : Tuple = BertPreTokenizer() return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
20
1
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : str = [] __snake_case , __snake_case : List[str] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __snake_case : List[Any] = result + left + right return input_list def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(__SCREAMING_SNAKE_CASE ) <= 1: return input_list __snake_case : Union[str, Any] = list(__SCREAMING_SNAKE_CASE ) # iteration for two-way merging __snake_case : Tuple = 2 while p <= len(__SCREAMING_SNAKE_CASE ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ): __snake_case : List[str] = i __snake_case : str = i + p - 1 __snake_case : Optional[Any] = (low + high + 1) // 2 __snake_case : str = merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # final merge of last two parts if p * 2 >= len(__SCREAMING_SNAKE_CASE ): __snake_case : List[str] = i __snake_case : str = merge(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() if user_input == "": lowercase_ = [] else: lowercase_ = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
20
from __future__ import annotations import math def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] __snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
1
class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple , _lowerCAmelCase : int ): __snake_case : Optional[int] = size __snake_case : List[Any] = [0] * size __snake_case : Dict = [0] * size @staticmethod def snake_case__ ( _lowerCAmelCase : int ): return index | (index + 1) @staticmethod def snake_case__ ( _lowerCAmelCase : int ): return (index & (index + 1)) - 1 def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): __snake_case : Any = value while index < self.size: __snake_case : Optional[int] = self.get_prev(_lowerCAmelCase ) + 1 if current_left_border == index: __snake_case : Dict = value else: __snake_case : str = max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case : Optional[Any] = self.get_next(_lowerCAmelCase ) def snake_case__ ( self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : int ): right -= 1 # Because of right is exclusive __snake_case : Optional[Any] = 0 while left <= right: __snake_case : List[str] = self.get_prev(_lowerCAmelCase ) if left <= current_left: __snake_case : Optional[Any] = max(_lowerCAmelCase , self.tree[right] ) __snake_case : List[str] = current_left else: __snake_case : Union[str, Any] = max(_lowerCAmelCase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
20
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowercase_ = None lowercase_ = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowercase_ = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class SCREAMING_SNAKE_CASE__ : A : bool = True A : Optional[str] = None # Automatically constructed A : ClassVar[str] = "PIL.Image.Image" A : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) A : str = field(default="Image" , init=__UpperCamelCase , repr=__UpperCamelCase ) def __call__( self : Any ): return self.pa_type def snake_case__ ( self : List[Any] , _lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : str = np.array(_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {"path": value, "bytes": None} elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {"path": None, "bytes": value} elif isinstance(_lowerCAmelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_lowerCAmelCase ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def snake_case__ ( self : List[str] , _lowerCAmelCase : dict , _lowerCAmelCase : Dict=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: __snake_case : Tuple = {} __snake_case , __snake_case : str = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(_lowerCAmelCase ): __snake_case : str = PIL.Image.open(_lowerCAmelCase ) else: __snake_case : List[str] = path.split("""::""" )[-1] try: __snake_case : Dict = string_to_dict(_lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""] __snake_case : int = token_per_repo_id.get(_lowerCAmelCase ) except ValueError: __snake_case : List[Any] = None with xopen(_lowerCAmelCase , """rb""" , use_auth_token=_lowerCAmelCase ) as f: __snake_case : Union[str, Any] = BytesIO(f.read() ) __snake_case : Dict = PIL.Image.open(bytes_ ) else: __snake_case : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def snake_case__ ( self : Union[str, Any] ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): __snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() ) __snake_case : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) __snake_case : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: __snake_case : List[str] = storage.field("""bytes""" ) else: __snake_case : List[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: __snake_case : Optional[int] = storage.field("""path""" ) else: __snake_case : int = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) __snake_case : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __snake_case : Optional[Any] = pa.array( [encode_np_array(np.array(_lowerCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) __snake_case : Optional[int] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) __snake_case : List[str] = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_lowerCAmelCase , self.pa_type ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(_lowerCAmelCase : Tuple ): with xopen(_lowerCAmelCase , """rb""" ) as f: __snake_case : Optional[int] = f.read() return bytes_ __snake_case : Tuple = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __snake_case : Optional[Any] = pa.array( [os.path.basename(_lowerCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) __snake_case : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_lowerCAmelCase , self.pa_type ) def __lowerCAmelCase ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __snake_case : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ): '''simple docstring''' __snake_case : List[Any] = BytesIO() if image.format in list_image_compression_formats(): __snake_case : Union[str, Any] = image.format else: __snake_case : List[Any] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(__SCREAMING_SNAKE_CASE , format=__SCREAMING_SNAKE_CASE ) return buffer.getvalue() def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ): '''simple docstring''' if hasattr(__SCREAMING_SNAKE_CASE , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )} def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) __snake_case : List[Any] = array.dtype __snake_case : List[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER __snake_case : Dict = dtype.kind __snake_case : Union[str, Any] = dtype.itemsize __snake_case : Tuple = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __snake_case : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __snake_case : List[str] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __snake_case : int = dtype_byteorder + dtype_kind + str(__SCREAMING_SNAKE_CASE ) __snake_case : Any = np.dtype(__SCREAMING_SNAKE_CASE ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) __snake_case : Optional[int] = PIL.Image.fromarray(array.astype(__SCREAMING_SNAKE_CASE ) ) return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )} def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: __snake_case , __snake_case : Any = first_non_null_value(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): __snake_case : int = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs] elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ): __snake_case : List[str] = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs] else: return objs else: return objs
20
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : Tuple ): __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : str = BlipImageProcessor() __snake_case : Union[str, Any] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) __snake_case : Optional[int] = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) __snake_case : str = InstructBlipProcessor(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def snake_case__ ( self : List[Any] , **_lowerCAmelCase : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).tokenizer def snake_case__ ( self : Dict , **_lowerCAmelCase : List[str] ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).image_processor def snake_case__ ( self : List[Any] , **_lowerCAmelCase : Dict ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).qformer_tokenizer def snake_case__ ( self : Any ): shutil.rmtree(self.tmpdirname ) def snake_case__ ( self : Union[str, Any] ): __snake_case : Optional[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __snake_case : Union[str, Any] = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case__ ( self : List[Any] ): __snake_case : int = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) __snake_case : List[str] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __snake_case : Union[str, Any] = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) __snake_case : List[str] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , _lowerCAmelCase ) def snake_case__ ( self : str ): __snake_case : Union[str, Any] = self.get_image_processor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : Dict = self.get_qformer_tokenizer() __snake_case : str = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) __snake_case : Union[str, Any] = self.prepare_image_inputs() __snake_case : Any = image_processor(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : int = processor(images=_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self : int ): __snake_case : List[Any] = self.get_image_processor() __snake_case : Tuple = self.get_tokenizer() __snake_case : Union[str, Any] = self.get_qformer_tokenizer() __snake_case : Optional[int] = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) __snake_case : Any = """lower newer""" __snake_case : Union[str, Any] = processor(text=_lowerCAmelCase ) __snake_case : List[str] = tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) __snake_case : List[Any] = qformer_tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def snake_case__ ( self : Union[str, Any] ): __snake_case : Dict = self.get_image_processor() __snake_case : Tuple = self.get_tokenizer() __snake_case : Optional[int] = self.get_qformer_tokenizer() __snake_case : Optional[int] = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) __snake_case : Union[str, Any] = """lower newer""" __snake_case : List[Any] = self.prepare_image_inputs() __snake_case : Optional[int] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def snake_case__ ( self : str ): __snake_case : Optional[int] = self.get_image_processor() __snake_case : Any = self.get_tokenizer() __snake_case : List[str] = self.get_qformer_tokenizer() __snake_case : int = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) __snake_case : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case : Union[str, Any] = processor.batch_decode(_lowerCAmelCase ) __snake_case : List[Any] = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] ): __snake_case : str = self.get_image_processor() __snake_case : List[Any] = self.get_tokenizer() __snake_case : List[str] = self.get_qformer_tokenizer() __snake_case : str = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) __snake_case : Union[str, Any] = """lower newer""" __snake_case : List[str] = self.prepare_image_inputs() __snake_case : List[Any] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
20
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ): __snake_case : Optional[Any] = {} __snake_case : int = {} if prompt is not None: __snake_case : Dict = prompt if generate_kwargs is not None: __snake_case : List[Any] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __snake_case : Optional[int] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) __snake_case : Any = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ): return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ): __snake_case : Optional[Any] = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) __snake_case : Tuple = self.model.config.model_type if model_type == "git": __snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids __snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids __snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": __snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: __snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __snake_case : int = None return model_inputs def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): __snake_case : List[Any] = None if generate_kwargs is None: __snake_case : Dict = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __snake_case : Dict = model_inputs.pop(self.model.main_input_name ) __snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ): __snake_case : Union[str, Any] = [] for output_ids in model_outputs: __snake_case : Union[str, Any] = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
20
1
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class SCREAMING_SNAKE_CASE__ : A : List[Any] = PegasusConfig A : Dict = {} A : List[str] = "gelu" def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=13 , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : int=99 , _lowerCAmelCase : Dict=32 , _lowerCAmelCase : str=2 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : str=37 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Any=40 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Optional[int]=0 , ): __snake_case : Optional[Any] = parent __snake_case : str = batch_size __snake_case : str = seq_length __snake_case : List[Any] = is_training __snake_case : Union[str, Any] = use_labels __snake_case : Optional[int] = vocab_size __snake_case : Any = hidden_size __snake_case : str = num_hidden_layers __snake_case : Optional[Any] = num_attention_heads __snake_case : str = intermediate_size __snake_case : int = hidden_dropout_prob __snake_case : str = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Union[str, Any] = eos_token_id __snake_case : Tuple = pad_token_id __snake_case : Any = bos_token_id def snake_case__ ( self : Dict ): __snake_case : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __snake_case : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __snake_case : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __snake_case : Tuple = prepare_pegasus_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): __snake_case : Optional[Any] = TFPegasusModel(config=_lowerCAmelCase ).get_decoder() __snake_case : Optional[int] = inputs_dict["""input_ids"""] __snake_case : Optional[int] = input_ids[:1, :] __snake_case : Optional[int] = inputs_dict["""attention_mask"""][:1, :] __snake_case : str = inputs_dict["""head_mask"""] __snake_case : Tuple = 1 # first forward pass __snake_case : Optional[int] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) __snake_case , __snake_case : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __snake_case : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __snake_case : str = tf.concat([input_ids, next_tokens] , axis=-1 ) __snake_case : List[str] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __snake_case : Optional[int] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] __snake_case : str = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __snake_case : Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __snake_case : List[str] = output_from_no_past[:, -3:, random_slice_idx] __snake_case : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , rtol=1e-3 ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : str=None , ): '''simple docstring''' if attention_mask is None: __snake_case : Optional[Any] = tf.cast(tf.math.not_equal(__SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __snake_case : Any = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __snake_case : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __snake_case : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __snake_case : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): A : Dict = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () A : Optional[int] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () A : Union[str, Any] = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) A : Union[str, Any] = True A : Any = False A : Dict = False def snake_case__ ( self : Union[str, Any] ): __snake_case : Optional[Any] = TFPegasusModelTester(self ) __snake_case : int = ConfigTester(self , config_class=_lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def snake_case__ ( self : str ): __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A : Tuple = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] A : Dict = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers A : Union[str, Any] = "google/pegasus-xsum" @cached_property def snake_case__ ( self : Optional[int] ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def snake_case__ ( self : List[str] ): __snake_case : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def snake_case__ ( self : Tuple , **_lowerCAmelCase : Optional[Any] ): __snake_case : Dict = self.translate_src_text(**_lowerCAmelCase ) assert self.expected_text == generated_words def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Optional[int] ): __snake_case : Tuple = self.tokenizer(self.src_text , **_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""tf""" ) __snake_case : Dict = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCAmelCase , ) __snake_case : Any = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCAmelCase ) return generated_words @slow def snake_case__ ( self : int ): self._assert_generated_batch_equal_expected()
20
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["YolosFeatureExtractor"] lowercase_ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : int ): __snake_case , __snake_case : str = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __snake_case : Union[str, Any] = """A painting of a squirrel eating a burger""" __snake_case : Dict = jax.device_count() __snake_case : int = num_samples * [prompt] __snake_case : List[str] = sd_pipe.prepare_inputs(_lowerCAmelCase ) __snake_case : Union[str, Any] = replicate(_lowerCAmelCase ) __snake_case : Optional[Any] = shard(_lowerCAmelCase ) __snake_case : List[str] = jax.random.PRNGKey(0 ) __snake_case : int = jax.random.split(_lowerCAmelCase , jax.device_count() ) __snake_case : Optional[Any] = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) __snake_case : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __snake_case : Optional[int] = images[0, 2_53:2_56, 2_53:2_56, -1] __snake_case : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __snake_case : Optional[Any] = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def snake_case__ ( self : List[str] ): __snake_case : Tuple = """stabilityai/stable-diffusion-2""" __snake_case , __snake_case : Optional[int] = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __snake_case , __snake_case : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __snake_case : Optional[Any] = scheduler_params __snake_case : List[str] = """A painting of a squirrel eating a burger""" __snake_case : Dict = jax.device_count() __snake_case : Union[str, Any] = num_samples * [prompt] __snake_case : Any = sd_pipe.prepare_inputs(_lowerCAmelCase ) __snake_case : List[str] = replicate(_lowerCAmelCase ) __snake_case : Dict = shard(_lowerCAmelCase ) __snake_case : Optional[int] = jax.random.PRNGKey(0 ) __snake_case : List[str] = jax.random.split(_lowerCAmelCase , jax.device_count() ) __snake_case : Tuple = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) __snake_case : List[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __snake_case : Optional[Any] = images[0, 2_53:2_56, 2_53:2_56, -1] __snake_case : Any = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __snake_case : Dict = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
20
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = "microsoft/speecht5_tts" A : List[Any] = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) A : str = "text_reader" A : Optional[Any] = SpeechTaProcessor A : Any = SpeechTaForTextToSpeech A : Optional[Any] = SpeechTaHifiGan A : str = ["text"] A : Union[str, Any] = ["audio"] def snake_case__ ( self : List[Any] ): if self.post_processor is None: __snake_case : Tuple = """microsoft/speecht5_hifigan""" super().setup() def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ): __snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) __snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) __snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ): with torch.no_grad(): return self.model.generate_speech(**_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): with torch.no_grad(): return self.post_processor(_lowerCAmelCase ).cpu().detach()
20
1
lowercase_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : List[str] = input("""Enter message: """ ) __snake_case : str = input("""Enter key [alphanumeric]: """ ) __snake_case : Optional[int] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __snake_case : Optional[Any] = """encrypt""" __snake_case : Optional[int] = encrypt_message(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif mode.lower().startswith("""d""" ): __snake_case : Dict = """decrypt""" __snake_case : Any = decrypt_message(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(F'''\n{mode.title()}ed message:''' ) print(__SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return translate_message(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , """encrypt""" ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return translate_message(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , """decrypt""" ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): '''simple docstring''' __snake_case : Optional[Any] = [] __snake_case : Tuple = 0 __snake_case : Optional[Any] = key.upper() for symbol in message: __snake_case : int = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__SCREAMING_SNAKE_CASE ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__SCREAMING_SNAKE_CASE ): __snake_case : Optional[int] = 0 else: translated.append(__SCREAMING_SNAKE_CASE ) return "".join(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
20
import math def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if ( not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if ( not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
20
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = "microsoft/speecht5_tts" A : List[Any] = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) A : str = "text_reader" A : Optional[Any] = SpeechTaProcessor A : Any = SpeechTaForTextToSpeech A : Optional[Any] = SpeechTaHifiGan A : str = ["text"] A : Union[str, Any] = ["audio"] def snake_case__ ( self : List[Any] ): if self.post_processor is None: __snake_case : Tuple = """microsoft/speecht5_hifigan""" super().setup() def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ): __snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) __snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) __snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ): with torch.no_grad(): return self.model.generate_speech(**_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): with torch.no_grad(): return self.post_processor(_lowerCAmelCase ).cpu().detach()
20
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
1
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int = 1_0_0_0 ): '''simple docstring''' __snake_case , __snake_case : Optional[int] = 1, 1 __snake_case : str = [] for i in range(1 , n + 1 ): __snake_case : Dict = prev_numerator + 2 * prev_denominator __snake_case : Dict = prev_numerator + prev_denominator if len(str(__SCREAMING_SNAKE_CASE ) ) > len(str(__SCREAMING_SNAKE_CASE ) ): result.append(__SCREAMING_SNAKE_CASE ) __snake_case : Union[str, Any] = numerator __snake_case : List[str] = denominator return len(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F'''{solution() = }''')
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowercase_ = logging.get_logger(__name__) @add_end_docstrings( __UpperCamelCase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def snake_case__ ( self : str , _lowerCAmelCase : GenericTensor ): if self.framework == "tf": __snake_case : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __snake_case : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowerCAmelCase ) else: raise ValueError("""Unsupported framework""" ) return masked_index def snake_case__ ( self : int , _lowerCAmelCase : GenericTensor ): __snake_case : List[str] = self.get_masked_index(_lowerCAmelCase ) __snake_case : Any = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : GenericTensor ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_lowerCAmelCase ) def snake_case__ ( self : int , _lowerCAmelCase : Dict , _lowerCAmelCase : str=None , **_lowerCAmelCase : Union[str, Any] ): if return_tensors is None: __snake_case : Union[str, Any] = self.framework __snake_case : Any = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.ensure_exactly_one_mask_token(_lowerCAmelCase ) return model_inputs def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str] ): __snake_case : List[str] = self.model(**_lowerCAmelCase ) __snake_case : Optional[int] = model_inputs["""input_ids"""] return model_outputs def snake_case__ ( self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __snake_case : Optional[int] = target_ids.shape[0] __snake_case : Dict = model_outputs["""input_ids"""][0] __snake_case : List[str] = model_outputs["""logits"""] if self.framework == "tf": __snake_case : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __snake_case : Optional[Any] = outputs.numpy() __snake_case : Optional[int] = outputs[0, masked_index, :] __snake_case : int = stable_softmax(_lowerCAmelCase , axis=-1 ) if target_ids is not None: __snake_case : Any = tf.gather_nd(tf.squeeze(_lowerCAmelCase , 0 ) , target_ids.reshape(-1 , 1 ) ) __snake_case : Any = tf.expand_dims(_lowerCAmelCase , 0 ) __snake_case : Tuple = tf.math.top_k(_lowerCAmelCase , k=_lowerCAmelCase ) __snake_case , __snake_case : List[Any] = topk.values.numpy(), topk.indices.numpy() else: __snake_case : Union[str, Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowerCAmelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __snake_case : Dict = outputs[0, masked_index, :] __snake_case : str = logits.softmax(dim=-1 ) if target_ids is not None: __snake_case : Optional[Any] = probs[..., target_ids] __snake_case , __snake_case : Tuple = probs.topk(_lowerCAmelCase ) __snake_case : Tuple = [] __snake_case : str = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __snake_case : List[str] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __snake_case : Tuple = input_ids.numpy().copy() if target_ids is not None: __snake_case : List[str] = target_ids[p].tolist() __snake_case : Any = p # Filter padding out: __snake_case : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __snake_case : int = self.tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) __snake_case : str = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(_lowerCAmelCase ) result.append(_lowerCAmelCase ) if single_mask: return result[0] return result def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : str=None ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : Any = [targets] try: __snake_case : List[Any] = self.tokenizer.get_vocab() except Exception: __snake_case : Optional[Any] = {} __snake_case : Optional[int] = [] for target in targets: __snake_case : int = vocab.get(_lowerCAmelCase , _lowerCAmelCase ) if id_ is None: __snake_case : Tuple = self.tokenizer( _lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , max_length=1 , truncation=_lowerCAmelCase , )["""input_ids"""] if len(_lowerCAmelCase ) == 0: logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' """We cannot replace it with anything meaningful, ignoring it""" ) continue __snake_case : Optional[int] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) __snake_case : Optional[Any] = list(set(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) __snake_case : Dict = np.array(_lowerCAmelCase ) return target_ids def snake_case__ ( self : Any , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None ): __snake_case : Tuple = {} if targets is not None: __snake_case : int = self.get_target_ids(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Optional[int] = target_ids if top_k is not None: __snake_case : Tuple = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self : List[Any] , _lowerCAmelCase : Optional[int] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Union[str, Any] ): __snake_case : List[str] = super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) == 1: return outputs[0] return outputs
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["ViTFeatureExtractor"] lowercase_ = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowercase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[Any] = ["pixel_values"] def __init__( self : Tuple , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[int, float] = 1 / 2_55 , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : bool = True , **_lowerCAmelCase : Dict , ): super().__init__(**_lowerCAmelCase ) __snake_case : int = size if size is not None else {"""shortest_edge""": 2_24} __snake_case : Any = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) __snake_case : int = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} __snake_case : Tuple = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase , param_name="""crop_size""" ) __snake_case : int = do_resize __snake_case : Any = size __snake_case : Optional[int] = resample __snake_case : List[Any] = do_center_crop __snake_case : Optional[Any] = crop_size __snake_case : str = do_rescale __snake_case : Optional[int] = rescale_factor __snake_case : List[str] = do_normalize __snake_case : List[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __snake_case : int = image_std if image_std is not None else OPENAI_CLIP_STD __snake_case : str = do_convert_rgb def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Union[str, Any] , ): __snake_case : Optional[Any] = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __snake_case : str = get_resize_output_image_size(_lowerCAmelCase , size=size["""shortest_edge"""] , default_to_square=_lowerCAmelCase ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Any , ): __snake_case : Tuple = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Tuple , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[int, float] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Dict , ): return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Any , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Any , ): return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Any , _lowerCAmelCase : ImageInput , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : int = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : float = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowerCAmelCase : List[str] , ): __snake_case : str = do_resize if do_resize is not None else self.do_resize __snake_case : Union[str, Any] = size if size is not None else self.size __snake_case : Optional[Any] = get_size_dict(_lowerCAmelCase , param_name="""size""" , default_to_square=_lowerCAmelCase ) __snake_case : Any = resample if resample is not None else self.resample __snake_case : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case : int = crop_size if crop_size is not None else self.crop_size __snake_case : List[Any] = get_size_dict(_lowerCAmelCase , param_name="""crop_size""" , default_to_square=_lowerCAmelCase ) __snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale __snake_case : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : str = do_normalize if do_normalize is not None else self.do_normalize __snake_case : List[Any] = image_mean if image_mean is not None else self.image_mean __snake_case : Optional[int] = image_std if image_std is not None else self.image_std __snake_case : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __snake_case : Union[str, Any] = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __snake_case : Union[str, Any] = [convert_to_rgb(_lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. __snake_case : int = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: __snake_case : int = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: __snake_case : Optional[Any] = [self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: __snake_case : List[Any] = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: __snake_case : int = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] __snake_case : List[str] = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] __snake_case : str = {"""pixel_values""": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
20
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __snake_case , __snake_case : str = array[indexa], array[indexa] def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Tuple = int(length / 2 ) for i in range(__SCREAMING_SNAKE_CASE , low + middle ): comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Optional[Any] = int(length / 2 ) bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 ) bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
20
1
def __lowerCAmelCase ( ): '''simple docstring''' for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : int = 1 __snake_case : Any = 2 while i * i <= n: __snake_case : Union[str, Any] = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def __lowerCAmelCase ( ): '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(__SCREAMING_SNAKE_CASE ) > 5_0_0 ) if __name__ == "__main__": print(solution())
20
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' __snake_case : Optional[int] = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } __snake_case , __snake_case : Tuple = input_paths_and_base_extractors[compression_format] if input_path is None: __snake_case : Tuple = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__SCREAMING_SNAKE_CASE ) assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE ) __snake_case : List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case : List[str] = file_path.read_text(encoding="""utf-8""" ) else: __snake_case : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) __snake_case : int = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' __snake_case : Union[str, Any] = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } __snake_case : int = input_paths[compression_format] if input_path is None: __snake_case : int = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__SCREAMING_SNAKE_CASE ) __snake_case : Any = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE ) assert extractor_format is not None __snake_case : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case : Union[str, Any] = file_path.read_text(encoding="""utf-8""" ) else: __snake_case : Union[str, Any] = output_path.read_text(encoding="""utf-8""" ) __snake_case : Optional[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' import tarfile __snake_case : List[str] = tmp_path / """data_dot_dot""" directory.mkdir() __snake_case : Optional[Any] = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' import tarfile __snake_case : Dict = tmp_path / """data_sym_link""" directory.mkdir() __snake_case : Tuple = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE ) with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' __snake_case : Any = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } __snake_case : int = insecure_tar_files[insecure_tar_file] __snake_case : Optional[int] = tmp_path / """extracted""" TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __snake_case : Optional[Any] = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 __snake_case : List[str] = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(__SCREAMING_SNAKE_CASE ) assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
20
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[Any] = (PNDMScheduler,) A : Union[str, Any] = (("num_inference_steps", 50),) def snake_case__ ( self : Any , **_lowerCAmelCase : Optional[Any] ): __snake_case : int = { """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_lowerCAmelCase ) return config def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Optional[int]=0 , **_lowerCAmelCase : Dict ): __snake_case : Tuple = dict(self.forward_default_kwargs ) __snake_case : int = kwargs.pop("""num_inference_steps""" , _lowerCAmelCase ) __snake_case : Any = self.dummy_sample __snake_case : int = 0.1 * sample __snake_case : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __snake_case : str = self.get_scheduler_config(**_lowerCAmelCase ) __snake_case : Optional[Any] = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals __snake_case : int = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) __snake_case : str = scheduler_class.from_pretrained(_lowerCAmelCase ) new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals __snake_case : Union[str, Any] = dummy_past_residuals[:] __snake_case : Union[str, Any] = scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample __snake_case : int = new_scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __snake_case : List[Any] = scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample __snake_case : Optional[int] = new_scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case__ ( self : int ): pass def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str=0 , **_lowerCAmelCase : Tuple ): __snake_case : str = dict(self.forward_default_kwargs ) __snake_case : Any = kwargs.pop("""num_inference_steps""" , _lowerCAmelCase ) __snake_case : Optional[Any] = self.dummy_sample __snake_case : str = 0.1 * sample __snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __snake_case : Optional[int] = self.get_scheduler_config() __snake_case : int = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __snake_case : Optional[int] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) __snake_case : Union[str, Any] = scheduler_class.from_pretrained(_lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __snake_case : Any = dummy_past_residuals[:] __snake_case : List[Any] = scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample __snake_case : Union[str, Any] = new_scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __snake_case : str = scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample __snake_case : str = new_scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case__ ( self : Dict , **_lowerCAmelCase : str ): __snake_case : Dict = self.scheduler_classes[0] __snake_case : Union[str, Any] = self.get_scheduler_config(**_lowerCAmelCase ) __snake_case : str = scheduler_class(**_lowerCAmelCase ) __snake_case : int = 10 __snake_case : int = self.dummy_model() __snake_case : int = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.prk_timesteps ): __snake_case : int = model(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Tuple = scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): __snake_case : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Optional[Any] = scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def snake_case__ ( self : Any ): __snake_case : List[Any] = dict(self.forward_default_kwargs ) __snake_case : Union[str, Any] = kwargs.pop("""num_inference_steps""" , _lowerCAmelCase ) for scheduler_class in self.scheduler_classes: __snake_case : Optional[Any] = self.get_scheduler_config() __snake_case : Tuple = scheduler_class(**_lowerCAmelCase ) __snake_case : Any = self.dummy_sample __snake_case : int = 0.1 * sample if num_inference_steps is not None and hasattr(_lowerCAmelCase , """set_timesteps""" ): scheduler.set_timesteps(_lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(_lowerCAmelCase , """set_timesteps""" ): __snake_case : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __snake_case : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __snake_case : Optional[int] = dummy_past_residuals[:] __snake_case : List[Any] = scheduler.step_prk(_lowerCAmelCase , 0 , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample __snake_case : int = scheduler.step_prk(_lowerCAmelCase , 1 , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __snake_case : Optional[Any] = scheduler.step_plms(_lowerCAmelCase , 0 , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample __snake_case : Tuple = scheduler.step_plms(_lowerCAmelCase , 1 , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case__ ( self : Dict ): for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def snake_case__ ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCAmelCase ) __snake_case : Optional[Any] = self.scheduler_classes[0] __snake_case : str = self.get_scheduler_config(steps_offset=1 ) __snake_case : Dict = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def snake_case__ ( self : int ): for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def snake_case__ ( self : Dict ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def snake_case__ ( self : List[str] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def snake_case__ ( self : Dict ): for t in [1, 5, 10]: self.check_over_forward(time_step=_lowerCAmelCase ) def snake_case__ ( self : List[str] ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=_lowerCAmelCase ) def snake_case__ ( self : Optional[int] ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 __snake_case : str = 27 for scheduler_class in self.scheduler_classes: __snake_case : List[str] = self.dummy_sample __snake_case : int = 0.1 * sample __snake_case : str = self.get_scheduler_config() __snake_case : Dict = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): __snake_case : Optional[int] = scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample def snake_case__ ( self : Optional[int] ): with self.assertRaises(_lowerCAmelCase ): __snake_case : Any = self.scheduler_classes[0] __snake_case : Tuple = self.get_scheduler_config() __snake_case : List[str] = scheduler_class(**_lowerCAmelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def snake_case__ ( self : Dict ): __snake_case : Union[str, Any] = self.full_loop() __snake_case : Tuple = torch.sum(torch.abs(_lowerCAmelCase ) ) __snake_case : Optional[int] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def snake_case__ ( self : Tuple ): __snake_case : Dict = self.full_loop(prediction_type="""v_prediction""" ) __snake_case : List[str] = torch.sum(torch.abs(_lowerCAmelCase ) ) __snake_case : Union[str, Any] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def snake_case__ ( self : int ): # We specify different beta, so that the first alpha is 0.99 __snake_case : List[str] = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) __snake_case : Tuple = torch.sum(torch.abs(_lowerCAmelCase ) ) __snake_case : Optional[int] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def snake_case__ ( self : List[str] ): # We specify different beta, so that the first alpha is 0.99 __snake_case : int = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) __snake_case : Dict = torch.sum(torch.abs(_lowerCAmelCase ) ) __snake_case : List[str] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
20
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : Any ): __snake_case : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __snake_case : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __snake_case : List[str] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __snake_case : str = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case : Any = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) # load decoder from hub __snake_case : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Tuple ): __snake_case : int = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , **_lowerCAmelCase : Optional[int] ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Dict , **_lowerCAmelCase : Tuple ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase ) def snake_case__ ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def snake_case__ ( self : Union[str, Any] ): __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : Tuple = self.get_feature_extractor() __snake_case : Dict = self.get_decoder() __snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) __snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : Tuple = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def snake_case__ ( self : int ): __snake_case : Tuple = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(_lowerCAmelCase , """include""" ): WavaVecaProcessorWithLM( tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def snake_case__ ( self : Dict ): __snake_case : int = self.get_feature_extractor() __snake_case : str = self.get_tokenizer() __snake_case : Dict = self.get_decoder() __snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : List[Any] = floats_list((3, 10_00) ) __snake_case : Optional[Any] = feature_extractor(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Tuple = processor(_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self : Optional[int] ): __snake_case : Any = self.get_feature_extractor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Optional[int] = """This is a test string""" __snake_case : Union[str, Any] = processor(text=_lowerCAmelCase ) __snake_case : Dict = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case__ ( self : List[str] , _lowerCAmelCase : List[Any]=(2, 10, 16) , _lowerCAmelCase : str=77 ): np.random.seed(_lowerCAmelCase ) return np.random.rand(*_lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : List[str] = self.get_feature_extractor() __snake_case : List[str] = self.get_tokenizer() __snake_case : List[str] = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case : int = processor.decode(_lowerCAmelCase ) __snake_case : Optional[int] = decoder.decode_beams(_lowerCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] ): __snake_case : int = self.get_feature_extractor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : int = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case : Tuple = processor.batch_decode(_lowerCAmelCase ) else: with get_context(_lowerCAmelCase ).Pool() as pool: __snake_case : int = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : int = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as p: __snake_case : Tuple = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase ) __snake_case , __snake_case , __snake_case : List[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCAmelCase , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score ) self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score ) def snake_case__ ( self : Optional[int] ): __snake_case : Optional[Any] = self.get_feature_extractor() __snake_case : int = self.get_tokenizer() __snake_case : str = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : int = self._get_dummy_logits() __snake_case : List[str] = 15 __snake_case : Optional[Any] = -20.0 __snake_case : Tuple = -4.0 __snake_case : List[Any] = processor.batch_decode( _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) __snake_case : List[str] = decoded_processor_out.text __snake_case : str = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as pool: __snake_case : Dict = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) __snake_case : int = [d[0][0] for d in decoded_decoder_out] __snake_case : List[Any] = [d[0][2] for d in decoded_decoder_out] __snake_case : List[Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1e-3 ) ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1e-3 ) ) def snake_case__ ( self : Any ): __snake_case : List[Any] = self.get_feature_extractor() __snake_case : Any = self.get_tokenizer() __snake_case : Union[str, Any] = self.get_decoder() __snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Any = self._get_dummy_logits() __snake_case : Any = 2.0 __snake_case : int = 5.0 __snake_case : Optional[int] = -20.0 __snake_case : Optional[int] = True __snake_case : Any = processor.batch_decode( _lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) __snake_case : str = decoded_processor_out.text __snake_case : int = list(_lowerCAmelCase ) decoder.reset_params( alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) with get_context("""fork""" ).Pool() as pool: __snake_case : Tuple = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , ) __snake_case : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase ) __snake_case : List[str] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] __snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __snake_case : Union[str, Any] = os.listdir(_lowerCAmelCase ) __snake_case : List[str] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase ) __snake_case : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __snake_case : List[str] = os.listdir(_lowerCAmelCase ) __snake_case : List[Any] = os.listdir(_lowerCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Optional[int] = floats_list((3, 10_00) ) __snake_case : Union[str, Any] = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Union[str, Any] = processor_auto(_lowerCAmelCase , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case : Dict = self._get_dummy_logits() __snake_case : List[Any] = processor_wavaveca.batch_decode(_lowerCAmelCase ) __snake_case : List[Any] = processor_auto.batch_decode(_lowerCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def snake_case__ ( self : str ): __snake_case : int = self.get_feature_extractor() __snake_case : List[str] = self.get_tokenizer() __snake_case : Optional[Any] = self.get_decoder() __snake_case : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def snake_case__ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): __snake_case : Union[str, Any] = [d[key] for d in offsets] return retrieved_list def snake_case__ ( self : Dict ): __snake_case : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : List[str] = self._get_dummy_logits()[0] __snake_case : str = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def snake_case__ ( self : List[str] ): __snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Optional[int] = self._get_dummy_logits() __snake_case : int = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def snake_case__ ( self : Optional[Any] ): import torch __snake_case : Optional[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase ) __snake_case : Any = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) __snake_case : List[Any] = iter(_lowerCAmelCase ) __snake_case : Optional[int] = next(_lowerCAmelCase ) __snake_case : str = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __snake_case : str = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __snake_case : Dict = model(_lowerCAmelCase ).logits.cpu().numpy() __snake_case : Any = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase ) __snake_case : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case : Dict = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __snake_case : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase ) self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text ) # output times __snake_case : Dict = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) ) __snake_case : Optional[Any] = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) ) # fmt: off __snake_case : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __snake_case : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
20
1
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : List[str] , **_lowerCAmelCase : str ): super().__init__(**_lowerCAmelCase ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self : Dict , _lowerCAmelCase : Union[np.ndarray, bytes, str] , **_lowerCAmelCase : List[Any] ): return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Tuple , **_lowerCAmelCase : Optional[int] ): __snake_case : Union[str, Any] = {} if "candidate_labels" in kwargs: __snake_case : List[str] = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __snake_case : str = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[Any]="This is a sound of {}." ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __snake_case : int = requests.get(_lowerCAmelCase ).content else: with open(_lowerCAmelCase , """rb""" ) as f: __snake_case : Dict = f.read() if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : Union[str, Any] = ffmpeg_read(_lowerCAmelCase , self.feature_extractor.sampling_rate ) if not isinstance(_lowerCAmelCase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) __snake_case : Dict = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) __snake_case : Any = candidate_labels __snake_case : int = [hypothesis_template.format(_lowerCAmelCase ) for x in candidate_labels] __snake_case : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework , padding=_lowerCAmelCase ) __snake_case : str = [text_inputs] return inputs def snake_case__ ( self : Any , _lowerCAmelCase : List[str] ): __snake_case : List[str] = model_inputs.pop("""candidate_labels""" ) __snake_case : Tuple = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowerCAmelCase ): __snake_case : Optional[Any] = text_inputs[0] else: # Batching case. __snake_case : int = text_inputs[0][0] __snake_case : int = self.model(**_lowerCAmelCase , **_lowerCAmelCase ) __snake_case : str = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def snake_case__ ( self : Dict , _lowerCAmelCase : Union[str, Any] ): __snake_case : List[str] = model_outputs.pop("""candidate_labels""" ) __snake_case : Optional[Any] = model_outputs["""logits"""][0] if self.framework == "pt": __snake_case : Optional[int] = logits.softmax(dim=0 ) __snake_case : Any = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) __snake_case : int = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowerCAmelCase , _lowerCAmelCase ) , key=lambda _lowerCAmelCase : -x[0] ) ] return result
20
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowercase_ = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ): '''simple docstring''' __snake_case , __snake_case : str = create_model( """HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : Union[str, Any] = {} __snake_case : List[Any] = R""".*sequential.(\d+).*""" __snake_case : Union[str, Any] = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # replace sequential layers with list __snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) __snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' ) elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __snake_case : List[Any] = 1 if projecton_layer == 0 else 2 __snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value __snake_case : Optional[int] = value __snake_case : Any = mixed_qkv.size(0 ) // 3 __snake_case : List[Any] = mixed_qkv[:qkv_dim] __snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :] __snake_case : Any = query_layer __snake_case : Dict = key_layer __snake_case : Optional[Any] = value_layer else: __snake_case : List[str] = value return model_state_dict def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ): '''simple docstring''' __snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE ) clap_model.eval() __snake_case : Tuple = clap_model.state_dict() __snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = ClapConfig() __snake_case : Tuple = enable_fusion __snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE ) # ignore the spectrogram embedding layer model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") lowercase_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
20
1
lowercase_ = 2_56 # Modulus to hash a string lowercase_ = 1_00_00_03 def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): '''simple docstring''' __snake_case : str = len(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = len(__SCREAMING_SNAKE_CASE ) if p_len > t_len: return False __snake_case : Any = 0 __snake_case : str = 0 __snake_case : Dict = 1 # Calculating the hash of pattern and substring of text for i in range(__SCREAMING_SNAKE_CASE ): __snake_case : Optional[Any] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __snake_case : Union[str, Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __snake_case : str = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __snake_case : Optional[Any] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : Optional[Any] = """abc1abc12""" __snake_case : Tuple = """alskfjaldsabc1abc1abc12k23adsfabcabc""" __snake_case : Optional[int] = """alskfjaldsk23adsfabcabc""" assert rabin_karp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not rabin_karp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Test 2) __snake_case : Optional[int] = """ABABX""" __snake_case : List[Any] = """ABABZABABYABABX""" assert rabin_karp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Test 3) __snake_case : List[str] = """AAAB""" __snake_case : Dict = """ABAAAAAB""" assert rabin_karp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Test 4) __snake_case : Optional[Any] = """abcdabcy""" __snake_case : str = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Test 5) __snake_case : Any = """Lü""" __snake_case : Optional[Any] = """Lüsai""" assert rabin_karp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = """Lue""" assert not rabin_karp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
20
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = "▁" lowercase_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} lowercase_ = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } lowercase_ = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } lowercase_ = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } lowercase_ = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[str] = ["input_ids"] A : Tuple = VOCAB_FILES_NAMES A : List[Any] = PRETRAINED_INIT_CONFIGURATION A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A : Optional[Any] = RESOURCE_FILES_NAMES def __init__( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]="utf8" , _lowerCAmelCase : Optional[Any]="[UNK]" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : List[Any]="[MASK]" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , vocab_file=_lowerCAmelCase , encoding=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __snake_case : List[Any] = do_lower_case __snake_case : Any = sentencepiece_model_ckpt __snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __snake_case : int = self.load_vocab(filepath=_lowerCAmelCase ) else: __snake_case : Tuple = {self.sp_model.id_to_piece(_lowerCAmelCase ): id for id in range(self.sp_model.get_piece_size() )} __snake_case : str = {v: k for k, v in self.vocab.items()} def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[Any] ): if text is None: return None __snake_case : List[Any] = self.tokenize(_lowerCAmelCase ) __snake_case , __snake_case : Optional[Any] = """""", [] for i, ch in enumerate(_lowerCAmelCase ): if ch in self.SP_CHAR_MAPPING: __snake_case : Any = self.SP_CHAR_MAPPING.get(_lowerCAmelCase ) else: __snake_case : Dict = unicodedata.normalize("""NFKC""" , _lowerCAmelCase ) if self.is_whitespace(_lowerCAmelCase ): continue normalized_text += ch char_mapping.extend([i] * len(_lowerCAmelCase ) ) __snake_case , __snake_case , __snake_case : str = normalized_text, [], 0 if self.do_lower_case: __snake_case : int = text.lower() for token in split_tokens: if token[:1] == "▁": __snake_case : int = token[1:] __snake_case : Optional[int] = text[offset:].index(_lowerCAmelCase ) + offset __snake_case : int = start + len(_lowerCAmelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __snake_case : str = end return token_mapping @property def snake_case__ ( self : Tuple ): return len(self.vocab ) def snake_case__ ( self : Dict ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : int ): __snake_case : str = self.__dict__.copy() __snake_case : Union[str, Any] = None return state def __setstate__( self : Optional[Any] , _lowerCAmelCase : List[str] ): __snake_case : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __snake_case : Optional[Any] = {} __snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] ): return "".join((self.SP_CHAR_MAPPING.get(_lowerCAmelCase , _lowerCAmelCase ) for c in text) ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[int]=0.1 ): if self.sp_model_kwargs.get("""enable_sampling""" ) is True: __snake_case : List[str] = True if self.sp_model_kwargs.get("""alpha""" ) is not None: __snake_case : Dict = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: __snake_case : List[Any] = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: __snake_case : str = self.sp_model.EncodeAsPieces(_lowerCAmelCase ) else: __snake_case : Tuple = self.sp_model.SampleEncodeAsPieces(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case : Union[str, Any] = [] for pi, piece in enumerate(_lowerCAmelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_lowerCAmelCase ) and pi != 0: new_pieces.append(_lowerCAmelCase ) continue else: continue __snake_case : Optional[int] = 0 for i, chunk in enumerate(_lowerCAmelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_lowerCAmelCase ) or self.is_punct(_lowerCAmelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_lowerCAmelCase ) __snake_case : Tuple = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __snake_case : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __snake_case : Tuple = i if len(_lowerCAmelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): __snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ): __snake_case : int = self.convert_ids_to_tokens(_lowerCAmelCase ) __snake_case : Any = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ): return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict ): return self.reverse_vocab.get(_lowerCAmelCase , self.unk_token ) def snake_case__ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] __snake_case : Optional[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1] def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(_lowerCAmelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_lowerCAmelCase ) + 1) + [1] * (len(_lowerCAmelCase ) + 3) def snake_case__ ( self : Tuple , _lowerCAmelCase : List[str] ): if "\u4e00" <= char <= "\u9fff": return True return False def snake_case__ ( self : List[str] , _lowerCAmelCase : Any ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def snake_case__ ( self : int , _lowerCAmelCase : List[Any] ): if char in ",;:.?!~,;:。?!《》【】": return True return False def snake_case__ ( self : str , _lowerCAmelCase : Optional[Any] ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_lowerCAmelCase ) == 1: __snake_case : Dict = unicodedata.category(_lowerCAmelCase ) if cat == "Zs": return True return False def snake_case__ ( self : str , _lowerCAmelCase : List[Any] ): __snake_case : Dict = {} with io.open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(_lowerCAmelCase ): __snake_case : Tuple = line.rstrip("""\n""" ) __snake_case : List[str] = int(_lowerCAmelCase ) return token_to_idx def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : Optional[int] = 0 if os.path.isdir(_lowerCAmelCase ): __snake_case : int = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: __snake_case : Optional[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) __snake_case : Union[str, Any] = token_index writer.write(token + """\n""" ) index += 1 __snake_case : List[Any] = os.path.join(_lowerCAmelCase , """sentencepiece.bpe.model""" ) with open(_lowerCAmelCase , """wb""" ) as fi: __snake_case : List[Any] = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (vocab_file,)
20
1
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowercase_ = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 4_80_00, "sample_size": 6_55_36, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 4_80_00, "sample_size": 6_55_36, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 4_80_00, "sample_size": 13_10_72, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 1_60_00, "sample_size": 6_55_36, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 1_60_00, "sample_size": 6_55_36, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 1_60_00, "sample_size": 6_55_36, }, } def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' return torch.atana(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) / math.pi * 2 def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' __snake_case : Union[str, Any] = torch.sin(t * math.pi / 2 ) ** 2 __snake_case : Optional[int] = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): pass class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : int , _lowerCAmelCase : Optional[int] ): super().__init__() __snake_case : Optional[int] = DiffusionAttnUnetaD(_lowerCAmelCase , n_attn_layers=4 ) __snake_case : int = deepcopy(self.diffusion ) __snake_case : List[Any] = torch.quasirandom.SobolEngine(1 , scramble=_lowerCAmelCase ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' __snake_case : List[str] = MODELS_MAP[model_name]["""url"""] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' lowercase_ = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } lowercase_ = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } lowercase_ = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } lowercase_ = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } lowercase_ = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } lowercase_ = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if name.startswith("""skip""" ): return name.replace("""skip""" , RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(__SCREAMING_SNAKE_CASE ) and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return name.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif name.startswith(__SCREAMING_SNAKE_CASE ): return [name.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict=1_3 ): '''simple docstring''' __snake_case : Union[str, Any] = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" , """time_proj""" ) __snake_case : Optional[Any] = 0 if string.startswith("""net.3.""" ): depth += 1 __snake_case : Union[str, Any] = string[6:] elif string.startswith("""net.""" ): __snake_case : Optional[Any] = string[4:] while string.startswith("""main.7.""" ): depth += 1 __snake_case : str = string[7:] if string.startswith("""main.""" ): __snake_case : str = string[5:] # mid block if string[:2].isdigit(): __snake_case : str = string[:2] __snake_case : Any = string[2:] else: __snake_case : Optional[int] = string[0] __snake_case : Union[str, Any] = string[1:] if depth == max_depth: __snake_case : Union[str, Any] = MID_NUM_TO_LAYER[layer_num] __snake_case : Optional[Any] = """mid_block""" elif depth > 0 and int(__SCREAMING_SNAKE_CASE ) < 7: __snake_case : int = DOWN_NUM_TO_LAYER[layer_num] __snake_case : int = F'''down_blocks.{depth}''' elif depth > 0 and int(__SCREAMING_SNAKE_CASE ) > 7: __snake_case : List[str] = UP_NUM_TO_LAYER[layer_num] __snake_case : List[str] = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: __snake_case : Any = DEPTH_0_TO_LAYER[layer_num] __snake_case : Optional[int] = F'''up_blocks.{max_depth - 1}''' if int(__SCREAMING_SNAKE_CASE ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) __snake_case : Union[str, Any] = string_left[1:] if "resnets" in new_layer: __snake_case : Optional[int] = convert_resconv_naming(__SCREAMING_SNAKE_CASE ) elif "attentions" in new_layer: __snake_case : Tuple = convert_attn_naming(__SCREAMING_SNAKE_CASE ) __snake_case : Union[str, Any] = new_string_left if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case : Tuple = prefix + """.""" + new_layer + """.""" + string_left else: __snake_case : int = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' __snake_case : Union[str, Any] = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue __snake_case : Tuple = rename(__SCREAMING_SNAKE_CASE ) # check if we need to transform from Conv => Linear for attention if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case : Union[str, Any] = transform_conv_attns(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: __snake_case : List[str] = v return new_state_dict def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if len(__SCREAMING_SNAKE_CASE ) == 1: if len(v.shape ) == 3: # weight __snake_case : Union[str, Any] = v[:, :, 0] else: # bias __snake_case : Optional[Any] = v else: # qkv matrices __snake_case : Any = v.shape[0] __snake_case : Union[str, Any] = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: __snake_case : List[str] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: __snake_case : Optional[Any] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' __snake_case : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) __snake_case : Optional[int] = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' __snake_case : Tuple = download(__SCREAMING_SNAKE_CASE ) __snake_case : Optional[int] = MODELS_MAP[model_name]["""sample_rate"""] __snake_case : int = MODELS_MAP[model_name]["""sample_size"""] __snake_case : List[str] = Object() __snake_case : Tuple = sample_size __snake_case : Dict = sample_rate __snake_case : int = 0 __snake_case : Union[str, Any] = UNetaDModel(sample_size=__SCREAMING_SNAKE_CASE , sample_rate=__SCREAMING_SNAKE_CASE ) __snake_case : str = diffusers_model.state_dict() __snake_case : Dict = DiffusionUncond(__SCREAMING_SNAKE_CASE ) orig_model.load_state_dict(torch.load(args.model_path , map_location=__SCREAMING_SNAKE_CASE )["""state_dict"""] ) __snake_case : Dict = orig_model.diffusion_ema.eval() __snake_case : Any = orig_model.state_dict() __snake_case : Optional[Any] = rename_orig_weights(__SCREAMING_SNAKE_CASE ) __snake_case : Union[str, Any] = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) __snake_case : Any = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(__SCREAMING_SNAKE_CASE ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith("""kernel""" ) for k in list(__SCREAMING_SNAKE_CASE ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": __snake_case : List[str] = value.squeeze() __snake_case : Union[str, Any] = value diffusers_model.load_state_dict(__SCREAMING_SNAKE_CASE ) __snake_case : List[str] = 1_0_0 __snake_case : Any = 3_3 __snake_case : Any = IPNDMScheduler(num_train_timesteps=__SCREAMING_SNAKE_CASE ) __snake_case : List[str] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) __snake_case : List[str] = torch.randn([1, 2, config.sample_size] , generator=__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) __snake_case : List[str] = torch.linspace(1 , 0 , steps + 1 , device=__SCREAMING_SNAKE_CASE )[:-1] __snake_case : Dict = get_crash_schedule(__SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = DanceDiffusionPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) __snake_case : Optional[int] = torch.manual_seed(3_3 ) __snake_case : Union[str, Any] = pipe(num_inference_steps=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).audios __snake_case : List[Any] = sampling.iplms_sample(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {} ) __snake_case : List[str] = generated.clamp(-1 , 1 ) __snake_case : Any = (generated - audio).abs().sum() __snake_case : List[str] = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" , __SCREAMING_SNAKE_CASE ) print("""Diff max""" , __SCREAMING_SNAKE_CASE ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") lowercase_ = parser.parse_args() main(args)
20
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[str] = "xlm" A : List[str] = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any]=3_01_45 , _lowerCAmelCase : Optional[Any]=20_48 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : int=16 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=5_12 , _lowerCAmelCase : List[Any]=20_48**-0.5 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple="first" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Tuple , ): __snake_case : Optional[Any] = vocab_size __snake_case : Tuple = emb_dim __snake_case : int = n_layers __snake_case : List[str] = n_heads __snake_case : Union[str, Any] = dropout __snake_case : Optional[int] = attention_dropout __snake_case : Optional[Any] = gelu_activation __snake_case : Tuple = sinusoidal_embeddings __snake_case : List[Any] = causal __snake_case : Dict = asm __snake_case : int = n_langs __snake_case : str = use_lang_emb __snake_case : Dict = layer_norm_eps __snake_case : List[Any] = bos_index __snake_case : Union[str, Any] = eos_index __snake_case : Dict = pad_index __snake_case : Any = unk_index __snake_case : Dict = mask_index __snake_case : Any = is_encoder __snake_case : Dict = max_position_embeddings __snake_case : Optional[Any] = embed_init_std __snake_case : List[Any] = init_std __snake_case : str = summary_type __snake_case : Optional[Any] = summary_use_proj __snake_case : str = summary_activation __snake_case : Optional[int] = summary_proj_to_labels __snake_case : Dict = summary_first_dropout __snake_case : Dict = start_n_top __snake_case : int = end_n_top __snake_case : str = mask_token_id __snake_case : int = lang_id if "n_words" in kwargs: __snake_case : Dict = kwargs["""n_words"""] super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): @property def snake_case__ ( self : Dict ): if self.task == "multiple-choice": __snake_case : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
20
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase_ = logging.getLogger(__name__) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return (preds == labels).mean() @dataclass class SCREAMING_SNAKE_CASE__ : A : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) A : Optional[str] = field( default=__UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) A : Optional[str] = field( default=__UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) A : Optional[str] = field( default=__UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class SCREAMING_SNAKE_CASE__ : A : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) A : str = field(metadata={"help": "Should contain the data files for the task."} ) A : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A : bool = field( default=__UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __lowerCAmelCase ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __snake_case , __snake_case , __snake_case : int = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , __SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) try: __snake_case : int = processors[data_args.task_name]() __snake_case : Optional[Any] = processor.get_labels() __snake_case : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__SCREAMING_SNAKE_CASE , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __snake_case : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # Get datasets __snake_case : str = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __snake_case : str = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__SCREAMING_SNAKE_CASE : EvalPrediction ) -> Dict: __snake_case : int = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__SCREAMING_SNAKE_CASE , p.label_ids )} # Data collator __snake_case : int = DataCollatorWithPadding(__SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __snake_case : List[str] = Trainer( model=__SCREAMING_SNAKE_CASE , args=__SCREAMING_SNAKE_CASE , train_dataset=__SCREAMING_SNAKE_CASE , eval_dataset=__SCREAMING_SNAKE_CASE , compute_metrics=__SCREAMING_SNAKE_CASE , data_collator=__SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __snake_case : List[str] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __snake_case : Dict = trainer.evaluate() __snake_case : int = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(__SCREAMING_SNAKE_CASE , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) writer.write("""%s = %s\n""" % (key, value) ) results.update(__SCREAMING_SNAKE_CASE ) return results def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
20
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[Any] = "encodec" def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase : Tuple=2_40_00 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : int=1_28 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Union[str, Any]=[8, 5, 4, 2] , _lowerCAmelCase : str="weight_norm" , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict="reflect" , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : Optional[int]=10_24 , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , **_lowerCAmelCase : List[Any] , ): __snake_case : Optional[int] = target_bandwidths __snake_case : int = sampling_rate __snake_case : List[Any] = audio_channels __snake_case : str = normalize __snake_case : Union[str, Any] = chunk_length_s __snake_case : Union[str, Any] = overlap __snake_case : Union[str, Any] = hidden_size __snake_case : Union[str, Any] = num_filters __snake_case : Optional[Any] = num_residual_layers __snake_case : List[Any] = upsampling_ratios __snake_case : List[str] = norm_type __snake_case : Union[str, Any] = kernel_size __snake_case : Optional[int] = last_kernel_size __snake_case : Optional[Any] = residual_kernel_size __snake_case : Dict = dilation_growth_rate __snake_case : int = use_causal_conv __snake_case : Tuple = pad_mode __snake_case : str = compress __snake_case : Optional[Any] = num_lstm_layers __snake_case : List[Any] = trim_right_ratio __snake_case : Any = codebook_size __snake_case : int = codebook_dim if codebook_dim is not None else hidden_size __snake_case : int = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**_lowerCAmelCase ) @property def snake_case__ ( self : int ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def snake_case__ ( self : int ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def snake_case__ ( self : Union[str, Any] ): __snake_case : List[str] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def snake_case__ ( self : Tuple ): return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
20
1
from dataclasses import dataclass, field from typing import Optional @dataclass class SCREAMING_SNAKE_CASE__ : A : Optional[str] = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} ) A : Optional[str] = field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) A : Optional[str] = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} ) A : Optional[str] = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) A : Optional[int] = field(default=2 , metadata={"help": "Batch size for training."} ) A : Optional[int] = field(default=2 , metadata={"help": "Batch size for evaluation."} ) A : Optional[float] = field(default=0.1 , metadata={"help": "Value of weight decay."} ) A : Optional[int] = field( default=10000 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) A : Optional[float] = field(default=2e-4 , metadata={"help": "Learning rate fo training."} ) A : Optional[str] = field(default="cosine" , metadata={"help": "Learning rate."} ) A : Optional[int] = field( default=750 , metadata={"help": "Number of warmup steps in the learning rate schedule."} ) A : Optional[int] = field( default=16 , metadata={"help": "Number of gradient accumulation steps."} ) A : Optional[bool] = field( default=__UpperCamelCase , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) A : Optional[int] = field(default=50000 , metadata={"help": "Maximum number of training steps."} ) A : Optional[int] = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) A : Optional[int] = field(default=1024 , metadata={"help": "Sequence lengths used for training."} ) A : Optional[int] = field(default=1 , metadata={"help": "Training seed."} ) A : Optional[int] = field( default=1024 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) A : Optional[str] = field( default=__UpperCamelCase , metadata={"help": "States path if the training should continue from a checkpoint folder."} ) A : Optional[bool] = field(default=__UpperCamelCase , metadata={"help": "If True the data is pretokenized."} ) @dataclass class SCREAMING_SNAKE_CASE__ : A : Optional[str] = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) A : Optional[str] = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) A : Optional[int] = field(default=2 , metadata={"help": "Batch size used for evaluation."} ) A : Optional[int] = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) A : Optional[int] = field(default=1024 , metadata={"help": "Length of sequences to be evaluated."} ) A : Optional[int] = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) @dataclass class SCREAMING_SNAKE_CASE__ : A : Optional[str] = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) A : Optional[int] = field(default=__UpperCamelCase , metadata={"help": "Number of workers used for code evaluation."} ) A : Optional[int] = field( default=__UpperCamelCase , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) A : Optional[bool] = field( default=__UpperCamelCase , metadata={"help": "Sample from the language model's output distribution."} ) A : Optional[float] = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} ) A : Optional[int] = field(default=256 , metadata={"help": "Maximum number of newly generated tokens."} ) A : Optional[int] = field(default=0 , metadata={"help": "Top-k parameter used for generation."} ) A : Optional[float] = field(default=0.95 , metadata={"help": "Top-p parameter used for nucleus sampling."} ) A : Optional[int] = field(default=10 , metadata={"help": "Number of generations to run in parallel."} ) A : Optional[int] = field( default=200 , metadata={"help": "Number of completions to generate for each sample."} ) A : Optional[int] = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) A : Optional[str] = field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} ) A : Optional[str] = field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) A : Optional[int] = field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class SCREAMING_SNAKE_CASE__ : A : Optional[int] = field( default=__UpperCamelCase , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) A : Optional[str] = field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} ) A : Optional[str] = field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} ) A : Optional[int] = field( default=100000 , metadata={"help": "Number of files to save per JSON output file."} ) A : Optional[str] = field(default="content" , metadata={"help": "Column containing text data to process."} ) A : Optional[float] = field( default=1000 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) A : Optional[float] = field( default=100 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) A : Optional[float] = field( default=0.25 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) A : Optional[float] = field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) A : Optional[float] = field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} ) A : Optional[str] = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) A : Optional[bool] = field( default=__UpperCamelCase , metadata={"help": "If True, near-duplicate samples are removed."} ) A : Optional[float] = field( default=0.85 , metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class SCREAMING_SNAKE_CASE__ : A : Optional[str] = field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} ) A : Optional[str] = field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} ) A : Optional[str] = field(default="content" , metadata={"help": "Column containing text data to process."} ) A : Optional[int] = field(default=200000 , metadata={"help": "Number of examples to train tokenizer on."} ) A : Optional[int] = field( default=32768 , metadata={"help": "Number of examples to train the tokenizer on."} ) A : Optional[str] = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} ) A : Optional[bool] = field(default=__UpperCamelCase , metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class SCREAMING_SNAKE_CASE__ : A : Optional[str] = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} ) A : Optional[str] = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} ) A : Optional[str] = field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} ) A : Optional[int] = field(default=__UpperCamelCase , metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class SCREAMING_SNAKE_CASE__ : A : Optional[str] = field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} ) A : Optional[str] = field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} ) A : Optional[str] = field(default="codeparrot" , metadata={"help": "Name of the created model."} ) A : Optional[bool] = field(default=__UpperCamelCase , metadata={"help": "Push saved tokenizer to the hub."} )
20
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : str = [] __snake_case , __snake_case : List[str] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __snake_case : List[Any] = result + left + right return input_list def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(__SCREAMING_SNAKE_CASE ) <= 1: return input_list __snake_case : Union[str, Any] = list(__SCREAMING_SNAKE_CASE ) # iteration for two-way merging __snake_case : Tuple = 2 while p <= len(__SCREAMING_SNAKE_CASE ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ): __snake_case : List[str] = i __snake_case : str = i + p - 1 __snake_case : Optional[Any] = (low + high + 1) // 2 __snake_case : str = merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # final merge of last two parts if p * 2 >= len(__SCREAMING_SNAKE_CASE ): __snake_case : List[str] = i __snake_case : str = merge(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() if user_input == "": lowercase_ = [] else: lowercase_ = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
20
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): A : Optional[int] = None A : str = BloomTokenizerFast A : Optional[Any] = BloomTokenizerFast A : str = True A : Optional[int] = False A : List[str] = "tokenizer_file" A : int = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def snake_case__ ( self : str ): super().setUp() __snake_case : List[Any] = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : int , **_lowerCAmelCase : List[Any] ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : List[str] = self.get_rust_tokenizer() __snake_case : int = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] __snake_case : Optional[int] = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] __snake_case : Optional[int] = tokenizer.batch_encode_plus(_lowerCAmelCase )["""input_ids"""] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Optional[Any] = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Dict , _lowerCAmelCase : Dict=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case : List[str] = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __snake_case : int = """This is a simple input""" __snake_case : List[str] = ["""This is a simple input 1""", """This is a simple input 2"""] __snake_case : Optional[int] = ("""This is a simple input""", """This is a pair""") __snake_case : Optional[Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(_lowerCAmelCase , max_length=_lowerCAmelCase ) tokenizer_r.encode_plus(_lowerCAmelCase , max_length=_lowerCAmelCase ) tokenizer_r.batch_encode_plus(_lowerCAmelCase , max_length=_lowerCAmelCase ) tokenizer_r.encode(_lowerCAmelCase , max_length=_lowerCAmelCase ) tokenizer_r.batch_encode_plus(_lowerCAmelCase , max_length=_lowerCAmelCase ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) __snake_case : List[Any] = None # Hotfixing padding = None self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises( _lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" , ) # Pair input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises( _lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" , ) def snake_case__ ( self : List[str] ): __snake_case : str = self.get_rust_tokenizer() __snake_case : str = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=_lowerCAmelCase ) __snake_case : List[str] = next(iter(_lowerCAmelCase ) )["""premise"""] # pick up one data __snake_case : Tuple = list(sample_data.values() ) __snake_case : Any = list(map(tokenizer.encode , _lowerCAmelCase ) ) __snake_case : Optional[int] = [tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for x in output_tokens] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Dict ): # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
20
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowercase_ = "Usage of script: script_name <size_of_canvas:int>" lowercase_ = [0] * 1_00 + [1] * 10 random.shuffle(choice) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : List[str] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )] return canvas def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' for i, row in enumerate(__SCREAMING_SNAKE_CASE ): for j, _ in enumerate(__SCREAMING_SNAKE_CASE ): __snake_case : int = bool(random.getrandbits(1 ) ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' __snake_case : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__SCREAMING_SNAKE_CASE ): for c, pt in enumerate(__SCREAMING_SNAKE_CASE ): __snake_case : Optional[Any] = __judge_point( __SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __snake_case : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __snake_case : list[list[bool]] = current_canvas.tolist() return return_canvas def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' __snake_case : Any = 0 __snake_case : Dict = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __snake_case : str = pt if pt: if alive < 2: __snake_case : Optional[Any] = False elif alive == 2 or alive == 3: __snake_case : Union[str, Any] = True elif alive > 3: __snake_case : Optional[int] = False else: if alive == 3: __snake_case : List[Any] = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowercase_ = int(sys.argv[1]) # main working structure of this module. lowercase_ = create_canvas(canvas_size) seed(c) lowercase_ , lowercase_ = plt.subplots() fig.show() lowercase_ = ListedColormap(["w", "k"]) try: while True: lowercase_ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
20
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowercase_ = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") lowercase_ = F'''https://www.google.com/search?q={query}&num=100''' lowercase_ = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: lowercase_ = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: lowercase_ = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
20
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Union[Dict, Any]] = None , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : int=2 ): '''simple docstring''' from .. import __version__ __snake_case : List[Any] = take_from __snake_case : List[Any] = () if not isinstance(args[0] , __SCREAMING_SNAKE_CASE ): __snake_case : str = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(__SCREAMING_SNAKE_CASE ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) __snake_case : Optional[Any] = None if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__SCREAMING_SNAKE_CASE ),) __snake_case : Optional[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): values += (getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),) __snake_case : Any = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: __snake_case : Tuple = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: __snake_case : Optional[Any] = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , __SCREAMING_SNAKE_CASE , stacklevel=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) > 0: __snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1] __snake_case : int = call_frame.filename __snake_case : int = call_frame.lineno __snake_case : List[str] = call_frame.function __snake_case , __snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(__SCREAMING_SNAKE_CASE ) == 0: return elif len(__SCREAMING_SNAKE_CASE ) == 1: return values[0] return values
20
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowercase_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' __snake_case : Optional[Any] = state_dict.pop(__SCREAMING_SNAKE_CASE ) __snake_case : Optional[int] = val def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' __snake_case : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __snake_case : List[Any] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) __snake_case : List[Any] = value else: __snake_case : Tuple = value return new_state_dict def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str]=False ): '''simple docstring''' __snake_case : List[Any] = """""" if is_panoptic: __snake_case : Any = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __snake_case : str = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) __snake_case : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case : Optional[Any] = in_proj_weight[:2_5_6, :] __snake_case : List[Any] = in_proj_bias[:2_5_6] __snake_case : List[Any] = in_proj_weight[2_5_6:5_1_2, :] __snake_case : Union[str, Any] = in_proj_bias[2_5_6:5_1_2] __snake_case : Union[str, Any] = in_proj_weight[-2_5_6:, :] __snake_case : Tuple = in_proj_bias[-2_5_6:] def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' __snake_case : List[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __snake_case : List[str] = """resnet101""" if "dc5" in model_name: __snake_case : List[Any] = True __snake_case : List[Any] = """panoptic""" in model_name if is_panoptic: __snake_case : List[Any] = 2_5_0 else: __snake_case : Tuple = 9_1 __snake_case : int = """huggingface/label-files""" __snake_case : Tuple = """coco-detection-id2label.json""" __snake_case : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) __snake_case : Union[str, Any] = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __snake_case : List[str] = idalabel __snake_case : Dict = {v: k for k, v in idalabel.items()} # load image processor __snake_case : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" __snake_case : int = ConditionalDetrImageProcessor(format=__SCREAMING_SNAKE_CASE ) # prepare image __snake_case : str = prepare_img() __snake_case : List[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) __snake_case : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub __snake_case : Optional[Any] = torch.hub.load("""DeppMeng/ConditionalDETR""" , __SCREAMING_SNAKE_CASE , pretrained=__SCREAMING_SNAKE_CASE ).eval() __snake_case : Dict = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __snake_case : List[str] = """conditional_detr.""" + src rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : List[str] = rename_backbone_keys(__SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(__SCREAMING_SNAKE_CASE , is_panoptic=__SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __snake_case : Dict = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): __snake_case : Optional[Any] = state_dict.pop(__SCREAMING_SNAKE_CASE ) __snake_case : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __snake_case : Union[str, Any] = state_dict.pop(__SCREAMING_SNAKE_CASE ) __snake_case : int = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: __snake_case : Any = state_dict.pop(__SCREAMING_SNAKE_CASE ) __snake_case : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): __snake_case : Tuple = state_dict.pop(__SCREAMING_SNAKE_CASE ) __snake_case : Dict = val # finally, create HuggingFace model and load state dict __snake_case : Optional[Any] = ConditionalDetrForSegmentation(__SCREAMING_SNAKE_CASE ) if is_panoptic else ConditionalDetrForObjectDetection(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) model.eval() model.push_to_hub(repo_id=__SCREAMING_SNAKE_CASE , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion __snake_case : Union[str, Any] = conditional_detr(__SCREAMING_SNAKE_CASE ) __snake_case : Tuple = model(__SCREAMING_SNAKE_CASE ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) lowercase_ = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
20
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowercase_ = { "bart": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), "bert": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-cased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-base-cased-finetuned-mrpc": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "dpr": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), "gpt2": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlnet": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm-roberta": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "transfo-xl": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "openai-gpt": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "roberta": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "layoutlm": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), "roberta-large-mnli": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "camembert": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "flaubert": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert-base-distilled-squad": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert-visual-feature-encoder": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "ctrl": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "albert": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "t5": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "electra": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "wav2vec2": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=True ): '''simple docstring''' if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __snake_case , __snake_case , __snake_case , __snake_case : Any = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) __snake_case : Dict = config_class.from_json_file(__SCREAMING_SNAKE_CASE ) __snake_case : Tuple = True __snake_case : Union[str, Any] = True print(F'''Building TensorFlow model from configuration: {config}''' ) __snake_case : List[Any] = model_class(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __snake_case : Optional[Any] = cached_file( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __snake_case : List[Any] = load_pytorch_checkpoint_in_tfa_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if compare_with_pt_model: __snake_case : Tuple = tf_model(tf_model.dummy_inputs , training=__SCREAMING_SNAKE_CASE ) # build the network __snake_case : List[str] = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" ) __snake_case : Any = pt_model_class.from_pretrained( pretrained_model_name_or_path=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE , state_dict=__SCREAMING_SNAKE_CASE ) with torch.no_grad(): __snake_case : Union[str, Any] = pt_model(**pt_model.dummy_inputs ) __snake_case : Any = pto[0].numpy() __snake_case : Optional[int] = tfo[0].numpy() __snake_case : Optional[int] = np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(__SCREAMING_SNAKE_CASE , save_format="""h5""" ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Any=False , ): '''simple docstring''' if args_model_type is None: __snake_case : Tuple = list(MODEL_CLASSES.keys() ) else: __snake_case : Union[str, Any] = [args_model_type] for j, model_type in enumerate(__SCREAMING_SNAKE_CASE , start=1 ): print("""=""" * 1_0_0 ) print(F''' Converting model type {j}/{len(__SCREAMING_SNAKE_CASE )}: {model_type}''' ) print("""=""" * 1_0_0 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __snake_case : int = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __snake_case : Union[str, Any] = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , start=1 ): print("""-""" * 1_0_0 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue __snake_case : List[Any] = model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(__SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}''' ) print("""-""" * 1_0_0 ) if config_shortcut_name in aws_config_map: __snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: __snake_case : Dict = config_shortcut_name if model_shortcut_name in aws_model_maps: __snake_case : Union[str, Any] = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: __snake_case : List[Any] = model_shortcut_name if os.path.isfile(__SCREAMING_SNAKE_CASE ): __snake_case : List[str] = """converted_model""" convert_pt_checkpoint_to_tf( model_type=__SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=__SCREAMING_SNAKE_CASE , config_file=__SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(__SCREAMING_SNAKE_CASE , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__SCREAMING_SNAKE_CASE , ) if remove_cached_files: os.remove(__SCREAMING_SNAKE_CASE ) os.remove(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file." ) parser.add_argument( "--model_type", default=None, type=str, help=( F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' "convert all the models from AWS." ), ) parser.add_argument( "--pytorch_checkpoint_path", default=None, type=str, help=( "Path to the PyTorch checkpoint path or shortcut name to download from AWS. " "If not given, will download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--config_file", default=None, type=str, help=( "The config json file corresponding to the pre-trained model. \n" "This specifies the model architecture. If not given and " "--pytorch_checkpoint_path is not given or is a shortcut name " "use the configuration associated to the shortcut name on the AWS" ), ) parser.add_argument( "--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions." ) parser.add_argument( "--use_cached_models", action="store_true", help="Use cached models if possible instead of updating to latest checkpoint versions.", ) parser.add_argument( "--remove_cached_files", action="store_true", help="Remove pytorch models after conversion (save memory when converting in batches).", ) parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.") lowercase_ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
20
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "spiece.model"} lowercase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } lowercase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) lowercase_ = 0 lowercase_ = 1 lowercase_ = 2 lowercase_ = 3 lowercase_ = 4 class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = VOCAB_FILES_NAMES A : List[str] = PRETRAINED_VOCAB_FILES_MAP A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[Any] = "left" def __init__( self : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : int=True , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Any="<s>" , _lowerCAmelCase : Any="</s>" , _lowerCAmelCase : Optional[Any]="<unk>" , _lowerCAmelCase : Union[str, Any]="<sep>" , _lowerCAmelCase : Tuple="<pad>" , _lowerCAmelCase : Optional[Any]="<cls>" , _lowerCAmelCase : Optional[Any]="<mask>" , _lowerCAmelCase : Union[str, Any]=["<eop>", "<eod>"] , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : List[Any] , ): # Mask token behave like a normal word, i.e. include the space before it __snake_case : Tuple = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token __snake_case : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __snake_case : Union[str, Any] = 3 __snake_case : Optional[Any] = do_lower_case __snake_case : Optional[int] = remove_space __snake_case : Any = keep_accents __snake_case : List[Any] = vocab_file __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def snake_case__ ( self : Optional[int] ): return len(self.sp_model ) def snake_case__ ( self : Optional[Any] ): __snake_case : str = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ): __snake_case : Optional[Any] = self.__dict__.copy() __snake_case : Tuple = None return state def __setstate__( self : int , _lowerCAmelCase : List[Any] ): __snake_case : Dict = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __snake_case : List[Any] = {} __snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__ ( self : Any , _lowerCAmelCase : int ): if self.remove_space: __snake_case : str = """ """.join(inputs.strip().split() ) else: __snake_case : int = inputs __snake_case : str = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: __snake_case : str = unicodedata.normalize("""NFKD""" , _lowerCAmelCase ) __snake_case : int = """""".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] ) if self.do_lower_case: __snake_case : List[str] = outputs.lower() return outputs def snake_case__ ( self : List[str] , _lowerCAmelCase : str ): __snake_case : Optional[Any] = self.preprocess_text(_lowerCAmelCase ) __snake_case : Tuple = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) __snake_case : List[str] = [] for piece in pieces: if len(_lowerCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): __snake_case : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __snake_case : List[Any] = cur_pieces[1:] else: __snake_case : Optional[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCAmelCase ) else: new_pieces.append(_lowerCAmelCase ) return new_pieces def snake_case__ ( self : Dict , _lowerCAmelCase : Dict ): return self.sp_model.PieceToId(_lowerCAmelCase ) def snake_case__ ( self : int , _lowerCAmelCase : Any ): return self.sp_model.IdToPiece(_lowerCAmelCase ) def snake_case__ ( self : Tuple , _lowerCAmelCase : Any ): __snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def snake_case__ ( self : Tuple , _lowerCAmelCase : List[int] , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = None , _lowerCAmelCase : bool = True , **_lowerCAmelCase : Any , ): __snake_case : Optional[int] = kwargs.pop("""use_source_tokenizer""" , _lowerCAmelCase ) __snake_case : str = self.convert_ids_to_tokens(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __snake_case : Optional[int] = [] __snake_case : Optional[int] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCAmelCase ) ) __snake_case : Dict = [] sub_texts.append(_lowerCAmelCase ) else: current_sub_text.append(_lowerCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __snake_case : Union[str, Any] = """""".join(_lowerCAmelCase ) __snake_case : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __snake_case : Union[str, Any] = self.clean_up_tokenization(_lowerCAmelCase ) return clean_text else: return text def snake_case__ ( self : List[str] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): __snake_case : int = [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def snake_case__ ( self : int , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None , _lowerCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is not None: return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] return ([0] * len(_lowerCAmelCase )) + [1, 1] def snake_case__ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): __snake_case : List[Any] = [self.sep_token_id] __snake_case : int = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def snake_case__ ( self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case : Dict = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: __snake_case : Optional[int] = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
20
import random def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Tuple = [], [], [] for element in data: if element < pivot: less.append(__SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(__SCREAMING_SNAKE_CASE ) else: equal.append(__SCREAMING_SNAKE_CASE ) return less, equal, greater def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0: return None __snake_case : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )] __snake_case : Tuple = 0 __snake_case , __snake_case , __snake_case : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) __snake_case : int = len(__SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
20
1
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Union[Dict, Any]] = None , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : int=2 ): '''simple docstring''' from .. import __version__ __snake_case : List[Any] = take_from __snake_case : List[Any] = () if not isinstance(args[0] , __SCREAMING_SNAKE_CASE ): __snake_case : str = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(__SCREAMING_SNAKE_CASE ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) __snake_case : Optional[Any] = None if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__SCREAMING_SNAKE_CASE ),) __snake_case : Optional[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): values += (getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),) __snake_case : Any = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: __snake_case : Tuple = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: __snake_case : Optional[Any] = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , __SCREAMING_SNAKE_CASE , stacklevel=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) > 0: __snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1] __snake_case : int = call_frame.filename __snake_case : int = call_frame.lineno __snake_case : List[str] = call_frame.function __snake_case , __snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(__SCREAMING_SNAKE_CASE ) == 0: return elif len(__SCREAMING_SNAKE_CASE ) == 1: return values[0] return values
20
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } lowercase_ = { "junnyu/roformer_chinese_small": 15_36, "junnyu/roformer_chinese_base": 15_36, "junnyu/roformer_chinese_char_small": 5_12, "junnyu/roformer_chinese_char_base": 5_12, "junnyu/roformer_small_discriminator": 1_28, "junnyu/roformer_small_generator": 1_28, } lowercase_ = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = VOCAB_FILES_NAMES A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = PRETRAINED_INIT_CONFIGURATION A : List[str] = RoFormerTokenizer def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any="[UNK]" , _lowerCAmelCase : int="[SEP]" , _lowerCAmelCase : Optional[int]="[PAD]" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Dict , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) __snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case or pre_tok_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents ): __snake_case : Tuple = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) __snake_case : List[Any] = do_lower_case __snake_case : Optional[Any] = strip_accents __snake_case : List[str] = pre_tok_class(**_lowerCAmelCase ) __snake_case : Optional[Any] = do_lower_case def __getstate__( self : Optional[Any] ): __snake_case : Optional[int] = self.__dict__.copy() __snake_case : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : str , _lowerCAmelCase : Dict ): __snake_case : str = d __snake_case : int = self.__dict__["""_tokenizer"""].get_vocab() __snake_case : List[str] = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=None ): __snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def snake_case__ ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Tuple , ): __snake_case : Tuple = BertPreTokenizer() return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
20
1
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): A : Optional[int] = CpmAntTokenizer A : List[Any] = False def snake_case__ ( self : Union[str, Any] ): super().setUp() __snake_case : Optional[Any] = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] __snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def snake_case__ ( self : Tuple ): __snake_case : Dict = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) __snake_case : Any = """今天天气真好!""" __snake_case : Dict = ["""今天""", """天气""", """真""", """好""", """!"""] __snake_case : int = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Dict = """今天天气真好!""" __snake_case : List[Any] = [tokenizer.bos_token] + tokens __snake_case : List[str] = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) __snake_case : Any = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
20
from __future__ import annotations import math def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] __snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging lowercase_ = logging.get_logger(__name__) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : List[str]=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=__SCREAMING_SNAKE_CASE ) @dataclass class SCREAMING_SNAKE_CASE__ : A : List[str] = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) A : List[int] = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) A : List[int] = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) A : bool = field( default=__UpperCamelCase , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) A : bool = field( default=__UpperCamelCase , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) A : bool = field( default=__UpperCamelCase , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) A : bool = field(default=__UpperCamelCase , metadata={"help": "Use FP16 to accelerate inference."} ) A : bool = field(default=__UpperCamelCase , metadata={"help": "Benchmark training of model"} ) A : bool = field(default=__UpperCamelCase , metadata={"help": "Verbose memory tracing"} ) A : bool = field( default=__UpperCamelCase , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) A : bool = field( default=__UpperCamelCase , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) A : bool = field(default=__UpperCamelCase , metadata={"help": "Trace memory line by line"} ) A : bool = field(default=__UpperCamelCase , metadata={"help": "Save result to a CSV file"} ) A : bool = field(default=__UpperCamelCase , metadata={"help": "Save all print statements in a log file"} ) A : bool = field(default=__UpperCamelCase , metadata={"help": "Whether to print environment information"} ) A : bool = field( default=__UpperCamelCase , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) A : str = field( default=f'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , ) A : str = field( default=f'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , ) A : str = field( default=f'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) A : str = field( default=f'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) A : str = field( default=f'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , ) A : str = field( default=f'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , ) A : int = field(default=3 , metadata={"help": "Times an experiment will be run."} ) A : bool = field( default=__UpperCamelCase , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def snake_case__ ( self : Dict ): warnings.warn( f'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , _lowerCAmelCase , ) def snake_case__ ( self : int ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def snake_case__ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def snake_case__ ( self : Tuple ): if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
20
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowercase_ = None lowercase_ = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowercase_ = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class SCREAMING_SNAKE_CASE__ : A : bool = True A : Optional[str] = None # Automatically constructed A : ClassVar[str] = "PIL.Image.Image" A : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) A : str = field(default="Image" , init=__UpperCamelCase , repr=__UpperCamelCase ) def __call__( self : Any ): return self.pa_type def snake_case__ ( self : List[Any] , _lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : str = np.array(_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {"path": value, "bytes": None} elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {"path": None, "bytes": value} elif isinstance(_lowerCAmelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_lowerCAmelCase ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def snake_case__ ( self : List[str] , _lowerCAmelCase : dict , _lowerCAmelCase : Dict=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: __snake_case : Tuple = {} __snake_case , __snake_case : str = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(_lowerCAmelCase ): __snake_case : str = PIL.Image.open(_lowerCAmelCase ) else: __snake_case : List[str] = path.split("""::""" )[-1] try: __snake_case : Dict = string_to_dict(_lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""] __snake_case : int = token_per_repo_id.get(_lowerCAmelCase ) except ValueError: __snake_case : List[Any] = None with xopen(_lowerCAmelCase , """rb""" , use_auth_token=_lowerCAmelCase ) as f: __snake_case : Union[str, Any] = BytesIO(f.read() ) __snake_case : Dict = PIL.Image.open(bytes_ ) else: __snake_case : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def snake_case__ ( self : Union[str, Any] ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): __snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() ) __snake_case : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __snake_case : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) __snake_case : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: __snake_case : List[str] = storage.field("""bytes""" ) else: __snake_case : List[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: __snake_case : Optional[int] = storage.field("""path""" ) else: __snake_case : int = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) __snake_case : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __snake_case : Optional[Any] = pa.array( [encode_np_array(np.array(_lowerCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) __snake_case : Optional[int] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) __snake_case : List[str] = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_lowerCAmelCase , self.pa_type ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(_lowerCAmelCase : Tuple ): with xopen(_lowerCAmelCase , """rb""" ) as f: __snake_case : Optional[int] = f.read() return bytes_ __snake_case : Tuple = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __snake_case : Optional[Any] = pa.array( [os.path.basename(_lowerCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) __snake_case : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_lowerCAmelCase , self.pa_type ) def __lowerCAmelCase ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __snake_case : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ): '''simple docstring''' __snake_case : List[Any] = BytesIO() if image.format in list_image_compression_formats(): __snake_case : Union[str, Any] = image.format else: __snake_case : List[Any] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(__SCREAMING_SNAKE_CASE , format=__SCREAMING_SNAKE_CASE ) return buffer.getvalue() def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : "PIL.Image.Image" ): '''simple docstring''' if hasattr(__SCREAMING_SNAKE_CASE , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )} def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) __snake_case : List[Any] = array.dtype __snake_case : List[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER __snake_case : Dict = dtype.kind __snake_case : Union[str, Any] = dtype.itemsize __snake_case : Tuple = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __snake_case : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __snake_case : List[str] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __snake_case : int = dtype_byteorder + dtype_kind + str(__SCREAMING_SNAKE_CASE ) __snake_case : Any = np.dtype(__SCREAMING_SNAKE_CASE ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) __snake_case : Optional[int] = PIL.Image.fromarray(array.astype(__SCREAMING_SNAKE_CASE ) ) return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )} def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: __snake_case , __snake_case : Any = first_non_null_value(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): __snake_case : int = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs] elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ): __snake_case : List[str] = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs] else: return objs else: return objs
20
1
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): # TODO: is there an appropriate internal test set? A : List[str] = "ssube/stable-diffusion-x4-upscaler-onnx" def snake_case__ ( self : int , _lowerCAmelCase : List[Any]=0 ): __snake_case : int = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(_lowerCAmelCase ) ) __snake_case : Any = torch.manual_seed(_lowerCAmelCase ) __snake_case : str = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def snake_case__ ( self : Any ): __snake_case : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case : Dict = self.get_dummy_inputs() __snake_case : int = pipe(**_lowerCAmelCase ).images __snake_case : List[Any] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) __snake_case : List[str] = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def snake_case__ ( self : Optional[int] ): __snake_case : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __snake_case : Any = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case : Any = self.get_dummy_inputs() __snake_case : Optional[Any] = pipe(**_lowerCAmelCase ).images __snake_case : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __snake_case : Optional[int] = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case__ ( self : List[Any] ): __snake_case : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __snake_case : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case : int = self.get_dummy_inputs() __snake_case : List[str] = pipe(**_lowerCAmelCase ).images __snake_case : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __snake_case : Optional[int] = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case__ ( self : List[str] ): __snake_case : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __snake_case : Tuple = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case : int = self.get_dummy_inputs() __snake_case : List[str] = pipe(**_lowerCAmelCase ).images __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __snake_case : Union[str, Any] = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case__ ( self : List[str] ): __snake_case : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __snake_case : Dict = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case : List[str] = self.get_dummy_inputs() __snake_case : List[str] = pipe(**_lowerCAmelCase ).images __snake_case : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __snake_case : Union[str, Any] = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def snake_case__ ( self : Tuple ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self : Any ): __snake_case : List[Any] = ort.SessionOptions() __snake_case : Dict = False return options def snake_case__ ( self : List[Any] ): __snake_case : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __snake_case : List[str] = init_image.resize((1_28, 1_28) ) # using the PNDM scheduler by default __snake_case : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case : Union[str, Any] = """A fantasy landscape, trending on artstation""" __snake_case : Union[str, Any] = torch.manual_seed(0 ) __snake_case : Dict = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" , ) __snake_case : Union[str, Any] = output.images __snake_case : Union[str, Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) __snake_case : int = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def snake_case__ ( self : Tuple ): __snake_case : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __snake_case : Union[str, Any] = init_image.resize((1_28, 1_28) ) __snake_case : Union[str, Any] = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" ) __snake_case : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case : List[Any] = """A fantasy landscape, trending on artstation""" __snake_case : int = torch.manual_seed(0 ) __snake_case : List[Any] = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowerCAmelCase , output_type="""np""" , ) __snake_case : Any = output.images __snake_case : List[Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) __snake_case : Optional[Any] = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
20
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ): __snake_case : Optional[Any] = {} __snake_case : int = {} if prompt is not None: __snake_case : Dict = prompt if generate_kwargs is not None: __snake_case : List[Any] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __snake_case : Optional[int] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) __snake_case : Any = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ): return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ): __snake_case : Optional[Any] = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) __snake_case : Tuple = self.model.config.model_type if model_type == "git": __snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids __snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids __snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": __snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: __snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __snake_case : int = None return model_inputs def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): __snake_case : List[Any] = None if generate_kwargs is None: __snake_case : Dict = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __snake_case : Dict = model_inputs.pop(self.model.main_input_name ) __snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ): __snake_case : Union[str, Any] = [] for output_ids in model_outputs: __snake_case : Union[str, Any] = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
20
1
from math import factorial, pi def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : int = 3_0 ): '''simple docstring''' if not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) __snake_case : Optional[Any] = float(__SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : int = 3_0 ): '''simple docstring''' if not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) __snake_case : Tuple = float(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
20
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["YolosFeatureExtractor"] lowercase_ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if "cls_token" in name: __snake_case : Dict = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: __snake_case : Tuple = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: __snake_case : int = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __snake_case : Optional[int] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __snake_case : int = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __snake_case : Tuple = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: __snake_case : Dict = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __snake_case : List[str] = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: __snake_case : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __snake_case : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __snake_case : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __snake_case : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __snake_case : str = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __snake_case : List[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __snake_case : Optional[Any] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __snake_case : Optional[int] = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __snake_case : Optional[Any] = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: __snake_case : Union[str, Any] = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: __snake_case : Any = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): __snake_case : Union[str, Any] = orig_state_dict.pop(__SCREAMING_SNAKE_CASE ) if "qkv" in key: __snake_case : Tuple = key.split(""".""" ) __snake_case : Dict = int(key_split[1] ) if "decoder_blocks" in key: __snake_case : Optional[Any] = config.decoder_hidden_size __snake_case : Union[str, Any] = """decoder.decoder_layers.""" if "weight" in key: __snake_case : Optional[Any] = val[:dim, :] __snake_case : Any = val[dim : dim * 2, :] __snake_case : Tuple = val[-dim:, :] elif "bias" in key: __snake_case : Dict = val[:dim] __snake_case : List[Any] = val[dim : dim * 2] __snake_case : Any = val[-dim:] else: __snake_case : Any = config.hidden_size __snake_case : Tuple = """vit.encoder.layer.""" if "weight" in key: __snake_case : Tuple = val[:dim, :] __snake_case : int = val[dim : dim * 2, :] __snake_case : List[str] = val[-dim:, :] elif "bias" in key: __snake_case : Union[str, Any] = val[:dim] __snake_case : Tuple = val[dim : dim * 2] __snake_case : Optional[Any] = val[-dim:] else: __snake_case : List[str] = val return orig_state_dict def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' __snake_case : Any = ViTMAEConfig() if "large" in checkpoint_url: __snake_case : Union[str, Any] = 1_0_2_4 __snake_case : List[str] = 4_0_9_6 __snake_case : Optional[int] = 2_4 __snake_case : Optional[int] = 1_6 elif "huge" in checkpoint_url: __snake_case : Dict = 1_4 __snake_case : str = 1_2_8_0 __snake_case : List[str] = 5_1_2_0 __snake_case : Any = 3_2 __snake_case : Tuple = 1_6 __snake_case : str = ViTMAEForPreTraining(__SCREAMING_SNAKE_CASE ) __snake_case : Optional[int] = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location="""cpu""" )["""model"""] __snake_case : List[Any] = ViTMAEImageProcessor(size=config.image_size ) __snake_case : Optional[int] = convert_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) model.eval() __snake_case : Tuple = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" __snake_case : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) __snake_case : Union[str, Any] = ViTMAEImageProcessor(size=config.image_size ) __snake_case : int = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) __snake_case : str = model(**__SCREAMING_SNAKE_CASE ) __snake_case : Union[str, Any] = outputs.logits if "large" in checkpoint_url: __snake_case : Any = torch.tensor( [[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] ) elif "huge" in checkpoint_url: __snake_case : int = torch.tensor( [[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] ) else: __snake_case : Tuple = torch.tensor( [[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowercase_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
20
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = "microsoft/speecht5_tts" A : List[Any] = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) A : str = "text_reader" A : Optional[Any] = SpeechTaProcessor A : Any = SpeechTaForTextToSpeech A : Optional[Any] = SpeechTaHifiGan A : str = ["text"] A : Union[str, Any] = ["audio"] def snake_case__ ( self : List[Any] ): if self.post_processor is None: __snake_case : Tuple = """microsoft/speecht5_hifigan""" super().setup() def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ): __snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) __snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) __snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ): with torch.no_grad(): return self.model.generate_speech(**_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): with torch.no_grad(): return self.post_processor(_lowerCAmelCase ).cpu().detach()
20
1
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort lowercase_ = logging.get_logger(__name__) lowercase_ = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class SCREAMING_SNAKE_CASE__ : def __init__( self : Union[str, Any] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Optional[int] ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) __snake_case : List[Any] = model __snake_case : Tuple = kwargs.get("""model_save_dir""" , _lowerCAmelCase ) __snake_case : Optional[Any] = kwargs.get("""latest_model_name""" , _lowerCAmelCase ) def __call__( self : List[Any] , **_lowerCAmelCase : Optional[int] ): __snake_case : Any = {k: np.array(_lowerCAmelCase ) for k, v in kwargs.items()} return self.model.run(_lowerCAmelCase , _lowerCAmelCase ) @staticmethod def snake_case__ ( _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Any=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) __snake_case : Union[str, Any] = """CPUExecutionProvider""" return ort.InferenceSession(_lowerCAmelCase , providers=[provider] , sess_options=_lowerCAmelCase ) def snake_case__ ( self : Dict , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : Union[str, Any] ): __snake_case : Dict = file_name if file_name is not None else ONNX_WEIGHTS_NAME __snake_case : List[Any] = self.model_save_dir.joinpath(self.latest_model_name ) __snake_case : Any = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __snake_case : List[str] = self.model_save_dir.joinpath(_lowerCAmelCase ) if src_path.exists(): __snake_case : List[str] = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Union[str, os.PathLike] , **_lowerCAmelCase : Union[str, Any] , ): if os.path.isfile(_lowerCAmelCase ): logger.error(f'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # saving model weights/files self._save_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def snake_case__ ( cls : Optional[Any] , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Optional[Union[bool, str, None]] = None , _lowerCAmelCase : Optional[Union[str, None]] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional["ort.SessionOptions"] = None , **_lowerCAmelCase : int , ): __snake_case : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_lowerCAmelCase ): __snake_case : str = OnnxRuntimeModel.load_model( os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) __snake_case : Dict = Path(_lowerCAmelCase ) # load model from hub else: # download model __snake_case : List[Any] = hf_hub_download( repo_id=_lowerCAmelCase , filename=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , ) __snake_case : int = Path(_lowerCAmelCase ).parent __snake_case : Union[str, Any] = Path(_lowerCAmelCase ).name __snake_case : str = OnnxRuntimeModel.load_model(_lowerCAmelCase , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) return cls(model=_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def snake_case__ ( cls : Optional[int] , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : int , ): __snake_case : List[Any] = None if len(str(_lowerCAmelCase ).split("""@""" ) ) == 2: __snake_case , __snake_case : List[Any] = model_id.split("""@""" ) return cls._from_pretrained( model_id=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , **_lowerCAmelCase , )
20
import math def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if ( not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if ( not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
20
1
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase_ = get_logger(__name__) lowercase_ = Path(__file__).parent / "model_card_template.md" lowercase_ = uuida().hex lowercase_ = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES lowercase_ = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES lowercase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[Dict, str, None] = None ): '''simple docstring''' __snake_case : Dict = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("""DIFFUSERS_IS_CI""" , """""" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): ua += "; " + user_agent return ua def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if token is None: __snake_case : Dict = HfFolder.get_token() if organization is None: __snake_case : str = whoami(__SCREAMING_SNAKE_CASE )["""name"""] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if not is_jinja_available(): raise ValueError( """Modelcard rendering is based on Jinja templates.""" """ Please make sure to have `jinja` installed before using `create_model_card`.""" """ To install it, please run `pip install Jinja2`.""" ) if hasattr(__SCREAMING_SNAKE_CASE , """local_rank""" ) and args.local_rank not in [-1, 0]: return __snake_case : Tuple = args.hub_token if hasattr(__SCREAMING_SNAKE_CASE , """hub_token""" ) else None __snake_case : Tuple = get_full_repo_name(__SCREAMING_SNAKE_CASE , token=__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="""en""" , license="""apache-2.0""" , library_name="""diffusers""" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__SCREAMING_SNAKE_CASE , model_name=__SCREAMING_SNAKE_CASE , repo_name=__SCREAMING_SNAKE_CASE , dataset_name=args.dataset_name if hasattr(__SCREAMING_SNAKE_CASE , """dataset_name""" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__SCREAMING_SNAKE_CASE , """gradient_accumulation_steps""" ) else None ) , adam_betaa=args.adam_betaa if hasattr(__SCREAMING_SNAKE_CASE , """adam_beta1""" ) else None , adam_betaa=args.adam_betaa if hasattr(__SCREAMING_SNAKE_CASE , """adam_beta2""" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__SCREAMING_SNAKE_CASE , """adam_weight_decay""" ) else None , adam_epsilon=args.adam_epsilon if hasattr(__SCREAMING_SNAKE_CASE , """adam_epsilon""" ) else None , lr_scheduler=args.lr_scheduler if hasattr(__SCREAMING_SNAKE_CASE , """lr_scheduler""" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__SCREAMING_SNAKE_CASE , """lr_warmup_steps""" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__SCREAMING_SNAKE_CASE , """ema_inv_gamma""" ) else None , ema_power=args.ema_power if hasattr(__SCREAMING_SNAKE_CASE , """ema_power""" ) else None , ema_max_decay=args.ema_max_decay if hasattr(__SCREAMING_SNAKE_CASE , """ema_max_decay""" ) else None , mixed_precision=args.mixed_precision , ) __snake_case : Tuple = os.path.join(args.output_dir , """README.md""" ) model_card.save(__SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[str] , __SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash __snake_case : Optional[int] = str(Path(__SCREAMING_SNAKE_CASE ).as_posix() ) __snake_case : Any = re.search(R"""snapshots/([^/]+)/""" , __SCREAMING_SNAKE_CASE ) if search is None: return None __snake_case : List[Any] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__SCREAMING_SNAKE_CASE ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase_ = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) lowercase_ = os.path.join(hf_cache_home, "diffusers") def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if new_cache_dir is None: __snake_case : Any = DIFFUSERS_CACHE if old_cache_dir is None: __snake_case : Any = old_diffusers_cache __snake_case : str = Path(__SCREAMING_SNAKE_CASE ).expanduser() __snake_case : str = Path(__SCREAMING_SNAKE_CASE ).expanduser() for old_blob_path in old_cache_dir.glob("""**/blobs/*""" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __snake_case : str = new_cache_dir / old_blob_path.relative_to(__SCREAMING_SNAKE_CASE ) new_blob_path.parent.mkdir(parents=__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) os.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) try: os.symlink(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except OSError: logger.warning( """Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""" ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase_ = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): lowercase_ = 0 else: with open(cache_version_file) as f: try: lowercase_ = int(f.read()) except ValueError: lowercase_ = 0 if cache_version < 1: lowercase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: lowercase_ = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( F'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( F'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' "the directory exists and can be written to." ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if variant is not None: __snake_case : Optional[int] = weights_name.split(""".""" ) __snake_case : str = splits[:-1] + [variant] + splits[-1:] __snake_case : str = """.""".join(__SCREAMING_SNAKE_CASE ) return weights_name def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , *, __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int]=None , ): '''simple docstring''' __snake_case : Dict = str(__SCREAMING_SNAKE_CASE ) if os.path.isfile(__SCREAMING_SNAKE_CASE ): return pretrained_model_name_or_path elif os.path.isdir(__SCREAMING_SNAKE_CASE ): if os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ): # Load from a PyTorch checkpoint __snake_case : Optional[Any] = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ): __snake_case : Dict = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse("""0.20.0""" ) ): try: __snake_case : List[Any] = hf_hub_download( __SCREAMING_SNAKE_CASE , filename=_add_variant(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , cache_dir=__SCREAMING_SNAKE_CASE , force_download=__SCREAMING_SNAKE_CASE , proxies=__SCREAMING_SNAKE_CASE , resume_download=__SCREAMING_SNAKE_CASE , local_files_only=__SCREAMING_SNAKE_CASE , use_auth_token=__SCREAMING_SNAKE_CASE , user_agent=__SCREAMING_SNAKE_CASE , subfolder=__SCREAMING_SNAKE_CASE , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , __SCREAMING_SNAKE_CASE , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}\' so that the correct variant file can be added.''' , __SCREAMING_SNAKE_CASE , ) try: # 2. Load model file as usual __snake_case : Optional[Any] = hf_hub_download( __SCREAMING_SNAKE_CASE , filename=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , force_download=__SCREAMING_SNAKE_CASE , proxies=__SCREAMING_SNAKE_CASE , resume_download=__SCREAMING_SNAKE_CASE , local_files_only=__SCREAMING_SNAKE_CASE , use_auth_token=__SCREAMING_SNAKE_CASE , user_agent=__SCREAMING_SNAKE_CASE , subfolder=__SCREAMING_SNAKE_CASE , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' """listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a """ """token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """ """login`.""" ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' """this model name. Check the model page at """ F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' """ \nCheckout your internet connection or see how to run the library in""" """ offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'.""" ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' """'https://huggingface.co/models', make sure you don't have a local directory with the same name. """ F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
20
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
1
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 1_0, """max_num_jobs""": 1}, [range(1_0 )]), ({"""num_shards""": 1_0, """max_num_jobs""": 1_0}, [range(__SCREAMING_SNAKE_CASE , i + 1 ) for i in range(1_0 )]), ({"""num_shards""": 1, """max_num_jobs""": 1_0}, [range(1 )]), ({"""num_shards""": 1_0, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 1_0 )]), ({"""num_shards""": 3, """max_num_jobs""": 1_0}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' __snake_case : Dict = _distribute_shards(**__SCREAMING_SNAKE_CASE ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 1_0, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' __snake_case : str = _split_gen_kwargs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if expected is RuntimeError: with pytest.raises(__SCREAMING_SNAKE_CASE ): _number_of_shards_in_gen_kwargs(__SCREAMING_SNAKE_CASE ) else: __snake_case : Tuple = _number_of_shards_in_gen_kwargs(__SCREAMING_SNAKE_CASE ) assert out == expected
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( enum.Enum ): A : str = 0 A : Dict = 1 @add_end_docstrings(__UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[str] = "generated" def __init__( self : Optional[int] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Dict ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def snake_case__ ( self : int , _lowerCAmelCase : Any=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Tuple=None , **_lowerCAmelCase : Dict , ): __snake_case : Tuple = {} if truncation is not None: __snake_case : List[Any] = truncation __snake_case : Any = generate_kwargs __snake_case : Union[str, Any] = {} if return_tensors is not None and return_type is None: __snake_case : List[str] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: __snake_case : int = return_type if clean_up_tokenization_spaces is not None: __snake_case : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: __snake_case : Optional[Any] = self.tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) if len(_lowerCAmelCase ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) __snake_case : Tuple = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): return True def snake_case__ ( self : List[str] , *_lowerCAmelCase : str , _lowerCAmelCase : Optional[int] ): __snake_case : Any = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , _lowerCAmelCase ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) __snake_case : Optional[int] = ([prefix + arg for arg in args[0]],) __snake_case : List[Any] = True elif isinstance(args[0] , _lowerCAmelCase ): __snake_case : Tuple = (prefix + args[0],) __snake_case : Tuple = False else: raise ValueError( f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) __snake_case : Dict = self.tokenizer(*_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Union[str, Any] , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ): __snake_case : Optional[Any] = super().__call__(*_lowerCAmelCase , **_lowerCAmelCase ) if ( isinstance(args[0] , _lowerCAmelCase ) and all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for el in args[0] ) and all(len(_lowerCAmelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def snake_case__ ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any=TruncationStrategy.DO_NOT_TRUNCATE , **_lowerCAmelCase : Dict ): __snake_case : str = self._parse_and_tokenize(_lowerCAmelCase , truncation=_lowerCAmelCase , **_lowerCAmelCase ) return inputs def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Optional[Any] ): if self.framework == "pt": __snake_case , __snake_case : Dict = model_inputs["""input_ids"""].shape elif self.framework == "tf": __snake_case , __snake_case : Union[str, Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() __snake_case : Optional[Any] = generate_kwargs.get("""min_length""" , self.model.config.min_length ) __snake_case : Optional[Any] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(_lowerCAmelCase , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) __snake_case : Tuple = self.model.generate(**_lowerCAmelCase , **_lowerCAmelCase ) __snake_case : Dict = output_ids.shape[0] if self.framework == "pt": __snake_case : Union[str, Any] = output_ids.reshape(_lowerCAmelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": __snake_case : Any = tf.reshape(_lowerCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : str=ReturnType.TEXT , _lowerCAmelCase : Dict=False ): __snake_case : Union[str, Any] = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: __snake_case : Any = {f'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: __snake_case : List[str] = { f'''{self.return_name}_text''': self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records @add_end_docstrings(__UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : int = "summary" def __call__( self : Optional[int] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Dict ): return super().__call__(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): if max_length < min_length: logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' """a summarization task, where outputs shorter than the input are typically wanted, you might """ f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(__UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Tuple = "translation" def snake_case__ ( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): if input_length > 0.9 * max_length: logger.warning( f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def snake_case__ ( self : Union[str, Any] , *_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[Any]=None ): if getattr(self.tokenizer , """_build_translation_inputs""" , _lowerCAmelCase ): return self.tokenizer._build_translation_inputs( *_lowerCAmelCase , return_tensors=self.framework , truncation=_lowerCAmelCase , src_lang=_lowerCAmelCase , tgt_lang=_lowerCAmelCase ) else: return super()._parse_and_tokenize(*_lowerCAmelCase , truncation=_lowerCAmelCase ) def snake_case__ ( self : Dict , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Union[str, Any] ): __snake_case , __snake_case , __snake_case : Optional[int] = super()._sanitize_parameters(**_lowerCAmelCase ) if src_lang is not None: __snake_case : List[str] = src_lang if tgt_lang is not None: __snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. __snake_case : Optional[Any] = kwargs.get("""task""" , self.task ) __snake_case : List[Any] = task.split("""_""" ) if task and len(_lowerCAmelCase ) == 4: # translation, XX, to YY __snake_case : str = items[1] __snake_case : str = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Dict , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Dict ): return super().__call__(*_lowerCAmelCase , **_lowerCAmelCase )
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["ViTFeatureExtractor"] lowercase_ = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): A : List[Any] = XLNetTokenizer A : Tuple = XLNetTokenizerFast A : Any = True A : Union[str, Any] = True def snake_case__ ( self : Any ): super().setUp() # We have a SentencePiece fixture for testing __snake_case : Optional[int] = XLNetTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : Tuple ): __snake_case : Optional[Any] = """<s>""" __snake_case : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<eod>""" ) self.assertEqual(len(_lowerCAmelCase ) , 10_06 ) def snake_case__ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def snake_case__ ( self : int ): __snake_case : Union[str, Any] = XLNetTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) __snake_case : Dict = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [2_85, 46, 10, 1_70, 3_82] ) __snake_case : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __snake_case : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) __snake_case : Dict = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def snake_case__ ( self : Dict ): __snake_case : str = XLNetTokenizer(_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) __snake_case : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""▁he""", """ll""", """o"""] ) def snake_case__ ( self : List[str] ): __snake_case : List[Any] = XLNetTokenizer(_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) __snake_case : str = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def snake_case__ ( self : Optional[Any] ): __snake_case : Tuple = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) __snake_case : Tuple = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase ) __snake_case : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase ) __snake_case : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) __snake_case : Optional[int] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def snake_case__ ( self : Optional[Any] ): # fmt: off __snake_case : Optional[int] = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
20
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __snake_case , __snake_case : str = array[indexa], array[indexa] def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Tuple = int(length / 2 ) for i in range(__SCREAMING_SNAKE_CASE , low + middle ): comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Optional[Any] = int(length / 2 ) bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 ) bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
20
1
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 __snake_case : Any = 1 __snake_case : List[Any] = 1 while repunit: __snake_case : List[str] = (1_0 * repunit + 1) % divisor repunit_index += 1 return repunit_index def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int = 1_0_0_0_0_0_0 ): '''simple docstring''' __snake_case : Dict = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__SCREAMING_SNAKE_CASE ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'''{solution() = }''')
20
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' __snake_case : Optional[int] = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } __snake_case , __snake_case : Tuple = input_paths_and_base_extractors[compression_format] if input_path is None: __snake_case : Tuple = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__SCREAMING_SNAKE_CASE ) assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE ) __snake_case : List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case : List[str] = file_path.read_text(encoding="""utf-8""" ) else: __snake_case : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) __snake_case : int = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' __snake_case : Union[str, Any] = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } __snake_case : int = input_paths[compression_format] if input_path is None: __snake_case : int = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__SCREAMING_SNAKE_CASE ) __snake_case : Any = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE ) assert extractor_format is not None __snake_case : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case : Union[str, Any] = file_path.read_text(encoding="""utf-8""" ) else: __snake_case : Union[str, Any] = output_path.read_text(encoding="""utf-8""" ) __snake_case : Optional[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' import tarfile __snake_case : List[str] = tmp_path / """data_dot_dot""" directory.mkdir() __snake_case : Optional[Any] = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' import tarfile __snake_case : Dict = tmp_path / """data_sym_link""" directory.mkdir() __snake_case : Tuple = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE ) with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' __snake_case : Any = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } __snake_case : int = insecure_tar_files[insecure_tar_file] __snake_case : Optional[int] = tmp_path / """extracted""" TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __snake_case : Optional[Any] = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 __snake_case : List[str] = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(__SCREAMING_SNAKE_CASE ) assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
20
1