code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
a__ : Optional[int] = '''Tobias Carryer''' from time import time class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=int(time() ) ) ->List[Any]: # noqa: B008 SCREAMING_SNAKE_CASE : List[Any] = multiplier SCREAMING_SNAKE_CASE : Optional[Any] = increment SCREAMING_SNAKE_CASE : str = modulo SCREAMING_SNAKE_CASE : int = seed def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : int = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. a__ : Dict = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
361
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DDIMPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def __lowerCAmelCase ( self ) ->Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddim.to(_lowerCamelCase ) ddim.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddpm.to(_lowerCamelCase ) ddpm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : List[Any] = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = 'luke' def __init__( self , _lowerCamelCase=5_0267 , _lowerCamelCase=50_0000 , _lowerCamelCase=768 , _lowerCamelCase=256 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , **_lowerCamelCase , ) ->Tuple: super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Tuple = entity_vocab_size SCREAMING_SNAKE_CASE : Dict = hidden_size SCREAMING_SNAKE_CASE : Tuple = entity_emb_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : List[Any] = use_entity_aware_attention SCREAMING_SNAKE_CASE : List[Any] = classifier_dropout
362
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = '''[PAD]''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowerCamelCase ) , 1012 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
19
0
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup a__ : Any = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def UpperCAmelCase_( a__ = "mumbai" ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): SCREAMING_SNAKE_CASE : Tuple = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() SCREAMING_SNAKE_CASE : Optional[Any] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(F"Job {i:>2} is {job[0]} at {job[1]}")
363
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Any = '''▁''' a__ : int = {'''vocab_file''': '''sentencepiece.bpe.model'''} a__ : Optional[Any] = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } a__ : Any = { '''facebook/xglm-564M''': 2_048, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : str = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer SCREAMING_SNAKE_CASE : str = 7 SCREAMING_SNAKE_CASE : Dict = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] SCREAMING_SNAKE_CASE : Dict = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE : Union[str, Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} SCREAMING_SNAKE_CASE : Tuple = len(self.sp_model ) SCREAMING_SNAKE_CASE : Tuple = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) ->List[str]: SCREAMING_SNAKE_CASE : List[str] = self.__dict__.copy() SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : Tuple = {} SCREAMING_SNAKE_CASE : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __lowerCAmelCase ( self ) ->List[str]: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.PieceToId(_lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : List[str] = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : str = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
364
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Tuple = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a__ : Optional[Any] = {'''mobilebert-uncased''': 512} a__ : List[Any] = {} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = strip_accents SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
0
from typing import Any class a_ : """simple docstring""" def __init__( self , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Dict = data SCREAMING_SNAKE_CASE : str = None class a_ : """simple docstring""" def __init__( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = None def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = self.head while temp is not None: print(temp.data , end=''' ''' ) SCREAMING_SNAKE_CASE : Optional[Any] = temp.next print() def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : int = Node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.head SCREAMING_SNAKE_CASE : Any = new_node def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->str: if node_data_a == node_data_a: return else: SCREAMING_SNAKE_CASE : str = self.head while node_a is not None and node_a.data != node_data_a: SCREAMING_SNAKE_CASE : Optional[int] = node_a.next SCREAMING_SNAKE_CASE : Union[str, Any] = self.head while node_a is not None and node_a.data != node_data_a: SCREAMING_SNAKE_CASE : List[str] = node_a.next if node_a is None or node_a is None: return SCREAMING_SNAKE_CASE : Dict = node_a.data, node_a.data if __name__ == "__main__": a__ : Tuple = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
365
import math a__ : List[str] = 10 a__ : Optional[int] = 7 a__ : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase_( a__ = 20 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
19
0
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Any = TypeVar('''T''') def UpperCAmelCase_( a__ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 2 class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE : dict[T, int] = {} SCREAMING_SNAKE_CASE : int = 0 def __len__( self ) ->int: return self.elements def __repr__( self ) ->str: return str(self.heap ) def __lowerCAmelCase ( self ) ->bool: # Check if the priority queue is empty return self.elements == 0 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE : Tuple = self.elements self.elements += 1 self._bubble_up(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE : Tuple = self.heap[0] self._bubble_down(_lowerCamelCase ) return elem def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Update the weight of the given key SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE : Any = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE : Any = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_up(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE : int = self.heap[curr_pos] SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position] SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Swap the nodes at the given positions SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos SCREAMING_SNAKE_CASE : List[str] = nodea_pos class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE : int = 0 def __repr__( self ) ->str: return str(self.connections ) def __len__( self ) ->int: return self.nodes def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE : Any = {} self.nodes += 1 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an edge between 2 nodes in the graph self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = weight SCREAMING_SNAKE_CASE : str = weight def UpperCAmelCase_( a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node return dist, parent
366
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a__ : List[str] = logging.get_logger(__name__) # General docstring a__ : Tuple = '''MobileNetV1Config''' # Base docstring a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224''' a__ : Tuple = [1, 1_024, 7, 7] # Image classification docstring a__ : Optional[int] = '''google/mobilenet_v1_1.0_224''' a__ : int = '''tabby, tabby cat''' a__ : List[Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase_( a__ , a__ , a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va else: SCREAMING_SNAKE_CASE : Union[str, Any] = model SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/''' SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE : Dict = i + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2 SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias return tf_to_pt_map def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : List[Any] = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '''/RMSProp''' , a__ ) tf_weights.pop(name + '''/RMSProp_1''' , a__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2 SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left SCREAMING_SNAKE_CASE : str = pad_along_height // 2 SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 ) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None: super().__init__() SCREAMING_SNAKE_CASE : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE : List[str] = nn.Convad( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , ) if use_normalization: SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad( num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , ) else: SCREAMING_SNAKE_CASE : Dict = None if use_activation: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act else: SCREAMING_SNAKE_CASE : Optional[Any] = None def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: if self.config.tf_padding: SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution ) SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return features class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig __SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va __SCREAMING_SNAKE_CASE : int = 'mobilenet_v1' __SCREAMING_SNAKE_CASE : int = 'pixel_values' __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a__ : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Union[str, Any] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = config SCREAMING_SNAKE_CASE : Dict = 32 SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer( _lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE : Any = nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE : int = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : List[str] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Any = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
19
0
def UpperCAmelCase_( a__ ): """simple docstring""" if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) SCREAMING_SNAKE_CASE : List[Any] = '''''' while len(a__ ) % 3 != 0: SCREAMING_SNAKE_CASE : Optional[int] = '''0''' + bin_string SCREAMING_SNAKE_CASE : Dict = [ bin_string[index : index + 3] for index in range(len(a__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: SCREAMING_SNAKE_CASE : Optional[Any] = 0 for index, val in enumerate(a__ ): oct_val += int(2 ** (2 - index) * int(a__ ) ) oct_string += str(a__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
367
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available a__ : Tuple = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
368
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Any = TypeVar('''T''') def UpperCAmelCase_( a__ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 2 class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE : dict[T, int] = {} SCREAMING_SNAKE_CASE : int = 0 def __len__( self ) ->int: return self.elements def __repr__( self ) ->str: return str(self.heap ) def __lowerCAmelCase ( self ) ->bool: # Check if the priority queue is empty return self.elements == 0 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE : Tuple = self.elements self.elements += 1 self._bubble_up(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0] self._bubble_down(_lowerCamelCase ) return elem def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Update the weight of the given key SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE : Any = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_up(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos] SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Swap the nodes at the given positions SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos SCREAMING_SNAKE_CASE : List[str] = nodea_pos class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE : int = 0 def __repr__( self ) ->str: return str(self.connections ) def __len__( self ) ->int: return self.nodes def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE : Any = {} self.nodes += 1 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an edge between 2 nodes in the graph self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = weight SCREAMING_SNAKE_CASE : str = weight def UpperCAmelCase_( a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node return dist, parent
19
0
def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(a__ , a__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate SCREAMING_SNAKE_CASE : int = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly SCREAMING_SNAKE_CASE : int = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
369
from math import pi, sqrt, tan def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(a__ , 2 ) * torus_radius * tube_radius def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not isinstance(a__ , a__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
19
0
from functools import lru_cache @lru_cache def lowercase__( a__ ): """simple docstring""" if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
370
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a__ : List[str] = None a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Dict = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a__ : str = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : int = { lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self ) ->str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : List[str] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) ->List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
19
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a__ : Dict = 16 a__ : str = 32 def UpperCAmelCase_( a__ , a__ = 16 ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained('''bert-base-cased''' ) SCREAMING_SNAKE_CASE : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(a__ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=a__ , max_length=a__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : Union[str, Any] = datasets.map( a__ , batched=a__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(a__ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE : List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE : Optional[int] = 8 else: SCREAMING_SNAKE_CASE : Optional[Any] = None return tokenizer.pad( a__ , padding='''longest''' , max_length=a__ , pad_to_multiple_of=a__ , return_tensors='''pt''' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : List[str] = DataLoader( tokenized_datasets['''train'''] , shuffle=a__ , collate_fn=a__ , batch_size=a__ ) SCREAMING_SNAKE_CASE : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=a__ , collate_fn=a__ , batch_size=a__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a__ : List[str] = mocked_dataloaders # noqa: F811 def UpperCAmelCase_( a__ , a__ ) -> Dict: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , a__ ) == "1": SCREAMING_SNAKE_CASE : List[Any] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: SCREAMING_SNAKE_CASE : Dict = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: SCREAMING_SNAKE_CASE : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : str = config['''lr'''] SCREAMING_SNAKE_CASE : Optional[int] = int(config['''num_epochs'''] ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(config['''seed'''] ) SCREAMING_SNAKE_CASE : int = int(config['''batch_size'''] ) set_seed(a__ ) SCREAMING_SNAKE_CASE : List[Any] = get_dataloaders(a__ , a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE : Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE : Dict = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : Dict = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=a__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE : List[str] = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE : Any = AdamW(params=model.parameters() , lr=a__ ) # Instantiate scheduler SCREAMING_SNAKE_CASE : Any = get_linear_schedule_with_warmup( optimizer=a__ , num_warmup_steps=100 , num_training_steps=(len(a__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare( a__ , a__ , a__ , a__ , a__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: SCREAMING_SNAKE_CASE : str = os.path.split(a__ )[-1].split('''.''' )[0] accelerator.init_trackers(a__ , a__ ) # Now we train the model for epoch in range(a__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: SCREAMING_SNAKE_CASE : Dict = 0 for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE : Any = model(**a__ ) SCREAMING_SNAKE_CASE : int = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() SCREAMING_SNAKE_CASE : Any = loss / gradient_accumulation_steps accelerator.backward(a__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**a__ ) SCREAMING_SNAKE_CASE : Dict = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=a__ , references=a__ , ) SCREAMING_SNAKE_CASE : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , a__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(a__ ), '''epoch''': epoch, } , step=a__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def UpperCAmelCase_( ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=a__ , default=a__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=a__ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Union[str, Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(a__ , a__ ) if __name__ == "__main__": main()
371
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = proj_size SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase ) for _ in range(_lowerCamelCase ) ] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for block in self.blocks: SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase ) return hidden_states
19
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def UpperCAmelCase_( a__ ): """simple docstring""" return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=a__ ) SCREAMING_SNAKE_CASE : Tuple = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(a__ ) EnvironmentCommand.register_subcommand(a__ ) TestCommand.register_subcommand(a__ ) RunBeamCommand.register_subcommand(a__ ) DummyDataCommand.register_subcommand(a__ ) # Parse args SCREAMING_SNAKE_CASE : Tuple = parser.parse_known_args() if not hasattr(a__ , '''func''' ): parser.print_help() exit(1 ) SCREAMING_SNAKE_CASE : int = parse_unknown_args(a__ ) # Run SCREAMING_SNAKE_CASE : Optional[Any] = args.func(a__ , **a__ ) service.run() if __name__ == "__main__": main()
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Tuple = '''▁''' a__ : List[Any] = {'''vocab_file''': '''spiece.model'''} a__ : Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } a__ : str = { '''google/pegasus-xsum''': 512, } a__ : str = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : Dict = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is""" F""" {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = mask_token_sent SCREAMING_SNAKE_CASE : Optional[int] = vocab_file SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # add special tokens to encoder dict SCREAMING_SNAKE_CASE : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) + self.offset def __lowerCAmelCase ( self ) ->Dict[str, int]: SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None return state def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase ) return sp_id + self.offset def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str: return 1 def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
19
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem a__ : Optional[int] = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 a__ : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def UpperCAmelCase_( a__ ): """simple docstring""" if "://" in dataset_path: SCREAMING_SNAKE_CASE : Union[str, Any] = dataset_path.split('''://''' )[1] return dataset_path def UpperCAmelCase_( a__ ): """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = not is_remote_filesystem(a__ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(a__ ) , fs._strip_protocol(a__ ) ) else: fs.mv(a__ , a__ , recursive=a__ ) def UpperCAmelCase_( ): """simple docstring""" if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : int = threading.Lock()
351
def UpperCAmelCase_( a__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = 1 while repunit: SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_( a__ = 1_000_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
0
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a__ : int = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = BartphoTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : List[Any] = True def __lowerCAmelCase ( self ) ->Optional[int]: super().setUp() SCREAMING_SNAKE_CASE : Dict = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE : Dict = {'''unk_token''': '''<unk>'''} SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) SCREAMING_SNAKE_CASE : Any = BartphoTokenizer(_lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Tuple: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : Union[str, Any] = '''This is a là test''' SCREAMING_SNAKE_CASE : Tuple = '''This is a<unk><unk> test''' return input_text, output_text def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : int = BartphoTokenizer(_lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE : int = '''This is a là test''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''▁This ▁is ▁a ▁l à ▁t est'''.split() SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : str = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE : List[str] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase )
352
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict: SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Any = num_stages SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : int = scope SCREAMING_SNAKE_CASE : Optional[Any] = num_stages def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCAmelCase ( self ) ->Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->str: return def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->str: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass def __lowerCAmelCase ( self ) ->int: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @slow def __lowerCAmelCase ( self ) ->List[Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
19
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline a__ : str = datasets.utils.logging.get_logger(__name__) @dataclass class a_ ( datasets.BuilderConfig ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None __SCREAMING_SNAKE_CASE : str = "utf-8" __SCREAMING_SNAKE_CASE : Optional[str] = None __SCREAMING_SNAKE_CASE : Optional[str] = None __SCREAMING_SNAKE_CASE : bool = True # deprecated __SCREAMING_SNAKE_CASE : Optional[int] = None # deprecated __SCREAMING_SNAKE_CASE : int = 10 << 20 # 10MB __SCREAMING_SNAKE_CASE : Optional[bool] = None class a_ ( datasets.ArrowBasedBuilder ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = JsonConfig def __lowerCAmelCase ( self ) ->Dict: if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) SCREAMING_SNAKE_CASE : List[str] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): SCREAMING_SNAKE_CASE : Dict = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = [files] SCREAMING_SNAKE_CASE : Tuple = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] SCREAMING_SNAKE_CASE : Any = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = [files] SCREAMING_SNAKE_CASE : List[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def __lowerCAmelCase ( self , _lowerCamelCase ) ->pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): SCREAMING_SNAKE_CASE : int = self.config.features.arrow_schema.field(_lowerCamelCase ).type SCREAMING_SNAKE_CASE : Any = pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE : str = table_cast(_lowerCamelCase , self.config.features.arrow_schema ) return pa_table def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE : List[str] = json.load(_lowerCamelCase ) # We keep only the field we are interested in SCREAMING_SNAKE_CASE : Optional[int] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCamelCase , (list, tuple) ): SCREAMING_SNAKE_CASE : List[Any] = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE : int = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} else: SCREAMING_SNAKE_CASE : int = dataset SCREAMING_SNAKE_CASE : str = pa.Table.from_pydict(_lowerCamelCase ) yield file_idx, self._cast_table(_lowerCamelCase ) # If the file has one json object per line else: with open(_lowerCamelCase , '''rb''' ) as f: SCREAMING_SNAKE_CASE : int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small SCREAMING_SNAKE_CASE : int = max(self.config.chunksize // 32 , 16 << 10 ) SCREAMING_SNAKE_CASE : Optional[int] = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: SCREAMING_SNAKE_CASE : str = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": SCREAMING_SNAKE_CASE : Optional[Any] = batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode('''utf-8''' ) try: while True: try: SCREAMING_SNAKE_CASE : str = paj.read_json( io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCamelCase ) or block_size > len(_lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(_lowerCamelCase )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(_lowerCamelCase ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(_lowerCamelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON try: SCREAMING_SNAKE_CASE : Tuple = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE : Optional[Any] = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} SCREAMING_SNAKE_CASE : str = pa.Table.from_pydict(_lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(_lowerCamelCase )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(_lowerCamelCase ) break else: logger.error(F"""Failed to read file '{file}' with error {type(_lowerCamelCase )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) batch_idx += 1
353
import datasets from .evaluate import evaluate a__ : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' a__ : List[str] = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' a__ : List[Any] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
19
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): a__ : Optional[Any] = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: a__ : List[Any] = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = (images / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Tuple = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE : List[str] = numpy_to_pil(a__ ) return images def UpperCAmelCase_( a__ ): """simple docstring""" if images.ndim == 3: SCREAMING_SNAKE_CASE : str = images[None, ...] SCREAMING_SNAKE_CASE : List[Any] = (images * 255).round().astype('''uint8''' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images SCREAMING_SNAKE_CASE : List[Any] = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images] else: SCREAMING_SNAKE_CASE : Dict = [Image.fromarray(a__ ) for image in images] return pil_images
354
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]: return { "matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ), }
19
0
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class a_ ( a__ ): """simple docstring""" def __lt__( self , _lowerCamelCase ) ->List[Any]: return self[-1] < other[-1] def __eq__( self , _lowerCamelCase ) ->List[Any]: return self[-1] == other[-1] def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : list[Stack] = [] # sort into stacks for element in collection: SCREAMING_SNAKE_CASE : Union[str, Any] = Stack([element] ) SCREAMING_SNAKE_CASE : Union[str, Any] = bisect_left(a__ , a__ ) if i != len(a__ ): stacks[i].append(a__ ) else: stacks.append(a__ ) # use a heap-based merge to merge stack efficiently SCREAMING_SNAKE_CASE : Optional[int] = merge(*(reversed(a__ ) for stack in stacks) ) return collection if __name__ == "__main__": a__ : Tuple = input('''Enter numbers separated by a comma:\n''').strip() a__ : Dict = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
355
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ ) SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a__ ) env_command_parser(subparsers=a__ ) launch_command_parser(subparsers=a__ ) tpu_command_parser(subparsers=a__ ) test_command_parser(subparsers=a__ ) # Let's go SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if not hasattr(a__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a__ ) if __name__ == "__main__": main()
19
0
import math class a_ : def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = 0.0 SCREAMING_SNAKE_CASE : List[Any] = 0.0 for i in range(len(_lowerCamelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->list[list[int | float]]: for i in range(len(_lowerCamelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) SCREAMING_SNAKE_CASE : Optional[int] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training SCREAMING_SNAKE_CASE : Dict = SelfOrganizingMap() SCREAMING_SNAKE_CASE : List[str] = 3 SCREAMING_SNAKE_CASE : int = 0.5 for _ in range(a__ ): for j in range(len(a__ ) ): # training sample SCREAMING_SNAKE_CASE : Optional[Any] = training_samples[j] # Compute the winning vector SCREAMING_SNAKE_CASE : Tuple = self_organizing_map.get_winner(a__ , a__ ) # Update the winning vector SCREAMING_SNAKE_CASE : List[Any] = self_organizing_map.update(a__ , a__ , a__ , a__ ) # classify test sample SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 0, 0, 1] SCREAMING_SNAKE_CASE : List[str] = self_organizing_map.get_winner(a__ , a__ ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
356
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''} a__ : str = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } a__ : Tuple = {'''mgp-str''': 27} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict: super().__init__( unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self ) ->List[Any]: return len(self.vocab ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return dict(self.vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for s in text: char_tokens.extend(_lowerCamelCase ) return char_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: return self.decoder.get(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) ) return SCREAMING_SNAKE_CASE : str = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' ) return (vocab_file,)
19
0
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def UpperCAmelCase_( a__ ): """simple docstring""" return (data["data"], data["target"]) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = XGBClassifier() classifier.fit(a__ , a__ ) return classifier def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_iris() SCREAMING_SNAKE_CASE : Optional[int] = data_handling(a__ ) SCREAMING_SNAKE_CASE : int = train_test_split( a__ , a__ , test_size=0.25 ) SCREAMING_SNAKE_CASE : List[Any] = iris['''target_names'''] # Create an XGBoost Classifier from the training data SCREAMING_SNAKE_CASE : List[str] = xgboost(a__ , a__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( a__ , a__ , a__ , display_labels=a__ , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''DeiTFeatureExtractor'''] a__ : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
import qiskit def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE : str = qiskit.QuantumCircuit(a__ , a__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator SCREAMING_SNAKE_CASE : Any = qiskit.execute(a__ , a__ , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a__ ) if __name__ == "__main__": print(F"Total count for various states are: {single_qubit_measure(1, 1)}")
358
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
0
def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [0 for i in range(r + 1 )] # nc0 = 1 SCREAMING_SNAKE_CASE : Tuple = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. SCREAMING_SNAKE_CASE : int = min(a__ , a__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
359
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase_( a__ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
19
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : Optional[Any] = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'distilbert' __SCREAMING_SNAKE_CASE : Dict = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=512 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=12 , _lowerCamelCase=768 , _lowerCamelCase=4 * 768 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ) ->List[Any]: SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = sinusoidal_pos_embds SCREAMING_SNAKE_CASE : str = n_layers SCREAMING_SNAKE_CASE : Tuple = n_heads SCREAMING_SNAKE_CASE : Union[str, Any] = dim SCREAMING_SNAKE_CASE : Optional[int] = hidden_dim SCREAMING_SNAKE_CASE : Dict = dropout SCREAMING_SNAKE_CASE : int = attention_dropout SCREAMING_SNAKE_CASE : int = activation SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : str = qa_dropout SCREAMING_SNAKE_CASE : Union[str, Any] = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
360
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = eval_examples SCREAMING_SNAKE_CASE : Optional[int] = post_process_function def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]: SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE : Dict = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE : Any = gen_kwargs SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Optional[Any] = time.time() SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Tuple = eval_loop( _lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Dict = compute_metrics SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : str = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Dict = self.compute_metrics SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[str] = time.time() SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Any = eval_loop( _lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' ) SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
19
0
import os import jsonlines import numpy as np from tqdm import tqdm a__ : Tuple = 2_048 a__ : Union[str, Any] = 4_096 a__ : Dict = 42 a__ : List[Any] = os.environ.pop('''PROCESS_TRAIN''', '''false''') a__ : Optional[Any] = {'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def UpperCAmelCase_( a__ ): """simple docstring""" def choose_first(a__ , a__=False ): assert isinstance(a__ , a__ ) if len(a__ ) == 1: SCREAMING_SNAKE_CASE : Optional[Any] = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: SCREAMING_SNAKE_CASE : str = {k: [a[k]] for k in a} if len(a['''start_token'''] ) > 0: break return a SCREAMING_SNAKE_CASE : Any = {'''id''': example['''id''']} SCREAMING_SNAKE_CASE : Tuple = example['''annotations'''] SCREAMING_SNAKE_CASE : List[Any] = annotation['''yes_no_answer'''] if 0 in yes_no_answer or 1 in yes_no_answer: SCREAMING_SNAKE_CASE : Dict = ['''yes'''] if 1 in yes_no_answer else ['''no'''] SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = ['''<cls>'''] else: SCREAMING_SNAKE_CASE : Tuple = ['''short'''] SCREAMING_SNAKE_CASE : int = choose_first(annotation['''short_answers'''] ) if len(out['''start_token'''] ) == 0: # answer will be long if short is not available SCREAMING_SNAKE_CASE : Dict = ['''long'''] SCREAMING_SNAKE_CASE : str = choose_first(annotation['''long_answer'''] , is_long_answer=a__ ) SCREAMING_SNAKE_CASE : str = [] answer.update(a__ ) # disregard some samples if len(answer['''start_token'''] ) > 1 or answer["start_token"] == answer["end_token"]: SCREAMING_SNAKE_CASE : Tuple = True else: SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : List[Any] = ['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text'''] if not all(isinstance(answer[k] , a__ ) for k in cols ): raise ValueError('''Issue in ID''' , example['''id'''] ) return answer def UpperCAmelCase_( a__ , a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = _get_single_answer(a__ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element SCREAMING_SNAKE_CASE : Optional[int] = example['''document''']['''tokens'''] SCREAMING_SNAKE_CASE : str = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) return { "context": " ".join(a__ ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples SCREAMING_SNAKE_CASE : Optional[Any] = ['''start_token''', '''end_token'''] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 SCREAMING_SNAKE_CASE : Dict = example['''document''']['''tokens'''] SCREAMING_SNAKE_CASE : Union[str, Any] = answer['''start_token'''] SCREAMING_SNAKE_CASE : Optional[Any] = answer['''end_token'''] SCREAMING_SNAKE_CASE : List[str] = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 SCREAMING_SNAKE_CASE : List[str] = ''' '''.join(context[start_token:end_token] ) # checking above code if assertion: SCREAMING_SNAKE_CASE : List[str] = doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']] SCREAMING_SNAKE_CASE : str = doc['''token'''][answer['''start_token'''] : answer['''end_token''']] SCREAMING_SNAKE_CASE : Union[str, Any] = ''' '''.join([old[i] for i in range(len(a__ ) ) if not is_html[i]] ) if new != old: print('''ID:''' , example['''id'''] ) print('''New:''' , a__ , end='''\n''' ) print('''Old:''' , a__ , end='''\n\n''' ) return { "context": " ".join(a__ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def UpperCAmelCase_( a__ , a__ , a__=2_048 , a__=4_096 , a__=True ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = get_context_and_ans(a__ , assertion=a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = out['''answer'''] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(example['''question''']['''text'''] , out['''context'''] ).input_ids SCREAMING_SNAKE_CASE : Tuple = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids[:q_len] SCREAMING_SNAKE_CASE : Dict = range(a__ , len(a__ ) , max_length - doc_stride ) for i in doc_start_indices: SCREAMING_SNAKE_CASE : List[str] = i + max_length - q_len SCREAMING_SNAKE_CASE : Any = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['''category'''][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(a__ ), "end_token": [-100] * len(a__ ), "category": category, }, } SCREAMING_SNAKE_CASE : Optional[Any] = out['''context'''].split() SCREAMING_SNAKE_CASE : str = splitted_context[answer['''end_token''']] SCREAMING_SNAKE_CASE : Union[str, Any] = len( tokenizer( ''' '''.join(splitted_context[: answer['''start_token''']] ) , add_special_tokens=a__ , ).input_ids ) SCREAMING_SNAKE_CASE : List[str] = len( tokenizer(''' '''.join(splitted_context[: answer['''end_token''']] ) , add_special_tokens=a__ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token SCREAMING_SNAKE_CASE : Dict = len(tokenizer(a__ , add_special_tokens=a__ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 SCREAMING_SNAKE_CASE : List[str] = input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive SCREAMING_SNAKE_CASE : int = answer['''start_token'''] SCREAMING_SNAKE_CASE : List[Any] = answer['''end_token'''] if assertion: SCREAMING_SNAKE_CASE : List[str] = tokenizer.decode(a__ ) if answer["span"] != new: print('''ISSUE IN TOKENIZATION''' ) print('''OLD:''' , answer['''span'''] ) print('''NEW:''' , a__ , end='''\n\n''' ) if len(a__ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } SCREAMING_SNAKE_CASE : str = input_ids[:q_len] SCREAMING_SNAKE_CASE : Optional[Any] = range(a__ , len(a__ ) , max_length - doc_stride ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : List[str] = [] # null, yes, no, long, short for i in doc_start_indices: SCREAMING_SNAKE_CASE : int = i + max_length - q_len SCREAMING_SNAKE_CASE : List[Any] = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: SCREAMING_SNAKE_CASE : Any = start_token - i + q_len SCREAMING_SNAKE_CASE : Optional[Any] = end_token - i + q_len answers_category.append(answer['''category'''][0] ) # ["short"] -> "short" else: SCREAMING_SNAKE_CASE : List[Any] = -100 SCREAMING_SNAKE_CASE : Any = -100 answers_category.append('''null''' ) SCREAMING_SNAKE_CASE : Tuple = inputs[-1][start_token : end_token + 1] answers_start_token.append(a__ ) answers_end_token.append(a__ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('''ISSUE in strided for ID:''' , example['''id'''] ) print('''New:''' , tokenizer.decode(a__ ) ) print('''Old:''' , tokenizer.decode(a__ ) , end='''\n\n''' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def UpperCAmelCase_( a__ , a__ , a__=2_048 , a__=4_096 , a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : str = get_strided_contexts_and_ans( a__ , a__ , doc_stride=a__ , max_length=a__ , assertion=a__ , ) return example def UpperCAmelCase_( a__ , a__ ): """simple docstring""" with jsonlines.open(a__ , '''a''' ) as writer: for example in tqdm(a__ , total=len(a__ ) , desc='''Saving samples ... ''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = example['''labels'''] for ids, start, end, cat in zip( example['''input_ids'''] , labels['''start_token'''] , labels['''end_token'''] , labels['''category'''] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { '''input_ids''': ids, '''start_token''': start, '''end_token''': end, '''category''': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer a__ : Union[str, Any] = load_dataset('''natural_questions''') a__ : Any = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') a__ : Dict = data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] a__ : Tuple = { '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } a__ : Optional[Any] = data.map(prepare_inputs, fn_kwargs=fn_kwargs) a__ : Tuple = data.remove_columns(['''annotations''', '''document''', '''id''', '''question''']) print(data) np.random.seed(SEED) a__ : List[str] = '''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
361
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DDIMPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def __lowerCAmelCase ( self ) ->Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddim.to(_lowerCamelCase ) ddim.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddpm.to(_lowerCamelCase ) ddpm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
0
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f: f.write('''{"default": {"dataset_size": 42}}''' ) SCREAMING_SNAKE_CASE : int = DatasetInfosDict.from_directory(a__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ), ] , ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = str(a__ ) dataset_info.write_to_directory(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = DatasetInfo.from_directory(a__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a__ , '''dataset_info.json''' ) ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 42}] , download_checksums={} , download_size=1_337 , post_processing_size=442 , dataset_size=1_234 , size_in_bytes=1_337 + 442 + 1_234 , ) SCREAMING_SNAKE_CASE : int = dataset_info._to_yaml_dict() assert sorted(a__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) SCREAMING_SNAKE_CASE : Optional[Any] = yaml.safe_dump(a__ ) SCREAMING_SNAKE_CASE : List[Any] = yaml.safe_load(a__ ) assert dataset_info_yaml_dict == reloaded def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DatasetInfo() SCREAMING_SNAKE_CASE : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=42 ), '''v2''': DatasetInfo(dataset_size=1_337 ), } ), ] , ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = str(a__ ) dataset_infos_dict.write_to_directory(a__ ) SCREAMING_SNAKE_CASE : str = DatasetInfosDict.from_directory(a__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): SCREAMING_SNAKE_CASE : str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml SCREAMING_SNAKE_CASE : str = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a__ , '''README.md''' ) )
362
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = '''[PAD]''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowerCamelCase ) , 1012 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
19
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = 'Speech2TextFeatureExtractor' __SCREAMING_SNAKE_CASE : List[str] = 'Speech2TextTokenizer' def __init__( self , _lowerCamelCase , _lowerCamelCase ) ->str: super().__init__(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extractor SCREAMING_SNAKE_CASE : List[Any] = False def __call__( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCamelCase , **_lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE : str = kwargs.pop('''audio''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : int = kwargs.pop('''sampling_rate''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = kwargs.pop('''text''' , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: SCREAMING_SNAKE_CASE : Dict = args[0] SCREAMING_SNAKE_CASE : Dict = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE : int = self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) if text is not None: SCREAMING_SNAKE_CASE : Any = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE : List[Any] = encodings['''input_ids'''] return inputs def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[str]: return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Dict: return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @contextmanager def __lowerCAmelCase ( self ) ->Optional[Any]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : str = self.tokenizer yield SCREAMING_SNAKE_CASE : int = self.feature_extractor SCREAMING_SNAKE_CASE : Union[str, Any] = False
363
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ : Optional[int] = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
364
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Tuple = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a__ : Optional[Any] = {'''mobilebert-uncased''': 512} a__ : List[Any] = {} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = strip_accents SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
0
import math def UpperCAmelCase_( a__ , a__): """simple docstring""" if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(a__) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''') if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. a__ : List[Any] = '''Enter the base and the power separated by a comma: ''' a__ : Dict = map(int, input(prompt).split(''',''')) a__ : Union[str, Any] = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. a__ : Tuple = res(xa, ya) a__ : List[str] = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
365
import math a__ : List[str] = 10 a__ : Optional[int] = 7 a__ : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase_( a__ = 20 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
19
0
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def UpperCAmelCase_( a__ ): # picklable for multiprocessing """simple docstring""" return x.sum() def UpperCAmelCase_( a__ ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : int __SCREAMING_SNAKE_CASE : str class a_ ( a__ ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = {} SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Dict = [1, 2] SCREAMING_SNAKE_CASE : List[str] = {'''a''': 1, '''b''': 2} SCREAMING_SNAKE_CASE : List[Any] = {'''a''': [1, 2], '''b''': [3, 4]} SCREAMING_SNAKE_CASE : Tuple = {'''a''': {'''1''': 1}, '''b''': 2} SCREAMING_SNAKE_CASE : Dict = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} SCREAMING_SNAKE_CASE : Union[str, Any] = {} SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Any = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = [2, 3] SCREAMING_SNAKE_CASE : List[str] = {'''a''': 2, '''b''': 3} SCREAMING_SNAKE_CASE : Tuple = {'''a''': [2, 3], '''b''': [4, 5]} SCREAMING_SNAKE_CASE : int = {'''a''': {'''1''': 2}, '''b''': 3} SCREAMING_SNAKE_CASE : Union[str, Any] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) SCREAMING_SNAKE_CASE : int = 2 self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = {'''a''': np.eye(2 ), '''b''': np.zeros(3 ), '''c''': np.ones(2 )} SCREAMING_SNAKE_CASE : Optional[Any] = {'''a''': 2, '''b''': 0, '''c''': 2} SCREAMING_SNAKE_CASE : List[Any] = { '''a''': np.eye(2 ).astype(_lowerCamelCase ), '''b''': np.zeros(3 ).astype(_lowerCamelCase ), '''c''': np.ones(2 ).astype(_lowerCamelCase ), } self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase , num_proc=_lowerCamelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_lowerCamelCase ): # can't pickle a local lambda map_nested(lambda _lowerCamelCase : x + 1 , _lowerCamelCase , num_proc=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = {'''a''': 1, '''b''': 2} SCREAMING_SNAKE_CASE : Any = {'''a''': 3, '''b''': 4} SCREAMING_SNAKE_CASE : Dict = {'''a''': 5, '''b''': 6} SCREAMING_SNAKE_CASE : Dict = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = 'bar' SCREAMING_SNAKE_CASE : Any = Foo() self.assertEqual(foo.my_attr , '''bar''' ) with temporary_assignment(_lowerCamelCase , '''my_attr''' , '''BAR''' ): self.assertEqual(foo.my_attr , '''BAR''' ) self.assertEqual(foo.my_attr , '''bar''' ) @pytest.mark.parametrize( '''iterable_length, num_proc, expected_num_proc''' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" with patch('''datasets.utils.py_utils._single_map_nested''' ) as mock_single_map_nested, patch( '''datasets.parallel.parallel.Pool''' ) as mock_multiprocessing_pool: SCREAMING_SNAKE_CASE : Optional[int] = {F"""{i}""": i for i in range(a__ )} SCREAMING_SNAKE_CASE : Any = map_nested(lambda a__ : x + 10 , a__ , num_proc=a__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class a_ ( a__ ): """simple docstring""" @require_tf def __lowerCAmelCase ( self ) ->Union[str, Any]: import tensorflow as tf from tensorflow.keras import layers SCREAMING_SNAKE_CASE : Optional[Any] = layers.Dense(2 ) def gen_random_output(): SCREAMING_SNAKE_CASE : Tuple = tf.random.uniform((1, 3) ) return model(_lowerCamelCase ).numpy() with temp_seed(42 , set_tensorflow=_lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = gen_random_output() with temp_seed(42 , set_tensorflow=_lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = gen_random_output() SCREAMING_SNAKE_CASE : Tuple = gen_random_output() np.testing.assert_equal(_lowerCamelCase , _lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) ->str: import torch def gen_random_output(): SCREAMING_SNAKE_CASE : Optional[Any] = torch.nn.Linear(3 , 2 ) SCREAMING_SNAKE_CASE : Dict = torch.rand(1 , 3 ) return model(_lowerCamelCase ).detach().numpy() with temp_seed(42 , set_pytorch=_lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = gen_random_output() with temp_seed(42 , set_pytorch=_lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = gen_random_output() SCREAMING_SNAKE_CASE : str = gen_random_output() np.testing.assert_equal(_lowerCamelCase , _lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): SCREAMING_SNAKE_CASE : Optional[Any] = gen_random_output() with temp_seed(42 ): SCREAMING_SNAKE_CASE : Optional[Any] = gen_random_output() SCREAMING_SNAKE_CASE : Tuple = gen_random_output() np.testing.assert_equal(_lowerCamelCase , _lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('''input_data''' , [{}] ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = NestedDataStructure(a__ ).data assert output_data == input_data @pytest.mark.parametrize( '''data, expected_output''' , [ ({}, []), ([], []), ('''foo''', ['''foo''']), (['''foo''', '''bar'''], ['''foo''', '''bar''']), ([['''foo''', '''bar''']], ['''foo''', '''bar''']), ([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']), ([[['''foo'''], '''bar''']], ['''foo''', '''bar''']), ({'''a''': 1, '''b''': 2}, [1, 2]), ({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]), ({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]), ] , ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = NestedDataStructure(a__ ).flatten() assert output == expected_output def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = A(x=1 , y='''foobar''' ) SCREAMING_SNAKE_CASE : Tuple = {'''x''': 1, '''y''': '''foobar'''} assert asdict(a__ ) == expected_output SCREAMING_SNAKE_CASE : Optional[Any] = {'''a''': {'''b''': A(x=10 , y='''foo''' )}, '''c''': [A(x=20 , y='''bar''' )]} SCREAMING_SNAKE_CASE : Union[str, Any] = {'''a''': {'''b''': {'''x''': 10, '''y''': '''foo'''}}, '''c''': [{'''x''': 20, '''y''': '''bar'''}]} assert asdict(a__ ) == expected_output with pytest.raises(a__ ): asdict([1, A(x=10 , y='''foo''' )] ) def UpperCAmelCase_( a__ ): """simple docstring""" return text.split() def UpperCAmelCase_( a__ ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def UpperCAmelCase_( ): """simple docstring""" with Pool(2 ) as pool: SCREAMING_SNAKE_CASE : str = list(iflatmap_unordered(a__ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(a__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: SCREAMING_SNAKE_CASE : Union[str, Any] = list(iflatmap_unordered(a__ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(a__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: SCREAMING_SNAKE_CASE : str = [] for yield_time, content in iflatmap_unordered( a__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(a__ ) assert out.count('''a''' ) == 2 assert out.count('''b''' ) == 2 assert len(a__ ) == 4
366
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a__ : List[str] = logging.get_logger(__name__) # General docstring a__ : Tuple = '''MobileNetV1Config''' # Base docstring a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224''' a__ : Tuple = [1, 1_024, 7, 7] # Image classification docstring a__ : Optional[int] = '''google/mobilenet_v1_1.0_224''' a__ : int = '''tabby, tabby cat''' a__ : List[Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase_( a__ , a__ , a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va else: SCREAMING_SNAKE_CASE : Union[str, Any] = model SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/''' SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE : Dict = i + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2 SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias return tf_to_pt_map def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : List[Any] = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '''/RMSProp''' , a__ ) tf_weights.pop(name + '''/RMSProp_1''' , a__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2 SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left SCREAMING_SNAKE_CASE : str = pad_along_height // 2 SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 ) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None: super().__init__() SCREAMING_SNAKE_CASE : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE : List[str] = nn.Convad( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , ) if use_normalization: SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad( num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , ) else: SCREAMING_SNAKE_CASE : Dict = None if use_activation: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act else: SCREAMING_SNAKE_CASE : Optional[Any] = None def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: if self.config.tf_padding: SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution ) SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return features class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig __SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va __SCREAMING_SNAKE_CASE : int = 'mobilenet_v1' __SCREAMING_SNAKE_CASE : int = 'pixel_values' __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a__ : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Union[str, Any] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = config SCREAMING_SNAKE_CASE : Dict = 32 SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer( _lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE : Any = nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE : int = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : List[str] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Any = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
19
0
def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def UpperCAmelCase_( ): """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
367
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[Any] = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
368
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Any = TypeVar('''T''') def UpperCAmelCase_( a__ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 2 class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE : dict[T, int] = {} SCREAMING_SNAKE_CASE : int = 0 def __len__( self ) ->int: return self.elements def __repr__( self ) ->str: return str(self.heap ) def __lowerCAmelCase ( self ) ->bool: # Check if the priority queue is empty return self.elements == 0 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE : Tuple = self.elements self.elements += 1 self._bubble_up(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0] self._bubble_down(_lowerCamelCase ) return elem def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Update the weight of the given key SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE : Any = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_up(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos] SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Swap the nodes at the given positions SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos SCREAMING_SNAKE_CASE : List[str] = nodea_pos class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE : int = 0 def __repr__( self ) ->str: return str(self.connections ) def __len__( self ) ->int: return self.nodes def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE : Any = {} self.nodes += 1 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an edge between 2 nodes in the graph self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = weight SCREAMING_SNAKE_CASE : str = weight def UpperCAmelCase_( a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node return dist, parent
19
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[Any] = BlipImageProcessor() SCREAMING_SNAKE_CASE : Tuple = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) SCREAMING_SNAKE_CASE : str = BlipaProcessor(_lowerCamelCase , _lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).tokenizer def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Optional[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).image_processor def __lowerCAmelCase ( self ) ->int: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE : List[str] = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[str] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : str = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE : Tuple = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE : str = self.get_tokenizer() SCREAMING_SNAKE_CASE : List[str] = BlipaProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : List[str] = image_processor(_lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE : Any = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Any = BlipaProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''lower newer''' SCREAMING_SNAKE_CASE : Tuple = processor(text=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = tokenizer(_lowerCamelCase , return_token_type_ids=_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE : int = self.get_tokenizer() SCREAMING_SNAKE_CASE : Union[str, Any] = BlipaProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = '''lower newer''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : Tuple = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor() SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE : Dict = BlipaProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE : Optional[Any] = processor.batch_decode(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.get_image_processor() SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE : Union[str, Any] = BlipaProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = '''lower newer''' SCREAMING_SNAKE_CASE : Any = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
369
from math import pi, sqrt, tan def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(a__ , 2 ) * torus_radius * tube_radius def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not isinstance(a__ , a__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
19
0
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def lowercase__( a__ , a__ , a__ ): """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , a__ ) SCREAMING_SNAKE_CASE : List[str] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE : List[Any] = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Tuple = is_small_dataset(a__ ) assert result == expected
370
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a__ : List[str] = None a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Dict = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a__ : str = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : int = { lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self ) ->str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : List[str] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) ->List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
19
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[Any] = { '''configuration_blenderbot_small''': [ '''BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotSmallConfig''', '''BlenderbotSmallOnnxConfig''', ], '''tokenization_blenderbot_small''': ['''BlenderbotSmallTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ['''BlenderbotSmallTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ '''BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotSmallForCausalLM''', '''BlenderbotSmallForConditionalGeneration''', '''BlenderbotSmallModel''', '''BlenderbotSmallPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ '''TFBlenderbotSmallForConditionalGeneration''', '''TFBlenderbotSmallModel''', '''TFBlenderbotSmallPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''FlaxBlenderbotSmallForConditionalGeneration''', '''FlaxBlenderbotSmallModel''', '''FlaxBlenderbotSmallPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
371
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = proj_size SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase ) for _ in range(_lowerCamelCase ) ] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for block in self.blocks: SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase ) return hidden_states
19
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( a__ ): """simple docstring""" @staticmethod @abstractmethod def __lowerCAmelCase ( _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError() @abstractmethod def __lowerCAmelCase ( self ) ->Optional[Any]: raise NotImplementedError()
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Tuple = '''▁''' a__ : List[Any] = {'''vocab_file''': '''spiece.model'''} a__ : Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } a__ : str = { '''google/pegasus-xsum''': 512, } a__ : str = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : Dict = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is""" F""" {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = mask_token_sent SCREAMING_SNAKE_CASE : Optional[int] = vocab_file SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # add special tokens to encoder dict SCREAMING_SNAKE_CASE : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) + self.offset def __lowerCAmelCase ( self ) ->Dict[str, int]: SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None return state def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase ) return sp_id + self.offset def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str: return 1 def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
19
0
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase_( a__ ): """simple docstring""" return EnvironmentCommand() def UpperCAmelCase_( a__ ): """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class a_ ( a__ ): """simple docstring""" @staticmethod def __lowerCAmelCase ( _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : str = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowerCamelCase ) download_parser.add_argument( '''--accelerate-config_file''' , default=_lowerCamelCase , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_lowerCamelCase ) def __init__( self , _lowerCamelCase , *_lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : List[Any] = accelerate_config_file def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = '''not installed''' if is_safetensors_available(): import safetensors SCREAMING_SNAKE_CASE : Any = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors SCREAMING_SNAKE_CASE : int = F"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" SCREAMING_SNAKE_CASE : Optional[int] = '''not installed''' SCREAMING_SNAKE_CASE : Any = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file SCREAMING_SNAKE_CASE : List[Any] = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = load_config_from_file(self._accelerate_config_file ).to_dict() SCREAMING_SNAKE_CASE : Tuple = ( '''\n'''.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else F"""\t{accelerate_config}""" ) SCREAMING_SNAKE_CASE : List[str] = '''not installed''' SCREAMING_SNAKE_CASE : List[Any] = '''NA''' if is_torch_available(): import torch SCREAMING_SNAKE_CASE : List[str] = torch.__version__ SCREAMING_SNAKE_CASE : Optional[Any] = torch.cuda.is_available() SCREAMING_SNAKE_CASE : str = '''not installed''' SCREAMING_SNAKE_CASE : Any = '''NA''' if is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE : int = tf.__version__ try: # deprecated in v2.1 SCREAMING_SNAKE_CASE : Dict = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool SCREAMING_SNAKE_CASE : Any = bool(tf.config.list_physical_devices('''GPU''' ) ) SCREAMING_SNAKE_CASE : Any = '''not installed''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''not installed''' SCREAMING_SNAKE_CASE : int = '''not installed''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''NA''' if is_flax_available(): import flax import jax import jaxlib SCREAMING_SNAKE_CASE : Optional[int] = flax.__version__ SCREAMING_SNAKE_CASE : Tuple = jax.__version__ SCREAMING_SNAKE_CASE : Optional[int] = jaxlib.__version__ SCREAMING_SNAKE_CASE : List[Any] = jax.lib.xla_bridge.get_backend().platform SCREAMING_SNAKE_CASE : Any = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F"""{safetensors_version}""", '''Accelerate version''': F"""{accelerate_version}""", '''Accelerate config''': F"""{accelerate_config_str}""", '''PyTorch version (GPU?)''': F"""{pt_version} ({pt_cuda_available})""", '''Tensorflow version (GPU?)''': F"""{tf_version} ({tf_cuda_available})""", '''Flax version (CPU?/GPU?/TPU?)''': F"""{flax_version} ({jax_backend})""", '''Jax version''': F"""{jax_version}""", '''JaxLib version''': F"""{jaxlib_version}""", '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowerCamelCase ) ) return info @staticmethod def __lowerCAmelCase ( _lowerCamelCase ) ->Union[str, Any]: return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
351
def UpperCAmelCase_( a__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = 1 while repunit: SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_( a__ = 1_000_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_lowerCamelCase , ) assert hasattr(self , '''env''' ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = F"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings SCREAMING_SNAKE_CASE : Union[str, Any] = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_lowerCamelCase , instance_count=_lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=_lowerCamelCase , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_lowerCamelCase , py_version='''py36''' , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: TrainingJobAnalytics(_lowerCamelCase ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[int]: # create estimator SCREAMING_SNAKE_CASE : Any = self.create_estimator(_lowerCamelCase ) # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE : Dict = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE : int = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) SCREAMING_SNAKE_CASE : Any = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _lowerCamelCase )
352
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict: SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Any = num_stages SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : int = scope SCREAMING_SNAKE_CASE : Optional[Any] = num_stages def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCAmelCase ( self ) ->Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->str: return def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->str: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass def __lowerCAmelCase ( self ) ->int: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @slow def __lowerCAmelCase ( self ) ->List[Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
19
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging a__ : List[Any] = logging.get_logger(__name__) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = r'''\w+[.]\d+''' SCREAMING_SNAKE_CASE : Tuple = re.findall(a__ , a__ ) for pat in pats: SCREAMING_SNAKE_CASE : Tuple = key.replace(a__ , '''_'''.join(pat.split('''.''' ) ) ) return key def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): SCREAMING_SNAKE_CASE : List[Any] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: SCREAMING_SNAKE_CASE : int = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer SCREAMING_SNAKE_CASE : str = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: SCREAMING_SNAKE_CASE : List[str] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer SCREAMING_SNAKE_CASE : Dict = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": SCREAMING_SNAKE_CASE : int = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias SCREAMING_SNAKE_CASE : Tuple = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase_( a__ , a__ , a__=42 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params SCREAMING_SNAKE_CASE : List[Any] = flax_model.init_weights(PRNGKey(a__ ) ) SCREAMING_SNAKE_CASE : List[str] = flatten_dict(a__ ) SCREAMING_SNAKE_CASE : Any = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): SCREAMING_SNAKE_CASE : List[str] = rename_key(a__ ) SCREAMING_SNAKE_CASE : Dict = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters SCREAMING_SNAKE_CASE : Union[str, Any] = rename_key_and_reshape_tensor(a__ , a__ , a__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown SCREAMING_SNAKE_CASE : str = jnp.asarray(a__ ) return unflatten_dict(a__ )
353
import datasets from .evaluate import evaluate a__ : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' a__ : List[str] = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' a__ : List[Any] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
19
0
a__ : Dict = [ '''Audio''', '''Array2D''', '''Array3D''', '''Array4D''', '''Array5D''', '''ClassLabel''', '''Features''', '''Sequence''', '''Value''', '''Image''', '''Translation''', '''TranslationVariableLanguages''', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
354
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]: return { "matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ), }
19
0
from torch import nn class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]: super().__init__() SCREAMING_SNAKE_CASE : List[Any] = class_size SCREAMING_SNAKE_CASE : Optional[Any] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) SCREAMING_SNAKE_CASE : str = self.mlp(_lowerCamelCase ) return logits
355
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ ) SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a__ ) env_command_parser(subparsers=a__ ) launch_command_parser(subparsers=a__ ) tpu_command_parser(subparsers=a__ ) test_command_parser(subparsers=a__ ) # Let's go SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if not hasattr(a__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a__ ) if __name__ == "__main__": main()
19
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class a_ ( a__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = TextToVideoSDPipeline __SCREAMING_SNAKE_CASE : str = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __SCREAMING_SNAKE_CASE : Union[str, Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) SCREAMING_SNAKE_CASE : List[str] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->Union[str, Any]: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : int = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = '''np''' SCREAMING_SNAKE_CASE : Dict = sd_pipe(**_lowerCamelCase ).frames SCREAMING_SNAKE_CASE : str = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) SCREAMING_SNAKE_CASE : List[str] = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[Any]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_lowerCamelCase , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ) ->Dict: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_lowerCamelCase , expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def __lowerCAmelCase ( self ) ->Optional[int]: pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def __lowerCAmelCase ( self ) ->Optional[Any]: pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def __lowerCAmelCase ( self ) ->List[str]: pass def __lowerCAmelCase ( self ) ->List[Any]: return super().test_progress_bar() @slow @skip_mps class a_ ( unittest.TestCase ): def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) SCREAMING_SNAKE_CASE : Tuple = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) SCREAMING_SNAKE_CASE : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : List[Any] = pipe.to('''cuda''' ) SCREAMING_SNAKE_CASE : List[str] = '''Spiderman is surfing''' SCREAMING_SNAKE_CASE : str = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : int = pipe(_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=25 , output_type='''pt''' ).frames SCREAMING_SNAKE_CASE : Optional[int] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) SCREAMING_SNAKE_CASE : Any = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) SCREAMING_SNAKE_CASE : List[str] = pipe.to('''cuda''' ) SCREAMING_SNAKE_CASE : int = '''Spiderman is surfing''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=2 , output_type='''pt''' ).frames SCREAMING_SNAKE_CASE : Any = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
356
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''} a__ : str = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } a__ : Tuple = {'''mgp-str''': 27} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict: super().__init__( unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self ) ->List[Any]: return len(self.vocab ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return dict(self.vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for s in text: char_tokens.extend(_lowerCamelCase ) return char_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: return self.decoder.get(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) ) return SCREAMING_SNAKE_CASE : str = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' ) return (vocab_file,)
19
0
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class a_ ( a__ , a__ ): """simple docstring""" @register_to_config def __init__( self , _lowerCamelCase = 128 , _lowerCamelCase = 256 , _lowerCamelCase = 2000.0 , _lowerCamelCase = 768 , _lowerCamelCase = 12 , _lowerCamelCase = 12 , _lowerCamelCase = 64 , _lowerCamelCase = 2048 , _lowerCamelCase = 0.1 , ) ->int: super().__init__() SCREAMING_SNAKE_CASE : str = nn.Sequential( nn.Linear(_lowerCamelCase , d_model * 4 , bias=_lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_lowerCamelCase ) , nn.SiLU() , ) SCREAMING_SNAKE_CASE : List[Any] = nn.Embedding(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Any = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dropout(p=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = nn.ModuleList() for lyr_num in range(_lowerCamelCase ): # FiLM conditional T5 decoder SCREAMING_SNAKE_CASE : Tuple = DecoderLayer(d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase ) self.decoders.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = TaLayerNorm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(p=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : int = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. SCREAMING_SNAKE_CASE : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) SCREAMING_SNAKE_CASE : List[str] = self.conditioning_emb(_lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) SCREAMING_SNAKE_CASE : Any = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. SCREAMING_SNAKE_CASE : List[str] = torch.broadcast_to( torch.arange(_lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) SCREAMING_SNAKE_CASE : Dict = self.position_encoding(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.continuous_inputs_projection(_lowerCamelCase ) inputs += position_encodings SCREAMING_SNAKE_CASE : int = self.dropout(_lowerCamelCase ) # decoder: No padding present. SCREAMING_SNAKE_CASE : Any = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. SCREAMING_SNAKE_CASE : Optional[int] = [(x, self.encoder_decoder_mask(_lowerCamelCase , _lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings SCREAMING_SNAKE_CASE : List[Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) SCREAMING_SNAKE_CASE : str = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: SCREAMING_SNAKE_CASE : List[str] = lyr( _lowerCamelCase , conditioning_emb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : List[str] = self.decoder_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = self.post_dropout(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.spec_out(_lowerCamelCase ) return spec_out class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1e-6 ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : Tuple = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , dropout_rate=_lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , dropout_rate=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = self.layer[0]( _lowerCamelCase , conditioning_emb=_lowerCamelCase , attention_mask=_lowerCamelCase , ) if encoder_hidden_states is not None: SCREAMING_SNAKE_CASE : List[str] = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) SCREAMING_SNAKE_CASE : Optional[int] = self.layer[1]( _lowerCamelCase , key_value_states=_lowerCamelCase , attention_mask=_lowerCamelCase , ) # Apply Film Conditional Feed Forward layer SCREAMING_SNAKE_CASE : int = self.layer[-1](_lowerCamelCase , _lowerCamelCase ) return (hidden_states,) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : List[Any] = TaLayerNorm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = Attention(query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , out_bias=_lowerCamelCase , scale_qk=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , ) ->List[str]: # pre_self_attention_layer_norm SCREAMING_SNAKE_CASE : Union[str, Any] = self.layer_norm(_lowerCamelCase ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.FiLMLayer(_lowerCamelCase , _lowerCamelCase ) # Self-attention block SCREAMING_SNAKE_CASE : str = self.attention(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = hidden_states + self.dropout(_lowerCamelCase ) return hidden_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = Attention(query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , out_bias=_lowerCamelCase , scale_qk=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(_lowerCamelCase , eps=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.attention( _lowerCamelCase , encoder_hidden_states=_lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + self.dropout(_lowerCamelCase ) return layer_output class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->int: super().__init__() SCREAMING_SNAKE_CASE : Dict = TaDenseGatedActDense(d_model=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = TaLayerNorm(_lowerCamelCase , eps=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Optional[int]: SCREAMING_SNAKE_CASE : Any = self.layer_norm(_lowerCamelCase ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.film(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : str = self.DenseReluDense(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = hidden_states + self.dropout(_lowerCamelCase ) return hidden_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->int: super().__init__() SCREAMING_SNAKE_CASE : List[str] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = nn.Dropout(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = NewGELUActivation() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : Dict = self.act(self.wi_a(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[str] = self.wi_a(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = hidden_gelu * hidden_linear SCREAMING_SNAKE_CASE : int = self.dropout(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.wo(_lowerCamelCase ) return hidden_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1e-6 ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.ones(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[str] = eps def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 SCREAMING_SNAKE_CASE : Dict = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: SCREAMING_SNAKE_CASE : Optional[Any] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class a_ ( nn.Module ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_lowerCamelCase , 3.0 )) )) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) ->Any: super().__init__() SCREAMING_SNAKE_CASE : List[str] = nn.Linear(_lowerCamelCase , out_features * 2 , bias=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = self.scale_bias(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.chunk(_lowerCamelCase , 2 , -1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = x * (1 + scale) + shift return x
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''DeiTFeatureExtractor'''] a__ : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class a_ : """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple: raise NotImplementedError() def __lowerCAmelCase ( self ) ->Optional[int]: raise NotImplementedError() class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = False , **_lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = tokenizer SCREAMING_SNAKE_CASE : List[Any] = skip_prompt SCREAMING_SNAKE_CASE : Dict = decode_kwargs # variables used in the streaming process SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : int = True def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: SCREAMING_SNAKE_CASE : Union[str, Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: SCREAMING_SNAKE_CASE : Optional[int] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): SCREAMING_SNAKE_CASE : Dict = text[self.print_len :] SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : int = 0 # If the last token is a CJK character, we print the characters. elif len(_lowerCamelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): SCREAMING_SNAKE_CASE : List[Any] = text[self.print_len :] self.print_len += len(_lowerCamelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: SCREAMING_SNAKE_CASE : Optional[int] = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(_lowerCamelCase ) self.on_finalized_text(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: # Flush the cache, if it exists if len(self.token_cache ) > 0: SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) SCREAMING_SNAKE_CASE : str = text[self.print_len :] SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[int] = 0 else: SCREAMING_SNAKE_CASE : Any = '''''' SCREAMING_SNAKE_CASE : Optional[int] = True self.on_finalized_text(_lowerCamelCase , stream_end=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = False ) ->Tuple: print(_lowerCamelCase , flush=_lowerCamelCase , end='''''' if not stream_end else None ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_e00 and cp <= 0x9_fff) or (cp >= 0x3_400 and cp <= 0x4_dbf) # or (cp >= 0x20_000 and cp <= 0x2a_6df) # or (cp >= 0x2a_700 and cp <= 0x2b_73f) # or (cp >= 0x2b_740 and cp <= 0x2b_81f) # or (cp >= 0x2b_820 and cp <= 0x2c_eaf) # or (cp >= 0xf_900 and cp <= 0xf_aff) or (cp >= 0x2f_800 and cp <= 0x2f_a1f) # ): # return True return False class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = None , **_lowerCamelCase ) ->Union[str, Any]: super().__init__(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = Queue() SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[str] = timeout def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = False ) ->str: self.text_queue.put(_lowerCamelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) ->Tuple: return self def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
358
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Dict = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
359
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase_( a__ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
19
0
import copy import random from transformers import CLIPTokenizer class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[Any]: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = {} def __lowerCAmelCase ( self , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = super().add_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ''' `placeholder_token` that is not already in the tokenizer.''' ) def __lowerCAmelCase ( self , _lowerCamelCase , *_lowerCamelCase , _lowerCamelCase=1 , **_lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = [] if num_vec_per_token == 1: self.try_adding_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) output.append(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = placeholder_token + F"""_{i}""" self.try_adding_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) output.append(_lowerCamelCase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) SCREAMING_SNAKE_CASE : int = output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=1.0 ) ->Any: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(len(_lowerCamelCase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=_lowerCamelCase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: SCREAMING_SNAKE_CASE : str = self.token_map[placeholder_token] SCREAMING_SNAKE_CASE : int = tokens[: 1 + int(len(_lowerCamelCase ) * prop_tokens_to_load )] if vector_shuffle: SCREAMING_SNAKE_CASE : Tuple = copy.copy(_lowerCamelCase ) random.shuffle(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = text.replace(_lowerCamelCase , ''' '''.join(_lowerCamelCase ) ) return text def __call__( self , _lowerCamelCase , *_lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=1.0 , **_lowerCamelCase ) ->Optional[int]: return super().__call__( self.replace_placeholder_tokens_in_text( _lowerCamelCase , vector_shuffle=_lowerCamelCase , prop_tokens_to_load=_lowerCamelCase ) , *_lowerCamelCase , **_lowerCamelCase , ) def __lowerCAmelCase ( self , _lowerCamelCase , *_lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=1.0 , **_lowerCamelCase ) ->List[Any]: return super().encode( self.replace_placeholder_tokens_in_text( _lowerCamelCase , vector_shuffle=_lowerCamelCase , prop_tokens_to_load=_lowerCamelCase ) , *_lowerCamelCase , **_lowerCamelCase , )
360
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = eval_examples SCREAMING_SNAKE_CASE : Optional[int] = post_process_function def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]: SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE : Dict = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE : Any = gen_kwargs SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Optional[Any] = time.time() SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Tuple = eval_loop( _lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Dict = compute_metrics SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : str = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Dict = self.compute_metrics SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[str] = time.time() SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Any = eval_loop( _lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' ) SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
19
0
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging a__ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->Union[str, Any]: super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: SCREAMING_SNAKE_CASE : str = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , _lowerCamelCase , standard_warn=_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = dict(scheduler.config ) SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : Any = FrozenDict(_lowerCamelCase ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: SCREAMING_SNAKE_CASE : Tuple = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _lowerCamelCase , standard_warn=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = dict(scheduler.config ) SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : str = FrozenDict(_lowerCamelCase ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=_lowerCamelCase , segmentation_processor=_lowerCamelCase , vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , unet=_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , ) def __lowerCAmelCase ( self , _lowerCamelCase = "auto" ) ->Dict: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[int]: self.enable_attention_slicing(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[str]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) SCREAMING_SNAKE_CASE : List[Any] = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_lowerCamelCase , _lowerCamelCase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self ) ->Union[str, Any]: if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCamelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) SCREAMING_SNAKE_CASE : Optional[Any] = self.segmentation_model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() SCREAMING_SNAKE_CASE : List[Any] = self.numpy_to_pil(_lowerCamelCase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , )
361
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DDIMPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def __lowerCAmelCase ( self ) ->Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddim.to(_lowerCamelCase ) ddim.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddpm.to(_lowerCamelCase ) ddpm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE : List[str] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE : str = DisjunctiveConstraint(_lowerCamelCase ) self.assertTrue(isinstance(dc.token_ids , _lowerCamelCase ) ) with self.assertRaises(_lowerCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_lowerCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self ) ->int: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE : Any = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_lowerCamelCase ): DisjunctiveConstraint(_lowerCamelCase ) # fails here def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : str = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE : int = DisjunctiveConstraint(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = dc.update(1 ) SCREAMING_SNAKE_CASE : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE : Optional[int] = dc.update(2 ) SCREAMING_SNAKE_CASE : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE : Union[str, Any] = dc.update(3 ) SCREAMING_SNAKE_CASE : Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(_lowerCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE : Any = DisjunctiveConstraint(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE : List[str] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) SCREAMING_SNAKE_CASE : Union[str, Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() SCREAMING_SNAKE_CASE : str = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE : str = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE : List[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
362
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = '''[PAD]''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowerCamelCase ) , 1012 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
19
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Tuple = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
363
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
0
from __future__ import annotations def UpperCAmelCase_( a__ , a__ = None ): """simple docstring""" SCREAMING_SNAKE_CASE : int = word_bank or [] # create a table SCREAMING_SNAKE_CASE : int = len(a__ ) + 1 SCREAMING_SNAKE_CASE : list[list[list[str]]] = [] for _ in range(a__ ): table.append([] ) # seed value SCREAMING_SNAKE_CASE : Tuple = [[]] # because empty string has empty combination # iterate through the indices for i in range(a__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(a__ )] == word: SCREAMING_SNAKE_CASE : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(a__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(a__ )]: combination.reverse() return table[len(a__ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
364
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Tuple = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a__ : Optional[Any] = {'''mobilebert-uncased''': 512} a__ : List[Any] = {} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = strip_accents SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[str] = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
365
import math a__ : List[str] = 10 a__ : Optional[int] = 7 a__ : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase_( a__ = 20 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
19
0
a__ : dict[tuple[int, int, int], int] = {} def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on SCREAMING_SNAKE_CASE : Any = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one SCREAMING_SNAKE_CASE : int = _calculate(days - 1 , a__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 SCREAMING_SNAKE_CASE : Dict = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter SCREAMING_SNAKE_CASE : Dict = _calculate(days - 1 , a__ , 0 ) SCREAMING_SNAKE_CASE : Any = state_late + state_absent + state_ontime SCREAMING_SNAKE_CASE : Optional[Any] = prizestrings return prizestrings def UpperCAmelCase_( a__ = 30 ): """simple docstring""" return _calculate(a__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
366
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a__ : List[str] = logging.get_logger(__name__) # General docstring a__ : Tuple = '''MobileNetV1Config''' # Base docstring a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224''' a__ : Tuple = [1, 1_024, 7, 7] # Image classification docstring a__ : Optional[int] = '''google/mobilenet_v1_1.0_224''' a__ : int = '''tabby, tabby cat''' a__ : List[Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase_( a__ , a__ , a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va else: SCREAMING_SNAKE_CASE : Union[str, Any] = model SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/''' SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE : Dict = i + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2 SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias return tf_to_pt_map def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : List[Any] = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '''/RMSProp''' , a__ ) tf_weights.pop(name + '''/RMSProp_1''' , a__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2 SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left SCREAMING_SNAKE_CASE : str = pad_along_height // 2 SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 ) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None: super().__init__() SCREAMING_SNAKE_CASE : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE : List[str] = nn.Convad( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , ) if use_normalization: SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad( num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , ) else: SCREAMING_SNAKE_CASE : Dict = None if use_activation: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act else: SCREAMING_SNAKE_CASE : Optional[Any] = None def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: if self.config.tf_padding: SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution ) SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return features class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig __SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va __SCREAMING_SNAKE_CASE : int = 'mobilenet_v1' __SCREAMING_SNAKE_CASE : int = 'pixel_values' __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a__ : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Union[str, Any] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = config SCREAMING_SNAKE_CASE : Dict = 32 SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer( _lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE : Any = nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE : int = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : List[str] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Any = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
19
0
import numpy as np from PIL import Image def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = np.array(a__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE : Union[str, Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape SCREAMING_SNAKE_CASE : List[Any] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix SCREAMING_SNAKE_CASE : Optional[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : str = 0 return updated_arr def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = np.array(a__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : Tuple = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE : List[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape SCREAMING_SNAKE_CASE : List[str] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix SCREAMING_SNAKE_CASE : int = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Dict = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image a__ : Optional[int] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
367
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
0
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin a__ : Optional[Any] = random.Random() if is_torch_available(): import torch def UpperCAmelCase_( a__ , a__=1.0 , a__=None , a__=None ): """simple docstring""" if rng is None: SCREAMING_SNAKE_CASE : str = global_rng SCREAMING_SNAKE_CASE : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class a_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=400 , _lowerCamelCase=2000 , _lowerCamelCase=1 , _lowerCamelCase=0.0 , _lowerCamelCase=1_6000 , _lowerCamelCase=True , _lowerCamelCase=True , ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : Tuple = min_seq_length SCREAMING_SNAKE_CASE : Any = max_seq_length SCREAMING_SNAKE_CASE : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE : Optional[Any] = feature_size SCREAMING_SNAKE_CASE : Optional[Any] = padding_value SCREAMING_SNAKE_CASE : str = sampling_rate SCREAMING_SNAKE_CASE : Tuple = return_attention_mask SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize def __lowerCAmelCase ( self ) ->int: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __lowerCAmelCase ( self , _lowerCamelCase=False , _lowerCamelCase=False ) ->Any: def _flatten(_lowerCamelCase ): return list(itertools.chain(*_lowerCamelCase ) ) if equal_length: SCREAMING_SNAKE_CASE : List[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE : Tuple = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE : int = [np.asarray(_lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = ASTFeatureExtractor def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Dict = ASTFeatureExtractionTester(self ) def __lowerCAmelCase ( self ) ->Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE : Any = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE : Any = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values SCREAMING_SNAKE_CASE : Any = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE : Union[str, Any] = feat_extract(_lowerCamelCase , padding=_lowerCamelCase , return_tensors='''np''' ).input_values SCREAMING_SNAKE_CASE : str = feat_extract(_lowerCamelCase , padding=_lowerCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE : Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE : str = np.asarray(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = feat_extract(_lowerCamelCase , return_tensors='''np''' ).input_values SCREAMING_SNAKE_CASE : int = feat_extract(_lowerCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) @require_torch def __lowerCAmelCase ( self ) ->List[Any]: import torch SCREAMING_SNAKE_CASE : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE : Optional[int] = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE : List[Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: from datasets import load_dataset SCREAMING_SNAKE_CASE : int = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE : Any = ds.sort('''id''' ).select(range(_lowerCamelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def __lowerCAmelCase ( self ) ->List[Any]: # fmt: off SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on SCREAMING_SNAKE_CASE : Optional[Any] = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE : Any = ASTFeatureExtractor() SCREAMING_SNAKE_CASE : List[Any] = feature_extractor(_lowerCamelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCamelCase , atol=1e-4 ) )
368
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Any = TypeVar('''T''') def UpperCAmelCase_( a__ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 2 class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE : dict[T, int] = {} SCREAMING_SNAKE_CASE : int = 0 def __len__( self ) ->int: return self.elements def __repr__( self ) ->str: return str(self.heap ) def __lowerCAmelCase ( self ) ->bool: # Check if the priority queue is empty return self.elements == 0 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE : Tuple = self.elements self.elements += 1 self._bubble_up(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0] self._bubble_down(_lowerCamelCase ) return elem def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Update the weight of the given key SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE : Any = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_up(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos] SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Swap the nodes at the given positions SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos SCREAMING_SNAKE_CASE : List[str] = nodea_pos class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE : int = 0 def __repr__( self ) ->str: return str(self.connections ) def __len__( self ) ->int: return self.nodes def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE : Any = {} self.nodes += 1 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an edge between 2 nodes in the graph self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = weight SCREAMING_SNAKE_CASE : str = weight def UpperCAmelCase_( a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node return dist, parent
19
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a__ : Tuple = logging.get_logger(__name__) a__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } a__ : Optional[Any] = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ , a__ ): """simple docstring""" for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models SCREAMING_SNAKE_CASE : List[str] = '''lm_head''' SCREAMING_SNAKE_CASE : str = getattr(a__ , a__ ) if weight_type is not None: SCREAMING_SNAKE_CASE : str = getattr(a__ , a__ ).shape else: SCREAMING_SNAKE_CASE : str = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : Optional[Any] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Optional[Any] = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : int = value else: SCREAMING_SNAKE_CASE : Tuple = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Optional[Any] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : Union[str, Any] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : Any = False if "conv_layers" in name: load_conv_layer( a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE : str = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE : Any = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Optional[Any] = name.split(a__ )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE : List[Any] = mapped_key.replace('''*''' , a__ ) if "weight_g" in name: SCREAMING_SNAKE_CASE : List[Any] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE : Any = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE : str = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE : Dict = '''weight''' else: SCREAMING_SNAKE_CASE : int = None set_recursively(a__ , a__ , a__ , a__ , a__ , a__ ) continue if not is_used: unused_weights.append(a__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE : Dict = name.split('''.''' ) SCREAMING_SNAKE_CASE : Tuple = int(items[0] ) SCREAMING_SNAKE_CASE : Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) SCREAMING_SNAKE_CASE : Tuple = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(a__ ) @torch.no_grad() def UpperCAmelCase_( a__ , a__ , a__=None , a__=None , a__=True ): """simple docstring""" if config_path is not None: SCREAMING_SNAKE_CASE : Optional[Any] = UniSpeechConfig.from_pretrained(a__ ) else: SCREAMING_SNAKE_CASE : List[Any] = UniSpeechConfig() if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE : Tuple = Dictionary.load_from_json(a__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE : List[str] = target_dict.pad_index SCREAMING_SNAKE_CASE : Optional[int] = target_dict.bos_index SCREAMING_SNAKE_CASE : List[str] = target_dict.eos_index SCREAMING_SNAKE_CASE : Tuple = len(target_dict.symbols ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(a__ , '''vocab.json''' ) if not os.path.isdir(a__ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(a__ ) ) return os.makedirs(a__ , exist_ok=a__ ) SCREAMING_SNAKE_CASE : str = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE : Tuple = 42 SCREAMING_SNAKE_CASE : List[Any] = 43 with open(a__ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = WavaVecaPhonemeCTCTokenizer( a__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=a__ , ) SCREAMING_SNAKE_CASE : int = True if config.feat_extract_norm == '''layer''' else False SCREAMING_SNAKE_CASE : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=a__ , return_attention_mask=a__ , ) SCREAMING_SNAKE_CASE : str = WavaVecaProcessor(feature_extractor=a__ , tokenizer=a__ ) processor.save_pretrained(a__ ) SCREAMING_SNAKE_CASE : List[str] = UniSpeechForCTC(a__ ) else: SCREAMING_SNAKE_CASE : Optional[Any] = UniSpeechForPreTraining(a__ ) if is_finetuned: SCREAMING_SNAKE_CASE : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: SCREAMING_SNAKE_CASE : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) SCREAMING_SNAKE_CASE : Optional[Any] = model[0].eval() recursively_load_weights(a__ , a__ , a__ ) hf_unispeech.save_pretrained(a__ ) if __name__ == "__main__": a__ : Any = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a__ : Dict = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
369
from math import pi, sqrt, tan def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(a__ , 2 ) * torus_radius * tube_radius def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not isinstance(a__ , a__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
19
0
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class a_ ( unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __SCREAMING_SNAKE_CASE : List[Any] = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : int = TextaTextGenerationPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) return generator, ["Something to write", "Something else"] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Dict = generator('''Something there''' ) self.assertEqual(_lowerCamelCase , [{'''generated_text''': ANY(_lowerCamelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], ] , ) SCREAMING_SNAKE_CASE : str = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], ] , ) with self.assertRaises(_lowerCamelCase ): generator(4 ) @require_torch def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : str = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE : Union[str, Any] = generator('''Something there''' , do_sample=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , [{'''generated_text''': ''''''}] ) SCREAMING_SNAKE_CASE : Optional[Any] = 3 SCREAMING_SNAKE_CASE : str = generator( '''Something there''' , num_return_sequences=_lowerCamelCase , num_beams=_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = generator('''This is a test''' , do_sample=_lowerCamelCase , num_return_sequences=2 , return_tensors=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) SCREAMING_SNAKE_CASE : Optional[Any] = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE : List[Any] = '''<pad>''' SCREAMING_SNAKE_CASE : str = generator( ['''This is a test''', '''This is a second test'''] , do_sample=_lowerCamelCase , num_return_sequences=2 , batch_size=2 , return_tensors=_lowerCamelCase , ) self.assertEqual( _lowerCamelCase , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE : Any = generator('''Something there''' , do_sample=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , [{'''generated_text''': ''''''}] )
370
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a__ : List[str] = None a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Dict = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a__ : str = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : int = { lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self ) ->str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : List[str] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) ->List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
19
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Dict = 10 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : str = [1, 2, 3, 4] SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_lowerCamelCase , self.block_size , 0 ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] SCREAMING_SNAKE_CASE : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_lowerCamelCase , self.block_size , 0 ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] SCREAMING_SNAKE_CASE : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_lowerCamelCase , self.block_size , 0 ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[str] = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' SCREAMING_SNAKE_CASE : List[Any] = process_story(_lowerCamelCase ) self.assertEqual(_lowerCamelCase , [] ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : Optional[Any] = process_story(_lowerCamelCase ) self.assertEqual(_lowerCamelCase , [] ) self.assertEqual(_lowerCamelCase , [] ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Any = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) SCREAMING_SNAKE_CASE : List[str] = process_story(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = ['''It was the best of times.'''] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([1, 2, 3, 4] ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_lowerCamelCase , 0 ).numpy() , expected.numpy() ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_lowerCamelCase , 23 ).numpy() , expected.numpy() ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) SCREAMING_SNAKE_CASE : Dict = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_lowerCamelCase , 1 ).numpy() , expected.numpy() ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Dict = 101 SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) SCREAMING_SNAKE_CASE : List[str] = compute_token_type_ids(_lowerCamelCase , _lowerCamelCase ) np.testing.assert_array_equal(_lowerCamelCase , _lowerCamelCase )
371
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = proj_size SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase ) for _ in range(_lowerCamelCase ) ] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for block in self.blocks: SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase ) return hidden_states
19
0
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Tuple = '''▁''' a__ : List[Any] = {'''vocab_file''': '''spiece.model'''} a__ : Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } a__ : str = { '''google/pegasus-xsum''': 512, } a__ : str = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : Dict = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is""" F""" {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = mask_token_sent SCREAMING_SNAKE_CASE : Optional[int] = vocab_file SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # add special tokens to encoder dict SCREAMING_SNAKE_CASE : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) + self.offset def __lowerCAmelCase ( self ) ->Dict[str, int]: SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None return state def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase ) return sp_id + self.offset def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str: return 1 def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
19
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
351
def UpperCAmelCase_( a__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = 1 while repunit: SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_( a__ = 1_000_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
0
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : List[Any] = '''▁''' a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = BertGenerationTokenizer __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : List[str] = True def __lowerCAmelCase ( self ) ->str: super().setUp() SCREAMING_SNAKE_CASE : Optional[int] = BertGenerationTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = '''<s>''' SCREAMING_SNAKE_CASE : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_lowerCamelCase ) , 1002 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Dict = BertGenerationTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [285, 46, 10, 170, 382] , ) SCREAMING_SNAKE_CASE : str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) SCREAMING_SNAKE_CASE : Any = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->str: return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : Union[str, Any] = [1_8536, 2260, 101] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) SCREAMING_SNAKE_CASE : List[str] = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @require_torch @slow def __lowerCAmelCase ( self ) ->List[str]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence SCREAMING_SNAKE_CASE : List[str] = list(self.big_tokenizer.get_vocab().keys() )[:10] SCREAMING_SNAKE_CASE : str = ''' '''.join(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.big_tokenizer.encode_plus(_lowerCamelCase , return_tensors='''pt''' , return_token_type_ids=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = BertGenerationConfig() SCREAMING_SNAKE_CASE : str = BertGenerationEncoder(_lowerCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowerCamelCase ) model(**_lowerCamelCase ) @slow def __lowerCAmelCase ( self ) ->Optional[Any]: # fmt: off SCREAMING_SNAKE_CASE : int = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
352
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict: SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Any = num_stages SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : int = scope SCREAMING_SNAKE_CASE : Optional[Any] = num_stages def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCAmelCase ( self ) ->Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->str: return def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->str: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass def __lowerCAmelCase ( self ) ->int: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @slow def __lowerCAmelCase ( self ) ->List[Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
19
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = split_dict._to_yaml_list() assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = SplitDict._from_yaml_list(a__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump SCREAMING_SNAKE_CASE : Optional[int] = None # the split name of split_dict takes over the name of the split info object SCREAMING_SNAKE_CASE : Union[str, Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=a__ ), SplitInfo(dataset_name='''my_dataset''' )] ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
353
import datasets from .evaluate import evaluate a__ : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' a__ : List[str] = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' a__ : List[Any] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
19
0
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , ) ->int: SCREAMING_SNAKE_CASE : Optional[int] = parent SCREAMING_SNAKE_CASE : Optional[Any] = 13 SCREAMING_SNAKE_CASE : List[Any] = 7 SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Dict = 99 SCREAMING_SNAKE_CASE : Dict = 32 SCREAMING_SNAKE_CASE : Any = 2 SCREAMING_SNAKE_CASE : Tuple = 4 SCREAMING_SNAKE_CASE : List[Any] = 37 SCREAMING_SNAKE_CASE : Optional[Any] = '''gelu''' SCREAMING_SNAKE_CASE : Tuple = 0.1 SCREAMING_SNAKE_CASE : str = 0.1 SCREAMING_SNAKE_CASE : Optional[Any] = 512 SCREAMING_SNAKE_CASE : Optional[Any] = 16 SCREAMING_SNAKE_CASE : Optional[int] = 2 SCREAMING_SNAKE_CASE : int = 0.0_2 SCREAMING_SNAKE_CASE : int = 3 SCREAMING_SNAKE_CASE : Optional[Any] = 4 SCREAMING_SNAKE_CASE : Optional[Any] = None def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Tuple = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : int = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[str] = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ) ->List[str]: ( SCREAMING_SNAKE_CASE ) : List[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[str] = TFEsmModel(config=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask} SCREAMING_SNAKE_CASE : List[str] = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = [input_ids, input_mask] SCREAMING_SNAKE_CASE : int = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Tuple = TFEsmModel(config=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } SCREAMING_SNAKE_CASE : str = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = [input_ids, input_mask] SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , encoder_hidden_states=_lowerCamelCase ) # Also check the case where encoder outputs are not passed SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Any = TFEsmForMaskedLM(config=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = TFEsmForTokenClassification(config=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE : Any = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = TFEsmModelTester(self ) SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->Optional[int]: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @slow def __lowerCAmelCase ( self ) ->str: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[str] = TFEsmModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = model_class(_lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer SCREAMING_SNAKE_CASE : Optional[int] = model.get_bias() assert isinstance(_lowerCamelCase , _lowerCamelCase ) for k, v in name.items(): assert isinstance(_lowerCamelCase , tf.Variable ) else: SCREAMING_SNAKE_CASE : Any = model.get_output_embeddings() assert x is None SCREAMING_SNAKE_CASE : Tuple = model.get_bias() assert name is None @require_tf class a_ ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Optional[Any] = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase )[0] SCREAMING_SNAKE_CASE : List[Any] = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _lowerCamelCase ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE : Any = tf.constant( [ [ [8.9_2_1_5_1_8, -10.58_9814, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -13.91_1377, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -13.95_1557, -3.7_4_0_5_9_2], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : List[Any] = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) SCREAMING_SNAKE_CASE : Tuple = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) SCREAMING_SNAKE_CASE : Any = model(_lowerCamelCase )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE : int = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
354
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]: return { "matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ), }
19
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=16 , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=10 , _lowerCamelCase=8 , _lowerCamelCase=["stage1", "stage2", "stage3"] , _lowerCamelCase=[1, 2, 3] , ) ->Dict: SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : Tuple = patch_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : int = embed_dim SCREAMING_SNAKE_CASE : int = depths SCREAMING_SNAKE_CASE : str = num_heads SCREAMING_SNAKE_CASE : List[Any] = window_size SCREAMING_SNAKE_CASE : Dict = mlp_ratio SCREAMING_SNAKE_CASE : Optional[Any] = qkv_bias SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = drop_path_rate SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = use_absolute_embeddings SCREAMING_SNAKE_CASE : List[str] = patch_norm SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : Optional[Any] = scope SCREAMING_SNAKE_CASE : Optional[int] = use_labels SCREAMING_SNAKE_CASE : str = type_sequence_label_size SCREAMING_SNAKE_CASE : List[Any] = encoder_stride SCREAMING_SNAKE_CASE : Any = out_features SCREAMING_SNAKE_CASE : Tuple = out_indices def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = MaskFormerSwinModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : str = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE : int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = MaskFormerSwinBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Tuple = ['''stem'''] SCREAMING_SNAKE_CASE : Dict = MaskFormerSwinBackbone(config=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Optional[Any] = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = MaskFormerSwinModelTester(self ) SCREAMING_SNAKE_CASE : str = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def __lowerCAmelCase ( self ) ->Optional[int]: pass def __lowerCAmelCase ( self ) ->List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->Any: return def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Any: pass @unittest.skip('''Swin does not support feedforward chunking''' ) def __lowerCAmelCase ( self ) ->int: pass def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : List[str] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def __lowerCAmelCase ( self ) ->Tuple: pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def __lowerCAmelCase ( self ) ->Dict: pass def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : Dict = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = outputs.hidden_states SCREAMING_SNAKE_CASE : str = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # Swin has a different seq_length SCREAMING_SNAKE_CASE : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Dict = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = 3 SCREAMING_SNAKE_CASE : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Tuple = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def __lowerCAmelCase ( self ) ->Optional[int]: pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __lowerCAmelCase ( self ) ->Tuple: pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __lowerCAmelCase ( self ) ->int: pass def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowerCamelCase ): SCREAMING_SNAKE_CASE : str = 0 return t def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(**_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowerCamelCase ) , set_nan_tensor_to_zero(_lowerCamelCase ) , atol=1e-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(_lowerCamelCase ).any()} and `inf`: {torch.isinf(_lowerCamelCase )}. Dict has""" F""" `nan`: {torch.isnan(_lowerCamelCase ).any()} and `inf`: {torch.isinf(_lowerCamelCase )}.""" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {'''output_hidden_states''': True} ) SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {'''output_hidden_states''': True} ) @require_torch class a_ ( unittest.TestCase , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = (MaskFormerSwinBackbone,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : str = MaskFormerSwinConfig def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = MaskFormerSwinModelTester(self ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Union[str, Any] = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = backbone_class(_lowerCamelCase ) backbone.to(_lowerCamelCase ) backbone.eval() SCREAMING_SNAKE_CASE : Tuple = backbone(**_lowerCamelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowerCamelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True SCREAMING_SNAKE_CASE : Optional[Any] = backbone(**_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) SCREAMING_SNAKE_CASE : List[Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: SCREAMING_SNAKE_CASE : Tuple = backbone(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertIsNotNone(outputs.attentions )
355
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ ) SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a__ ) env_command_parser(subparsers=a__ ) launch_command_parser(subparsers=a__ ) tpu_command_parser(subparsers=a__ ) test_command_parser(subparsers=a__ ) # Let's go SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if not hasattr(a__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a__ ) if __name__ == "__main__": main()
19
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a__ : Any = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } a__ : str = {'''facebook/blenderbot-3B''': 128} class a_ ( a__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Union[str, Any] = BlenderbotTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Any: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : Optional[Any] = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Dict = add_prefix_space SCREAMING_SNAKE_CASE : Optional[int] = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = '''post_processor''' SCREAMING_SNAKE_CASE : Tuple = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : List[str] = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : List[str] = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : Union[str, Any] = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : int = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE : str = trim_offsets SCREAMING_SNAKE_CASE : int = True if changes_to_apply: SCREAMING_SNAKE_CASE : str = getattr(_lowerCamelCase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : str = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __lowerCAmelCase ( self ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value SCREAMING_SNAKE_CASE : Tuple = value def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : int = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[str] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : int = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Optional[Any]: return token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[int]: SCREAMING_SNAKE_CASE : Optional[int] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = ''' '''.join(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.encode(_lowerCamelCase ) if len(_lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE : Tuple = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
356
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''} a__ : str = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } a__ : Tuple = {'''mgp-str''': 27} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict: super().__init__( unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self ) ->List[Any]: return len(self.vocab ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return dict(self.vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for s in text: char_tokens.extend(_lowerCamelCase ) return char_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: return self.decoder.get(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) ) return SCREAMING_SNAKE_CASE : str = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' ) return (vocab_file,)
19
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 a__ : int = get_tests_dir('''fixtures''') class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Any: # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE : Dict = mock.Mock() SCREAMING_SNAKE_CASE : List[str] = 500 SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : int = HTTPError SCREAMING_SNAKE_CASE : Union[str, Any] = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head: SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def __lowerCAmelCase ( self ) ->Tuple: # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE : Tuple = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class a_ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowerCAmelCase ( cls ) ->Tuple: SCREAMING_SNAKE_CASE : Tuple = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def __lowerCAmelCase ( cls ) ->Optional[Any]: try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : List[str] = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCamelCase , repo_id='''test-feature-extractor''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Dict = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : int = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCamelCase , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def __lowerCAmelCase ( self ) ->Optional[Any]: CustomFeatureExtractor.register_for_auto_class() SCREAMING_SNAKE_CASE : Any = CustomFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) SCREAMING_SNAKE_CASE : Optional[int] = AutoFeatureExtractor.from_pretrained( F"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''DeiTFeatureExtractor'''] a__ : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]: return { "matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ), }
358
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
0
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = '''[PAD]''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowerCamelCase ) , 1012 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
359
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase_( a__ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
19
0
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def UpperCAmelCase_( *a__ , a__ = None , a__=True , a__=2 ): """simple docstring""" from .. import __version__ SCREAMING_SNAKE_CASE : Tuple = take_from SCREAMING_SNAKE_CASE : List[str] = () if not isinstance(args[0] , a__ ): SCREAMING_SNAKE_CASE : Dict = (args,) for attribute, version_name, message in args: if version.parse(version.parse(a__ ).base_version ) >= version.parse(a__ ): raise ValueError( F"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" F""" version {__version__} is >= {version_name}""" ) SCREAMING_SNAKE_CASE : Optional[int] = None if isinstance(a__ , a__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(a__ ),) SCREAMING_SNAKE_CASE : Union[str, Any] = F"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(a__ , a__ ): values += (getattr(a__ , a__ ),) SCREAMING_SNAKE_CASE : str = F"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: SCREAMING_SNAKE_CASE : Optional[Any] = F"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: SCREAMING_SNAKE_CASE : int = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , a__ , stacklevel=a__ ) if isinstance(a__ , a__ ) and len(a__ ) > 0: SCREAMING_SNAKE_CASE : str = inspect.getouterframes(inspect.currentframe() )[1] SCREAMING_SNAKE_CASE : Tuple = call_frame.filename SCREAMING_SNAKE_CASE : Optional[Any] = call_frame.lineno SCREAMING_SNAKE_CASE : Tuple = call_frame.function SCREAMING_SNAKE_CASE : Any = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(a__ ) == 0: return elif len(a__ ) == 1: return values[0] return values
360
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = eval_examples SCREAMING_SNAKE_CASE : Optional[int] = post_process_function def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]: SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE : Dict = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE : Any = gen_kwargs SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Optional[Any] = time.time() SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Tuple = eval_loop( _lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Dict = compute_metrics SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : str = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Dict = self.compute_metrics SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[str] = time.time() SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Any = eval_loop( _lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' ) SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
19
0
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger() # the current default level is logging.WARNING SCREAMING_SNAKE_CASE : Any = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Any = logging.get_verbosity() SCREAMING_SNAKE_CASE : Any = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) SCREAMING_SNAKE_CASE : List[Any] = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_lowerCamelCase ) as cl: logger.warning(_lowerCamelCase ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_lowerCamelCase ) as cl: logger.warning(_lowerCamelCase ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_lowerCamelCase ) as cl: logger.warning(_lowerCamelCase ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(_lowerCamelCase ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def __lowerCAmelCase ( self ) ->int: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var SCREAMING_SNAKE_CASE : List[str] = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) SCREAMING_SNAKE_CASE : List[str] = os.getenv('''TRANSFORMERS_VERBOSITY''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : str = logging.log_levels[env_level_str] SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_verbosity() self.assertEqual( _lowerCamelCase , _lowerCamelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level SCREAMING_SNAKE_CASE : Optional[int] = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def __lowerCAmelCase ( self ) ->Optional[int]: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE : str = logging.logging.getLogger() with CaptureLogger(_lowerCamelCase ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def __lowerCAmelCase ( self ) ->List[Any]: # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE : Dict = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) SCREAMING_SNAKE_CASE : Dict = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(_lowerCamelCase ) as cl: logger.warning_advice(_lowerCamelCase ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_lowerCamelCase ) as cl: logger.warning_advice(_lowerCamelCase ) self.assertEqual(cl.out , msg + '''\n''' ) def UpperCAmelCase_( ): """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
361
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DDIMPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def __lowerCAmelCase ( self ) ->Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddim.to(_lowerCamelCase ) ddim.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddpm.to(_lowerCamelCase ) ddpm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
0
import random def UpperCAmelCase_( a__ , a__ , a__ = False ): """simple docstring""" SCREAMING_SNAKE_CASE : dict = {i: [] for i in range(a__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(a__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(a__ ): for j in range(i + 1 , a__ ): if random.random() < probability: graph[i].append(a__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(a__ ) return graph def UpperCAmelCase_( a__ ): """simple docstring""" return { i: [j for j in range(a__ ) if i != j] for i in range(a__ ) } if __name__ == "__main__": import doctest doctest.testmod()
362
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = '''[PAD]''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowerCamelCase ) , 1012 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
19
0
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging a__ : Tuple = logging.get_logger(__name__) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = os.getenv('''SM_HP_MP_PARAMETERS''' , '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(a__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. SCREAMING_SNAKE_CASE : Any = os.getenv('''SM_FRAMEWORK_PARAMS''' , '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". SCREAMING_SNAKE_CASE : Any = json.loads(a__ ) if not mpi_options.get('''sagemaker_mpi_enabled''' , a__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' , _lowerCamelCase , ) @cached_property def __lowerCAmelCase ( self ) ->"torch.device": logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: SCREAMING_SNAKE_CASE : Optional[Any] = torch.device('''cpu''' ) SCREAMING_SNAKE_CASE : List[str] = 0 elif is_sagemaker_model_parallel_available(): SCREAMING_SNAKE_CASE : Dict = smp.local_rank() SCREAMING_SNAKE_CASE : str = torch.device('''cuda''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta ) SCREAMING_SNAKE_CASE : Optional[int] = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) SCREAMING_SNAKE_CASE : List[Any] = torch.device('''cuda''' , self.local_rank ) SCREAMING_SNAKE_CASE : int = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 SCREAMING_SNAKE_CASE : str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. SCREAMING_SNAKE_CASE : Tuple = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta ) SCREAMING_SNAKE_CASE : Any = torch.device('''cuda''' , self.local_rank ) SCREAMING_SNAKE_CASE : Optional[int] = 1 if device.type == "cuda": torch.cuda.set_device(_lowerCamelCase ) return device @property def __lowerCAmelCase ( self ) ->List[str]: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __lowerCAmelCase ( self ) ->Optional[int]: return not is_sagemaker_model_parallel_available() @property def __lowerCAmelCase ( self ) ->List[Any]: return False
363
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
0
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [True] * n SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : List[str] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): SCREAMING_SNAKE_CASE : int = i * 2 while index < n: SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : int = index + i SCREAMING_SNAKE_CASE : int = [2] for i in range(3 , a__ , 2 ): if is_prime[i]: primes.append(a__ ) return primes def UpperCAmelCase_( a__ = 999_966_663_333 ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = math.floor(math.sqrt(a__ ) ) + 100 SCREAMING_SNAKE_CASE : int = prime_sieve(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = primes[prime_index] while (last_prime**2) <= limit: SCREAMING_SNAKE_CASE : List[str] = primes[prime_index + 1] SCREAMING_SNAKE_CASE : int = last_prime**2 SCREAMING_SNAKE_CASE : Tuple = next_prime**2 # Get numbers divisible by lps(current) SCREAMING_SNAKE_CASE : Tuple = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) SCREAMING_SNAKE_CASE : List[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps SCREAMING_SNAKE_CASE : List[str] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair SCREAMING_SNAKE_CASE : List[Any] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
364
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Tuple = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a__ : Optional[Any] = {'''mobilebert-uncased''': 512} a__ : List[Any] = {} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = strip_accents SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ : List[str] = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
365
import math a__ : List[str] = 10 a__ : Optional[int] = 7 a__ : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase_( a__ = 20 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
19
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input a__ : List[str] = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: SCREAMING_SNAKE_CASE : str = get_sagemaker_input() else: SCREAMING_SNAKE_CASE : Optional[Any] = get_cluster_input() return config def UpperCAmelCase_( a__=None ): """simple docstring""" if subparsers is not None: SCREAMING_SNAKE_CASE : Optional[Any] = subparsers.add_parser('''config''' , description=a__ ) else: SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser('''Accelerate config command''' , description=a__ ) parser.add_argument( '''--config_file''' , default=a__ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=a__ ) return parser def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = get_user_input() if args.config_file is not None: SCREAMING_SNAKE_CASE : int = args.config_file else: if not os.path.isdir(a__ ): os.makedirs(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(a__ ) else: config.to_yaml_file(a__ ) print(F"""accelerate configuration saved at {config_file}""" ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = config_command_parser() SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() config_command(a__ ) if __name__ == "__main__": main()
366
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a__ : List[str] = logging.get_logger(__name__) # General docstring a__ : Tuple = '''MobileNetV1Config''' # Base docstring a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224''' a__ : Tuple = [1, 1_024, 7, 7] # Image classification docstring a__ : Optional[int] = '''google/mobilenet_v1_1.0_224''' a__ : int = '''tabby, tabby cat''' a__ : List[Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase_( a__ , a__ , a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va else: SCREAMING_SNAKE_CASE : Union[str, Any] = model SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/''' SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE : Dict = i + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2 SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias return tf_to_pt_map def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : List[Any] = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '''/RMSProp''' , a__ ) tf_weights.pop(name + '''/RMSProp_1''' , a__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2 SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left SCREAMING_SNAKE_CASE : str = pad_along_height // 2 SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 ) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None: super().__init__() SCREAMING_SNAKE_CASE : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE : List[str] = nn.Convad( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , ) if use_normalization: SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad( num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , ) else: SCREAMING_SNAKE_CASE : Dict = None if use_activation: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act else: SCREAMING_SNAKE_CASE : Optional[Any] = None def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: if self.config.tf_padding: SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution ) SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return features class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig __SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va __SCREAMING_SNAKE_CASE : int = 'mobilenet_v1' __SCREAMING_SNAKE_CASE : int = 'pixel_values' __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a__ : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Union[str, Any] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = config SCREAMING_SNAKE_CASE : Dict = 32 SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer( _lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE : Any = nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE : int = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : List[str] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Any = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
19
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = StableDiffusionPanoramaPipeline __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : str = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self ) ->Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler() torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Tuple = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : List[str] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->List[str]: SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = StableDiffusionPanoramaPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = sd_pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCAmelCase ( self ) ->Tuple: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = StableDiffusionPanoramaPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = '''french fries''' SCREAMING_SNAKE_CASE : int = sd_pipe(**_lowerCamelCase , negative_prompt=_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : str = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = StableDiffusionPanoramaPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(**_lowerCamelCase , view_batch_size=2 ) SCREAMING_SNAKE_CASE : Optional[int] = output.images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : int = self.get_dummy_components() SCREAMING_SNAKE_CASE : int = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' ) SCREAMING_SNAKE_CASE : int = StableDiffusionPanoramaPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = sd_pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = PNDMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , skip_prk_steps=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionPanoramaPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self , _lowerCamelCase=0 ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = '''stabilityai/stable-diffusion-2-base''' SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler.from_pretrained(_lowerCamelCase , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE : Any = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : List[str] = self.get_inputs() SCREAMING_SNAKE_CASE : Any = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) SCREAMING_SNAKE_CASE : List[str] = np.array( [ 0.3_6_9_6_8_3_9_2, 0.2_7_0_2_5_3_7_2, 0.3_2_4_4_6_7_6_6, 0.2_8_3_7_9_3_8_7, 0.3_6_3_6_3_2_7_4, 0.3_0_7_3_3_3_4_7, 0.2_7_1_0_0_0_2_7, 0.2_7_0_5_4_1_2_5, 0.2_5_5_3_6_0_9_6, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : str = self.get_inputs() SCREAMING_SNAKE_CASE : List[Any] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) SCREAMING_SNAKE_CASE : List[str] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = 0 def callback_fn(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> None: SCREAMING_SNAKE_CASE : str = True nonlocal number_of_steps number_of_steps += 1 if step == 1: SCREAMING_SNAKE_CASE : Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) SCREAMING_SNAKE_CASE : int = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Optional[int] = np.array( [ 0.1_8_6_8_1_8_6_9, 0.3_3_9_0_7_8_1_6, 0.5_3_6_1_2_7_6, 0.1_4_4_3_2_8_6_5, -0.0_2_8_5_6_6_1_1, -0.7_3_9_4_1_1_2_3, 0.2_3_3_9_7_9_8_7, 0.4_7_3_2_2_6_8_2, -0.3_7_8_2_3_1_6_4, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: SCREAMING_SNAKE_CASE : int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) SCREAMING_SNAKE_CASE : Tuple = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Union[str, Any] = np.array( [ 0.1_8_5_3_9_6_4_5, 0.3_3_9_8_7_2_4_8, 0.5_3_7_8_5_5_9, 0.1_4_4_3_7_1_4_2, -0.0_2_4_5_5_2_6_1, -0.7_3_3_8_3_1_7, 0.2_3_9_9_0_7_5_5, 0.4_7_3_5_6_2_7_2, -0.3_7_8_6_5_0_5, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Tuple = '''stabilityai/stable-diffusion-2-base''' SCREAMING_SNAKE_CASE : str = DDIMScheduler.from_pretrained(_lowerCamelCase , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : int = self.get_inputs() pipe(**_lowerCamelCase , callback=_lowerCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __lowerCAmelCase ( self ) ->Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE : Tuple = '''stabilityai/stable-diffusion-2-base''' SCREAMING_SNAKE_CASE : List[str] = DDIMScheduler.from_pretrained(_lowerCamelCase , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE : int = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : int = self.get_inputs() SCREAMING_SNAKE_CASE : Tuple = pipe(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
367
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
0
import math def UpperCAmelCase_( a__ , a__ = 0 , a__ = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = end or len(a__ ) for i in range(a__ , a__ ): SCREAMING_SNAKE_CASE : Any = i SCREAMING_SNAKE_CASE : List[str] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: SCREAMING_SNAKE_CASE : Optional[int] = array[temp_index - 1] temp_index -= 1 SCREAMING_SNAKE_CASE : List[Any] = temp_index_value return array def UpperCAmelCase_( a__ , a__ , a__ ): # Max Heap """simple docstring""" SCREAMING_SNAKE_CASE : int = index SCREAMING_SNAKE_CASE : Tuple = 2 * index + 1 # Left Node SCREAMING_SNAKE_CASE : int = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: SCREAMING_SNAKE_CASE : int = left_index if right_index < heap_size and array[largest] < array[right_index]: SCREAMING_SNAKE_CASE : Optional[int] = right_index if largest != index: SCREAMING_SNAKE_CASE : Any = array[largest], array[index] heapify(a__ , a__ , a__ ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = len(a__ ) for i in range(n // 2 , -1 , -1 ): heapify(a__ , a__ , a__ ) for i in range(n - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE : int = array[0], array[i] heapify(a__ , 0 , a__ ) return array def UpperCAmelCase_( a__ , a__ , a__ , a__ ): """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def UpperCAmelCase_( a__ , a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = low SCREAMING_SNAKE_CASE : List[Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i SCREAMING_SNAKE_CASE : Union[str, Any] = array[j], array[i] i += 1 def UpperCAmelCase_( a__ ): """simple docstring""" if len(a__ ) == 0: return array SCREAMING_SNAKE_CASE : List[str] = 2 * math.ceil(math.loga(len(a__ ) ) ) SCREAMING_SNAKE_CASE : int = 16 return intro_sort(a__ , 0 , len(a__ ) , a__ , a__ ) def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ ): """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(a__ ) max_depth -= 1 SCREAMING_SNAKE_CASE : int = median_of_a(a__ , a__ , start + ((end - start) // 2) + 1 , end - 1 ) SCREAMING_SNAKE_CASE : Dict = partition(a__ , a__ , a__ , a__ ) intro_sort(a__ , a__ , a__ , a__ , a__ ) SCREAMING_SNAKE_CASE : Optional[int] = p return insertion_sort(a__ , a__ , a__ ) if __name__ == "__main__": import doctest doctest.testmod() a__ : int = input('''Enter numbers separated by a comma : ''').strip() a__ : Dict = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
368
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Any = TypeVar('''T''') def UpperCAmelCase_( a__ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 2 class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE : dict[T, int] = {} SCREAMING_SNAKE_CASE : int = 0 def __len__( self ) ->int: return self.elements def __repr__( self ) ->str: return str(self.heap ) def __lowerCAmelCase ( self ) ->bool: # Check if the priority queue is empty return self.elements == 0 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE : Tuple = self.elements self.elements += 1 self._bubble_up(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0] self._bubble_down(_lowerCamelCase ) return elem def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Update the weight of the given key SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE : Any = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_up(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos] SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Swap the nodes at the given positions SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos SCREAMING_SNAKE_CASE : List[str] = nodea_pos class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE : int = 0 def __repr__( self ) ->str: return str(self.connections ) def __len__( self ) ->int: return self.nodes def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE : Any = {} self.nodes += 1 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an edge between 2 nodes in the graph self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = weight SCREAMING_SNAKE_CASE : str = weight def UpperCAmelCase_( a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node return dist, parent
19
0
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = BioGptTokenizer __SCREAMING_SNAKE_CASE : Tuple = False def __lowerCAmelCase ( self ) ->List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE : int = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] SCREAMING_SNAKE_CASE : Any = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE : Optional[Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] SCREAMING_SNAKE_CASE : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[str] = '''lower newer''' SCREAMING_SNAKE_CASE : Optional[Any] = '''lower newer''' return input_text, output_text def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : str = BioGptTokenizer(self.vocab_file , self.merges_file ) SCREAMING_SNAKE_CASE : Optional[Any] = '''lower''' SCREAMING_SNAKE_CASE : Optional[Any] = ['''low''', '''er</w>'''] SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = tokens + ['''<unk>'''] SCREAMING_SNAKE_CASE : Any = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) @slow def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : int = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
369
from math import pi, sqrt, tan def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(a__ , 2 ) * torus_radius * tube_radius def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not isinstance(a__ , a__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
19
0
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : str = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : List[Any] = PNDMScheduler() SCREAMING_SNAKE_CASE : str = PNDMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) pndm.to(_lowerCamelCase ) pndm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = pndm(generator=_lowerCamelCase , num_inference_steps=20 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = pndm(generator=_lowerCamelCase , num_inference_steps=20 , output_type='''numpy''' , return_dict=_lowerCamelCase )[0] SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : int = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : str = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = PNDMScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = PNDMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) pndm.to(_lowerCamelCase ) pndm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pndm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
370
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a__ : List[str] = None a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Dict = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a__ : str = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : int = { lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self ) ->str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : List[str] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) ->List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
19
0
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = PhobertTokenizer __SCREAMING_SNAKE_CASE : Optional[Any] = False def __lowerCAmelCase ( self ) ->List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE : Optional[Any] = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] SCREAMING_SNAKE_CASE : Union[str, Any] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE : str = ['''#version: 0.2''', '''l à</w>'''] SCREAMING_SNAKE_CASE : Dict = {'''unk_token''': '''<unk>'''} SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Union[str, Any]: kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Any = '''Tôi là VinAI Research''' SCREAMING_SNAKE_CASE : List[Any] = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE : Any = '''Tôi là VinAI Research''' SCREAMING_SNAKE_CASE : List[str] = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize(_lowerCamelCase ) print(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE : Optional[Any] = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase )
371
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = proj_size SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase ) for _ in range(_lowerCamelCase ) ] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for block in self.blocks: SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase ) return hidden_states
19
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=19 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = seq_length SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : List[Any] = use_input_mask SCREAMING_SNAKE_CASE : str = use_token_type_ids SCREAMING_SNAKE_CASE : List[str] = use_labels SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : Dict = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : int = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE : int = type_sequence_label_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = num_labels SCREAMING_SNAKE_CASE : int = num_choices SCREAMING_SNAKE_CASE : str = scope def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=_lowerCamelCase , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : Optional[int] = EsmForProteinFolding(config=_lowerCamelCase ).float() model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Dict = (EsmForProteinFolding,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[Any] = () __SCREAMING_SNAKE_CASE : Dict = {} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Any = EsmFoldModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->Dict: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) @unittest.skip('''Does not support attention outputs''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip def __lowerCAmelCase ( self ) ->Optional[int]: pass @unittest.skip('''Esm does not support embedding resizing''' ) def __lowerCAmelCase ( self ) ->List[str]: pass @unittest.skip('''Esm does not support embedding resizing''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def __lowerCAmelCase ( self ) ->Optional[Any]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowerCAmelCase ( self ) ->List[str]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowerCAmelCase ( self ) ->Dict: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowerCAmelCase ( self ) ->Dict: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowerCAmelCase ( self ) ->List[str]: pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def __lowerCAmelCase ( self ) ->Dict: pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip('''ESMFold only has one output format.''' ) def __lowerCAmelCase ( self ) ->Any: pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip('''ESMFold does not support input chunking.''' ) def __lowerCAmelCase ( self ) ->Dict: pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __lowerCAmelCase ( self ) ->Optional[Any]: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->Any: pass @require_torch class a_ ( a__ ): """simple docstring""" @slow def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Tuple = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() SCREAMING_SNAKE_CASE : Dict = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) SCREAMING_SNAKE_CASE : str = model(_lowerCamelCase )['''positions'''] SCREAMING_SNAKE_CASE : int = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , _lowerCamelCase , atol=1e-4 ) )
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Tuple = '''▁''' a__ : List[Any] = {'''vocab_file''': '''spiece.model'''} a__ : Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } a__ : str = { '''google/pegasus-xsum''': 512, } a__ : str = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : Dict = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is""" F""" {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = mask_token_sent SCREAMING_SNAKE_CASE : Optional[int] = vocab_file SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # add special tokens to encoder dict SCREAMING_SNAKE_CASE : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) + self.offset def __lowerCAmelCase ( self ) ->Dict[str, int]: SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None return state def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase ) return sp_id + self.offset def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str: return 1 def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
19
0
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : List[Any] = [] for rt in rc.restypes: SCREAMING_SNAKE_CASE : Optional[int] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) SCREAMING_SNAKE_CASE : Any = {name: i for i, name in enumerate(a__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( a__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( a__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) SCREAMING_SNAKE_CASE : Dict = torch.tensor( a__ , dtype=torch.floataa , device=protein['''aatype'''].device , ) SCREAMING_SNAKE_CASE : Optional[Any] = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein SCREAMING_SNAKE_CASE : Optional[Any] = restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE : Dict = restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE : List[Any] = residx_atomaa_mask SCREAMING_SNAKE_CASE : Dict = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back SCREAMING_SNAKE_CASE : Dict = restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE : str = residx_atomaa_to_atomaa.long() # create the corresponding mask SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): SCREAMING_SNAKE_CASE : Tuple = rc.restype_atoa[restype_letter] SCREAMING_SNAKE_CASE : Union[str, Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: SCREAMING_SNAKE_CASE : Tuple = rc.atom_order[atom_name] SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : Tuple = restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE : Dict = residx_atomaa_mask return protein def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = tree_map(lambda a__ : torch.tensor(a__ , device=batch['''aatype'''].device ) , a__ , np.ndarray ) SCREAMING_SNAKE_CASE : int = tensor_tree_map(lambda a__ : np.array(a__ ) , make_atomaa_masks(a__ ) ) return out
351
def UpperCAmelCase_( a__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = 1 while repunit: SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_( a__ = 1_000_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = BertJapaneseTokenizer __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : Tuple = True def __lowerCAmelCase ( self ) ->List[str]: super().setUp() SCREAMING_SNAKE_CASE : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Tuple = '''こんにちは、世界。 \nこんばんは、世界。''' SCREAMING_SNAKE_CASE : str = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : int = self.get_input_output_texts(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.decode(_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) return text, ids def __lowerCAmelCase ( self ) ->Tuple: pass # TODO add if relevant def __lowerCAmelCase ( self ) ->Optional[int]: pass # TODO add if relevant def __lowerCAmelCase ( self ) ->Optional[Any]: pass # TODO add if relevant def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(_lowerCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''こんにちは、世界。\nこんばんは、世界。''' SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) SCREAMING_SNAKE_CASE : Tuple = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_lowerCamelCase , '''wb''' ) as handle: pickle.dump(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , '''rb''' ) as handle: SCREAMING_SNAKE_CASE : Any = pickle.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_new.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Optional[Any] = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __lowerCAmelCase ( self ) ->str: try: SCREAMING_SNAKE_CASE : Any = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __lowerCAmelCase ( self ) ->str: try: SCREAMING_SNAKE_CASE : str = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = MecabTokenizer(do_lower_case=_lowerCamelCase , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __lowerCAmelCase ( self ) ->Any: try: SCREAMING_SNAKE_CASE : List[str] = MecabTokenizer( do_lower_case=_lowerCamelCase , normalize_text=_lowerCamelCase , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Any = MecabTokenizer(normalize_text=_lowerCamelCase , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''こんにちは、世界。\nこんばんは、世界。''' SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_lowerCamelCase , '''wb''' ) as handle: pickle.dump(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , '''rb''' ) as handle: SCREAMING_SNAKE_CASE : int = pickle.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_new.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) @require_sudachi def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Any = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Dict = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : str = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Dict = SudachiTokenizer(do_lower_case=_lowerCamelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = SudachiTokenizer(normalize_text=_lowerCamelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Any = SudachiTokenizer(trim_whitespace=_lowerCamelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''こんにちは、世界。\nこんばんは、世界。''' SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_lowerCamelCase , '''wb''' ) as handle: pickle.dump(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , '''rb''' ) as handle: SCREAMING_SNAKE_CASE : Any = pickle.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_new.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) @require_jumanpp def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Dict = JumanppTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Any = JumanppTokenizer(normalize_text=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = JumanppTokenizer(trim_whitespace=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[int] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] SCREAMING_SNAKE_CASE : List[Any] = {} for i, token in enumerate(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = i SCREAMING_SNAKE_CASE : Tuple = WordpieceTokenizer(vocab=_lowerCamelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.subword_tokenizer SCREAMING_SNAKE_CASE : str = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(_lowerCamelCase , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) SCREAMING_SNAKE_CASE : int = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(_lowerCamelCase , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode('''ありがとう。''' , add_special_tokens=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = BertJapaneseTokenizer __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Union[str, Any]: super().setUp() SCREAMING_SNAKE_CASE : Optional[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , **_lowerCamelCase ) ->List[Any]: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : int = '''こんにちは、世界。 \nこんばんは、世界。''' SCREAMING_SNAKE_CASE : Optional[int] = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def __lowerCAmelCase ( self ) ->Optional[int]: pass # TODO add if relevant def __lowerCAmelCase ( self ) ->Any: pass # TODO add if relevant def __lowerCAmelCase ( self ) ->Union[str, Any]: pass # TODO add if relevant def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( _lowerCamelCase , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Any = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] SCREAMING_SNAKE_CASE : str = {} for i, token in enumerate(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = i SCREAMING_SNAKE_CASE : Dict = CharacterTokenizer(vocab=_lowerCamelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode('''ありがとう。''' , add_special_tokens=_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = '''cl-tohoku/bert-base-japanese''' SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(_lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) SCREAMING_SNAKE_CASE : Optional[Any] = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(_lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
352
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict: SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Any = num_stages SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : int = scope SCREAMING_SNAKE_CASE : Optional[Any] = num_stages def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCAmelCase ( self ) ->Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->str: return def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->str: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass def __lowerCAmelCase ( self ) ->int: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @slow def __lowerCAmelCase ( self ) ->List[Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
19
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Union[str, Any] = {'''vocab_file''': '''spiece.model'''} a__ : Tuple = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } a__ : Optional[Any] = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) a__ : Optional[Any] = 0 a__ : Dict = 1 a__ : Optional[Any] = 2 a__ : Any = 3 a__ : List[Any] = 4 class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : int = 'left' def __init__( self , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<sep>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<cls>" , _lowerCamelCase="<mask>" , _lowerCamelCase=["<eop>", "<eod>"] , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token SCREAMING_SNAKE_CASE : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = 3 SCREAMING_SNAKE_CASE : str = do_lower_case SCREAMING_SNAKE_CASE : List[str] = remove_space SCREAMING_SNAKE_CASE : Dict = keep_accents SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Optional[int] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : List[Any] = None return state def __setstate__( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: if self.remove_space: SCREAMING_SNAKE_CASE : Dict = ''' '''.join(inputs.strip().split() ) else: SCREAMING_SNAKE_CASE : Tuple = inputs SCREAMING_SNAKE_CASE : str = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: SCREAMING_SNAKE_CASE : int = unicodedata.normalize('''NFKD''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = ''''''.join([c for c in outputs if not unicodedata.combining(_lowerCamelCase )] ) if self.do_lower_case: SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.lower() return outputs def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : List[str] = self.preprocess_text(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = [] for piece in pieces: if len(_lowerCamelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): SCREAMING_SNAKE_CASE : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCamelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: SCREAMING_SNAKE_CASE : Optional[int] = cur_pieces[1:] else: SCREAMING_SNAKE_CASE : List[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCamelCase ) else: new_pieces.append(_lowerCamelCase ) return new_pieces def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: return self.sp_model.PieceToId(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: return self.sp_model.IdToPiece(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ) ->str: SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''use_source_tokenizer''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.convert_ids_to_tokens(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : str = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Tuple = [] sub_texts.append(_lowerCamelCase ) else: current_sub_text.append(_lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens SCREAMING_SNAKE_CASE : Optional[Any] = ''''''.join(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: SCREAMING_SNAKE_CASE : int = self.clean_up_tokenization(_lowerCamelCase ) return clean_text else: return text def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is not None: return ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1, 1] return ([0] * len(_lowerCamelCase )) + [1, 1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Any = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
353
import datasets from .evaluate import evaluate a__ : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' a__ : List[str] = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' a__ : List[Any] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
19
0
from __future__ import annotations from collections import Counter from random import random class a_ : """simple docstring""" def __init__( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[Any] = {} def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Dict = {} def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: if nodea not in self.connections: self.add_node(_lowerCamelCase ) if nodea not in self.connections: self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = probability def __lowerCAmelCase ( self ) ->list[str]: return list(self.connections ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Dict = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(a__ , a__ , a__ ) SCREAMING_SNAKE_CASE : Optional[int] = Counter(graph.get_nodes() ) SCREAMING_SNAKE_CASE : int = start for _ in range(a__ ): SCREAMING_SNAKE_CASE : Dict = graph.transition(a__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
354
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]: return { "matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ), }
19
0
from __future__ import annotations import math def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = u for i in range(1 , a__ ): SCREAMING_SNAKE_CASE : int = temp * (u - i) return temp def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = int(input('''enter the numbers of values: ''' ) ) SCREAMING_SNAKE_CASE : list[list[float]] = [] for _ in range(a__ ): y.append([] ) for i in range(a__ ): for j in range(a__ ): y[i].append(a__ ) SCREAMING_SNAKE_CASE : str = 0 print('''enter the values of parameters in a list: ''' ) SCREAMING_SNAKE_CASE : Any = list(map(a__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(a__ ): SCREAMING_SNAKE_CASE : Union[str, Any] = float(input() ) SCREAMING_SNAKE_CASE : List[str] = int(input('''enter the value to interpolate: ''' ) ) SCREAMING_SNAKE_CASE : Tuple = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , a__ ): for j in range(n - i ): SCREAMING_SNAKE_CASE : Optional[Any] = y[j + 1][i - 1] - y[j][i - 1] SCREAMING_SNAKE_CASE : Dict = y[0][0] for i in range(1 , a__ ): summ += (ucal(a__ , a__ ) * y[0][i]) / math.factorial(a__ ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
355
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ ) SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a__ ) env_command_parser(subparsers=a__ ) launch_command_parser(subparsers=a__ ) tpu_command_parser(subparsers=a__ ) test_command_parser(subparsers=a__ ) # Let's go SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if not hasattr(a__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a__ ) if __name__ == "__main__": main()
19
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a__ : List[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') a__ : Optional[Any] = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a__ : Union[str, Any] = '''>>zh<<''' a__ : Tuple = '''Helsinki-NLP/''' if is_torch_available(): a__ : List[str] = '''pt''' elif is_tf_available(): a__ : List[str] = '''tf''' else: a__ : Union[str, Any] = '''jax''' @require_sentencepiece class a_ ( a__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = MarianTokenizer __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Optional[Any]: super().setUp() SCREAMING_SNAKE_CASE : List[str] = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] SCREAMING_SNAKE_CASE : Any = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE : Optional[Any] = Path(self.tmpdirname ) save_json(_lowerCamelCase , save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(_lowerCamelCase , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_lowerCamelCase , save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(_lowerCamelCase , save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) SCREAMING_SNAKE_CASE : Tuple = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **_lowerCamelCase ) ->MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = '''</s>''' SCREAMING_SNAKE_CASE : Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_lowerCamelCase ) , 9 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" ) SCREAMING_SNAKE_CASE : str = en_de_tokenizer(['''I am a small frog'''] , return_tensors=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(_lowerCamelCase , batch.input_ids[0] ) SCREAMING_SNAKE_CASE : Dict = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = [x.name for x in Path(_lowerCamelCase ).glob('''*''' )] self.assertIn('''source.spm''' , _lowerCamelCase ) MarianTokenizer.from_pretrained(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE : int = tok( ['''I am a small frog''' * 1000, '''I am a small frog'''] , padding=_lowerCamelCase , truncation=_lowerCamelCase , return_tensors=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Tuple = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=_lowerCamelCase , return_tensors=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __lowerCAmelCase ( self ) ->List[str]: # fmt: off SCREAMING_SNAKE_CASE : Union[str, Any] = {'''input_ids''': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''Tämä on testi''' SCREAMING_SNAKE_CASE : Tuple = '''This is a test''' SCREAMING_SNAKE_CASE : Union[str, Any] = [76, 7, 2047, 2] SCREAMING_SNAKE_CASE : str = [69, 12, 11, 940, 2] SCREAMING_SNAKE_CASE : Tuple = tokenizer(_lowerCamelCase ).input_ids self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(text_target=_lowerCamelCase ).input_ids self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : str = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase )
356
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''} a__ : str = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } a__ : Tuple = {'''mgp-str''': 27} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict: super().__init__( unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self ) ->List[Any]: return len(self.vocab ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return dict(self.vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for s in text: char_tokens.extend(_lowerCamelCase ) return char_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: return self.decoder.get(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) ) return SCREAMING_SNAKE_CASE : str = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' ) return (vocab_file,)
19
0
def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = len(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(len(a__ ) - pat_len + 1 ): SCREAMING_SNAKE_CASE : Dict = True for j in range(a__ ): if s[i + j] != pattern[j]: SCREAMING_SNAKE_CASE : Any = False break if match_found: position.append(a__ ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''DeiTFeatureExtractor'''] a__ : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
import numpy # List of input, output pairs a__ : int = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) a__ : Optional[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) a__ : Dict = [2, 4, 1, 5] a__ : Optional[Any] = len(train_data) a__ : Union[str, Any] = 0.0_09 def UpperCAmelCase_( a__ , a__="train" ): """simple docstring""" return calculate_hypothesis_value(a__ , a__ ) - output( a__ , a__ ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(len(a__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCAmelCase_( a__ , a__=m ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 0 for i in range(a__ ): if index == -1: summation_value += _error(a__ ) else: summation_value += _error(a__ ) * train_data[i][0][index] return summation_value def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = summation_of_cost_derivative(a__ , a__ ) / m return cost_derivative_value def UpperCAmelCase_( ): """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output SCREAMING_SNAKE_CASE : List[str] = 0.000_002 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : List[Any] = 0 while True: j += 1 SCREAMING_SNAKE_CASE : List[str] = [0, 0, 0, 0] for i in range(0 , len(a__ ) ): SCREAMING_SNAKE_CASE : Tuple = get_cost_derivative(i - 1 ) SCREAMING_SNAKE_CASE : Any = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( a__ , a__ , atol=a__ , rtol=a__ , ): break SCREAMING_SNAKE_CASE : List[Any] = temp_parameter_vector print(('''Number of iterations:''', j) ) def UpperCAmelCase_( ): """simple docstring""" for i in range(len(a__ ) ): print(('''Actual output value:''', output(a__ , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(a__ , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
358
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=a__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=a__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=a__ ) return parser.parse_args() def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = parse_args() # Import training_script as a module. SCREAMING_SNAKE_CASE : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) SCREAMING_SNAKE_CASE : Optional[int] = script_fpath.stem SCREAMING_SNAKE_CASE : List[Any] = importlib.import_module(a__ ) # Patch sys.argv SCREAMING_SNAKE_CASE : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
359
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase_( a__ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
19
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a__ : Optional[int] = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys a__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
360
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = eval_examples SCREAMING_SNAKE_CASE : Optional[int] = post_process_function def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]: SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE : Dict = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE : Any = gen_kwargs SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Optional[Any] = time.time() SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Tuple = eval_loop( _lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Dict = compute_metrics SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : str = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Dict = self.compute_metrics SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[str] = time.time() SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Any = eval_loop( _lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' ) SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
19
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : List[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
361
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DDIMPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def __lowerCAmelCase ( self ) ->Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddim.to(_lowerCamelCase ) ddim.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddpm.to(_lowerCamelCase ) ddpm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=3 , _lowerCamelCase=0.6 , _lowerCamelCase=None , ) ->Optional[Any]: SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE : List[str] = image_size SCREAMING_SNAKE_CASE : Optional[int] = patch_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : Any = use_labels SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : int = mask_ratio SCREAMING_SNAKE_CASE : List[str] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE : Tuple = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE : Union[str, Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->Any: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : Optional[int] = ViTMAEModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = ViTMAEForPreTraining(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = (self.image_size // self.patch_size) ** 2 SCREAMING_SNAKE_CASE : int = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : List[Any] = ViTMAEForPreTraining(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Dict = config_and_inputs SCREAMING_SNAKE_CASE : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Union[str, Any] = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Tuple = ViTMAEModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Tuple: pass def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: # make masks reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE : Union[str, Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) SCREAMING_SNAKE_CASE : int = torch.from_numpy(_lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument SCREAMING_SNAKE_CASE : List[str] = pt_noise super().check_pt_tf_models(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = outputs[0].cpu().numpy() SCREAMING_SNAKE_CASE : str = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model_class.from_pretrained(_lowerCamelCase ) model.to(_lowerCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) # Make sure we don't have nans SCREAMING_SNAKE_CASE : Dict = after_outputs[0].cpu().numpy() SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : Dict = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCamelCase , 1e-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __lowerCAmelCase ( self ) ->Any: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __lowerCAmelCase ( self ) ->Any: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->List[str]: pass @slow def __lowerCAmelCase ( self ) ->Optional[Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = ViTMAEModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ) ->Tuple: return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self ) ->Union[str, Any]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) SCREAMING_SNAKE_CASE : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.default_image_processor SCREAMING_SNAKE_CASE : List[str] = prepare_img() SCREAMING_SNAKE_CASE : List[str] = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) SCREAMING_SNAKE_CASE : List[str] = ViTMAEConfig() SCREAMING_SNAKE_CASE : Tuple = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**_lowerCamelCase , noise=torch.from_numpy(_lowerCamelCase ).to(device=_lowerCamelCase ) ) # verify the logits SCREAMING_SNAKE_CASE : List[Any] = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_lowerCamelCase ) , atol=1e-4 ) )
362
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = '''[PAD]''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowerCamelCase ) , 1012 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
19
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys a__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
363
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def UpperCAmelCase_( a__=None ): """simple docstring""" if subparsers is not None: SCREAMING_SNAKE_CASE : Tuple = subparsers.add_parser('''test''' ) else: SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=a__ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=a__ ) return parser def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: SCREAMING_SNAKE_CASE : int = script_name else: SCREAMING_SNAKE_CASE : str = F"""--config_file={args.config_file} {script_name}""" SCREAMING_SNAKE_CASE : Dict = ['''accelerate-launch'''] + test_args.split() SCREAMING_SNAKE_CASE : str = execute_subprocess_async(a__ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = test_command_parser() SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() test_command(a__ ) if __name__ == "__main__": main()
364
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Tuple = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a__ : Optional[Any] = {'''mobilebert-uncased''': 512} a__ : List[Any] = {} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = strip_accents SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=6 , _lowerCamelCase=17 , _lowerCamelCase=23 , _lowerCamelCase=11 , _lowerCamelCase=True , ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : List[str] = seq_length SCREAMING_SNAKE_CASE : List[str] = act_dim SCREAMING_SNAKE_CASE : Tuple = state_dim SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = max_length SCREAMING_SNAKE_CASE : List[str] = is_training def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : int = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) SCREAMING_SNAKE_CASE : int = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) SCREAMING_SNAKE_CASE : List[str] = random_attention_mask((self.batch_size, self.seq_length) ) SCREAMING_SNAKE_CASE : Any = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __lowerCAmelCase ( self ) ->Any: return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = DecisionTransformerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE ) : Dict = config_and_inputs SCREAMING_SNAKE_CASE : Union[str, Any] = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class a_ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = (DecisionTransformerModel,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Tuple = () __SCREAMING_SNAKE_CASE : str = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __SCREAMING_SNAKE_CASE : List[str] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = DecisionTransformerModelTester(self ) SCREAMING_SNAKE_CASE : Union[str, Any] = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->List[Any]: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) @slow def __lowerCAmelCase ( self ) ->Optional[Any]: for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Dict = DecisionTransformerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : int = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(_lowerCamelCase )] , _lowerCamelCase ) @require_torch class a_ ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : str = 2 # number of steps of autoregressive prediction we will perform SCREAMING_SNAKE_CASE : List[Any] = 10 # defined by the RL environment, may be normalized SCREAMING_SNAKE_CASE : int = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) SCREAMING_SNAKE_CASE : List[Any] = model.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model.config torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = torch.randn(1 , 1 , config.state_dim ).to(device=_lowerCamelCase , dtype=torch.floataa ) # env.reset() SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor( [[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(_lowerCamelCase , device=_lowerCamelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) SCREAMING_SNAKE_CASE : List[str] = state SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros(1 , 0 , config.act_dim , device=_lowerCamelCase , dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros(1 , 0 , device=_lowerCamelCase , dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = torch.tensor(0 , device=_lowerCamelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_lowerCamelCase )] , dim=1 ) SCREAMING_SNAKE_CASE : str = torch.cat([rewards, torch.zeros(1 , 1 , device=_lowerCamelCase )] , dim=1 ) SCREAMING_SNAKE_CASE : Tuple = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model( states=_lowerCamelCase , actions=_lowerCamelCase , rewards=_lowerCamelCase , returns_to_go=_lowerCamelCase , timesteps=_lowerCamelCase , attention_mask=_lowerCamelCase , return_dict=_lowerCamelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) SCREAMING_SNAKE_CASE : Optional[int] = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_lowerCamelCase , dtype=torch.floataa ), 1.0, False, {}, ) SCREAMING_SNAKE_CASE : Dict = action_pred[0, -1] SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([states, state] , dim=1 ) SCREAMING_SNAKE_CASE : Tuple = returns_to_go[0, -1] - reward SCREAMING_SNAKE_CASE : Any = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat( [timesteps, torch.ones((1, 1) , device=_lowerCamelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
365
import math a__ : List[str] = 10 a__ : Optional[int] = 7 a__ : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase_( a__ = 20 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
19
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() a__ : Union[str, Any] = logging.get_logger(__name__) a__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def UpperCAmelCase_( a__ ): """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE : str = k.replace(a__ , a__ ) if k.startswith('''encoder''' ): SCREAMING_SNAKE_CASE : int = k.replace('''.attn''' , '''.self_attn''' ) SCREAMING_SNAKE_CASE : List[Any] = k.replace('''norm1''' , '''self_attn_layer_norm''' ) SCREAMING_SNAKE_CASE : int = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): SCREAMING_SNAKE_CASE : Optional[Any] = k.replace('''norm1''' , '''self_attn_layer_norm''' ) SCREAMING_SNAKE_CASE : Dict = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) SCREAMING_SNAKE_CASE : Tuple = k.replace('''norm3''' , '''final_layer_norm''' ) return k def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: SCREAMING_SNAKE_CASE : Dict = sd.pop(a__ ) SCREAMING_SNAKE_CASE : int = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd SCREAMING_SNAKE_CASE : Union[str, Any] = v a__ : int = ['''START'''] @torch.no_grad() def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = torch.load(a__ , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : int = model['''model'''] SCREAMING_SNAKE_CASE : Optional[Any] = BlenderbotConfig.from_json_file(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = BlenderbotForConditionalGeneration(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = m.model.state_dict().keys() SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue SCREAMING_SNAKE_CASE : Optional[int] = rename_state_dict_key(a__ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: SCREAMING_SNAKE_CASE : List[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(a__ ) m.model.load_state_dict(a__ , strict=a__ ) m.half() m.save_pretrained(a__ ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) a__ : Tuple = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
366
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a__ : List[str] = logging.get_logger(__name__) # General docstring a__ : Tuple = '''MobileNetV1Config''' # Base docstring a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224''' a__ : Tuple = [1, 1_024, 7, 7] # Image classification docstring a__ : Optional[int] = '''google/mobilenet_v1_1.0_224''' a__ : int = '''tabby, tabby cat''' a__ : List[Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase_( a__ , a__ , a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va else: SCREAMING_SNAKE_CASE : Union[str, Any] = model SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/''' SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE : Dict = i + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2 SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias return tf_to_pt_map def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : List[Any] = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '''/RMSProp''' , a__ ) tf_weights.pop(name + '''/RMSProp_1''' , a__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2 SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left SCREAMING_SNAKE_CASE : str = pad_along_height // 2 SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 ) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None: super().__init__() SCREAMING_SNAKE_CASE : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE : List[str] = nn.Convad( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , ) if use_normalization: SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad( num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , ) else: SCREAMING_SNAKE_CASE : Dict = None if use_activation: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act else: SCREAMING_SNAKE_CASE : Optional[Any] = None def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: if self.config.tf_padding: SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution ) SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return features class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig __SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va __SCREAMING_SNAKE_CASE : int = 'mobilenet_v1' __SCREAMING_SNAKE_CASE : int = 'pixel_values' __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a__ : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Union[str, Any] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = config SCREAMING_SNAKE_CASE : Dict = 32 SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer( _lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE : Any = nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE : int = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : List[str] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Any = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
19
0
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
367
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
0
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = model.config SCREAMING_SNAKE_CASE : str = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) SCREAMING_SNAKE_CASE : str = MBartConfig( is_decoder=a__ , is_encoder_decoder=a__ , add_cross_attention=a__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=a__ , add_final_layer_norm=a__ , ) return encoder_config, decoder_config def UpperCAmelCase_( a__ ): """simple docstring""" if "encoder.model" in name: SCREAMING_SNAKE_CASE : Any = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: SCREAMING_SNAKE_CASE : Dict = '''encoder.''' + name if "attn.proj" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: SCREAMING_SNAKE_CASE : str = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": SCREAMING_SNAKE_CASE : Optional[Any] = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": SCREAMING_SNAKE_CASE : Tuple = '''encoder.layernorm.bias''' return name def UpperCAmelCase_( a__ , a__ ): """simple docstring""" for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Optional[Any] = orig_state_dict.pop(a__ ) if "qkv" in key: SCREAMING_SNAKE_CASE : List[str] = key.split('''.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(key_split[3] ) SCREAMING_SNAKE_CASE : Dict = int(key_split[5] ) SCREAMING_SNAKE_CASE : str = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE : Optional[Any] = val[:dim, :] SCREAMING_SNAKE_CASE : str = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE : Optional[Any] = val[-dim:, :] else: SCREAMING_SNAKE_CASE : List[Any] = val[:dim] SCREAMING_SNAKE_CASE : Any = val[dim : dim * 2] SCREAMING_SNAKE_CASE : Any = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: SCREAMING_SNAKE_CASE : Optional[Any] = val return orig_state_dict def UpperCAmelCase_( a__ , a__=None , a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DonutModel.from_pretrained(a__ ).eval() # load HuggingFace model SCREAMING_SNAKE_CASE : List[Any] = get_configs(a__ ) SCREAMING_SNAKE_CASE : List[Any] = DonutSwinModel(a__ ) SCREAMING_SNAKE_CASE : List[Any] = MBartForCausalLM(a__ ) SCREAMING_SNAKE_CASE : List[Any] = VisionEncoderDecoderModel(encoder=a__ , decoder=a__ ) model.eval() SCREAMING_SNAKE_CASE : Any = original_model.state_dict() SCREAMING_SNAKE_CASE : str = convert_state_dict(a__ , a__ ) model.load_state_dict(a__ ) # verify results on scanned document SCREAMING_SNAKE_CASE : Dict = load_dataset('''hf-internal-testing/example-documents''' ) SCREAMING_SNAKE_CASE : Optional[Any] = dataset['''test'''][0]['''image'''].convert('''RGB''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = XLMRobertaTokenizerFast.from_pretrained(a__ , from_slow=a__ ) SCREAMING_SNAKE_CASE : List[str] = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) SCREAMING_SNAKE_CASE : int = DonutProcessor(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = processor(a__ , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": SCREAMING_SNAKE_CASE : Optional[int] = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''When is the coffee break?''' SCREAMING_SNAKE_CASE : Any = task_prompt.replace('''{user_input}''' , a__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": SCREAMING_SNAKE_CASE : Union[str, Any] = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: SCREAMING_SNAKE_CASE : int = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": SCREAMING_SNAKE_CASE : str = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": SCREAMING_SNAKE_CASE : Optional[int] = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt SCREAMING_SNAKE_CASE : List[str] = '''hello world''' else: raise ValueError('''Model name not supported''' ) SCREAMING_SNAKE_CASE : Any = original_model.decoder.tokenizer(a__ , add_special_tokens=a__ , return_tensors='''pt''' )[ '''input_ids''' ] SCREAMING_SNAKE_CASE : Optional[Any] = original_model.encoder.model.patch_embed(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = model.encoder.embeddings(a__ ) assert torch.allclose(a__ , a__ , atol=1e-3 ) # verify encoder hidden states SCREAMING_SNAKE_CASE : Dict = original_model.encoder(a__ ) SCREAMING_SNAKE_CASE : int = model.encoder(a__ ).last_hidden_state assert torch.allclose(a__ , a__ , atol=1e-2 ) # verify decoder hidden states SCREAMING_SNAKE_CASE : Optional[Any] = original_model(a__ , a__ , a__ ).logits SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ , decoder_input_ids=a__ ).logits assert torch.allclose(a__ , a__ , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''naver-clova-ix/donut-base-finetuned-docvqa''', required=False, type=str, help='''Name of the original model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, required=False, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub.''', ) a__ : Tuple = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
368
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Any = TypeVar('''T''') def UpperCAmelCase_( a__ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 2 class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE : dict[T, int] = {} SCREAMING_SNAKE_CASE : int = 0 def __len__( self ) ->int: return self.elements def __repr__( self ) ->str: return str(self.heap ) def __lowerCAmelCase ( self ) ->bool: # Check if the priority queue is empty return self.elements == 0 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE : Tuple = self.elements self.elements += 1 self._bubble_up(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0] self._bubble_down(_lowerCamelCase ) return elem def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Update the weight of the given key SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE : Any = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_up(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos] SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Swap the nodes at the given positions SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos SCREAMING_SNAKE_CASE : List[str] = nodea_pos class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE : int = 0 def __repr__( self ) ->str: return str(self.connections ) def __len__( self ) ->int: return self.nodes def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE : Any = {} self.nodes += 1 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an edge between 2 nodes in the graph self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = weight SCREAMING_SNAKE_CASE : str = weight def UpperCAmelCase_( a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node return dist, parent
19
0
class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[int] = graph self._normalize_graph(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = len(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]: if sources is int: SCREAMING_SNAKE_CASE : Tuple = [sources] if sinks is int: SCREAMING_SNAKE_CASE : int = [sinks] if len(_lowerCamelCase ) == 0 or len(_lowerCamelCase ) == 0: return SCREAMING_SNAKE_CASE : str = sources[0] SCREAMING_SNAKE_CASE : Any = sinks[0] # make fake vertex if there are more # than one source or sink if len(_lowerCamelCase ) > 1 or len(_lowerCamelCase ) > 1: SCREAMING_SNAKE_CASE : List[str] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) SCREAMING_SNAKE_CASE : int = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: SCREAMING_SNAKE_CASE : Dict = max_input_flow SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: SCREAMING_SNAKE_CASE : Union[str, Any] = max_input_flow SCREAMING_SNAKE_CASE : int = size - 1 def __lowerCAmelCase ( self ) ->Optional[int]: if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = algorithm(self ) class a_ : """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : str = flow_network SCREAMING_SNAKE_CASE : str = flow_network.verticesCount SCREAMING_SNAKE_CASE : Dict = flow_network.sourceIndex SCREAMING_SNAKE_CASE : Tuple = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that SCREAMING_SNAKE_CASE : int = flow_network.graph SCREAMING_SNAKE_CASE : Optional[int] = False def __lowerCAmelCase ( self ) ->int: if not self.executed: self._algorithm() SCREAMING_SNAKE_CASE : Union[str, Any] = True def __lowerCAmelCase ( self ) ->int: pass class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->Optional[Any]: super().__init__(_lowerCamelCase ) # use this to save your result SCREAMING_SNAKE_CASE : Dict = -1 def __lowerCAmelCase ( self ) ->Tuple: if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->Union[str, Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = [[0] * self.verticies_count for i in range(self.verticies_count )] SCREAMING_SNAKE_CASE : Dict = [0] * self.verticies_count SCREAMING_SNAKE_CASE : Any = [0] * self.verticies_count def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[str] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule SCREAMING_SNAKE_CASE : Dict = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list SCREAMING_SNAKE_CASE : Any = 0 while i < len(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Tuple = vertices_list[i] SCREAMING_SNAKE_CASE : Any = self.heights[vertex_index] self.process_vertex(_lowerCamelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = 0 else: i += 1 SCREAMING_SNAKE_CASE : str = sum(self.preflow[self.source_index] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_lowerCamelCase , _lowerCamelCase ) self.relabel(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : Optional[Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Any = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): SCREAMING_SNAKE_CASE : Dict = self.heights[to_index] if min_height is not None: SCREAMING_SNAKE_CASE : Optional[Any] = min_height + 1 if __name__ == "__main__": a__ : Dict = [0] a__ : Optional[int] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] a__ : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network a__ : str = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate a__ : str = flow_network.find_maximum_flow() print(F"maximum flow is {maximum_flow}")
369
from math import pi, sqrt, tan def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(a__ , 2 ) * torus_radius * tube_radius def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not isinstance(a__ , a__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
19
0
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class a_ : """simple docstring""" @staticmethod def __lowerCAmelCase ( *_lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: pass def lowercase__( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class a_ ( unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = DepthEstimationPipeline(model=_lowerCamelCase , image_processor=_lowerCamelCase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , _lowerCamelCase ) import datasets SCREAMING_SNAKE_CASE : Any = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) SCREAMING_SNAKE_CASE : Optional[Any] = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , _lowerCamelCase , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def __lowerCAmelCase ( self ) ->Any: pass @slow @require_torch def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Intel/dpt-large''' SCREAMING_SNAKE_CASE : List[str] = pipeline('''depth-estimation''' , model=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) SCREAMING_SNAKE_CASE : List[str] = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.6_6_2 ) @require_torch def __lowerCAmelCase ( self ) ->str: # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
370
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a__ : List[str] = None a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Dict = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a__ : str = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : int = { lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self ) ->str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : List[str] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) ->List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
19
0
def UpperCAmelCase_( a__ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a__ , a__ ) and number_of_steps > 0 ), F"""number_of_steps needs to be positive integer, your input {number_of_steps}""" if number_of_steps == 1: return 1 SCREAMING_SNAKE_CASE : Union[str, Any] = 1, 1 for _ in range(number_of_steps - 1 ): SCREAMING_SNAKE_CASE : Union[str, Any] = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
371
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = proj_size SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase ) for _ in range(_lowerCamelCase ) ] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for block in self.blocks: SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase ) return hidden_states
19
0
import functools def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): '''simple docstring''' __snake_case : Optional[int] = len(__SCREAMING_SNAKE_CASE ) __snake_case : List[str] = len(__SCREAMING_SNAKE_CASE ) @functools.cache def min_distance(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __snake_case : Union[str, Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __SCREAMING_SNAKE_CASE ) , 1 + min_distance(__SCREAMING_SNAKE_CASE , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
20
import random def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Tuple = [], [], [] for element in data: if element < pivot: less.append(__SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(__SCREAMING_SNAKE_CASE ) else: equal.append(__SCREAMING_SNAKE_CASE ) return less, equal, greater def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0: return None __snake_case : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )] __snake_case : Tuple = 0 __snake_case , __snake_case , __snake_case : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) __snake_case : int = len(__SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
20
1